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ABSTRACT

The so-called convexity assumption of Lee and Marcus,

Fillipov, Roxin, and Warga is examined in detail. Under

conditions less restrictive than Warga, it is shown that the set

of relaxed trajectories is compact in the topology of uniform

convergence, and that the set of trajectories is dense in the

set of relaxed trajectories. It is also shown that the set of

trajectories is compact if and only if the convexity assumption

is satisfied, i. e. , if and only if at each point in phase space,

the set of permissible velocities is convex. Some interesting

consequences of this result are derived.
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INTRODUCTION

In this paper we investigate in detail the so-called convexity

assumption made by Lee and Marcus [l], Fillipov [2], Roxin [3], and

Warga [4] in their studies relating to the existence of optimal control.

We first show ( Theorem 2.1) that the set of relaxed trajectories is

compact in the topology of uniform convergence. It is interesting to note

that this result is true without a "Lipschitz condition" on the differential

system. The next result (Theorem 2.2) shows that the set of trajectories

is dense in the set of relaxed trajectories. In proving this result critical

use is made of the Lipschitz condition. Finally in Theorem 2.3 we prove

that the set of trajectories is closed if and only if the convexity

assumption is satisfied, i. e. , if and only if at each point in the phase

space the set of permissible velocities form a convex set. Some of these

assertions have been proved in a less general setting by Warga [4], Also,

for the main part, our proofs are different and simpler than those presented

by Warga. We also remark that as an immediate consequence of

Theorem 2.1 we obtain the results on the existence of optimal controls

given in Reference [l] - [4],
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In section 3 we derive some interesting consequences of

Theorem 2.3 for the class of control systems for which the right-hand

side of the differential equation is separable in the state and the control

vectors ( Eq. 3.1). We show that for such systems, if the convexity

condition is not satisfied, then the set of trajectories and the set of limit

points of the trajectories which are not themselves trajectories, are dense

in each other. Furthermore, these two disjoint sets are pathwise

connected if the initial set is pathwise connected. This result is

interesting in the light of a result of Neustadt [5] which states that for a

linear system the set of attainable sets is closed even if the convexity

condition is not satisfied. We remark that the relations between the

attainable sets and the convexity conditions are investigated in detail in

Reference [6],

1. STATEMENT OF THE PROBLEM

We shall study the control system

(1.1) x(t) = f(x(t),t,u(t))

where x£ Rn is the state, u^ Rm is the control, and t£ R is the time;

f is a continuous mapping of R XRXR into R ; and x as usual denotes

— . For each (x, t)£ R XR we are given a compact subset U(x, t) of
dt

Rm such that the mapping (x, t) -*U(x,t) is upper semicontinuous. Let
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U = U U(x,t)
(x,t)£iRnXR

Finally, the following additional conditions are imposed on the function f:

there exists a locally integrable function k and finite numbers M and N

such that

(1.2) | f(x,t,u) -f(x',t,u) | < k(t)|x-x«| ,

(1.3) | f(x,t,u) | < k(t) (M + N|x| )

for all x, x' in R , u^ U and t^R. Here and throughout, if z^R

then |z| denotes the Euclidean norm of z in R .

We are also given a fixed compact subset X0 of Rn and two finite

numbers a and b with a < b. Let I = [a,b].

Definition 1.1. For x£ Rn and t^ R let

F(x, t) = { f(x, t,u)| u£ U(x, t) ) and let G(x, t) be the convex closure
»

of F(x,t).

Definition 1.2. An absolutely continuous function x:I-*Rn is

said to be a trajectory if

(1.4) x(a)6XQ

(1.5) There is a measurable function u:I-**Rm with

u(t)£ U(x(t),t) for t£l, such that

x(t) = f(x(t), t, u(t)) a. e. in I.
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uU = W U(x,t)
(x,t)ERnXR

Finally, the following additional conditions are imposed on the function f:

there exists a locally integrable function k and finite numbers M and N

such that

(1.2) | f(x,t,u) - f(x',t,u) | < k(t)|x-x'| ,

(1.3) |f(x,t,u)| < k(t)(M +N|x|)

for all x, x' in R , u£ U and t^R. Here and throughout, if z(f R*

then |z| denotes the Euclidean norm of z in R .

We are also given a fixed compact subset Xn of Rn and two finite

numbers a and b with a < b. Let I = [a, b].

Definition 1.1. For x^ Rn and t£f R let

F(x,t) = (f(x,t,u)|u£U(x,t) } and let G(x, t) be the convex closure

of F(x,t).

