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ABSTRACT

A communication system can often be represented as an inter

connection of stations and links. We assume that the system is subject

to enemy attack aimed at isolating stations from each other. Vulner

ability criteria are defined, and asymptotic and recurrence relations are

given for computing the vulnerability of several classes of networks with

a large number of stations. Based on the analysis procedures, optimum

synthesis procedures are suggested. A simple model is analyzed first,

then the results of the analysis are extended to include systems with

repair, memory, and systems whose interconnections depend on distance.

The main objective of this paper is to show under what conditions asymp

totic expression for vulnerability can be derived.
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I. INTRODUCTION

The problems of determining the "vulnerability" and of designing

communication networks which are "invulnerable" to enemy attack is of

paramount importance. As yet, there is no complete treatment of either

the analysis or synthesis problems in the literature, although a number

of partial results are available [1-6]. One difficulty which is imme

diately encountered in vulnerability studies is the lack of a completely

suitable "vulnerability criterion. " However, the major obstacle to the

solution of the problem (given a vulnerability criterion) is the enormous

difficulty of obtaining exact, analytic results which are useful for the

analysis and synthesis of large systems. This difficulty stems from the

fact that vulnerability (or reliability) problems are essentially combina

torial problems, and the number of combinations which must be con

sidered for large systems is usually enormous.

A partial remedy to the above difficulty is jto consider networks

which possess a high degree of symmetry. Such networks are char

acterized by relatively few parameters, while the desirability of

symmetry can be justified on heurestic grounds. For example, the dis

tributed communication networks discussed by P. Baran [1] appear to

possess many of the features of highly invulnerable nets. The results

of Baran1 s Monte Carlo simulations support this conclusion. However,
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it is difficult to make quantitative rather than qualitative judgements

because detailed analytic information is not available.

In this paper, we develop asymptotic and recursion formulas for

computing the vulnerability of classes of networks which are related (in

spirit) to Baran's distributed nets. We assume that the nets are subject

to an enemy attack aimed at isolating stations from each other. As a

criterion of vulnerability (survivability) we use the average fraction of

stations which both survive the attack and remain in an arbitrary con

nected group of stations which can communicate with each other. This

criterion is nearly identical to Baran's, except that Baran elects to use

the fraction of stations surviving the attack and in the largest connected

group.

The scope of this paper is somewhat limited. At all times, we use

the simplest formulation of a model that will illustrate a particular point.

A number of our results can be generalized to reflect more realistic

situations, but our main objective is to establish a methodology with

which more complicated models can be attacked.

II. A SIMPLE MODEL

Let N be a communication network with n + 1 stations v ,

v,, . . ., v interconnected by a set of B-directed (one-way) links
1 n

b , b , . . ., b . The topological structure of N may be fixed, as in
12 B
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the case of a microwave relay system, or it may be time varying, as in

a satellite communication network. Alternatively, the structure may be

either deterministic or random. In fact, the same network may simul

taneously exhibit both qualities; for example, the builders of the network

may know the exact location of every link and station while the enemy may

know only the probable location of some of the links and stations. In

addition, atmospheric conditions, reliability problems, and other random

factors may contribute to a state of uncertainty about the exact structure

of the net.

The design of an invulnerable net may not be the only consideration

of the network designer. Other factors will influence his design; thus,

a reasonable objective is to generate a class of networks, with the same

survivability features, from which a specific network can be selected.

We will consider a simple class of networks generated by a random

process. This class is described by the assumptions

A I. a Each station has, on the average, d outwardly directed

links. There are no self loops.

Al.b Each link incident at station v. is also incident at station
1

v. with probability 1/n (for i, j = 0, . . ., n i ^ j).

A I. c All links and all stations are identical.

A specific realization generated by the above process may be

highly unsymmetric. However, the essential feature of our model is

that before we find a particular realization, all networks in the class
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are, in a sense, "symmetric in probability. " (The above model has

been quite popular with mathematical biophysists, in their studies of

random neural nets [7-12]. A partial summary of some pertinent

results is given by Z. Prihar [2].) We use the following model for the

enemy attack strategy:

AII. a Weapons are directed at random into a region of area A.

The probability that any given weapon is directed at a

region of area A (A ^ A) is A/A .

A II. b The density of weapons is r\ weapons per unit area.

All. c All weapons are identical.

In our model, a weapon could represent a ballistic missle. In this

case, the assumption that the missiles fall uniformly at random into

area A is not totally unrealistic. In other instances, the weapons could

be bombs. In this case, the uniformity assumption All. a is most

appropriate when the enemy is uncertain about the physical location of

the targets. Such a case could easily occur, for example, in jungle

warfare, where the actual target may never be seen or precisely located.

We must specify the interaction between the weapons and the com

munication net. We will say that a link (or station) is hit if a weapon is

directed to within a given distance of that link (or station). Naturally,

this distance is a function of the power of the weapon and the structure of

the link. The vulnerability of the net is defined by:
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A III. a Stations are destroyed if they are hit by at least K

weapons.

Alllob Links are destroyed if they are hit by at least K weapons.

A III. c There is no repair; that is, once a station (or link) is hit,

it remains hit.

Under Assumptions A I, All, and A III, we shall compute the

expected fraction of stations which can be reached from a station picked

at random after the attack. Let this number be denoted by v . We are

mainly interested in communication nets with a large number of stations

and links. Therefore suppose that n is large. Our assumptions describe

a class of nets which behave in a uniform manner, both before and after

attack. The probability of any station (or link) surviving the attack is

identical to the probability of any other station (or link) surviving the

attack. Since we have a large net, the Law of Large Numbers [13] is

applicable. Consequently, the expected fraction of stations that are

destroyed is approximately equal to the probability that any given station

is destroyed, and the expected fraction of links that are destroyed is

approximately equal to the probability that any given link is destroyed.

