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1. Introduction

5

Let x(w,t) t > 0 be a separable Brownian motion defined on a
fixed, but as yet unspecified, probability space (€, a, Q) . Because
a Brownian motion is almost surely of unbounded variation, integrals

of the form

1
1) I(®) = S‘ d (w, t) dt x(w, t)
0

require special definition. One definition, and until recently the only
definition, is that due to Ito, and will be referred to as the stochastic
integral in this paper. The definition of a stochastic integral proceeds

as follows: [1, Chap. 9, 2 Chap. 7].
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Let & (-,+) satisfy

(A) & is a (w,t) function measurable with respect to a X 65 and for
each t ®&(-,t) is Ot measurable, where Qt is the smallest sub-c -
algebra of w sets with respect to which {x(w,s), s <t} are all measur-
able, and @ is the o -algebra of oné -dimensional Lebesgue measurable

sets,

1
(B) S\ |<I>(o),t)|2 dt < o for almost all w
0

or

1
(B") y E|tb(w,t)|2dt < o.
0

The stochastic integral is first defined for ® functions which are step
functions in t for almost all w by the Riemann sum

N
(2) I(®) = z <I>v(w) (x(w, tv+1) - x(q),tv)) .

v=l

For more general &, let <I>n be a sequence of step functions such that

1
51 |® (0, t) - 2 (o, t)|2dt — 0 almost all ®
0 n->oo

or

2=



SJElmm,t) - @n(w,t)lz dt —> 0
0 n—+oo
according to whether (B) or (B') is satisficd. The stochastic integral
I{(®) is then defined as the limit in probability (resp. limit in quadratic
mean) of I(ébn) .

While the definition of a stochastic integral is entirely self-con-
sistent, it need not have any connection with ordinary integrals. Indeed,
as is shown by the familiar example [1, p. 444].

1
e v xen < Felen Lol -1
0]

a calculus based on the stochastic integral cannot be entirely compatible
with that corresponding to ordinary integrals which must surely yield

2
fol x(t) dx (t) = -21- [xz(l) -x (0)]. These considerations motivated Stratonovich

[3] to suggest a symmetrized definition for (1), which resulted in a calcu-

. lus compatible with ordinary calculus. In a similar vein we have suggested
in earlier papers [4,5] that in applications one is frequently concerned
with the limit of a sequence of Riemann-Stieltjes integrals resembling a
stochastic integral but with a sequence of ''smooth'" approximations
{Xn(w,t)} replacing the Brownian motion x(w,t). It was found that this‘
limit, when it exists, differs in general from the stochastic integral having

the same form. For example, if {xn(w,t)} have piecewise continuous t



derivatives, then clearly

1
yoxn(w,t) dt xn(w,t) = -;': [xj (w,1) - xf(w,O)]

— 2 [ (@) - x(0, 0)]

n—>oo
which differs from (3) by a "correction term' equal to 1/2. These
earlier papers [4,5] established the relationship between the limits of
such sequences of Riemann-Stieltjes integrals and the corresponding
stochastic integrals. However, these results as well as those of

Stratonovich [3] were restricted to two special cases:

(@) @(w,t)

F (x(w,t),t)

(b) ®(w,t)

F(y(w,t),t), and y(w,t) is a diffusion process
process related to x(w,t) through a stochastic differential

equation.

This paper extends the results of [4,5] in considering more general
integrands ®(w,t), while retaining the idea of approximating the Brownian
motion by differentiable processes. It will be shown that the ''correction
term' between the limit of a sequence of Riemann-Stieltjes integrals and
the corresponding stochastic integral can be expressed in terms of the
Frechét differential of &(- ,t). In those special cases where the earlier

results [3,4,5] apply, results of this paper reduce accordingly.
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2. A Statement of the Problem

For integrands of the form ¥(w,t) = F (x(w,t),t) or ®(w,t)=F(y(w,t),t),
an approximation of x(w,t) by xn(w,t) induces automatically an approxi-
mation @™(w,t) = F(x_(w,t),t) or 8™ (e, 1) = F(y_(w,t),t). One of the
difficulties in extending our earlier results [4,5] is that it is
unclear as how ®(w,t) is to be affected in general by an approximation of
the Brownian motion. Roughly speaking, the dependence of ®(w,t) on the
sample function x(w, *) must be kept the same, while x(w, ) undergoes
an approximation. The approach taken here in overcoming this difficulty
is to choose the basic space 2 in such a way that approximating the sample
functions of the Brownian motion is equivalent to approximating elements
gf 2, thus inducing an approximation of ®(w,t) in a natural way.