Definition 1.2. An absolutely continuous function x:I-*»Rn is

said to be a trajectory if

(1.4) x(a)6XQ

(1.5) There is a measurable function u:I-*Rm with

u(t)G U(x(t),t) for t£l, such that

x(t) = f(x(t),t,u(t)) a. e. in I.
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Note. By Fillipov's lemma [l] , (1.5) is equivalent to

(1.6) x(t) £ F(x(t),t) a. e. in I.

Let cT denote the set of all trajectories. Following Warga [4],

we make

Definition 1.3. An absolutely continuous function x:I-*-Rn is

said to be a relaxed trajectory if

(1.7) x(a)£ XQ

(1.8) x(t) £ G(x(t),t) a.e. in I.

Let (R* denote the set of all relaxed trajectories. It is clear that

£f (^ d"L. Let O denote the real Banach space of all continuous

functions x : I -*• R with the norm of x given by

|| x || = max | x(t) | .
t^I

We will consider cX and ^ as subsets of (^ Our purpose is to

investigate the relationship between cT and (R. . In particular, we will

show that (R, is a compact subset of C; (R. is equal to the C -closure

of £f ; cT is closed in C if F(x, t) =G(x, t) for every (x,t),andif

the mapping (x, t) -»-U(x, t) is continuous, the converse statement is also

true.
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2. THE RELATION BETWEEN ft AND cf

Using (1.3), we make an elementary application of Gronwall's

lemma to obtain

Lemma 2.1. ft and a fortiori cT are bounded subsets of C .

From (1.3) and the preceding lemma we immediately have

Corollary 2.1. There is an integrable function u defined on I

such that for every x in ft

(1.9) | x(t) | < u(t) a. e. in I.

Corollary 2.2. ft is an equicontinuous family of functions.

Proof. Let € > 0. Since the function u in (1.9) is integrable,

there is a 6 = 6(e) >0 such that if t,, t2 in I and | tj - t2 | < 6 then

u(t) dt <^ e . Hence for any x in ft,

*2 *2

^2
Jt1

|x(t2) -x(t2) | < f |x(t) | dt < j jx(t) dt <
*1 tl

e .

Theorem 2.1. ft is a compact subset of C,

Proof. By Lemma 2.1, Corollary 2.2, and the Arzela-Ascoli

Theorem, it suffices to show that 4R, is closed in C/ . To this end, let

/x \ be a sequence in ft converging to an element x in ^ .

We first prove that x is absolutely continuous. Indeed let € > 0 t

and let 6 = 6(c) > 0 be such that for every finite increasing sequence
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< t. < t» < . . . < t < t' < b with ) . , |t! - t. < 6 we have
— 1—1— — m— m— Li=l l l

m

€E In u(t)dt <

•_! 't.
1=1 I

where u is the function given in Corollary 2.1. Now given such a sequence,

let n be sufficiently large so that || x - x || < l/4m« . Then,
n

m m

Y|x(t!) -x(t.) I < £ I Ix(t.) -xn(t.)| +Ix(t|) -xn(t!)|
i=l i=l

lXn<V-X„(ti>l}^ -

Hence x is absolutely continuous. It remains to show that

x(t)£; G(x(t), t) a. e. in I. We first show that x converges to x in the

weak topology of Li (I). To this end, let E be any subset of I with

positive measure. Then for any e > 0, there is a finite disjoint union

m

H = U (t.,t!)
i=l l l

of internals such that the measure of the difference E - H is less than €

-6-



Then

| f (xn(t) -x(t)) dt < |J(*n(t) -x(t)) dt I+£(| xn(t) | +|x(t) |)dt
H E-H

m

< y{i x (tD - x(t.«) i +1 x (t.) - x(t,)i} + r (i x (t)i +1 x(t)i) dt,
— l__i *-ni i ni i •* u "•

i=l E-H

The first term can be made small by choosing n large, and the second

term can be made small by choosing e small. Thus for every measurable

subset E of I we have

lim fx (t) dt = ( x(t) dt
E

so that x converges to x weakly in L. (I). From this we see that for
n 1

n
every vector z^ R ,

(2.1) lim <z, x (t)> > <z, x(t)> > lim <z, x (t)>
n n — ~ n n

a. e. in I. Since the set function G(x, t) is upper semicontinuous in x for

fixed t and since || xn-x|| -*0, for every z£ R and t in I we

must have
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lim max <z, y> <£ max <z, y> ,
n y£G(x (t), t) y£G(x(t), t)

(2.2) n

lim min <z, y> > min <z, y>.
n y£G(xn(t),t) y£G(x(t), t)

From (2.1) and (2.2) we deduce that for every z(5 R and almost all

tei.

max <z, y> > <z, x(t)> > min <z, y>
yeG(x(t), t) y£G(x(t), t)

so that since G is closed and convex,

x(t) (5 G(x(t),t) a. e. in I.
Q.E.D.