Let f (r|) and g (t}) denote the expected fraction of stations and

links, respectively, which receive exactly k hits from a raid of density

T|. From the discussion in the last paragraph, the probability that any

given station survives is (approximately)

-5-



K -1
s

I *k(*l) » (la)
k=0

and the probability that any given link survives is

V1

k=0

gk(*l) • (lb)

Let t (or p ) be the probability that any given weapon hits a given

station (or link). This probability depends on the area of vulnerability

of the station (link). Given t (or p ), it is simple to compute f (t|)

(or g (ti)). In fact, it is well know ([13], p. 150) that f (r\) (or g (r\)) is

the probability that a Poisson variable with parameter t (or p ) has k

successes. In other words,

yi (t1ri)k
fk(tl) = e "TT" » (2a)

and

gk(T|) = e TF # (2b)

For completeness, we will derive Eq. (2a) using a method of A.

Biermann [14, 15]. The key feature of Biermann's approach is that it

is readily extended to more general situations that do not result in

Poisson statistics.
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On the average, (n + 1) f (i)) stations receive exactly k hits in an
K.

attack of density *n. Suppose that r\ is changed by the infinitesmal

amount dr|. .Then f (r|) will change by the amount df (r\). The change in

fjJ^) W^H be caused by stations which have already been hit k - 1 or k

times being hit again. The higher order contributions, caused by j £ 2

hits on targets with k-j prior hits can be ignored. Thus

<Hk(r\) = -\d7] fk(r|) +tjdti fkl(ri) k = 0, 1, 2, . . .

(3)

where t dr^ f.(r\) is the expected fraction of stations which experience j

hits from the attack of density r) and an additional hit caused by the

increase of dr) (j = k-1, k) .

The system of equations (3) may be rewritten as

df0(r))/dTi H-y^ti) =0 (4a)

dfk(ti)/dti + t^Ti) = ^^(tD k =l, 2, . . . (4b)

Equation (4a) can be routinely solved to yield

-yi
f0(l) = e . (5a)

All of the other f (r)) can be successively computed. For example,

-yi
dfx( Tj)/dT| + y^ti) = txe (6a)
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or

-y
^(tl) =y e . (6b)

And, it is easily shown that, in general,

-yi (t ti)k
y^ =e -tt~ ' (7)

This is the desired expression.

Returning to our network model, we suppose that links b. ,
ll

b. , . . . , b. are directed away from station v.. After the attack,
1Z Xd l

suppose that there are on the average, a intact links directed away

from v., assuming that v. survives (i = 0, 1, . . ., n). Networks

generated by processes satisfying Assumption A I have been studied in

detail by several authors [7 -12]. Solomonoff and Rapaport [8] have

obtained the following (approximate) transcendental equation for large n

for y m terms of or, the average number of outwardly directed links at

any station:

v = 1 -e'^ . (8)

Solomonoff [10] has shown that even for small values of n, this equation

is extremely accurate. In their model, Solomonoff and Rapaport assumed

that the number of stations are fixed and not subject to random disturb

ances. However, we can generalize their results to our model. In

Appendix A we show that
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v = 1 - exp \ - d

^

K -1
s

I
k=0

fkh)

V1

1
k=0

•>v

gk(l) >. (9)

J

The proof given in Appendix A is a simple extension of a proof given by

Rapaport [9]. We include it for completeness and because both the

methods and results of the proof are of interest.

Equation (9) is an equation for the average fraction of surviving

stations which can be reached from a station picked at random after

the attack in terms of the network parameters. Consider the following

network design problem. The designer of the communication system

would like to build a system with a guaranteed "invulnerability. " That is,

he would like to find d, K , and K the "redundancy levels" of the net

work so that, on the average at least y X 100% of the stations in the net

can communicate after the attack. Here we assume that vn is a pre

scribed number given to the designer. It should be clear that if the

designer picks d, K , and K large enough, he can always guarantee

that y - Va • Therefore, he would like to find a set of values which

guarantee Yn with minimum cost.

Suppose that the cost of the system can be expressed as some

function of d, K , and K , say H(d, K , K ). The design problem

can be stated as:

Find d, K , and K such that
s* I
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H(d, K , K ) is minimized (10a)

and

y - yt (10b)

Let us solve for the exponent in the right-hand side of Eq. (9). Thus,

K -1
s

I
k=0

ytj)

V1

I
k=0

gk<t|>
= -ln(l-Y)

Y

and the constraint given in Eq. (10b) is equivalent to

K -1
s

I f^>
L k=0

K -1

y «*<">
k=0

where Tn is a known number.

The design problem is now: Find d, K , and K such that
s ji

and

H(d, K , K ) is minimized
s 8.

V1 k

k=0

k!

V1, ,^ (P^)

k=0

k!

(t^+P^
£ e

(11)

(12)

(13)

The solution of the above design problem is routine. K and K„ must
& r si

be integers, and usually will be bounded by some number, beyond which

it is not feasible to increase the survivability of a link or station. If
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we substitute all pairs of feasible K and K. into Eq. (13) and then
r s x.

solve for the minimum d necessary to satisfy Eq. (13), we can evaluate

the cost function at each K , K. and d which satisfy Eq. (13). Any
s x.

K , K , and d where the cost function is minimum is an optimal
s a

, . 2
solution.

