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AN EXTREMAL PROBLEM IN BANACH SPACE WITH

APPLICATIONS TO OPTIMAL CONTROL

1. INTRODUCTION

The theory of optimal control has received a new impetus through

the papers of Gamkrelidze [1] and Neustadt [2-4]. It seems clear now

that the optimal control problem should be studied as an extremal prob

lem in a Banach space or a locally convex space. The motivation for

this generality is derived from the study of optimal control problems

with trajectory constraints. This author has arrived at the problem

formulated in Sec. 3 through the study of nonlinear programming in

general spaces [5]. The results obtained are similar to those of

Neustadt, but the method of proof and the motivation appear to be dif

ferent. It is hoped that this paper will serve as a common framework

for both optimal control and nonlinear programming problems.



2. NOTATIONS, DEFINITIONS, AND A PRELIMINARY RESULT

Throughout this paper, unless otherwise stated, X and Y will

denote arbitrary real Banach spaces. All undefined terms can be found

in Dunford and Schwartz [ 4] .

Def. 2.1. a. A function f : X -* Y is differentiable at a point x if there

is a continuous linear function, f'(x), mapping X into Y such that

Hm f(x +£w) - f<x) =^ f,(x)j zy =f,(x) (z)
£-0+ c
w-*z

b. A function f: X -* Y is Frechet-differentiable at a point x if there

is a continuous linear function, f'(x), mapping X into Y such that

f(x+h) -f(x) - <f'(x), h>
lim = o ;

|h|-0 |h|

f is continuously Frechet-differentiable at x if it is differentiable in

some neighborhood M of x and the mapping z -*f'(z) is a continuous

t
function of M into B(X, Y). '

+

B(X, Y) denotes the Banach space of continuous linear functions from
X into Y under the usual sup norm.
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In addition to a linear approximation of a function at a point we

shall need a "linear11 approximation of a set at a point.

Def. 2.2. Let A be an arbitrary subset of X and let x e A. For each

neighborhood M of x let C(A fl M, x) denote the smallest closed cone,
+

with vertex 0* containing the set {A PlM-x} ={z-x|z€Af) M} .

Let Jib be the neighborhood system at x. Then the set

LC(A, x) = fl C(A fl M, x)
M€37t>

is called the local cone of A at x.

Def. 2.3.a. Let A be an arbitrary subset of X and let x e A. The set

LP(A, x) =<x* €X* |<V'\ z^> - 0 \/z eLC(A, x) I

*TT
in X is called the local polar of A at x.

Def. 2.3.b. If L is a cone then P(L) = LP(L, 0).

Remark 2.1a. The local cone is a nonempty (it always contains 0)

closed cone and the local polar is a nonempty convex closed cone.

All cones referred to in this paper have vertex 0 •

tt *X denotes the Banach space of all real-valued, continuous linear
functions on X under the usual sup norm.
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b. A useful alternative characterization of the local cone is given by

the next fact.

Fact 2.1. The following statements are equivalent.

a. z € LC(A, x).

b. There exist sequences {x } C A, {X. } , with X. > 0 for all n.
i v n n n '

such that x -*• x and X. (x - x) -*• z as n -*• co.
n n n

c. There exist sequences {z } C X, {£ } , such that £ -*• 0,

z -*• z as n -*• co, and £ >0, (x + p z ) € A for all n.
n n ^n n

Proof. Trivially b. and c. are equivalent. The equivalence of a, and

b. follows directly from Def. 2.2 using a standard Cantor diagonal

argument.
Q.E.D.

The justification of the two linear approximations is provided by

the following elementary but extremely useful result.

Theorem 2.1. Let f be a real-valued function defined on X, and A

an arbitrary subset of X. Let x e A be a solution of (2.1).

(2.1) Maximize f(x), subject to x € A .

Then, if f is differentiable (see Def. 2.1.a) at x we must have

(2.2) f'(x) € LP(A, x).
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Proof. Let z €LC(A, x) . We have to show that <^f'(x), z^ ^ 0.

Bv Fact 2.1 there are sequences {z } and {£ } such that z -*- z,
7 n n n

£ -* 0+ as n -* co, and £ > 0, x = (x + £ z ) € A for all n. Since
ii n * n x— n n

x is a solution of (2.1), f(x ) - f(x) ^ 0 for all n. Hence,

f(x + £ z ) - f(x)
~ n n — < 0 .

n

Passing to the limit as n —co, we obtain (2.2) from Def. 2. l.a.