Remarks 2.1. a) In the proof of Theorem 2.1 we have not used

either the assumption of continuity of f in t or the Lipschitzian condition

(1.2). Therefore Theorem 2.1 is true and the same proof holds, if f is

merely required to be measurable in t for fixed (x, u) and if condition (1.2)

is eliminated. The proof of Theorem 2.2 however, makes critical use of

(1.2).

b) If the initial set X- is merely required to be

closed instead of compact, an immediate consequence of Theorem 2.2 is

that 6 v. is closed in O .

c) If, instead of the finite interval I = [a, b] , we

consider the interval I = [a, oo), then the set (K. of relaxed trajectories
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defined on I is a compact subset of C -- the Frechet space of all

continuous function x: I -»-R with the topology of uniform convergence

on finite intervals.

Definition 2. 1. Let x be a fixed element of ft. Let 3" ( G ) be

the family of all measurable functions f (g) : I -»• R such that

f (t)GF(x(t),t) (g(t)GG(x(t),t)) a.e. in I.

We note that & (^ C and C is a convex, closed, and bounded

subset of Lj(I).

Lemma 2.2. Let i:I-*R be any bounded, measurable function,

Then there exist functions f and f_ in 2r , depending on i, such that

(2.3) f <i(t),f(t)>dt = max f<i(t), g(t)>dt
I

f <a(t),j:(t)> dt = min f <i(t), g(t)> dt.(2.4)^ \ <i(t), f(t)> dt

*£S i

Proof. It is enough to prove (2.3). For each t in I let

M(t) = max <i(t), y>
y(EG(x(t),t)

Since F(x(t),t) is compact and G(x(t),t) is its convex hull we have

M(t) = max <i(t), y> .
y£F(x(t),t)
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Clearly, M is measurable and F(x(t),t) is upper semicontinuous in t.

By mimicking the argument of Fillipov [1] it is easy to show that there is

a function f in t? which satisfies (2.3).

Corollary 2. 3. Let g6 G» ti»t2^1 *with *1 - V be arbitrary.
Then there exists f £ <j» (depending on g, t , t ) such that

,U ~t

r2 g(t)dt = r 2f(t)dt.
t t

i i

Proof. Because of Lemma 2. 2. it is enough to show that the set

is a convex subset of R . Let f , f_£ £j» and let \ ^ [0»l] be arbitrary.

Then we must show that

(2.5) C2(\f1(t) +a-\)f2(t))dt e lIvvSO

For each Borel subset B of I let f (E £p be defined by f^ft) = f (t) for
B -D 1

t^B and f (t) = f?(t). for t£f B. But then by Lyapunov's theorem [7]

the set L= f I f (t) dt | B is a Borel subset of l) is a convex subset of
n •

R so that (2.5) is verified.
Q. E.D.

Theorem 2.2. Q\, is the & -closure of x .

Proof. Let x£ (fi^, and let € > 0. We will first show that there

-10-



exists f in cf (see Def. 2.1) such that for every t and t' in I

t1

U.6) | J(x(T)-f€(r))dT

Indeed let 6 > 0 be so small that

>tf

< € .

(2.7) \ ^(t) dT < €/3
Jt

whenever | t - t'| < 6 (u is defined in Corollary 2.1). Choose a

sequence a = tn < t, < . . . < t =b such that t.,, - t. < 6 for
u 1 m i+l i

each i. By Corollary 2.3 there exists a function f^ in cT such that

(2.8) f i+1(x(T) - f.(r)) dr = 0.

Let f€(f & be defined by f€(t) = fi(t) for t{ < t < t . It is clear

from (2.7) and (2.8) that f satisfies (2.6). By Fillipov's lemma [l] ,

there is a measurable function u :I->R with u€(t)^ U(x(t),t) such

that f (t) = f(x(t),t, u (t)) a. e. in I. Let x€ be the element in O

defined by,

x€(t) = f(x6(t), t, u€(t)), x€(a) = x(a)

Then, using (1.2) and (2.6), a simple application of Gronwall's lemma

shows that || x - x || < K € where K is a fixed number independent

of€. Q.E.D.

