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ABSTRACT

The concepts of inverse and left inverse systems, weakly equiva

lent and strongly equivalent systems, and discrete time and finite

memory systems are examined. Various relations between these con

cepts are found, and the role of the decomposition property of the system

input-output-state relation is investigated. Among the results obtained

are: (a) under suitable controllability assumptions, left inverse systems

are inverse systems, (b) weakly equivalent finite state systems with the

decomposition property are strongly equivalent, and (c) finite state

systems with the decomposition property have finite memory.
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INTRODUCTION

An abstract system, or simply a system, Qj is defined by Zadeh

and DesoerL J as a "partially interconnected set of abstract objects

QtV &?' • • • » termed the components of (X,. . . ." The components
of Qj, as well as Cb itself, may be defined by specifying an input-output
relation, or equivalently, an admissible set of input-output pairs.

Let 4 be the set of points (-00, 00) on the real line. If T cl
let (u , y_) be an ordered pair of time functions defined on T such

that for :£"€ T, u(t) and y(t) are the values of u and y at time t,

respectively. Now, let T be a semiclosed interval [t , t) on the real

line where t < t, and let (ur ., yr . ) be the corresponding

ordered pair of time functions defined on this interval. An abstract

system £l/will be specified as a set of ordered pairs (ur , yr )

V t , t €. ^3 tn < t} ; this relation is denoted as CX> =

{(U[t0,t)' y[t0. t))} andthePair (»[to, t). Y[to, t)> € a is known as
an input-output pair of Qj.

The time-function segments Ur and yr . are elements of
^ V ' •• 0' *

the function spaces R [u,- ] and R [yr ] , respectively, where
a LtQ* w 3- It,., t; ...

Ra[u[t0, t)l ={u[t0, t) I<»[*„. t), nt0, t)>£ & for soxne y^ t) }

and



Ra[nVt)J = {y[t0,t)l(u[t0,t)' nt0,t))6a fOrS°meU[t0^)}
(2)

Then we define the input function space (f£ [u] and the output function

space (ft [y] as, respectively,

d?a[u] = {Ra[u[t ,t)] Wte^^ t0<t}' (3)

and

(4)(Ra[y] =(Ra[y[t §t)] VVtc^9 to<t}

In general, for each input u*r . £ R [ Ur r], the set of
L*n t t j a [ t_ , t;

all (u*r , yr >) £. Qj contains more than one element. One way
Lt«» t) L£q i t)

of associating a unique yr . with each Up . is by parameterization

of the space of input-output pairs. We will assume that a parameteriza

tion can be found which obeys

Assumption 1. There exists: (1) a set y ; (2) a causal function A on

the product space y X (f{ [u] into (ft [y] such that for any

y[t , t) e ^ a[y] ' there GXistS an a£Za and a"[t , t) * Ra[u[tQ, t)]
0

where

y[Vt> =A<tt!U[Vt>>: (5)

and (3) a causal function S on the product space y X (ft [u] into

/ such that for any a'fi, u*r . and y*Y .% which satisfy (5),
Z-/a [tA, t) |_t_, t)

'0' ' L 0

MT)t, =X<Sa^-*[t0,T,)^*[T,t)) <6>
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for all t such that t < t < t.

For simplicity, we will denote Ur by u, and yr . by y.

Equation (5) then becomes

y=A(<*;u). (7)

The set y is known as the state space of (JL and the element a in the
right-hand side of Eq. (5) is called the state of 0U at time t . The

function S(a ; u) is the state transition function of OL , while Eq. (5)

is the input-output-state equation of Qj .

The "state space" approach to system theory is conceptually re-
[2 3]

lated to the theory of discrete time systems and automata. ' Briefly,

in a discrete time system, the input u and the output y are sequences of

the form u u u .... and yny-,y? . . . ., where u is the value of

u at time t , with \ ranging over the integers. The state equation for
A.

a discrete time system is of the form

yx = A(a> ; u^). (8)

A discrete time system CL. is said to be a finite state system if the state

space y of CL has a finite number of elements. In this paper, we
investigate some concepts of system theory and their equivalents in the

theory of discrete time and finite state systems. Specifically, we in

vestigate some problems concerning the existence of inverse systems,

equivalence in weakly equivalent systems, and finite memory in discrete

time systems. In many of our results, the decomposition property

plays an important role.
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INVERSE SYSTEMS

Informally, any two systems (X and dj are inverses if uL is
capable of "undoing" whatever rf3 is capable of doing. The idea of
inverses and system invertibility is closely related to the concept of the

[ 2,4,5] _,
"information lossless machines" of the theory of automata. 11

a finite state machine is information lossless, then given the machine

in any known initial state, knowledge of the response to an unknown input

sequence is sufficient to identify that excitation. We will see below that

if Ci has a left inverse, then (X is information lossless. However,

at this point we begin with the following definition

Definition. Let (X and ij be characterized by input-output state re

lations of the form

d: y= A(* ;u),ar€^a, u^&Ju], y£ (ftjy], (9)
(Q: w= B(P ;v),P^b.,- v£ ^[v], we RhM, (10)
where u and v denote input segments to GL and Bj , respectively,

y and w are the corresponding output segments and (R [u] = (fw [w],

(R [y] = (RyJvl • (Tne input function space of (X is the output function
space of do t and vice versa.) Then (X> and fij are inverse systems
if and only if to every state a of (X , there is an inverse state |3 of ^,
such that

B(p ;A(<*;u)) = u VuedRju], (11)
(X a.

and conversely, to every state (3 of O3 , there is an inverse state aR

of LXj such that

A(a? ; B(P ; v) ) =v Vveftjv]. (12)

•4-



Remark. The assumption that (R. [u] = fL[ w] and (j^g [y] = (R_b[v]
is vital since, otherwise, the operations described by Eqs. (11) and (12)

are meaningless.