Let 2= C[0,1] be the space of all continuous real valued functions
defined on [0,1], and denote by x(w,t) the value of w at t. Let O_,be
the o-algebra of Borel (= Baire) sets with respect to the (uniform)

topology induced by the norm

(4) lo]l = max |x(w,t)]
0<t<1

It is well known [6, 7] that the finite dimensional distributions of a stand-
ard Brownian motion (Gaussian, zero-mean, cov(s,t) = min(s,t)) can be
uniquely extended to a measure Q on (£, a), and this is the Wiener

measure. Defined in this way, x(w,t) is necessarily separable. In what
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follows’, we denote by Q) the class of Lebesgue measurable sets and p(-)
the Lebesgue measure. Almost surely (a.s.) shall mean either for all
(w,t) except a set of QX p measure zero, or for all w except a set of
Q measure zero; which one it is is always clear from the context. Now,

let ®(w,t) satisfy the following hypotheses.

Hl: ® is a complex valued (w,t) function measurable with respect to

ax @ and for each t &(*,t) is O‘t measurable, where GtC 0, is the
smallest o-algebra with respect to which {x(w,s), s <t} are all meas-

urable.

HZ: For each (w,t)e 2 X [0,1], there exists a unique continuous

linear functional F(:,w,t) on £ such that
5) oo, 8 - 8,1 - Fehe, ] < Klle' [0+ o 1P+ [l lP)

where K, o, B are finite positive constants independent of w, w', t.
The linear functional F(°,w,t), which is necessarily the Fréchet differ -
ential of ®(-,t) at w, admits the Riesz representation

1
(6) Flw';we,t) = f x(w', s) d_f(s;w,t)
b -

where f(*,w,t) has bounded variation.

1
H,: S(; |ds £(s;0,t)] < K < oo

l@(0,t)] < K < o



where K may be assumed to be the same as that in (5) with no loss of

generality. A function ®(*,*) which satisfies H,, H, and H3 can be

1 2

1
shown to satisfy conditions A and B of the introduction. Hence, the
stochastic integral foltb(w, t) dt x(w,t) is well defined as a quadratic -mean

limit. Furthermore, a sequence wn(w) € @ can be so chosen that

P “wn-w“ —> 0
n—>oo
PZ: x(wn,t) has piecewise continuous t-derivative
and
1 n n q. m.
P3: g‘ & (w ((:.)),1:)dt x(w (w),t) ——>
“0 n—-o

1 1
1
Bw,t)d x(w,t) + = T (w, t) dt .
t 2 fo

!

. B |
In P3, the integral j’o ® (w, t) dt x(w,t) is a stochastic integral, but
1 . . .
fo ® dt x(wn(w),t) is an ordinary integral because of P2 . The function

¥(w,t) is defined by
(1) Tlo,t) = £t 0,t) - £t 50, t) .

Proposition P3 is the main result of this paper and extends the results

of [4,5], especially [4].



The details of the proof of our main result is not particularly
illuminating as to how the correction term -;— fol\If(w, t) dt arises. It may
be worthwhile to give a heuristic explanation for it. The Ito definition of
a stochastic integral is basically one involving forward difference approxi-

mation, i.e.,

t+A ,
5‘ D (w,t )dt, x(w,t') ~ @ (w, t)[x(w,t+A) - x(w,t)] .
t

Suppose we consider instead a backward approximation

t+A
5' @(w,t')dt' x(w,t') ~: ®(w, t+A)[x(w, t+A) - x(w,t)],
t

the difference between the two is [®(w,t+A) - & (w,t)][x(w,t+A) - x(w,t)].

For a &(-,-) satisfying H, H P(w,t+A) - B(w,t) ~ [x(w,t+A)

1 2’ 73

- x(w,t)] ¥(w,t) + 0 (A), hence the difference between a forward approxi-
mation and a backward approximation is ~ ¥(w,t)[x(w,t+A) - x(w,t)] 2 + o(a)

~ ¥(w,t)A. The factor 1/2 in P, represents an average of these two

3

approximations.

3. Proof of the Main Result

First, some simply verifiable consequences of H, H._ and H3

1 2

are stated below.

8) (a) |2(w,t)] < K{+||ol|l + ol %0+ |lo]|®)} < 3x @+ ||of}T**P).