EXAMPLE 1. We want to design a communication net with a large number

of stations so that 90% of the surviving stations can be reached from a

station picked at random after the attack. Suppose that the links are

invulnerable but the stations are not. Let the cost function

H(d, K ) = d(exp 3K /2). Suppose that the enemy has been successful
s s

in locating targets to within one square mile, but that each actual target

has a zone of vulnerability of only 0.05 square miles. Then, for a

weapon directed at random into the target area, the probability of a hit

is ti = 0.05. Let the density of weapons be 100 weapons per square mile.

From Eq. (9), ^ -\
r

Y = 1 - exp <-

v.

K -1
s

is
k=0

-5
e y .

J

and from Eq. (13), our constraint is

K -1
s

lb
k=0

> e (-In 0.1)
0.9

•11-
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Suppose that it is not feasible to reinforce stations beyond a surviva

bility of four hits. Then, from Eq. (15), if K = 1, d = 375; if K =2,
s s

d = 63; if K = 3, d = 23; if K = 4, d = 10; and if K = 5, d = 5.
s s s

Evaluating the cost function, we obtain H(375, 1) = 1680; H(63, 2) = 1265;

H(23, 3) = 2070; H(10, 4) = 4030, and H(5, 5) = 5400. The minimum of

the cost function occurs at d = 63 and K =2. Thus, each station of the
s

system should have 63 outwardly directed links.

III. SOME GENERALIZATIONS OF THE NETWORK MODEL

AND THE VULNERABILITY CRITERION

The class of networks generated by the process defined by Assump

tion A I can be modified in several ways. First we note that a network

satisfying Al.b may have parallel links. At station v. we choose d out

of n stations and connect these stations to v. . Our process of selecting

stations is equivalent to sampling a population of n points with

replacement; consequently, the same point may be selected more than

once. A more reasonable method of selection is to establish links sequen

tially. The first station is selected equiprobably out of the n possible

stations; the second station is selected equiprobably out of the n-1

remaining stations; • • • ; the dth station is selected equiprobably out

of the n - d remaining stations (none of which has been already selected).

This scheme is equivalent to sampling a population of n points without

replacement; we will call this scheme Al.b1. In other words, Al.b' is:
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Al.b1 The outward links at station v. are determined by sampling

stations v„, v., . . ., v. n, v. _, . . ., v without
0 1 i-l i+l n

replacement a total of d times (i = 0, 1, 2, . . ., n) .

We can include Assumption Al.b1 in our model without difficulty.

In fact, it is easily shown that Eq. (9) is still valid. This result is not

surprising since it is well known that for large populations sampling with

and without replacement are virtually identical ([13], p. 57). However,

even though both schemes of sampling are equivalent for infinite popula

tions, we can expect some difference for finite populations. Equation

(9) is actually a lower bound for y. This is because a network with no

parallel links in the same direction has higher probability of being con

nected. We can investigate the difference between sampling with and

without replacement for finite populations, and simultaneously intro

duce another important factor into our study of vulnerability.

Most networks have some processing time associated with the

links and/or stations. This processing time may be the time necessary

to transmit information through the link or the time needed at a station

to decode, recode, and retransmit the information. In any event, it is

usually desirable to limit the total time a message remains in the

network. In many cases, limiting the total time is equivalent to limiting

the path lengths of the network routes. Thus, instead of asking for the

surviving fraction of stations that can be reached from a given point,

-13-



it is reasonable to ask for the fraction of .stations that can be reached

from a given point by a path of no more than r(r is determined by cost

factors, etc.) links.

Let us choose a station at random. Since we have a large number

of stations, the probability that any other station is connected to this

station is approximately equal to the average fraction of stations that

can be reached from this point. Similarly, the probability that any other

station is connected to this station by a path of no more than r links is

approximately equal to the average fraction of stations at distance r or

less from this station. We can compute this number by a recursion

formula. For the system satisfying Assumption AI, Rapaport [9] has

3
shown (also see Prihar [1], p. 391) that

X,

q(r) = (1-1/n) *,

where

r-2

Xx =a(n+l) [l-q(r -1)] Jf q(i)
i=0

(16)

and where q(i) is the probability that a station is more than i links

removed and q(0) = n/n+1. If we include Assumptions All and AIII, we

must then solve the recursion formula

X.

where
r

q(r) = (1-1/n)

K -1
s V1

"^

X2 =dS I fk<1> 1 gk(T1)
r-2

77
i=0

[l-q(r - 1)] 77" q(i))(n+l)
k=0 k=0

J

-14-
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and where

q(0) = 1 -
n+1

K -1
s

fk(n>
k=0

Then, if p(i) is the probability that a given station is no more than i

links removed, p(i) = 1 - q(i) and, in particular, p(r) =1 - q(r).

A similar recursion formula can be derived for the scheme of

sampling withour replacement. (The derivation involves a straight for

ward modification of the techniques given in Appendix A.) Let q (r)

represent the probability that any station is more than r links removed

from a point chosen at random, when the system is described by

Assumptions A I.a, Al.b1, AI. c, All, and AIII. Then, it can be shown

that q (r) satisfies the recursion formula

where

and where

q (r) = 1 -

K -1
s

K -1

I V11' I gk^»
k=0 k=0

n

X3 = (n+l)[l-q(r - 1)] ft q(i)
i=0

q (0)

K -1
s

'"n-TI I fk '̂
k=0

-15-
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Let P(r) and P' (r) represent the probabilities that any stations

is exactly r links removed from a station chosen at random, under

Assumptions Al.b and Al.b1, respectively. P(r) and P (r) are

approximately equal to the expected fraction of stations that are con

nected by at least one path of r links and no path with fewer than r

links to the station picked at random. It can be shown that P(r) and

P' (r) are given by

r "1
r-1

^ [1 - q(r)] (19)P(r) =

and
(—

P(r) =

r-1

i - £ p<j)

r-1

T.'' (j)

j=o

[i - q>)] . (20)