The above definition is illustrated in Fig. 1. If (X and fl J are
inverses (written (X = GO ' or Qj = tO )» given the system Co in
state a , we can construct the tandem system OjCL such that if 6J

is in state 3 , the tandem system behaves like an identity operator or
a

"unitor" on any input u. A corresponding statement can be made about

the tandem system CXOj . To denote the equivalence of OJ^ (and

(Xij) to a unitor, we write Qj(X - I (and (XflJ - I). The asterisk

above the equal sign indicates that the equivalence is conditional and

only holds if Laj and uO are in their proper inverse states.

The definition of inverse systems is symmetrical with respect to

an interchange of the names of systems CL and 0J ( CL is inverse to

uj and Oj is inverse to (jj)0 In many cases, only one of the relations

given by Eqs. (11) and (12) will hold. Such a situation is shown in Fig. 2.

It is easily seen that the tandem combination (SZjLL in Fig. 2(a) is con

ditionally equivalent to a unitor but the system cLflj shown in Fig. 2(b)

is not (unless v and v. are specially constrained). This example leads

us to the following definition:

Definition. Let CL and Uj be characterized by input-output state re

lations of the form

(X' y=A(«;u), flf€ / , uetflju], yedl.Iy], (13)

6: w=B(|3;v), P£^s vclljv], wcRb[w], (14)

where tf( J.y] Q fi^W] and (R [u] C (ftjw] . Then (6 is a left
inverse of CL if for every state a of (,{.•, there exists a left inverse
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state 0 of (J ) such that
a *•'

B(P ;A(a;u) )=u \J- u£ R [u] . (15)
a v a

An immediate consequence of this definition is that if UJ is a

left inverse of (X(i.e., 63 (X - I) and (X is a left inverse of Oj

( 6L()j = I), then (X and flj are inverse systems. It should be clear

that finding a left inverse of a finite state system is equivalent to finding

a finite set of rules with which, given the initial state and observed re

sponse of the system, the unknown excitation can always be determined.
2

Thus, systems with left inverses are information lossless systems.

The converse is not true. Not all information lossless systems have

left inverses. An example of such a system is shown in Fig. 3.

We can also define a right inverse. Briefly, UJ is a right inverse

of (X ii (Rb[w]C (RaM, RbMC (ftjy] and for every state
a of (X , there exists a right inverse state (3 of (jj such that

A(or;B(p ;v) ) = v Vv<£ fL, [v] . (16)
a b

If a system CL has a left or right inverse, it is natural to ask whether

the system is invertible. Clearly, from the example in Fig. 2, in

general the system is net invertible. However, if systems CL and uj

have additional structure, a more positive conclusion can be reached.

Definition. A system (X is said to be completely state controllable

if given any a , a &y , there exists a Ur ^ (R^ [u] for any

t. G J- such that a. = S (or. ; Ur ). A system (X is said to be
U 1 a 0 [t , t)

[71 Vfunctionally reproducible if, given any a € / and any

y[t„, t>e <R»[rJ' there exists a u[t„, t>€ Ra[u[t„. t>]
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such that y^ ) t) =A(«0;u[toj t) ).

Theorem 1. If Oj is a completely state controllable left inverse of a

functionally reproducible system CL such that (TV, [w] s /Q [u] ,

then CL and Oj are inverse systems.

Proof. We first note that if, in the tandem connection ujCL , the state

°f CL is Qf a-3id the state of flj is 6 (the left inverse state of or), then
<x

for any u6 /f\ [u], the state S,(p ; A(a ; u) ) is a left inverse state
a b ff

of S (or ; u). In other words, the input of (X takes (X to state a'fi =
a

S (or ; u) and the output of CL takes (J J to the left inverse state

P # = S (p ; A(q? ; u) ) of a*, Furthermore, if (X is functionally
a d a

reproducible, then p * is the unique left inverse state of or*. This

follows since otherwise, suppose p' is also a left inverse state of

a*, then

B(Pa* ; A(or*; u) ) =u=B(p' ; A(or*; u) ). (17)

But, since (X is functionally reproducible and 6\ [y] = (rlK[v],
a d

fljy] = {A(a ; u) | u€ (ftju] }= ^[v] . (18)
Hence,

B(p^c ; v) =B(p« ; v) V"VC (RbM, (19)

and so p^;!c £ pt .

Consider the tandem connection (X^jCX , where each system
CL is in state a and Go is in the unique left inverse state p . Apply

a

the input u to the compound system. Now,

B(p^ ; A(or ; U;i ) ) = ux (20)
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and so, if we let v = A(or ; u. ), we have

vx= A(or ; B(pff ;vl)) . (21)

From the functional reproducibility of (X, Eq. (21) is true for all

v £. (j\, [v ] . This statement is illustrated in Fig. 4.