Q.E.D.

Remark 2. 2. A. The definitions of differentiability (Def. 2. l.a), local

cone, and local polar, are valid in arbitrary linear topological spaces.

Fact 2.1 is valid if we replace "sequence" by "generalized sequence" or

"net". Theorem 2.1 still remains true.

b. Theorem 2.1 shows that the elements of LC(A, x) can be considered

as "admissible" variations about x. For many applications however, we

have to consider a more restrictive class of variations. The next

definition defines two such classes. Let A be an arbitrary subset of

X and let x € A.

Def. 2.4.a. A convex cone K is in the local approximation of A at x

if for every finite set {k , . . ., k^} C K and every 6 > 0, there

is £ = S (6, K) > 0 such that for every £ €(0, £_] there is a con-
0 0 u

tinuous map T| _ : K -*• A of the form
£'6
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\,6{k) =X+£(k+V£>6<k>)
with \yc (k) | ^ 6. Here Kdenotes the convex hull of

£» 6

\k , . . ., k } .
0 m

Def. 2.4.b. A convex cone K is locally in A at x if there exists

6 > 0 such that

(x + k) € A

whenever kc K and |k| ^ 6.

Remark 2.3. Using Fact 2.1 we see that in both instances of Def. 2.4

the cone K is contained in LC(A, x).

3. STATEMENT OF THE MAIN THEOREM AND COMMENTS

Theorem 3.1. Let X and Y be real Banach spaces. Let f be a real-

valued function defined on X, and g a continuous mapping from X

into Y. Le A be a subset of X and let A be a closed convex cone

in Y. Let x be a solution of (3.1)

(3.1) Maximize f(x), subject to g(x) € A and x e A.

Suppose that there is a closed convex cone K C X such that f, g,

K., A , and Y satisfy either I or II.
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I. a. f and g are differentiable at x (Def. 2.l.a). Let G = g'(x).

b. Y is finite dimensional, i.e., Y = R for some m < co.

c. Either G(K ) - A + {g(x)} ' t Y, or for every z € K such

that z £ 0 and G(x) + g(x) e A , there exists a convex cone K (depend

ing on z), satisfying the following conditions:

(i) z€ KC X,

(ii) G(K) - Ay +{g(x)} =Y,

and (iii) K is in the local approximation of A at x (See Def. 2.4a).

d. The set A + {g(x)} is a closed subset of Y.

e. The set {y • G|y' c LP(A , g(x))} is a closed subset of X .

f. The set P(K ) + P(K ) is a closed subset of X , where

K2 =|6x|G(6x) 6Ay +{g(x)}i .

II. a. f is differentiable at x and g is continuously Frechet-

differentiable at x(Def. 2.1.b). Let G = g'(x) .

b. Either G(K ) - A + (g(x)} £ Y , or for every z e K , such

that z ^ 0 and G(z) + g(x) € A , there exists a closed convex cone K

(depending on z), satisfying the following conditions:

(i) z€ KC X ,

(ii) G(K) - Ay +{g(x)} = Y,

and (iii) K is locally in A at x (see Def. 2.4.b).

{g(x)} denotes the one-dimensional subspace of Y spanned by g(x).
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K2

c. The set A + {g(x)} is a closed subset of Y.

d. The set <y • G|y^ e LP(A , g(*)) > is a closed subset of X .

e. The set P(K ) + P(K ) is a closed subset of X , where
J- j->

=J6x|G(6x)e Ay +{g(x)}J .
Then there exists a number [j. £ 0 and ay € Y , not both zero,

such that

(3.2) < uf'(x), 6x> +<^yV, G(6x)> S 0 \/6x eK^ ,

(3.3) <y\ g(x)> =0,

(3.4) <Cy*, y> * o \/ye Ay .

Comments: The main deference between conditions I and II lies in the

fact that the requirement of finite-dimensionality of Y is dropped in

II, whereas it is critical in I. But if Y is infinite-dimensional, then

we require that G and K have to be a "better" approximation to g and

A, respectively. (Compare l.a with II.a and I.c iii) with I.b(iii).)