Corollary 2.4. If F(x, t) is convex for each (x, t), then o is

closed in C » and hence a = ft .
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Remark 2.2. This result shows that the "convexity assumption" on

F is sufficient to insure compactness of O . Theorem 2.3 states that if

the mapping (x, t) -*-U(x, t) is continuous, then the convexity assumption

is also necessary.

Henceforth we will assume that the function (x, t) -**U(x, t) is

continuous. The next lemma is immediate.

Lemma 2.3. The mapping (x, t) -*F(x, t) and (x, t)-»-G(x, t) are

continuous. The set of points (x, t) for which F(x, t) is not convex is an

open subset of R X R.

Theorem 2.3. Let x(E cT and suppose that for some t £j I.

F(x(t ),t ) is not convex. Then for every € > 0, there is an element

x€ E ft such that || x - xg || < € and x£ (£ 3" .
***

Proof. Because of Lemma 2.3 we can assume that a < t*"* < b.

Also there exist positive numbers 6 and 6' such that if | x - x(t )| < 6

and -|t-t*| < 6, then dH(F(x, t), G(x, t)) > 6' where dR(A,B)

is the Hausdorff distance between A and B. Therefore there exists a

measurable function g: [t , t +6] -+R such that for each t,

g(t)£G(x(t),t) and |g(t)-y| >6 for every y^F(x(t),t). By

Fillipov's lemma there exist measurable functions a^ and u. , 1 < i < n+1,
V"»n+1

with <*i(t) ^0, ) . a.(t) = 1, ut(t)^U(x(t),t) for each t, such that

g(t)=yn+1 a.(t) f(x(t),t,u.(t)) for t£ [t*. t*+6] . Also from the
Z_ii=l l

definition of g we see that there are positive numbers P and (5f such

-12-



that if

(2.9) t* < t < t#+p and |z - g(t) | < p , then

(2.10) lz~y| > P1 for every y£ F(z,t).

Now since x£ fj , there is a measurable function u:I-*R with

u(t)g U(x(t), t) such that x(t) = f(x(t), t, u(t)) a. e. in I. For each

positive integer m let x £ ft be defined by
m

f(xm(t),t, u(t)) tgl, t£[t*f t*+j|]

xm(t) =< n+1

^«i(t) f(xm(t), t, u.(t)) te [t*. t*+~ ]
i=l

and x (a) = x(a) .
m

Clearly, || x - x || -*• 0 as m -*• oo. Also for each m, since x and f

are continuous functions, there is a number t > 0 , such that for almost
m

every tgj [t*, t* +t ] , | x^t) - g(t) | < P . From (2.9) and (2.10)

we see that 3^$ <£T and the theorem is proved. Q E D

•n 1

Definition 2.2. A pair (x',t')^R XR is said to be an attainable

phase if there is a trajectory x(f cT such that x(t') = x1.

Corollary 2.4. cX ls closed and a fortiori compact in C if and

only if for every attainable phase (x',t') the set F(x',t') is convex.
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3. SOME CONSEQUENCES OF THEOREM 2.3

In this section we consider the class of control systems where

Eq. (1.1) has the form:

(3.1) x(t) = w(x(t),t) + v(u(t),t).

The functions w and v are assumed continuous, the control set

U(t,x) is assumed to be independent of x i. e. , U(t,x) = U(t), and the

mapping t -*U(t) is assumed to be continuous.

Let V(t) =/ v(u, t) | u£ U(t)} and let G(t) be the convex closure

of V(t). Let O and (}%,, respectively, denote the trajectories and

relaxed trajectories of (3.1), defined on I=[a,b] with a<b, and

starting at time a, in some fixed closed subset XQ of Rn. We note that

cj consists of those absolutely continuous functions x:I-*-R for which

x(a)£XQ and x(t)£ w(x(t), t) +V(t) a. e. , whereas ft consists of

those absolutely continuous functions x for which x(a) £ X and

x(t)gw(x(t),t) + G(t) a. e. in I.