Finally, since (JJ is completely state controllable, every state

P€/ is the inverse state of some state of LI;, Therefore, for each

state p of uj, we can find a state a of CL such that
P

v= A{a ; B(P ; v) ) Vv£ (&b[v]. (22)

This implies that Co is a left inverse of flj and the theorem is proved.

Remark. We have actually proved the somewhat stronger result that the

systems CL and UJ are inverse systems, such that each state a of CL>

has a unique inverse state p of uj and, conversely, each state p of LJ

has a unique inverse state a of (X • The first part of this statement

follows from the first paragraph in the proof of the theorem. The

second part follows from a theorem of Zadeh's and Desoer's (Ref. [l] ,

p. 119) which states, "If 03 is invertible and B(p ; v ) = B(p ; v )
J. w

then v.Sv .!! Thus, if a and a ' are inverse states of p,

u= B(P ; A{a ; u) )= B(P ; Ma* ; u))Vu6(R[u], (23)

and consequently,

A(or ; u) =A(or^ • u) V"u£ (fl^M . (24)

Therefore, a ^a ' , as we have claimed.
P P

-8-



An analogous statement for right inverse systems is possible.

Since the proof is similar to the proof of Theorem 1, we simply state the

result as a theorem.

Theorem 2. If Qj is a completely state controllable, functionally re

producible, right inverse of the system CL such that 0*1 [y] =S (K-lI^] »
a d

then CX and Oj are inverse systems.

The concepts of left and right inverses are connected by the

following theorem:

Theorem 3. Let (X , 0J , and O be systems characterized by the

input-output-state relations

CL: y=A(a;u) <*£^a> uG(ftju] , y<S(Rjy], (25)

(ft: w=B(P;v) P€^b> v€$bM, wGlRjw], (26)

C' z=C(Y;x) Y€^,? x€(fic>], z€ (ftjz]. (27)

Then, if Oj is a left inverse of CL> and C/ is a right inverse of CX? 9

to every right inverse state of O there is an equivalent left inverse

state of Oj and vice versa, provided that Uu, [v] s (f\ txl •

Proof. Construct the tandem system UjCl/O as shown in Fig. 5. Let

Cube in state a and set Gj and O in the corresponding left and right

inverse states p and y , respectively. Since O is a right inverse

state of (X ,

Ma ; C(Y^ ; x) ) =x Vx£. ftjx] . (28)
a c

The input to the system Qj in the tandem connection OjCXO is also

x. Furthermore, since p is a left inverse state of a ,
a

B(p : A(or ; C(v ; x) ) = C(Y ; x) Vx€ (ft [x] . (29)
a a a c
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Substituting Eq. (28) into Eq. (29), we obtain

B(P ;x)=C(y ;x) Vx6(fi[x]f (30)
a </ c

and since (Q [x] = (f?, [v] , P and v are equivalent states. This
u Lc vb a a

is the desired result: hence, the theorem.

The above theorem implies that if either Uj or O is completely

state controllable, then 65 is a right inverse system or G is a left

inverse system. Another result of this nature is given in Theorem 4.

Theorem 4. If 03 is a left inverse of a functionally reproducible

system CL such that ${ [y] ^ (Rutv] » then VJ is a right inverse of
Ou.

Proof. Consider the system GO Lb with (X in state a and Qj in the

left inverse state 6 of a . For any u£ OX [u]
a ' a

B(P^ ; A(or ; u) ) = u, (31)

Since y = A(a ; u) and (yL [y] s (RK[V] » functional reproducibility
_^ a d

of CL implies that

{v | v= Ma ; u) }-(frjv]. (32)

If we substitute the expression for u given by

u=B(P ; y) (33)

into the equation y = A (a i u), we obtain

y= A(«;B(P ;y) ) Yy€(R [y]. (34)
a a

-10-



Therefore,

v=A(*;B(p ;v)) Vvfi^Jv], (35)
a b

and 00 is a right inverse of CL,

In the remark following the proof of Theorem 1, we stated that if

Cb is invertible, and the response of Qj to an input u in any state a

is identical with the response of Lb to an input u_ starting in a, then

u must be identical with u?. This statement is also true if Cb has
only a left inverse 00 , since if

Ma ; ux) = A(a ; u2)f (36)

there exists a state P of 06 such that
a

B(p^ ; A(a ; u^ ) = U]L and B(p^ ; A(or ; u£) ) = u£ , (37)

and hence u = u .
J. £

This means that for each a in the state space of Cb f A(a ; u)
defines a one-to-one correspondence between the input segment space

and the output segment space of (X. Suppose that now we are given a
system Cb with this property. Then, we claim that (X has a left
inverse.

Theorem 5. The system (X with input-output-state relation y= A(or ; u)
and state function S (a ; u) has a left inverse if and only if A (or ; u) de-

fines a one-to-one correspondence between the input segment space and

the output segment space of CL .