Conditions I. c, I.d, and I.e are of a technical nature and can be shown

to be redundant if A is a polyhedral cone. Similarly, II.c and II.e

can be shown to be redundant if Ay is a polyhedral cone; although II.d

may not be satisfied even in this case. Thus, if A is a polyhedral

cone, Y is finite dimensional, and K is in the local approximation of

A at x, then I is satisfied. Similarly, if A is a polyhedral

-8-



cone, K. is locally in A at x, and Il.d is satisfied, then II is satisfied.

Finally, it is worth noting that the conjunction of (3.3) and (3.4) is

equivalent to (3.5).

(3.5) -y* €LP(Ay, g(x))

4. PROOF OF THE MAIN THEOREM

The proof is divided into two parts; the first takes care of the

degeneracies that may arise, the second case is the important one.

Let Q = G(KX) - Ay +{g(x)}

Case 1. Suppose Q / Y.

Then Q is a closed, convex cone in Y and Q is a.proper subset of Y,

so that there exists [6, p. 452, Theorem 10] ay € Y^ , y" ^ 0 such

that

(4.1) <Cyv,y>^o Vy e Q.

In particular, (4.1) implies that

<[ y*, G(6x) ^> S0 \/bx €Kx ,
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< y"\ y> -° Vyc a ,

and <^ y , g(x) ^> =0 ,

*

so that (3.2), (3.3), and (3.4) are satisfied with y $ 0 and \x = 0

Case 2. Q = Y.

Let Ax ={x €X|g(x) €Ay} and let K2 =I6x €X|G(6x) €Ay +{g(x)} I
We will now prove the important fact that if either I or II is satisfied,

then

(4.2) LC(A fl Ax, x) D Kx fl K2 .

Let z e K fl K . Therefore, z e K. and there exists a number X. such

that G(z) + X.g(x) € A . Since g(x) € A , we can assume that X. > 0.

Also, since LC(A fl A , x), K , and K are cones, we can assume that

\ = 1. Thus we have

z e K and G(z) + g(x) e A

Suppose that I is satisfied:

Then because of I. c, there exists a convex cone K in X such that

(i) z € K ,

(ii) G(K) - Av + {g(x)} = Y ,
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and (iii) K is in the local approximation of A at x. By Theorem A-1

of the Appendix there exist sequences {z } C X, {£ } , with £ > 0,
rr n n n

(x + F z ) € A, and g(x + £ z ) e A__, for each n, such that
x— vn n — ^n n Y

z -*- z , and £ -*• 0 as n -> co. But then by Fact '2.1,
n vn

z € LC(A fl A__, x) .
X

Suppose that. II is satisfied:

Then because of Il.b, there exists a closed convex cone K in X such

that

(i) Z€K,

(ii) G(K) - Ay +{g(x)} = Y,

and (iii) K is locally in A at x. By Theorem A-2 of the Appendix

there exist sequences {z } C X, {£ } , with £ > 0, (x + F z ) e A,
^ n ^n n — ^"n n

and g(x + £ z ) € A„, for each n, such that z -»• z, and £ -*• 0 as
toX— n n Y n n

n -* co. Once again by Fact 2.1, z e LC(A fl A , x). This proves (4.2).

Now by Theorem 2.1, since f is differentiable at x, we must

have (4.3).

(4.3) f'(x) e LP(A fl A , x) .

From the definition of the local polar, and from (4.2), it is evident that

(4.4) LP(A fl Ax, x) C P(KX fl K2) .
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Combining (4.3) and (4.4), we obtain (4.5).

(4.5) f'(x) € P(K2 n K2) .

Now K and K are closed, convex cones. Using this fact, the
J. u

definition of local polar, and the strong separation theorem [ 6, p. 417,

Theorem 10J, it is easy to show that [ 5, Fact 1.3]

(4.6) P(K: fl K2) = P(KX) + P(K2) .

Because of I.f or II.e, P(K ) + P(K-) is a closed subset of X , so

that from (4.6) and (4.5) we can conclude

(4.7) f'(x) e P(KL) + P(K2)

Next we show that

(4.8) P(K2) = B ,

where

(4.9) B =<Jy* • G|y* €Lp(a , g(x)

Let x € K and let y e LP( A , g(x)
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Therefore,

(4.10) G(x) e Ay +{g(x)}

and,

(4.11) <y*, y> * 0 \/y «Ay ,

(4.12) <y*, g(x)> =0.