Definition 3.1. a) Let If denote the set of all measurable functions

v:I-*-R such that v(t)^V(t) a. e. in I.

b) Let G denote the set of all measurable functions

g:I->R such that g(t)£G(t) a. e. in I.

c) Let 3^ = G - *iy denote the complement of C/

in

-14-



Remark 3.1. We consider TJ", *ls and ^ as subset of the real

Banach space Li consisting of all integrable functions i : I -*R with the

of i given by || i || x=f|i(t)| dt.norm

Definition 3.2. For xQ£[X and g(E G > let t(xq, g) denote

the element x of O given by

x(t) = w(x(t),t) + g(t) aoe. in I

x(a) = xQ

Lemma 3.1. The mapping t : X X Q -*• C is continuous and

one-to-one.

Proof. Let x , x' belong to X and g, g' belong to G . Let

x=t(x , g) and x' = t(x* g'). Then, for a < t < b ,

|x(t)-x'(t)| < Ixq-x^I + f|x(s) - x«(s)| ds
a

t t

< |xQ - xjjl + f|w(x(s),s) -w(x'(s),s) | ds + f| g(s) - g'(s)| ds
a a

t

< ^k(s) |x(s) -x'(s)|ds +|| g- g'l^ +|xQ -x^l

by (1.2). By Gronwall's lemma we obtain
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t

|x(t)-x'(t)| < expMk(s)dsJ l^-x^l +||g-g,|l1].

so that t is continuous.

Now suppose that x = t (x , g) = t (x' , g1) = x'. Then certainly

x = x' Furthermore, x(t) = x'(t) a. e. , so that

w(x(t),t) + g(t) = w(x'(t),t) + g'(t)

= w(x(t),t) + g'(t) a. e.

and hence g = g'. Therefore t is one-to-one.

Lemma 3.2. The sets (X and ©C (= 5 " XX ) are pathwise-

.^tt . T
connected in L .

Proof. Let v and v be in XX. For t£[0,l] let h in Xf

be given by

h.(T) = v_(t) for t > t,
t u —

and h (t) = v (t) for t <t.

Clearly, the map t -*-h^ is continuous; hfi = Vq and h. = v, so that

(J~ is pathwise connected.

Let qQ and qj be in 3, . Since qQ $ XX , the set E of all points

t for which qn(t)$ V(t) has positive measure. Let X„ be the

indicator function of E, i.e., X E(t) =1 if t(5 E, and 3CE(t) =°

-16-



if t(JEE. Let

£(t) = f £E(s)ds for a<t<b

Then £ is a continuous, non-decreasing function of t and

|(t) =0. Let t*£l be such that £(t) =0 for t <t* and £(t) > 0

for t > t . Since measure of E is positive, t < b. This implies that

(3.2) measure ( E 0(t*. t*+ 6) ) > 0 for 6>0 .

Now for each t£ [a,b] define the function hj. as follows:

(i) Let a<t<t* . Then h^r) =qQ(T) for T>t and

h (t) = qL(T) for t < t.

(ii) Let t*<t<b. Then h(t) =q^-r) for t <t* and for
T>b-t +t*; whereas h (t) =qQ(T) for t* <r <b-1 +t- .

It is easy to check that t -*-h is continuous and hQ = qQ,

h =q ; also (3.2) implies that h £ 2, for each t in l-
11 t

Definition 3.3. Let S=3-3 = (Fl-3'' Thus 5

is the set of limit points of cT which are not themselves members of U .

Theorem 3.1. Suppose that for some t'£l the set V(t ) is not

convex. Then

(i) S $ $ ($ denotes the empty set)

(ii) § = d = R

-17-



<iil> < 5 H cf ) = <l> and

(iv) 5 and <*) are pathwise connected subsets of C/ , if and only

if the initial set X is pathwise-connected.

Proof. Since V(t ) is not convex, the set |w(z,t*) +V(t*)} is not

convex for every z in Rn. By Theorem 2.3, for every x in J and every

€ >0, there is an element x6 ^ § such that || x - x || <€. This

implies (i) and (ii). (iii) follows from the definition of § .

By Lemma 3.1, since t is one-to-one,

cT= {t(x0,v)|x0£X0, v£y]

^d <5= {T(x0,q)|x0£X0, q£2}

By Lemma 3.2 the sets ZX and <>o are pathwise connected; and by

Lemma 3.1 t is continuous so that (iv) follows.

-18-



FOOTNOTES

+ n ti
For q£ R and QC R » q+Q denotes the set fq +q'| q'GQ}

tt
A subset K of a topological space T is pathwise-connected if given

k , k in K there is a continuous mapping h;[0,l] -*»T such that

h(0) =kQ, h(l) =k and h(t)£ K for each t.
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