Proof. We have already shown that any left invertible system has this

property. We will show by construction that any system with this pro

perty has a left inverse. Let a be an arbitrary state of (X and let
(u, y(ar, u) ) be an input-output pair for the system in this state so that

-11



y{a, u) = A{a ; u), (38)

and

a*[a, u) = S (a ; u). (39)
a

(IJ with state space y . ,Now we define a system (J J with state space y . , input space

(ft, [v] , output space u\ •> [w] , input-output-state relation w= Bfp ; v),

and state function S, (p ; v) with the properties:
b

(1) there is a one-to-one correspondence between states

and states in y . If a state in y is denoted by a, the corresponding

state in / is denoted by p .
Z_yb a

(2) (fth[v] eftjy] and (Rb[w] = jftju] ,

(3) If y{a, u) = A{a ; u) then B (P ; y(a, u) ) = u , (40)

(4) If Sa(a ; u) =or* then S^p^ ; y(a, u) ) = p^* . (41)

Clearly, the system Oj is not yet completely defined since if (Jo is in

state p and we apply any input y(a , u) = A (a ; u) where a 4 a , the

behavior of the system is not specified. However, given the excitation

y{a, u) to Oj i-n state p , the response and final state are uniquely

defined because of the one-to-one correspondence between inputs and

outputs of the system Cb, Hence, the tandem system 65CL with (X

in state or and Oj in state p will behave as a unitor because
a

B(p ; A(or ; u) ) = u Vu£ (R. [u] . (42)
Ct a

To complete the definition of flj, we can let

B(pa; y(a ;u) )= 0 VP^ €^b ,V- a4a, Vufi^Iu], (43)

-I a

and

Sb(P^;y(«, u))= pff VPff€^b,^^, Vu€ faju].
(44)
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The definition of OJ is consistent with Assumption 1, and Oj exhibits

the desired left inverse properties. Hence, the theorem is proved.

As an example of the application of the above theorem, consider

the finite state system (X shown in Fig. 6(a). The left inverse system
Qd is shown in Fig. 6 (b) where transitions indicated by solid lines are

specified according to Eqs. (40)and (41) while transitions indicated by

dashed lines are specified according to Eqs. (43) and (44).

WEAK EQUIVALENCE, EQUIVALENCE, AND SOME
IMPLICATIONS OF THE DECOMPOSITION PROPERTY

One of the most important concepts in system theory is the concept

of "equivalence. " Roughly speaking, two systems CL and 6$ are

equivalent if they exhibit the same behavior when subject to the same

excitation. If an experimenter is given a "black box" and asked to de

termine whether the system in the box is either Cb or d3 > it is neces

sary to specify the type of experiment he is allowed to perform. To

this end, we can define two basic kinds of equivalence.

Definition. Cb and Qj are weakly equivalent, or equivalent under a

single experiment, if every input-output pair of (X is an input-output
pair of Oj , and vice versa. Weak equivalence is denoted by (X = flj
and implies that the input and output spaces of (X and flj are identical.

If Cb = Oj and the experimenter is allowed to apply only a single
input u, he cannot distinguish between CL and Oj by the observed

output y since the input-output pair (u, y) belongs to both (X and dj .

However, the experimenter may have a number of copies of the unknown

system, each of which is in the same (unknown) state. If he has as many

copies as he needs, he may, by applying a different input to each copy,

be able to distinguish between the weakly equivalent systems (X and
flj . If not, Cb and OD are equivalent in a stronger sense, namely,

-13-



(X and (Si are equivalent under a multiple experiment, or more

briefly, (X and (fi are "strongly equivalent. " Strong equivalence is
denoted byCX = OJ .

Definition. Let (X and fQ be characterized by input-output-state

relations of the form

(X : y= A(a ; u), <*•€ 2,a, u€ &a[ul' y€ ^a[yl ' (45)

(£: w=B(P;v), p€ ^ , v£ (ft^M, w€(Rb[w] , (46)

where (Rju] = ^[v], and (ftjy] = f\M . (X is said to be
strongly equivalent to (fj or equivalent under a multiple experiment,

if and only if to every state a of Cb , there corresponds at least one

equivalent state p of 0J , and vice versa. In symbols,

(X=(B if* (V<*3p Vu | A(a ; u) = B(p ; u) },

{Vp3ofVu | A[a ; u) = B(p ; u) }. (47)

It should be clear that strong equivalence always implies weak

equivalence. However, the converse is not always true. Zadeh has

shown that if the systems CL and 0J are linear differential systems

of finite order, weak equivalence always implies (strong) equivalence.

It is reasonable to ask whether this statement can be made for more

general systems. To this end, we define the term "decomposition

property. "

Definition. A system Cb with a unique zero state 9 has the de<icom-

position property if its response to any input u with Cb in any state a,

can be expressed as the sum of the zero input response of Cb starting

in state a, and the zero state response of Cb to u. That is,

-14-



A(or ; u) = A(a ; 0) +A(6 ; u) V a €./ , Vu€(f?[u]. (48)
a / /a a

It can be shown that all "linear" systems have the decomposition

property. On the other hand, a large number of nonlinear systems

also have the decomposition property. For example, the system charac

terized by the input-output-state relation

-(t-t ) t -(t-£)
y(t) = e « + \ e u (|) d £ , (49)

Jto

where a (on the real line) represents the state of the system (at t ),

has this property but is nonlinear. We now prove Theorem 6.