Combining (4.10), (4.11), and (4.12), we conclude that

y"\ G(x) y $ 0. Therefore P(K.) D B. Now suppoes that

P(K_ C B . Then, by the strong separation theorem [ 6, p. 417, .

Theorem 10], it follows that there exists a vector x € K , such that,

(4.13) < y* • G, x> =<y*, G(x)> >0 Vy* *LpfAy, g(x)

But since x € K , we must have (4.10). It is easy to verify that

(4.14) Ay +{g(x)} C J-cUy, g(x)j

from (4.10), G(x) e LCfA , g(x)j . But then <^y*, g(x) ^> ^0
whenever y^ €LP(a , g(x)J . This contradicts (4.13), hence (4.8) is

proved. By I.e or Il.d, B is a closed subset of X , so that from (4.7)

and (4.8) we obtain

so that
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(4.15) f'(x) € B + P(KL)

Therefore, there exists y € Y

(4.16) f'(x) + yT • G€ P(KX) ,

and

(4.17) -y € LP(Ay, g(x)l .

But (4.16) is equivalent to (3.2) with u = 1, and (4.17) is equivalent to

the conjunction of (3.3) with (3.4). This completes the proof of the

theorem.

Q.E.D.

5. APPLICATION OF THEOREM 3.1

A. Discrete Optimal Control

Consider a difference equation,

z(k + 1) = z(k) + h(z(k), u(k)), k = 0, 1, . . .

where z € Z is the state vector, u e U is the control vector and h is

a continuous mapping from Z XU into Z. Z and U are arbitrary real

Banach spaces. Let N be a fixed integer representing the duration

of the process. Let A and A be subsets of Z representing the
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initial and target set, respectively. Let Q C U be the set of available

controls. The payoff is given by a real-valued function f defined on

X = Z X U . We are required to find a solution to the following

problem:

(5.1) Maximize f(z(0), . . ., z(N); u(0), . .., u(N-l)

subject to

(5.2) z(k+l) - z(k) - h(z(k), u(k)) =0 for 0 £ k < N-l

and

(5.3) z(0) e A , z(N) € A , u(k) € « for 0 ^ k £ N-l.

We make the following identifications:

1. X=ZNXUN"1 so that x =(z(0), . . ., z(N), u(0), . .., u(N-l)

2. Y=ZN

3. g is a mapping from X into Y defined by

gfz(0), . . .,z(N), u(0), . . ., u(N-l)j =(zQ, . . ., zN)

where zfc =z(k+l) - z(k) - h(z(k), u(k)), 0 * k $ N-l.

4. Av ={(0, . . ., 0)}so that A is a closed convex cone.

5. A =A X ZN~ X A X n . A is a subset of X.
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Then our problem can be restated as

(5.4) Maximize f(x), subject to g(x) €Ay and x €A.

Let x =(£(0) z(N), u(0), . . ., u(N-l)J be a solution to (5.4).

Let K and K „ be closed convex cones in Z and let Q. for
ON i

0 £ i S N-l be closed convex cones in U, such that the closed convex

cone Kl=KQX ZN~l X&N XQQ X- • • XQ^^ in Xis locally in
A at x(Def. 2.4.b). Let f be differ entiable at x and let g be con

tinuously Frechet-differentiable at x with g'(x) = G; the latter state

ment is equivalent to the statement that h is continuously Frechet-

differentiable at the points (z(k), u(k)) for 0 ^ k ^ N-l. We also assume

that the remaining conditions in II of Theorem 3.1 are satisfied. Then

there exists a number \i >: 0 and y e Y , not both zero, such that

(5.5) < nf»(x), 6x> +<y*f G(6x)> so \/6x€ r^,

(5.6) <y*. g(x)> =0 ,

(5.7) <y*, y> ^ o Vy eA

The statements (5.6) and (5.7) are trivial because g(x) = 0 and

N * * NA = {0} . Since Y = Z , therefore Y = (Z ) so that

-16-



y~ =(z^(l), . . ., z" (N)) for some z (k) € Z . Also using the

definitions of X, K. and G, we see that (5.5) is equivalent to the

following:

^ 3f \ ^ * \ ^ * . 3h\<5'8) <»-dm> 6Z> -<2(D, 6z> .<,(!,.-_> <o

\/6z «KQ ,

(5-9) ^ ^ a^[k>" *5z> +<z*(k) - zV+1). 6z>

-<«V+D- ^. 6z> 50

\/6 z « Z, 1 S k £ N-l ,

(5.10) <h- g^. 6z> +<z*(N-l). 6«> 50 \/6.tk^,

\/6u e Q(k), 0 £k <N-1 ,

where the derivatives are evaluated at the optimal solution

x=(z(0), . . ., z_(N), u(0), . . ., u(N-l)j . The statement (5.8) and

(5.10) represent the so called "transversality" conditions; (5.11) is

sometimes referred to as a "local maximum principle". (5.9) can be

rewritten in the familiar form (5.12).
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8f * . # * 8h *

<5-12> ^MkT +z {k)"z (k+1)'z (k+1)' Rkf =°

for 1 < k ^ N-l.

Remarks. 1. The conditions given in [7] are a special case of the

relations (5.8), (5.10), (5.12) and (5.11).

2. The fact that we allow our state variables to be infinite dimensional

also enables us to consider discrete stochastic optimal control prob

lems. See [5] for an example.

B. Continuous Optimal Control

LetoCbe the linear space whose elements h(x, t) are n-

dimensional real vector-valued functions defined for x € R and

t e I = ft , t, 1. The functions h satisfy certain smoothness conditions
L 0 1J

in x and some integrability conditions in t. Let H be a quasi-

convex subset of &C. For the precise conditions and definitions the

reader is referred to Gamkrelidze [1] or Neustadt [2]. The relevance

of the various assumptions made in the sequel to optimal control prob

lems is also discussed in these references.

Now for any h in H, let x(t) be an absolutely continuous function

such that

(5.13) x(t) = h(x(t), t), for almost all t € I.
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We shall regard such a function x as an element of the Banach space

X of all continuous functions from the compact interval I into R .

We also define A as the set consisting of all those elements x € X

which are absolutely continuous and satisfy (5.13) for some h in H.

Now let f be a real-valued function defined on X and let g: X -*- Y = R

be a continuous mapping. Let A be a closed polyhedral cone in Y.

We wish to solve the following problem:

(5.14) Maximize f(x), subject to g(x) e A and x € A,

Let x be a solution of (5.14) so that

(5.15) x(t) = h(x(t), t) for almost all t e I

for some h e H. Let [H] denote the convex hull of H, and consider

the linear variational equation of (5.15),

3h
(5.16) 6x(t) = -= (x(t), t) 6x(t) + Ah(x(t), t), t€ I.

Here Ah is any arbitrary element of the set {[H] - h} and 6x(t ) = £

is any arbitrary n-vector. Let <p{t) be the nonsingular matrix solution

of the homogeneous matrix differential equation

9h

<p(t) = -gj (x(t), t) <p(t)

with <p(t ) = 1, the identity matrix. Then the solution of (5.16) is (5.17),

-19-



(5.17) 6x(t) = <p{t)<{ £ + \ <p~ (t) Ah(x(r), t) d-r^ , t €I.

n

Let K C X be the set of all 6x which satisfy (5.17) for some £ € R

and some function Ah e {[H] - h} . Clearly K is convex. Let K be

the convex cone generated by K and let K = K. Let us suppose that

f and g are differentiable at x and let G = g'(x). It has been shown

by Neustadt [4, Theorem 3.1] that K is in the local approximation of

A at. x. It is easy to see then, that K is also in the local approxima

tion of A at x. Since A is a polyhedral cone, it follows from

Theorem 3.1 that there exist numbers u. ^ 0, X.,, . . ., X. not all
1 m

zero such that

(5.18) H<^f'(x), 6x> +< \, G(6x)^> ^ 0 Vsxcr^,

(5.19) <^, g(x)> =0 ,

(5.20) <\, y> ^ 0 \/y* Ay ,

where X. = (\., . . ., X. ) .
1 m

Remarks. Following Neustadt [3], we can show that the relations

(5.18), (5.19) and (5.20) imply the Pontryagin Maximum Principle.