(b) Since x(w,t) has independent increments and x(w, 0) = 0 for almost

all w, it follows that [1, p. 363]
(9  Ello]|Y < 8 E|x@,n|Y, y>1
(c) Hence,

E |e (@, t)] 2

(10} ? < M<ow

1 2
5 E|®(w,t)] dt
0 y

(d) Therefore, (see [l, pp. 440-441]) there exists a sequence of

partitions {tsn)} of [0,1] such that if we define
a (t) = m:x {tlfn), t‘fn) <t}
(1)
B,(t) = min £, sy
then
(n) . (n)
(12) max [P (t) - @ (t)] = max [t -t"'] —>0
0<t<1 n n v v+l v e
and

1 2
(13) 5 E[2(w,t) - 2(,a_(t))]"dt —> 0
0 n->oo



(e) Because ®(w,t) is at measurable, x(w',s) = x(w, 8)

s < t implies ®(w',t) = @(w,t). Hence (6) can be written

t
(14) Flo', w, t) = 5 x(w', s)ds f(s ;w,t)
0

provided that f(s ;w,t) is made continuous from the right.

t
(f) Let {:pn} be any sequence from Q= C[0,1] satisfying

t t
5 12 |lg Il = x(e ,t) —>0
n-*>co
(16) - x(qp;,s)-——ao s <t
lo_lI D>

then for every we2

t

171 — [B(etgl, 1) - (0] = f xto/|lo51l,8)d_ (s s0,1)

He Il 0

n
+ o(lle |1 — 2,1)
n—*oo
(g) Since

1 ¢ E ot ot

18) —— [2+on v - 2@nl < | x@/Ilo}ll, o) a_ 50,0

e | 0

n

t t
+ K||¢n||a(l+ ”Ql’n”‘s'*' Hw”ﬂ) (cont'd.)
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< |<1>(<prtllll¢;ll +w,t) - &(w,t)] +2K(2+||w||ﬁ)

1+a+f

< 9K 2

a+ (o]

it follows by dominated convergence that

E| v, t)]? )

(19) g < M < o

1 2
fEl\Il(t.o,tH dt |
0

(n)
v }

(h) For some sequence of partitions {t which can be assumed

to be the same one as in (d),
1

(20) (‘ E|¥ (w,t) - ¥(w,a (t))lzdt —> 0
(I n n-—>0

an(t) being defined by (11).

() . ) ... o )y

0 1 N
n

and defining an(t), ﬁn(t) as before, we can define a corresponding

Given a sequence of partitions {0 =t
sequence of polygonal approximations to the Brownian motion as follows: [8]
For every we 2 = C[0,1] define con(w) by

t-a (t)

n n
(21) x(@ (@),t) = x(w,a () + W

[x (e, B, (t) - x(w, an(t))] .

Now, if, as is the case for (d) and (h) above,

-11-



max [B _(t) -« (t)] —= 0
1<t<1 1 " now

then

(22) ||o @) -w|| <2 Sup |x(@,t)-x(,a ()] —> 0 a.s.
0<t<1 " n—e

Our main result can now be stated as

Theorem. Let &(w,t) satisfy H], Hz‘and H3. Then, there exist a
sequence of partitions of [0,1] and a corresponding sequence of polygonal

approximations wn(w) defined by (21) such that

1 gq.m. 1 1 1

(23) 5 @(wn(w),t) dt ic(wn(w),t) — S. & (w, t) dt x(w,t) + 5 V ¥(w, t) dt
0 n-—> o 0 “0

where the first integral on the right hand side is a stochastic integral

(but because of (21) the left hand side is an ordinary integral).

Proof: According to (d) and (h) we can always choose a sequence of parti-
tions so that (12), (13) and (20) are satisfied. Because of (13) and the

definition of a stochastic integral

N
n
(24) z 20,67 xten ) - o, 7]
v=l

1 q. m. 1
= S‘ O(w,a (t))d x(wn(w), t)y ——> ®(w,t)d, x(w,t)
0 B t n-—>co 0 t

-12-



Hence, we only need to prove

1 q. m. 1
(25) F (o) = 5\ [2(0”(@), 1) - @@ a_(t)]d, x(@"(©),1) —> 5‘ ¥(w, 1) dt
0 n—>oo 0

N~

Now, let £ (w,t)e € be defined b
n y

(26) x(E_(@,1),8) = x(@" (@), min(s, @ (1)) 0<s <1

and rewrite (25) as

1
(27) F_ (o) = 50 [2@ @), 1) - @ (@1),)]d, x( (), 1)

1
+ j; [2(5_(t) - 2(w,a_()]d, x(@ (@), 1)

The integral of the second integral is Q measurable and

a (t)

| Kk
(28) E { [x(@, B_(t) - x(w, a_(t)] laan(t) } )

B, (1) -a (), k=2

Therefore,

2

1
(29) E, (1o 0,0 - 2,0 @4, xw @, 0

A (cont'd.)