Furthermore, for large n, both P(r) and P (r) satisfy the recurrence

relation

P(r) =

with

r-1

1- X P(j)
j=0

K -1 K -1
s a

1 - exp<-P(r-l) d ) fk(ri)
k=0

K -1
s

k=0

P(0) = P (0) = j^y fk(r!) •
k=0

-16-
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Now that we know how to compute P(r) (or P (r) ) we can define

an alternative vulnerability criterion. As we have already indicated,

if the only available path between a pair of stations is "too long, " we may

consider that the enemy has effectively separated the two stations. The

vulnerability index y does not take this factor into account. In fact,

co

)^P(r). (22)
r=0

Define Y(r) by

r

Y(r) =Y P<k> * <23)
k=0

It should be clear that Y(r) Is approximately equal to the average number

of stations connected by a path of length r or less to a point chosen at

random. A reasonable vulnerability constraint is now Y(r) - Y0 an(l

again, the objective is to find d, K , and K so that the constraint is
5 X

satisfied with minimum cost. Naturally, the synthesis problem is com

plicated. In general, the recurrence relations given in Eqs. (19), (20)

or (21) must be solved for P(r) (or P* (r)) given values of d, K , and
s

K . The least cost set is then selected from those which satisfy the

constraint.
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EXAMPLE 2. A communication network has 100 stations and an average

of 20 links per station. Suppose that the links are invulnerable but the

stations are not. If the enemy has been successful at locating targets to

within one square mile and each target has an area of vulnerability of

0.05square mile, the probability of a hit is 0.05. Let the density of

weapons be 50 weapons per square mile. We would like to find the

average surviving fraction of stations that can be reached after the

attack from a station chosen at random and the average fraction of

stations that can be reached by a path of no more than three links.

Assume that K is either 2 or 3.
s

If K =2, the probability that a given station survives is

1

I
k=0

fk(r|) =(1 +2.5) e"2'5 =0.287 . (24)

Then, from Eq. (9),

-20(0.287)y , -5.74y . (25)
Y=l-e = 1 - e

and y is very close to unity. However, when we calculate P(r) from

Eq. (21), we have that
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P(0) = (1/100) (0.287) = 0.00284

P(l) = (1 - 0.00284) (1 - exp -20(0.284)(0.00284)) = 0.016

P(2) = (1 - 0.0189) (1 - exp-20(0.284)(0.016)) = 0.087 (20)

P(3) = (1 - 0.106) (1 -exp -20(0.284)(0.086)) = 0.352.

Therefore although nearly 100% of the stations can be reached from a

station chosen at random,

Y(3) = 0.00284 + 0.016 + 0.087 + 0.352 = 0.456 (27)

and only about 45% of the stations can be reached with paths of three or

less links.

If K =3, the picture changes drastically. Again it is easy to
s

see that y Is very close to unity. The probability that a station sur-

-2 5
vives is now (1 + 2.5 + 6.25/2) e " = 0.544. From Eq. (21)

P(0) = 0.00533

P(l) = 0.0555
(28)

P(2) = 0.431

P(3) = 0.502 .

Therefore, y(3) = 0*9933 or in other words, about 99% of the stations

in the net can be reached from a station picked at random by a path of

Vno more than three links. Note that in terms of y ) ^w^ » ^
k=0

K =2, only about 12% of the total stations both survive the attack and

-19-



can be contacted from a station chosen at random. However, if K =3,
s

over 50% of the total stations will be reachable from the station chosen

at random.

In our previous models we considered only systems with directed

(one-way) links. Suppose we are given a communication system with

undirected (two-way) links, whose stations each have an average of d

receives and transmitters. Once a link is established between a pair of

stations, both stations can converse with each other. Our vulnerability

criterion then becomes the average fraction of stations in an arbitrary

4
connected component of the system. The random process that we will

use to generate our system is described by the assumption:

A I. a1 Each station has on the average d undirected links. The

total number of links is B = B(n) ~ dn, There are no self

loops or parallel links.

Al.b1 There are a total of ( j possible links. The network is

constructed by choosing the first link equiprobably from

among the I J possible links, the second link from

among the ( j -1 remaining links, . . . the kth link is

chosen equiprobably from among the ( J -k remaining

links.

We would again like to find the average surviving fraction of

stations that can be reached from a station chosen at random. We can

-20-



attack this analysis problem with the techniques already discussed.

However, we will use an alternative approach based upon the work of

P. Erdos and A. Renyi [17]. In [17], (an exceptional paper of great

scope) Erdos and Renyi establish many asymptotic results describing

the growth or "evolution" of graphs generated by random processes

specified by A I. a1 and Al.b1 and other related schemes.

As a first step, we state a theorem (Theorem 6) from [17], which

gives the expected number of components of the system.

THEOREM. Let B(n) ~ dn with d > 1/2. For large n, the expected

number of components is approximately

n

2d

2 1

x(d) - 2LM (29)

where x(d) is the only solution satisfying 0 < x(d) < 1 of the equation

-«.„-*<«. 2d e"2" .[*«.> .y^T'"«'"'•z
k=l

We can use Eq. (29) to find the average fraction of stations in an

arbitrary component. (Here, we assume invulnerable stations and

vulnerable links, but this limitation is easily removed.) The size of a

component is a random variable which is identically and independently

distributed for each component. Therefore the average number of
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stations in a component is simply n divided by the average number of

components. Hence the average fraction of stations in a component is

(for large n)

2d/n
y = 5 <30>

x(d) - x (d)/2

which for large d (d ^ 4) is closely approximated by

1 2d
V = ~e . (31)

- 2.r\
Equation (31) follows from the fact that for d £ 4, 2de" is an

x -2dextremely small number and thus the solution of x(d) = e (d) 2d e

is nearly exactly x(d) = 2d e

Equation (31) shows that for very large n, y becomes small.