The assumption of qua si-convexity implies that K. is in the local

approximation of A at x. It can be shown that, in general, K is not
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locally in A at x. Hence, to apply Theorem 3.1 the finite-

dimensionality of Y is essential. If, however, we are dealing with

a linear control system with an admissible set of controls which is a

convex polygon, then it can be shown that K is locally in A at x so

that we can allow Y to be an infinite dimensional Banach space.
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APPENDIX

Theorem A-1. Let X be a real Banach space and g a continuous

mapping from X into Y =R . Let A be a subset of X, and Ay

a closed convex cone in Y. Let x € X be such that x € A and

g(x) e A . Let g be differentiable at x and let G = g'(x). Let

z € X be such that G(z) + g(x) € A . Suppose that there exists a

convex cone KC X such that

(i) z 6 K,

(ii) G(K) - Ay +{g(x)} = Y,

and (iii) K is in the local approximation of A at x. Then

there exist sequences {z } C X, {£n> , with £n >0, (x +£^ z^) eA

and g(x + £ z ) e A for each n, such that z -*» z and £ -*• 0 as

n -* co.

Proof. 1. First of all from (ii) and the fact that g(x) €Ay, it is

clear that 0 is in the interior of G(K) - A + g(x). Let 2 be a

simplex in Y generated by the points y , . . ., y and containing 0

in its interior, such that 2 C (G(K) - Ay +g(x)} . Therefore there

exist vectors krt, . . ., k in K and vectors a , . . ., a in A
0 m o m i

such that
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(A.l) y. = G(k.) - a. + g(x), 0 ^ i ^ m.

Let 9 > 0 be such that if y € Y and |y | ^ 0, then y € 2 .

2. Since g is differentiable at the point x, it follows from Def. 2. l.a

that

h(£, 6, k, Ax) =ijglx +£(z +6k +Ax)j - g(x) I -G(z +6k) -* 0

as c •* 0, Ax -*• 0, uniformly for k € K = convex hull of

{k_, . . ., k } and 6 e [ 0, 1]. In other words, for each a > 0 there
0 m

exists (3 = (3(a) > 0 such that

|h(£, 6, k, Ax) | * a

whenever 0 < £ ^ |3, | Ax | ^ p, 6 € [ 0, 1] and k e K.

3. Since K is in the local approximation of A at x (by (iii)), it

follows from Def. 2.4.a that, for each 6 > 0, there is an £ =£n(6) > 0

such that for every £ e (0, £ ] , there is a continuous map T|
0 £,o

from {z + K} into A of the form

T| (z +k) =x+£(z +k+v 6(z +k) j

with \y (z + k) | ^ 6. Here K denotes the convex hull of
£» 6

K U {0} .
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4. a. Let or be a sequence of numbers such that 0 < a ^9 for
n n

each n, and a -*• 0 as n -> co.
n

b. Let 6 = Qla ) (see 2). We assume that S -> 0 as n -+• co.
rn r n n

c. Let 6 = 3 . and £A(n) = £ f6 ) used in the definition of the
n n 0 0 n

maps t^ (see 3).

- <~ 1
d. Let £n =min((3n, £0(n)» J)o

e. Let ui = a /0.
n n

5. For each n we define a mapping of u 2 into itself as follows:

For each u y € u. 2 there is a unique vector
"n "n

s (u y) = (<rA, . . ., a- ) with cr. £ 0 for each i, <r_ + • • • + <r = 1,
n n 0 m l 0 m

such that u. y = u. (cr yn + * • • + cr y ).
'n7 "n 0 0 m ym'

For each vector cr = (cr„, . . ., cr ) with cr. ^ 0 for each i,
x 0 m l

and o"_ + • • • + o" =1, let
0 m '

and

h ((T) = |i (o- k + • • • + cr k )
n n u 0 m m

I (cr) = |x (cr. a_ + • • • + cr a )
n n 0 0 mm'

^ ' n

) }• +Glz +hn(<r)

Clearly the maps h , 4 and g are continuous
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Let A denote the convex hull of {art, . . ., a } . For each
0 m

uvcu.2 let k c K and a € A be such that h (s (ji y)) = |i k and
"n "n n n n n

i (s (u. y)) = |x a. Then, because of (A.l)
n n n n

(A.2) ^n(-n<V>)j -iB(w> +«fe)j
= G(|X k) - |i a + g(x) = H. V .