Theorem 6. Let CL and flj be weakly equivalent systems with the

decomposition property. Then, if CL and Oj have a pair of equivalent

states, a C y mand p, € y , Cb and Oj are strongly equivalent.
b

Proof. Since a & p *

A(ar ;u) =B(PL ; u) Vu£ tf^[u] . (50)

By the decomposition property

A(ax ; 0) + A(9a; u) = B(^ ; 0) +B(6 ; u) , (51)

where 0 and 9 are the zero states of (X and flJ, respectively. By
the equivalence of a and p

Max ; 0) = A(Pl-f 0) , (52)

so that

A(9 , u) =B(9,, u) VuC & [u],
a b a

-15-
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Consequently, the zero states of Cb and flj are equivalent.

We are given that CX and flj are weakly equivalent. Choose any

a C / and an arbitrary xl" £ Ov. [u] . By weak equivalence there exists
Z_'a ^—» a

a state p G.y , such that

A(a ; u*) = B(p ; u* ) (54)

Applying the decomposition property, we obtain

A(ar;0)+A(9 ;u*)=B(p, 0) + B(9. ; u*). (55)
a b

Using Eq. (53),

A (or ; 0) = B(p ; 0) . (56)

Then, for any u £ {ft [u] , by adding Eqs. (53) and (56) together,
we obtain

A (or ; u) = A(a ; 0) + A(9 ; u) = B(p ; 0) + B(9^ ; u)
a b

= B(p ; u) Vue (R [u], (57)
a

and therefore, a ^ p. Consequently, for every state a €: > , there
v^ Z^a

is an equivalent state p c) . The converse is shown in the same

manner, and thus, CX -s fy

By the above theorem, weakly equivalent systems with the decom

position property are equivalent if they have a pair of equivalent states.

Thus, a complete proof of the equivalence of weakly equivalent linear

systems require only the demonstration that their impulse responses

(and hence zero state responses) are equal. For finite state systems,

a stronger statement can be made. We first state a theorem due to
[8l

Zadeh. The proof of this theorem is given in the Appendix.
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Theorem 7. (Zadeh) Weakly equivalent finite state systems have at

least one pair of equivalent states.

If we combine the last two theorems, we obtain:

Theorem 8. Weakly equivalent finite state systems with the decomposi

tion property are strongly equivalent.

We can derive an interesting result from our theorem on weak

equivalence. First, we introduce a concept closely related to inverti

bility. We say that CA. and flj are converse systems if every input-

output pair (u, y) of Cb has the property that (y, u) (with y as input

and u as output) is an input-output pair of Oj and vice versa.

All inverse systems are converse systems; however, all converse

systems are not inverse systems. The essential difference between

converse and inverse systems is that for converse systems (X and Gj ,

for each state a of Cb and input u, there exists a converse state 6
n a' U

of flj such that

A(a ; B(p^u; u) )=u (58)

and for each state p of OJ and each input v, there exists a state

aQ of Cb such that

B(P JA(orftv ; v) )=v, (59)

while for inverse systems, the selection of the states 6 and a
a, u p, v

is independent of u and v.

As a corollary to Theorem 7, we can prove (see Appendix) that if

Lb and IjD are finite state converse systems, then CL and & have a
pair of inverse states. Furthermore, it should be obvious that all sys

tems converse to a given system are weakly equivalent. Then, we can

conclude:
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Theorem 9. Let CL be an invertible finite state system with inverse

(ft) . Suppose that Oj has the decomposition property. Then any con
verse system O with the decomposition property is strongly equivalent

to the inverse system flj .

Remark. It may be shown ([ l] , pp. 151-152) that if the system CL is

invertible and CL has the decomposition property, then the inverse of

Cb has the decomposition property if Cb is zero state additive; i.e.,

A(9a, Uj - «2) =A(8a , ux) - A(8a, u.,) for all ^ , «2fi Rju,. t)]
and for all t , t (t < t) . Another important property of systems with

decomposition is that the cascade system fljCL has the decomposition

property, if CL and dj have the decomposition property and uj is

zero state additive.

Finally, we will give a necessary and sufficient condition for two

weakly equivalent finite state systems Cb and Oj to be strongly

equivalent. A state a is said to be primitive transient if it is not

reachable from any other state. A primitive transient machine is either

a single primitive transient state or a strongly connected set of two or

more states, none of which is reachable from any state not in that set.

Theorem 10. Weakly equivalent finite state systems CL and oj are

strongly equivalent if and only if every primitive transient machine in

CL contains a state equivalent to some state in flj and every primitive

transient machine in 6J contains a state equivalent to some state in (X .

Proof. The necessity of the condition is trivial. To prove sufficiency,

we first note that if we formL7J the nonoriented maximally connected

subgraphs of Cb and ()_> » we obtain a number of disjoint components,
each of which is either weakly or strongly connected. In addition, each

weakly connected component must contain at least one primitive tran

sient machine and no strongly connected component can contain a primi

tive transient machine. Furthermore, every state in a weakly connected
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(but not strongly connected) component is reachable from at least one

state in a primitive transient machine.

Now, by the last sentence of the last paragraph every state in a

weakly connected component of Cb is equivalent to some state of flj .

This follows since equivalent states transit to equivalent states. If we

examine the states in weakly connected components of 0 J , we can

arrive at a similar conclusion. Let us pick a state or in a strongly con

nected component of Cb , and apply an arbitrary input u . By weak

equivalence there is a state p of B such that A(a ; u ) = B(p ; u ) .