This is because almost all stations of the network belong to some small

component or to a "giant" component. The size of the "giant" com

ponent can be found. According to a theorem of Erdos and Renyi

(Theorem 9b):

THEOREM. If y denotes the fraction of stations in the largest com

ponent of the network and if B(n) ~ d n with d > 1/2 , then for any

€ > 0,

x(d)
lim Prob

n-*oo

Y-1+ , <€>=!, (32)
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where

co

x(d). i £i (2de--)k
k=l

-x -2dis the solution satisfying 0 < x(d) < 1 of the equation x(d) e (d) = 2de ,

and where Prob { } denotes the probability of the event represented

within the brackets.

The last theorem states that the expected fraction of stations in

the largest component is 1 - (x(d)/d) . For large d (d ^ 4) this number

is closely approximated by

Y* - 1- 2e"2d . (33)

Note that these results are related to results obtained by Gilbert [5],

Jacobs [4], Austin, Fagan, Penny and Riordan [18], and others [19 -23]

The effect of an enemy attack can now be included in the model. An

attack such as the one described by Assumption All has the effect of

reducing the average degree of each station uniformly. Consequently,

d becomes a random variable. Since all the necessary probabilities are

known, we could easily find the expected value of y(<1) ♦

IV. SYSTEMS WITH NONUNIFORM LINKS AND DISTANCE BIAS

In the preceding sections, we assumed that all links were identical

(Assumption AI.c). Consequently, each link has the same probability of
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surviving a uniform attack. This assumption is essential to our develop

ment. On the other hand, most communication nets contain links of

different length. Clearly, if two links are of the same construction but

of different length, the longer one has a greater probability of being

destroyed. This follows from the fact that the longer links are more

likely to receive a given number of hits. Our previous development does

not include this more general situation. However, there is an alterna

tive approach that we can apply.

Before we discuss this alternative approach, we will introduce an

additional generality. We no longer assume that the probability of

establishing links from a given station to the other stations of the net is

the same for all stations. Instead, we assume that the probability of

establishing a link between a pair of stations is dependent on the length

of that link. In other words, the probability of establishing a link

between a given pair of stations v. and v. is a function of the distance

between v. and v.. Let p(v., v.) represent the distance between v. and
i J K i J l

v. . We will assume that our system satisfies
J

AIV.a The network may be partitioned into regions Y, Y , . . .,

Y of area A,, A^, . . ., A , respectively, such that
m 12 m

within each region there are a large number of stations.

The density of the stations is v stations per unit area and

is constant for each region.
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AlV.b Within each region Y. , interconnections are identical,

equiprobable, and satisfy Assumption AI.

AIV.c If station v is any sation in region Y. , for any link

b directed away from v , the probability that b con-
J i 3

tacts a station in the neighborhood of station v, is
k

T(p(vs. » vk)) A , where t(*) is a probability density and

A is the area of the neighborhood.

AlV.d Every station in Y. has on the average d outwardly

directed links, for i = 1, 2, . . ., m.

For the system described by Assumption AIV, we will derive a

recurrence relation for the probability that a station at distance x from

a station selected at random is connected to this station by a path con

sisting of exactly r links and no path consisting of fewer links. As

before, this probability is approximately equal to the expected fraction

of stations wifth this property. Our derivation is similar to one given by

Rapaport [9] •

Let the point selected at random be denoted by v . We will use

the following procedure to count the number of stations which can be

reached from vn : First we trace all links emanating from v . Let

the set of stations thus contacted be denoted by S. . Second, we trace

links emanating from stations in S. and denote the set of stations thus
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contacted by S^.... At the _itn step we trace links emanating from

stations in S. , and denote the new set of stations contacted by S . Note
l-i y i

that we may contact a given station several times by this procedure.

Therefore, at each stage we only trace those links emanating from

stations which have never been contacted before (i.e., stations in

j-l
S. - U S.) .
J i^l X

Let P(x, r) be the probability that a station at distance x from some

other station is exactly r links removed from this station. The expected

number of stations to be contacted for the first time from v at the rth
0 -

stage in the neighborhood of a station at distance x from v is

v AP(x, r). Therefore, if d links emanate from each station, there is

an average of dv AP(x, r) new links to be traced from this neighborhood

at the r +l-st stage of the counting process. Suppose that the expected

7
number of stations are actually contacted at each stage. Then the

probability that a station v. at distance y from v is not contacted by

a link emanating from any region is

m r /, \ idvAiP(xi'r)TTj1 •T(p(v vi|Aij <34>

where v is a station in Y. and is at distance x. from v . Therefore,si i i o *

the probability that v. is contacted by at least one link at the r +l-st

is
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m

-Til
i=l

1- P(v., v) A.

dvA.P(x., r)
11

The probability that v. is not contacted in the first r stages is

(35)

and hence the probability of first contacting v. at the r +l-st stage is

P(y, r+1) = -I P(y, J)

j=o J

m

!. 771. /• ^. |dvAiP<Xi'r)
i=l

1- P<v.,v.) A.

(36)

Equation (36) is the desired recurrence reaction for P(x, r). Now we

can introduce the effect of the enemy attack (As sumptions All and AIII).