n n — n

Also, for each u y € ix 2, since F - P and 6 = p it can be
nn7 n Hi n n nn

verified that

<A-3> K(S„<^>)l S«n =̂n9 '
But this implies that q re (\x 2)1 C \± s» so tnat bY tne Brouwer fixed

point theorem, the continuous mapping q • s of [i 2 into itself has

a fixed point, say jx y . Then,

<A'4 ^n yn =̂ ('n^n Yn\

=-itl^En 6„ <Z +*» £n))" ^ J+G<Z +̂ £n> '
where u k = h s (u. y ) . From 3,

n n n n n n
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(A.5) r\ (z + (i k) =x + C z+ji k +vr c (z + H- k ))
> , 6 ^n n' — <~n\ 'n n > , 6 'n n'/
C-n n ^ Cn» n /

Let

(A.6) z = z + p. k + Yr . (z+ji k).
n n n C , 6 n n

Cn n

Then clearly x + F z e A for each n, and z -* z as n -*• oo. Also
— *-n n n

from (A.4), (A.5), and (A.6), we obtain

(A.7) un yn =-^~|g(x +£n zn) -g(x)| +G(z +̂ k^ .

Defining a € A by h s (ix y) = ix a , from (A. 2) we obtain
n n n "n n n n x '

(A.8) |jl y = G(ix k ) - ix a + g(x) ,
1 ' nn 7n xrn n; rn n 6X—' '

so that on substituting in (A.7) we have

(A.9) -fxn an +g(x) =-±- jg(x +£n zn) -g(x) j +G(z) .

Therefore,

(A. 10) g(x +£n zj =£n fxn an +£jG(z) +g(x)j +(1 -2£n) g(x)

-27-



Since a e AC Axr and F u > 0, therefore f \i a € A . Also
n Y *~n n **n n n Y

G(z) +g(x) €A by hypothesis; (1 - 2£^) £ 0 and g(x) €Ay, so that

(1 - 2£ ) g(x) e A„. Since A is a convex cone, we conclude that
n — Y Y

(A.11) g(x + £ z ) e A for each n

and the theorem is proved.
Q.E.D.

Theorem A-2. Let X and Y be real Banach spaces and let be be a

continuous mapping of X into Y. Let A be a subset of X, and let

A be a closed, convex cone in Y. Let xcX be such that x € A and

g(x) € A . Let g be continuously Frechet-differentiable at x and let

G = g'(x). Let z e X be such that G(z) + g(x) e A . Suppose that

there exists a closed convex cone K C X such that

(i) z € K ,

(ii) G(K) - Ay +{g(x)} = Y,

and (iii) K is locally in A at x.

Then there exist sequences {z } C X, {£}, with £ > 0,

(x + F z ) € A and g(x + F z ) 6 A^ for each n, such that z -*• z
x— *-n n; ' — <-n n' Y n

and F -*- 0 as n -♦ co.
vn

Proof. The theorem is proved with the aid of Lemmas A-1 and A-2.
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Lemma A.l Let W and Y be real Ba-ach spaces and let G be a con

tinuous linear mapping from W into Y. Let K be a closed convex

cone in W such that G(K) = Y. For each p > 0 let

K = {w e W| |w | £ p, w € K} . Then there is a number m > 0,

independent of p, such that

(A. 12) G(K ) D S
P mP

where S is the closed sphere in Y of center 0 and radius p.
mp

Proof. This result is a generalization of the Interior Mapping

Principle. Although the proof is long, it is a straightforward modifi

cation of that given by Dunford and Schwartz [6, pp. 55-56].

Q.E.D.

Lemma A.2. Let W, Y be real Banach spaces, and let g be a

mapping from W into Y such that g is continuously Frechet-

differentiable at a point w € W. Let G = g'(w). Let K be a closed,

convex cone in W such that G(K) = Y. Let w € K be any fixed vector.

Then there exist sequences {w } C K, {£ } with £ > 0 and

g(w + £ w ) =g(w) + G( £ w) for each n, such that £ -*• 0 and

w -*• w as n -*• co.
n

Proof. Let m > 0 be any number which satisfies (A. 12). Let

v: W — Y be the function defined by v(w) = g(w + w) - g(w) - G(w) .