We now repeat the argument of the Appendix used to prove Theorem 7

to conclude that there is some state in this strongly connected com

ponent of CX which is equivalent to a state of flj . By strong connec

tivity, every state in this component is equivalent to some state of (Q .

Treating each strongly connected component of CL in the same manner

we are lead to the same conclusion, and reversing the argument proves

that every state in a strongly connected component of (B is equivalent
to some state of CL . Hence, the theorem.

FINITE STATE SYSTEMS AND SOME IMPLICATIONS
OF THE DECOMPOSITION PROPERTY

A discrete time system CL is a finite memory system * if the
response at any sampling interval depends on only a finite number of

past and present excitations and past responses. The output at time k

of a finite memory system Cb is of the fo:irm

yk= AMU) , uk) =f(uk u^, /kl, yk.vl). (60)

where u. =Ur . , y., =y^ , and a(i) is the state of (X at
time i (i = 1, 2, . . .). The maximum of u and u is said to be the
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maximal memory of the system. The major feature of a finite memory

system is that every input-output sequence of at least length

u = max (u M-o) uniquely determines the final state of the system. That

is, if a and a7 are any two states of CL , then for any input sequence

Ul* U2 *' #U^ such that ^(Qfi Jui . . . u*) =A(a2 ; u* . . . u*) ,

Sa<«l8ur»2-..-pS,V«2"h«2---^). I")

Hence, given the known system CL \n an unknown initial state, we need

apply at most u arbitrary inputs to the system, and by observing the

outputs, we can uniquely (to within equivalent states) determine the

final state of the system.

Arbitrary discrete time systems, even finite state systems are not

finite memory. In fact, if we form the tandem connection of two finite

memory systems, the resulting system may not be finite memory. An

example of such a system is shown in Fig. 7. In this example, let the

last k inputs to (JjCL be aQ, aQ, . . . , a where k is an arbitrary
number. Suppose that the last k outputs of the system were

C0* C0* * * " ' C0 " This is coneistent witn the specifications of (X
and 63. At this point, apply the input a to <Q(X . Then the output
can either be c^ or cg . Since k is an arbitrary integer, there cannot
exist an input-output relation for (QCL of the form of Eq. (60). Hence,
the system does not have finite memory.

Theorem 11. If a discrete time system (X has the decomposition pro
perty, every pair of distinct states (o^, aj is distinguishable by a finite length
sequence of inputs. Furthermore, there exists a number Ka such that

1' 2
any input sequence of length K or greater is a distinguishing sequence.

Proof. Suppose the theorem is false. Then there exist two nonequiva-
lent states, say or and or , which have an identical input-output
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sequence of infinite length. Let u* u* . . . u*. . . be such a sequence.
X. Ct 1

Then

* ..* *\ - A/o, . „* *A(ax ; u* u* . . . up =A(^ ; u* u* . . . u^ ) i =1, 2, 3, . . . .
(62)

Since the system has the decomposition property

A(a. ; u u . . . u. ) = A(a. ; 0, 0, ... 0.) + A(6 ; u. u . . . u.)
j i t. i j L c, i a i £ i

j = 1, 2 ; i = 1, 2, 3, (621)

and

A(ax ; 0X 0£ . . . 0.) = A(<*2 ; 0 02 . . .0 ) i = 1, 2, 3, . . . . (64)

However, Eq. (64) implies that since the system has the decomposition

property, for any input sequence u u . . . u. ,
L Li 1

A(o?1 ; u u2 . . . u.) = A(<*2 ; u u . . . u.) . (65)

Therefore, a = a - , which is a contradiction. Consequently, the

theorem is true.

Now that we have shown that every input sequence of length Ka t a or
1 L\

greater is a distinguishing sequence for the initial state, it is obvious

that a finite state system with the decomposition property is finite

memory since on the basis of the initial state, the last K inputs and

the last K outputs, we can easily find the final state and final output.

(where K = max Ka a ). Thus, we have:
i,j i' j >9

Theorem 12. If a finite state system CX has the decomposition property,

it has finite memory.
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Once a finite state system is shown to possess finite memory, it

becomes important to find the maximal memory of the system, or

a priori, to find bounds on the memory. For example, if Cb has n

states,none of which is equivalent, fi < T|(r| - 1) / 2 ([2] , p. 162).

Moreover, Gill has shown that this bound is the best possible upper

bound in general. If Lb has the decomposition property, this upper

bound can be considerably strengthened.

Theorem 13. If a minimal state system of r\ states has the decomposi

tion property, then its maximal memory is less than n.

Proof. Since there are r\ states, the zero input response of the system

must repeat after at most n inputs. That is, if the arbitrary state

then

is taken into the state a1 by the input 0 0- . . . 0 ,
a 1 2 n

A(a ; OJ = A(<*» ; 0 ). (66)

Suppose two states a and a? have identical input-output sequences of

length n .

*<al ; ul u2 • • *U^» =X{a2 ' U1* U2 ' • *%>• <67>

By the decomposition property

M<*x ; 0X 02 . . . 0^ )=A(<*2 ; 0X 02 . . . 0 ) , (68)

and Eq. (66) implies

A(ax ; Oj 02.. . . 0.) = A(az ; Oj 02 . . . 0.) i = 1, 2, 3, . . . . (69)

In other words, there is an infinite input sequence which will not dis

tinguish between a and a . By Theorem 11, this is impossible; thus,

we have reached the desired conclusion.
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Finally, we give a result related to the last two theorems.