The expected number of links emanating from station v. is d given by

d* £ d

K -1
s

I W
k=0

r

i\ P(v.. v.)

p(vt, V)
K

Ki-X

I «k^
k=0

(37)

J

where p(v , v.)/K represents the number of unit areas of vulnerability

of the link between v. and v. and g (t|) is now the probability that a

unit area of link suffers exactly k hits. The probability that there is a

link between v. and v. is
1 J
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K -1 K -1
S £

'-IT1- T(p(Vi' Vj>) I £k™ £• *k™ • (38)
k=0 k=0

Therefore, our recurrence relation can be written by substituting Eq. (37)

and d given by Eq. (37) for d, into Eq. (36). The initial condition for

the recursion formula is easily seen to be

K -1 K -1
s ft

P(y> i) =̂ p(y) ]T y^i) Yj gk(T1) • (39)
k=0 k=0

The recurrence relation given in the last paragraph is, to say the

least, complicated; however, this is to be expected since the problem

that we posed is inherently difficult. Numerical solutions of the recur

rence relation for various values of d, K and K can be obtained under
s St

certain conditions. To solve Eq. (36) we must repeatedly evaluate its

right hand side. The computational problem is not difficult. However,

at each stage, we must compute a product over all regions Y , Y , . . .,

Y . Since there are m regions, the number of computations required

to find P(y, r) will be on the order of m . Therefore, if r is large,

Eq. (36) will no longer be an effective means of finding P(y, r). On

the other hand, if both the number of regions and the size of r are

limited to numbers which allow the recursive solution of Eq. (36) to

be practical, we can use this equation to evaluate the vulnerability

criterion v(r) defined by Eq. (23). Here, we must generalize this

criterion to include the distance factor. Thus, define y(y, r) as
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r

v(y, r) =^ p(y» r) •

Clearly, v(y, r) represents the average number of stations at distance

y from v which are connected to v by at least one path of r links and

no paths with fewer links. This vulnerability criterion and the recur

rence relation could form the basis of minimum cost design procedures

similar to those already discussed.

V. SYSTEMS WITH REPAIR, MEMORY,

AND OTHER GENERALIZATIONS

Assumption AIII describes the interaction between the enemy-

attack and the communication system. A valid objection to this hypothe

sis is the limitation imposed on the builders of the network by not allow

ing repair (AIII.c). Even though a communication net is severely

damaged, it may not remain that way for very long. The situation is

familiar where within a few hours after an attack, a network is again

operating at nearly full capacity. Repair of the network may thus result

in a second, third, or even continuous sequence of attacks on the system.

We noted that the proof of Eq. (2) could be extended to more

general situations that did not involve Poisson's statistics. We now

replace Assumption AIII. c by

-29-



AIH.C1 If a station has experienced k hits at time t, the proba

bility that it will be completely repaired in the time

interval [t, t+dt]-is r^(t) dt, for k =1, 2, . . . If a

link has experienced k hits at time t, the probability

that it will be completely repaired in the time interval

[t, t +dt] is r*(t) dt, for k =1, 2, . . .
K.

si
The functions r (t) and r (t) are known as repair rate functions [24].

Several possible choices could be r (t) = r for all t (exponential
P -1 k k

repair), or rfc(t) =\fc pfct V Pk > °' ** °' (r(t) is the rePair rate

function for a Weibull distribution.)

For a system with repair, Eq. (2) is no longer applicable. How

ever, consider the system of differential equations which now describes

the number of hits per station:

d*0(»l. t) =-tx dt) fQ(Ti, t) +Y r£(t) dt fk(n, t) , _

dfk(ri, t) = -tr dt) fk(ti, t) +t: dt] fkl(t!, t) - rfc(t) dt fk(r,, t)

K = 1, 2, . • •

Let T| = Tj(t) . Then this system of equations is equivalent to

-30-
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ayt)
dt

dyt)
dt

\ *& V» *I •> W •

" "*1 ^T fk(t) +tl ^T Vl(t) " rk(t) fk(t)

(41)

k = l, 2,

This system of differential equations can be placed into the normal form

[25] where we see that we have a the time-varying system:

" 1
f'(t)

f{(t)

f2(t)

yi'(t) -r®(t) -txTi«(t) 0

0 yi»(t) -r^-t^t) 0 . .

r?(t) r3<t) * f0(t)

• o fx(t)

f2(t) (42)

• •

where ! indicates differentiation with respect to t and the initial con

ditions are fQ(0") =1, f,(0") = f2(0~) = • • • = 0. "

The solution of these equations is of course a numerical problem.

The degree of difficulty depends on the functions ^'(t) and r (t). How-

ever, in some cases, the computational problems are relatively routine.

One such case occurs when each r (t) = r (exponential repair) and

r|(t) is a periodic function. Another routine case occurs if r\l(t) can be

s
approximated by a piecewise constant function, and each r, (t) = r .

k k
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Let us consider one special case. Suppose each station cannot

survive any direct hits but we will repair a station which has suffered

exactly one hit in time dt with probability r dt. The probability that a

station is operating is thus f (t) and the differential equation which

describes the behavior of fn(t) is

fyt) -yl' rl f0(t>

t\(t) V1' -vV fj(t)
(43)

with initial conditions fJO") =1 and f (0~) = 0. This equation is easily

solved numerically or simulated on an analog computer (if T|f(t) is a

"reasonable" function).