Then,
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|v(£w +wx) - v(£w +w2) |

= |g(w + Cw +w ) -* g(w + Cw +w ) - G(w - w )|

= |<\ g'(w+£w +wx), w1 - w2^> +oi(|w1 - w2|) - G(wx - w2)|

Therefore,

|v(£w +w ) - v(£w +w )| ^ _ o(|w -w |)
' =— * lli'tw+fw+w^ - G|| +— i —

|w1-w2| lw!-w2l

Also,

|v(£w+Wl)| = |g(w +£w +wx) - g(w) - G(£Wl)| =o2((£w+w1|)

Let £ >0 be such that for 0 <£ <£ ,

|v(£w +w ) - v(£w +w )| •
(A. 13) <T when |w.| < £q

Wl "W2

for i = 1, 2

and

(A. 14) 02(|fw+w1|) =o{£) <^ for |w]L| <f .

Let £ e (0, £ ) be fixed.

Let w = 0. Therefore, G(w ) = 0 .
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Let wA cK such that G(w - w ) = -v( £ w+w ), and

|W1"W0I <nT lv(^+w0H <m-<)-

For n 2 1, let w e K such that G(w , - w ) = -v(£w +w )
n+1 n+1 n * n

+v(£w +w ) and |w - w I < — o(£). We first show that for
n-l • n+1 n' m xv'

n - Oi |w | < £ so that the above inequalities are valid. Firstly,

K1 =|0I <m °(£> <4f and lWl - Wo' <m °(£' <4

Therefore, |w_ I < —£ .
1 4

By induction on n,

iw --w„l <(= °^>)n ^ -w-l <($$ |Wl" w°''n+1 n' Vm^'/'l 0' V4

Hence, for any integer p £ 0 ,

nl<(^)PrriT74ir l-i"V<(^)P=-«f>-w - w
1 n+p

In particular, |w +1 - w | < f/2 so that |w J <£ . Also wn
-I*

t. converges. Let

lim w = w( c) •
n

n-^co

Then |w(£)| < — o(£) and w(£) e K .
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Now,

G( wQ) = 0 ,

G(W]L) - G(wQ) =-v(£w +wQ) ,

G(w2) - G(wx) = -v(£w +wx) +v(£w +wQ) ,

G(w ) - G(w ) = -v(£w + w ) + v(£w + w ,)
n+1' n7 ^ n7 xv* n-l7

Adding both sides, we obtain

G(w .) = -v(£w + w ) = -g(w + cw + w ) + g(w) + G( C w + w ) .
n+1 ^ n °— n °— * ^ n/

Hence,

g(w +£w +w ) = g(w) +G(£w) +G(w - w ) .
— n — n n+l

Passing to the limit, as n -> co, we obtain

g(w + w +w(£)) = g(w) +G(£ w) .

Let {£ } be any sequence of positive numbers such that £ -*• 0 as

n -*• oo, and define w =w +-£— w(£ ). Since \-£- w(£ )| <t- • —
^n ^n ^n

o(£ ), w -+- w as n -*• oo and the assertion is proved.
*% * n" n

Q. E.D.
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4^

^

fr

Proof of Theorem A. 2.

We make the following appropriate identifications:

1. W = XXYXY,

2. K = K X Ay X {g(x)} ,

3. g(x, yx, y2) = g(x1) - yx +y2 ,

4. w = (x, 0, 0) and w = (z, 0, 0) .

5. G = g^w) so that, G(x, y^ y^ = G^) - yx +y2 .

Then by Lemma A.2, there exist sequences {w } C K, {£n) » with

F > 0 and g(w + £ w ) = g(w) + G(£ w) for each n, such that
^n — n n — n

F -> 0 and w -*• w as n -*• co.
n n

12 1
Let w = (z , y , y ) . Then z € K, y €, A , and

n n n n' n n Y

2 2y € {g(x)} for each n. Let y = \ g(x) . From 3 and 4 we obtain

for each n,

or

S& +fn Zn> =fn yi +£n(g(2> +G<Z)) +U" ^n "\x Q «®
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-a

t

Now, yn e Ay, g(x) e Ay, g(x) +G(z) €Ay. Also ^Oasn-oo,

so that for n sufficiently large g(x +£ z ) e A . Also since K is

locally in A at x, for sufficiently large n we must have

(x + F z ) € A and the theorem is proved.
— ^n n
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