Theorem 14. Let (X and 6$ be weakly equivalent discrete time

systems. If CL has finite maximal memory u , then Oj has finite

maximal memory \s. ,

Proof. Let CL be in state a and apply an input sequence

Ul U2 * " " u to LA . Suppose that a transits to the state a . Si

Cb has finite memory jx, for all a <S. y such that
/ / a

A(a ; u^ u2, . . . , u" )=A(or ; u* u2 , . . . u ) f then

Sa(a ; ^ . . . uj =Sa(«l ; ^ . . . u^ ) = « . (70)

Since CL and 06 are weakly equivalent, there exists a state

p of G) such that

B(PX ; u* . . . u*) =A^ ; u* . . . u*). (71)

To show that Cj has finite memory u or less, we must show that for

any state p of {ft such that B(P ; u* . . u*) =B(P. ; u* . . u*) ,
x |X XX LX

Sb(P;Ul . . . ujj>)^Sb(P1;u1 . . . u^ ) . (72)

Let X be an arbitrary input sequence of arbitrary length, and let us

apply the input sequence u . . . u T to fi in any state p with
B(P ; u^ . . . u ) = B(p ; u . , . u ). By weak equivalence, there
exists a state a of Cb such that

— , * * — * *
A(a ; u . . . u T) = B(P ; u . . . u T). (73)

1 \i— 1 u

But, since Cb has finite memory

* * jo *
sa(<* ; ^ . . . u ) = or . (74)
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So that if we define p by

Sjc ^C 5|«

P =Sb(P ; ux . . . u ), (75)

we have

B(p*;T )=A(a* ;T) (76)

for any input sequence T. Therefore p "= a , and since p was any

arbitrary state such that B(P; uf . . . u *) = B(p, ; uf . . . u*) ,
1 |X 1 1 \i

Sb(p; u* . . . u* )£ or*, V P3B(p;u*,,.u* )=B(^ ;u* . . . u*)..(77)

Therefore, Oj has finite maximal memory |i or less. To show that

Oj has maximal memory exactly fi , reverse the roles of CX and dj .

If 6j has maximal memory y , using the same argument as above,

we can conclude that (jl < v . Therefore u = v and the theorem is

proved.

In our proof of Theorem 14, we showed that the weakly equivalent

finite memory systems Cb and dj have a pair of equivalent states.
Thus, we have actually derived a more important result which we state

below.

Theorem 15. Weakly equivalent finite memory systems with the decom

position property are strongly equivalent.

CONCLUSIONS AND FURTHER REMARKS

We have seen that the decomposition property has many strong

implications for abstract systems. Many properties, usually proved

only for the restricted class of "linear" systems, also hold for the more

general class of systems with the decomposition property. There are

several areas for further research. For example, the authors believe
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that all weakly equivalent systems with the decomposition property are

strongly equivalent. This statement is supported by the conclusions

reached in the present paper and also by the fact that continuous systems

with the decomposition property have finite memory in the following

sense: Any two states with an identical input-output pair (urj ., yr .)[t0, oo) 7[tQ, co)'
must be equivalent.

The concepts of inverse and left inverse systems seem to have

potential, and besides abstract interest, appear to have a more concrete

impact in terms of feedback control systems. The idea of an inverse

system could be generalized in several ways. For instance, we might

be willing to allow a finite period of time to elapse before recovering the

original inputs. The results reported here appear to be generalizable

to this case, and the authors are presently working on this and other

extensions.

APPENDIX

Proof of Theorem 7: Weakly equivalent finite state systems have a pair

of equivalent states.

Let Lb and UJ be weakly equivalent finite state systems. Choose
an arbitrary state a in > . Apply an arbitrary input un to (X in
state aQ. By the weak equivalence of Cb and Oj , there exists a non
empty set of states in y , which yields the same output A(a ; u ).

Let K0(aQ, uQ) = {pQ | B(pQ ; uQ) =A(aQ ; uQ) } be this set of states.

Suppose or1 = S&(aQ ; uQ). Let 1 Q(P0 , uQ) be the set of states
reachable from K0(afQ, u ) via the input u . In other words,

^o((V u0) ={P IP=sb((V uoh poeKo(V V }• Either a11 the
states in 7 q^q' U0^ are ecluivalent to aT » or there is at least one state p
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in J. n(Pn» u ) not equivalent to a . If the latter possibility is true,
there exists an input u such that

B(px ; uj 4 MaY ; u^.

The input u cannot distinguish a from every state in I a(Pa» un)
since by weak equivalence

A(«Q ;uQ ux) =B(V juQ u^ for Y€ £b •
This implies

A(ao;u0) =B(Y;u0), Y.6K0tV uQ] .

and

A(ax ;U]L) =B(y , uj , $=S^y ;uQ) <£ f Q(pA , uQ).

Therefore, the set K^, uQ uf ={PQl Ctf Q(PQ, uQ) |
B(P01J t^) =Afo^ ; u^ } is not empty.