13-



o [ x(w,t ) -x(w,t )| x(w,t ) ~x(w,t )
_ v v-1 1) p-1
= E {Z [ tv - tv-—l _J[ tpL - tp.-l }
L
t t
v
St' dt ‘S: ds [@(gn(w,t),t) - ®(w, tv_l)][@(gn(w,s),s) - @(w,tp_l)]}

—l’tp-l)]}

v
j: [(E_(@,1),1) - ®w,t,_)]dt

v-1l

=

n
=
— —
<N
L
=1
1
8
o
X
[ d
<

]

1
2
< yoEl@(gn(“””’t) - @ (w,a (1) at

1
< 4{5' E|q;(gn(w,t),t) - @(w,t)lzdt

0
+.S‘
0

by virtue of dominated convergence and (13). Thus, (25) reduces to

1
E|®(w,t) - &(w, a_(t)) zdt} —> 0
n n-*oo

2

n—> oo 0

1 q.m. 1
(30) 51 [<I>(wn(co),t) - @(gn(w,t),t)]dt x(wn(w),t) — s 1 ‘S‘ ¥(w, t) dt
0

From HZ’ (14) and (26) we can write

-14-



(31) @@ (@), 1) - B(E_(w,1),1)

t
{7 (s~ mna, 3¢ @.0,0

[ x(w, B_(t)) - x(, an(t))j}
a_(t)

B -a_[®

+ (@, B_(1) -x(,a_(0)]7G_(0,1)

t
‘g‘ [f(t;g (w, t), t) - f(s ;g (w, t):t)]ds
a/n(t) n n

x(@, B_(t) - x(,a_(t))
B -a_©

+ x(, B (0) - xlw, e ()]TG_(,1)

x(w, ﬁn(t)) - x(w, an(t))
i B_® -2 (t-a (D) TE (©,1),0)

+ [x(@,B_(6) - x(@,a_(O)]H_(,1)

+ |x(w, ﬁn(t)) - x(w, an(t)) |1+aGn(w, t)

where |Gn(w,t)|, IHn(w,t)| are both dominated by K'(l + ||w||1+y) v> 0,
Hn(w, t) is Qa (t) measurable and —> 0 a.s. Hence, it is easy to

n n->co
show that (30) reduces to

LM x(o, B, (0) - (0, ()7 °
(32) 50 ﬁn(t) - an(t) (t - Qn(t)) \I,(gn(w: t)’ t) dt

(cont'd.)
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qQm. 1

—_— = S‘ T (w, t) dt
2

n—>co 0

or

1 [x(w,.ﬁ (t)) - x(w, o (t))] t-a (t)
- = - = dt
(33) ‘g(; { ﬁn(t) - an(t) 1} [pn(t) _ an(t)] ‘I’(gn(w, t), t)

t-a (t) _
+ 00[5 0 - } [Z(E (0. 1),t) - T(w, o (t))]dt

a (t)

1 1 q. m.
t 5 S\ [T(w, 2 (t)) - ¥(w,t)]dt —> ©0.
n
0 n—+o

Denoting the three integrals in (33) by Il’ I2 and I , we find that because

3
\If(gn(w, t),t) is Qa’n(t) measurable and

2
[x(w, B_(t)) - x(w, a_(t))] -
34) E o L -1 | } -
34 { B0 - a_(® Qan(t) 0
by using arguments similar to those of (29), we can show that

1
2 2

E L < 2max [B_(t) -a (1)) E|¥(E (0,t),t)|"dt ——> 0
I]. - 0<t<1 n 5; n n—* oo

The last integral I, in (33) converges to zero in quadratic mean because

3

of {(20). Thus, it only remains to prove

-16-



1 t- arn(t) ‘ q. m.
(35) 5;["———] [UE_(0,8,) - T(w,a ()]t — 0

n(t) ) an(t) n—>co

which can be further reduced to

1 t - a (t) q. m.
(36) y [——————n )] [\Il(gn(w,t)t) -¥(w,t)]dt —> 0
0 .

pn(t) B &n(t n-—co

To prove (36), we note that from (f) we can find for every t in

[0,1] a sequence {<prt} satisfying (15) and (16) and in addition

/3
61 el > sw I8 (s) - e ()]

n' - 0<s <1 n n
so that for almost all w

t
@(g (w,t)+o ) - Q(g (w,t),t)
(38) T(£ (0, 1),t) - [ 2 2 2 } > 0
NI L

B(w+pht) - B(w,t)
(39) T(w,t) - z - > 0
PRI n—oo

Further, because x(w,s) is a Brownian motion, we have

Max

0_<_S -<_t |x(gn(w’t), s) - x(w,s)|

t
191l

(40)
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Max

0ce <y X" (@), 8) - x(w,s)]