EXAMPLE 3. A communication network with a large number of stations

is attacked periodically with a density of weapons shown in Fig. 1. Sup

pose stations cannot survive direct hits but that stations which have

experienced exactly one direct hit will be repaired with probability .ldt

in time dt (i.e., r = 0.1). Assume that links are invulnerability and

as before suppose that the probability that a given weapon hits a given

station is t = 0.05. We would like to compute -y as a function of time.

From Eq. (43), the equation describing the system is:

^(t) -0.05r|» 0.1 fo(t)
(44)

f{(t) 0.05t|' -0.1-0.05tj1 fx(t)
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with fn(0~) = 1 and 1(0") = 0. From time t = 0 to time t = 1, t]f(t) = 20

and Eq. (44) is

f'(t) -1 0.1

f{(t) 1 -1.1

JL

(45)

and on this time interval, the solution is

yt) *0(t) - ^(t). 0.1 ^(t)

\{t) ax( t) -1.1 ^(t)
(46)

where aQ(t) =2.14 e" ' *and a (t) =1.14e"1,37t. Therefore, at t =1,

nf0d)

L^(1,J
(47)

In the time interval 1 < t S 4, the system is_described by the

equation

f'(t)

f{(t)
-1 -J

and the solution is

f0w

V*>

0 0.1

0 -0.1

fo(t>

Lfi(tL(

1 l.e-0-^-1),,^)

.-0'1**-1) 11^(1,
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Therefore,

£0(4) 0.47

(50)

fx(4) 0.266

During the time interval 4 ^ t ^ 5, Eq. (45) is again applicable. Thus

fo<5>

fx(5)

0.27

0.25

and on the interval 5 ^ t ^ 8 we can use Eq. (48) to show that

f (8)
0V '

^8)

0.332

0.19

Without repair, an instantaneous attack of density rj = 20 gives

-t.

f0(-n) = e = 0.368 (51)

However, applying the same attack scheme as shawn in Fig. 1, without

repair (i. e., r = 0) we have that

f0(l) = 0.368

fQ(5) = 0.135

fQ(8) = 0.135

v(t) for given d can now be computed via Eq. (9) since

-df (t)Y(t)
Y(t) = 1 - e (52)
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For example, if d = 6, for the system with repair rate r = 0.1,

v(8) « 0.8 while for the system without repair, v(8) * 0.03. Therefore,

there is an enormous difference in the behavior of the systems with and

without repair.

Once the f, (t) (and the g, (t) which are computed in the same

manner) are found, these numbers may be substituted into the vulnera

bility expression, thus synthesis goals have to be modified. Among the

s I
unknowns of the system we could include the functions r (t) and r (t).

The cost of repair must then be included in the objective function which

is to be minimized. The best synthesis procedure that we can suggest

is actually one of repetitive analysis. This is unfortunate but the short

coming seems to be inherent in the problem.

Another generalization can be introduced if we consider the fact

that the kth hit on a target may not be independent of the number k.

That is, the probability of a given station (or link) being hit after it

already has suffered k hits may vary with k. This situation corresponds

to a system with memory. Furthermore, each weapon may be capable

of delivering more than a single hit. For example, the weapons may

vary in size (power), a hit may cause secondary explosions which have

the effect of destroying more of the target, or each weapon may actually

be composed of a number of smaller weapons. The latter eventuality

occurs if we consider a weapon to be a bomb load, while we compute

hits on the basis of the number of impacts of single bombs.
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Both of the above generalizations can be included in our model

without great difficulty. These extensions are due to Biermann [15] who

considered similar problems in a different context. We will briefly

formulate the appropriate equations and state the solutions. First, we

examine the latter of the two previous generalizations (the possibility of

multiple hits per weapon). Let t. be the probability that a given station

receives exactly i hits from a given weapon; let p. be the probability

of this event for the links. Then, if r\ changes by the amount drj, f (r|)
xC

will change by the amount

d£0(n) = -<i-t0)f0(Ti)

k

dfk(ti) =-(1 -tQ) fk(n) d^ +V t f (n) dt| k=1, 2, . . . (53)
' J J

j=l

We can write Eq. (53) as the differential equation

dfk(T|)
= -p-yui)d-n x o' o

k

dffc(tl) =-( 1-tQ) fk(n) dr] +^ t. ffc (ti) k=1, 2, . . . (54)
j=l

Biermann has shown that the solution of this system of equations is

given by
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f0(*l) ={exp -(l-t0)ti)

k

fkh) =exp(-(l-t0)ti} Y TT'Y Gi(k;r) ^=1, 2, . . . (55)
r=l i

The term }_, G.(k; r) is found as follows: A partition of k by r (r ^ k)
i 1

is a set of r positive integers whose sum is k. The same r integers

arranged in a different order are considered to be a different partition.

G.(k; r) is defined to be the product of the r t. quantities such that the

indices j are a partition of k by r. The expression 2_i G.(k;r) repre-
i x

sents the sum over all such partitions of k by r.

The system -with memory is then easily described by a minor

modification of Eq. (54). If the system has memory, the probability

t. depends on the number of hits already taken by the target. There

fore we must consider probabilities of the form t. .. Probability t. .

represents the probability that a given station which has already been

hit j times will suffer i additional hits from a single weapon. The

differential equations of the system are

dfQ(tl)

df,_0l)

d-n 0, 0' 0y

Sr +(1 -vk> fk(ii) =I 'tk-j VjW k=x*2— <56>
j=l
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The solution of this system of equations is

f (t|, =exp(-(l-t )}
0V " r^x 0, 0'

k

(57)fk(Tl) =I Cjk(eXp -{l-\fi ^=1, 2, . . .
j=0

where , ,
k-1

ckfc = - L Cjk k =1, 2, . . .
j=0

and

k-1
-1

cjk =[<1-t0;k)-(1-t0,ji)"1ICJiVi,i k=l, 2,...,
1=J

j = 0, 1, 2, . . .