Let N(P) be the number of distinct states in an arbitrary set P

of states. N(K ) > N(K ), since the input urt can take each state of K
v L . 0 0

into at most one state; therefore, 2 has at most N(K ) states,

and since Kj has one less state than <£ , the inequality follows.

Let a2 = Sa(of]L ; u^ and let U 1(PQ , u^) be the set of states
reachable from K^, u^) via the input u . Either all states in jf
are equivalent to a^, (proving the theorem), or there exists at least
one state p2 in $. such that there is an input u and

B(p2 ; u2) 4 A(a2 ; u2)

As before, thejet K^, u^u^ ={p^C ^ (PQ, u^) |
B^02 ' U2^ =A^a2 *u2^ ^ is not emPty since by the weak equivalence
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of (X and 6j, there is a state y in K such that

A(a0;u()u1u2)=B(viu0u1u2)

Then, using the same reasoning as above, we can conclude that

N(K1) >nf x) >N(K2) .

Either we continue the preceding process, or for some j, all

the states in Y . are equivalent to the state a, ,, where

"j+l =Sa("0 : U0U1 • • • uj>' ^ j((V u0Ur • • V ={P0j I %

=VVj-i: V' poj £ Kj(V uour • • V } and

Vv vi •••uj>=% ' %e /j-iand §«v V =1{aj •V >•
The former possibility cannot continue indefinitely since N(K ), N(K ),

. . . , N(K.) is a strictly decreasing sequence of numbers with N(Kn)

finite. If the process does continue indefinitely, there exists an integer

m such that N(K ) = 0. This violates the assumption that CX = (O ,
which requires that each K. be nonempty. Therefore, the process

must terminate at some ^[ '. for which all states in % are equivalent
J jto a . This proves the theorem,

j+l

Corollary. Converse finite state systems have a pair of inverse states.

Proof. We proceed in the same manner as in the proof of the theorem

except that we now define KQ(aQt uQ) = {pQ | B(PQ ; A(aQ ; *0)) =*0 } ,
> 0 ^0 ' A^0 ' U0^ ^ is the Set °f states reached from K {a , u )

via A {a ; u ) , and in general

Kj(V uoui •••V={%e ? j-i <V X{ao ;uoui •••V I
B(p ;A(a ; u ) ) = u } .
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The converse property implies that each K. is not empty and by con

struction N(K, ) > N(K.) . Thus, the process must terminate for a

finite state converse system and consequently finite state converse

^ systems contain a pair of inverse states.
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FOOTNOTES

1. Here, we assume that we can perform an experiment with the
system after the unknown excitation has been applied.

2. A necessary and sufficient condition for a finite state system
to be information lossless is that it contain no state which can

be reached from any initial state via two or more distinct input
r 2isequences which yield identical output sequences.1- J

3. Naturally, we mean unique to within equivalent states. Two states
cr and or. are equivalent if for all u £ (ft [u] , A (a. ; u) = A(or0 ; u).

1 c a 1 c

If a and a are equivalent, we write a ^ a .

4. If 0 £ (ft, [w] , we can suitably expand (R_, [w] to include this
element,, or define B(p ; A(a;u)) in some other convenient way.

5. We assume that (j{ [u] and /P [y] are sufficiently well defined
a a

to have an addition operation, *and an (additive) zero input

0r , and zero output 0r for all t , t with tA < t. A zero

state 9 is a state such that 0r = A(9 ; 0r ) w tA, t, (t > tA),
a l^Q* w a |_tA» t) v^ 0 0

6. Completely state controllable finite state systems are said to be
strongly connected.

7. Suggested by Prof. L. Haines, Dept. of Electrical Engineering,
University of California, Berkeley.
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Figure
No.

LIST OF FIGURES

1 Inverse systems CL and 0j •

2 A left invertible system (X which is not

invertible.

3 A two-state information lossless machine which

is not left invertible.

4. The tandem system Q/QjCb used in proof of

Theorem 1.

5 The tandem connection QoCl'G where OJ

and LL> are left and right inverses of CL .

6 A three-state system Qj and its left inverse (8

7 A finite state, nonfinite memory system.
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v=A(a;u)

(ban

u=B(yS;v)

*
a das i

Fig. 1. Inverse systems CX and vj .
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a ffl
*

<$a=i

Fig. 2. A left invertible system Cb which is not invertible.
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0/0

0/1

Figi, 3. A two-state information losslessmachine which is not

left invertible.
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a

A(a;u()=V|

Fig. 4. The tandem system CX (QuL used in proof of Theorem 1.

c%;x) c(V,x)

Fig. 5. The tandem connection (QCXu where (Q and O

left and right inverses of CX .are
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0/00 0/10

00/0 (00/0 ).(l I/O)

(01/0), (10/0) 10/0

(00/0),(IO/0)

(b
Fig. 6. A three-state system CX and its left inverse 6j
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^

u

/—^(a0,bo)v(a,,b|)

^—^(a0,b2)v(a| ,b3)

a

«,b[w]

y v

^-~x(b0,c0Mb„C2)v
Wy(b2,c,)v(b3,c4)

AaA(bo,c,)v(b,,c3)v
^(b2,c0Mb3,c5)

{a0.a|}
{b0.b| .b2.b3}
{b0.bl .b2'b3}
{c0,C| ,c2,03,04,05}

Fig. 7. A finite state, nonfinite memory system.
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