An alternative approach to using the above equations for finding the

fk^ is tC> solve Ecl• (5^) or (54) successively for f in terms of

*k-l' " * *' *0 * **owever> this is a routine mathematical exercise and

so we will not discuss it further.

VI. CONCLUSIONS AND FURTHER PROBLEMS

To remark that further problems exist is, to say the least, an

understatement. In this paper, we have attempted to uncover a

methodology with which some vulnerability problems can be studied.
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The basis of our study is that if we both generate and destroy systems

with "sufficient homogeneity, " we can find asymptotic relations and

recursion formulas for several vulnerability criterions. Our

network model can be modified, as we demonstrated in Sec. III. Further

modifications are possible. The description of vulnerability of networks

with distance biased links can be used to study more general situations.

Its main limitation is the number of regions in the network partitioning

and the maximum path length to be considered; both of these numbers

must be small.

The author is currently studying some of the computational aspects

of the methods suggested in this paper and their generalizations to more

sophisticated models. One such model deserves mention here. Suppose

a single weapon (of a rather powerful nature) is directed at some point in

the net. The actual place where the weapon hits is a random variable

with a possibly known probability distribution. Then, if we associate an

"energy function" with the weapon, how can we compute the vulnerability

index of the net and how can we find minimum energy levels that the

stations and links must survive in order to guarantee a given vulnera

bility index ?
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K -1
s

FOOTNOTES

1. Y / fiJ1!) is the average fraction of stations in the original net

k=0

that canbe reached from a station picked at random after the attack. Since

K -1
s

V / * (*!) *s easily found once -y is known, we will use v as a

k=0

criterion even though v 2 f may be more realistic for many cases.
JfcC

2. The problem can also be formulated as an integer programming

problem [16] with linear constraints.

3. Our equation is slightly different than Rapaport's because he allows

self loops. Equation (16) is derived in Appendix A.

4. The components of an undirected network are the maximum subsets

of stations which can communicate with each other.

\i) jl(k-j)» *
6. For example, we can replace each undirected link by two opposite,

directed links. The events that these links are destroyed are not

statistically independent. However, if we treat these events as

independent, the vulnerabilities that we find are upper bounds to the

actual vulnerability of the network. The average number of links

incident at each station is in the original network now equal to the
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average number of outwardly directed links in the directed net

work. Hence we can now use Eq. (8) to give an upper bound to v.

7. This assumption is the basis of most of our results.
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APPENDIX A .

DERIVATION OF EQUATION (9)

Select an arbitrary surviving station v. at random and let

S = {v } . Let S, be the set of stations connected to v. by links directed
0 u i 1 i

from v ...., and let S. be the set of stations connected to the stations
i i

in S. , by links directed from S. ., . . . We will use the following
i-l i-l oo

procedure to count the number of station in U S. . First, we trace all
i=0 1

links emanating from S (that is, we find the number of stations in

S^, . . . , at the Jth stage, we trace all links emanating from S. which

have not been already traced (that is, we find the number of stations in

S. which have not already been contacted at a previous stage). In the

derivation to follow, we will compute the expected number of new

stations to be contacted at the r +1 st stage, based on the assumption that

the expected number of stations were contacted at the rth stage.

Let p(r) be the probability that a given station is contacted at the

rth stage and let q(r) = 1 - p(r). The probability that a station is con

tacted for the first time at the r +1 st stage is

r-1 r-1

p(r) 77q(i) = [l-q(r)] 77 q(i)
i=0 i=0

where q(0) is the probability of not selecting a given station at stage 0.

At the r +lst stage, we examine all station in S . by tracing

links emanating from S . However, if a station in S is also in
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S (i < r) , we will not retrace its links. The average number of links
i • .

emanating from a station that has survived is art, where t is the

probability that any given station survives and a is the average number

of links incident out of a surviving station given that its terminal

stations have survived. Therefore, the expected number of links to be

traced is

r-1

*t(n+l)[l -q(r)] 77 q(i) ,
i=0

and the probability that any given vertex is not contacted at the r +1 st

stage is

/ .\X

q(r+l) =1 -
n

r-1

where X = ot[n+1] [l - q(r)] J I q(i) ,
i=0

which, for large n, may be written as

r-1

q(r +1) = exp <-at[l - q(r)] 77 q(i)l

= exp<< -at

"r-1 r

77 q(i) - 77q(i)
i=0 i=0
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Therefore,

r+1 r+1

JI q(j) = J I exp^-tft
j=l j=l

= exp^-aft )

j=l

and since

j-1

77q(i)
i=0

j

- 77q(i)
i=0

j-i
77 q(i) •
i=0

j

- 77 q(i)
i=0

j-1 J

77 q(i) - 77 qa)
i=0 i=0

=q(0) - 77 q(i) ,
i=0

we have that

r+1

J I q(j) = exp^, - at
j=l

q(0) - 77 q(i)
i=0

Now, since q(0) = 1 - (t/n) -* 1 as n -* oo and

1 - y = lim J I q(i) ,
r-»»co i=0

it follows that

r+1

lim J I q(j) = lim exp<^ - at
r-*-oo j =1 r-»-co

q(Q) - 77q(i)
i=0

or

1 - v = exp{-ort[Y]} •
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Thus . v = 1 - exp{ -aty} .

K -1 K-1
s . Si

But t =Y y*!) and «=d 2_, gk(T1)
k=0 k=0

And Eq. (9) now follows.
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