IA

Max

' 1/3

2 Sup
0<s<1 |X(@8) - xlw, @ ()]
<
— Max 1/3
0<t<1 lﬁn(t) - "'n(t)|
|x(w,8) = x(w,a (s))]
< 2 Sup 171; > 0 a.Ss.
0<s<1 |s-an(s)| n-* oo
Thus, for all t and almost all w
t t
Q(gn(w’t) + ¢n’ t) - Q(w +¢n: t)
(41) : : ~> 0
1ot —
Q(g (w,t),t) - &(w,t)
(42) = - > 0
ot a0
Whence
(43) \If(gn(w,t),t) -¥(w,t) —> 0 a.s.
n--oo

and (36) follows by dominated convergence (using the bounds provided

by (18)). The proof for the theorem is now complete.
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o

Corollary. Under the hypothesis of the theorem, a sequence of partitions

exists for which

1 a.s8. Al 1 1
(44) (l Q(’wn(w),t) dt x(wn(w),t) —_—— ®(w,t) dt x{w,t) + > .S. ¥({w,t)dt
‘0 n—+ “0 ' 0

Proof. This result is obvious since every q.m. convergent sequence has

an a.s. convergent subsequence with the same limit.

4. Examples and Applications

First, consider a class of examples corresponding more or less

to the situation in [3,4,5]. Let

(45) ?(w,t) = M(y(w,t),t)
where
} . .
(46) y(w,t) = ‘S; v(w, 8) ds x(w, 8)

is a stochastic integral and M(y,t) is twice y-differentiable. It is easy

to show that if v (-,+) satisfies H,, H, and H_ then so does &(-,*).

1 2 3

Furthermore, by virtue of (17)

(47) ¥(w,t) = Lim [@(w +¢I:,t) - ¥®(w,t)]

oo |lg ||
= ' . ' = BM( 't)
v (@, )M (y(w, 1), 8 (M = 2rt)
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Much weaker conditions on v (*,*) also suffice to yield (47), but this fact
would require a more lengthy discussion. Applying the main theorem to

the example considered earlier (see (3)), we find

1 q.me. 1 1
(48) S‘ (0™ (o), t) 4, x(w (w,t) —> 5; x(w,t)d, x(w,t) + :21— S(;dt

0 n—+ oo

= %[x2 (w,t) - x (w,0)]

as it should.

From the point of view of many physical problems, application of

stochastic integral to differential equations is important. It js well known

[1, pp. 273-291] that under suitable conditions on o(-,*) and m{(-,*),

the following stochastic differential equation has a unique solution:

(49) dt y(w,t) = m(y(w,t),t)dt + o'(y(w,t),t)dt x(w,t).

Here, a solution y(*,t) is interpreted as an Q—t measurable function

satisfying

t t
(50) y(w,t) = y(w,0) + ‘S‘ m(y(w,s),s)ds + 5‘ ¢ (y(w,s),s) ds x(w, 8)
' 0 0

where the last integral is a stochastic integral. Let

(51) @t(“’ts) o (y(w,s),s), 8 E t

=0 s >t

-20-



then in view of our discussion preceding (47), we can expect that under

suitable conditions on o (-, ")

‘ 1 n n q.m. t
(52) fo 2, (0%0)10) 4, x(w™(0)0) ——> fo 7 (yl0, ), ) d_ x(w, 5)

t
+ 5 yo o '(y(w,8),8) o (y(w, 8),8)ds

This was the basic motivation of the results given in [4,5]. If, as in

the references [4,5], we define

¢ .
(53) Yn("-" t) = Y(w’ 0) + S' m (Yn(wt 8),s)ds
0

t
+ j; oy, (@)9),8)d_ x(e™(w), 5)

where wn(w) is defined by (21), then even if yn(m,t) has a limit as
n —> o, the limit is not the solution of (50). Rather, we expect the limit
¥ (w,t) to satisfy

t t

(54) ;(w,t) = y(w, 0) + Sm({r(w,s),s)ds + S‘U(G(w,s),s)ds x(w, 8)
0 0 S

t
+ -;— &a({r(w,s).s)c'(;r(w,s) ds .

Our main theorem can be used to prove (54). However, the conditions
given in [4] on ¢ (+,+) need to be strengthened to accomodate H, .

-21-



[y

Acknowledgement

The authors are grateful to Professor William L. Root for a

careful reading of the manuscipt and many useful suggestions.

-22-



*

1.

7.

REFERENCES

J. L. Doob, Stochastic Processes, John Wiley and Sons, Inc.,

New York, 1953.

E. B. Dynkin, Markov Processes-I, Springer-Verlag, Berlin, and
and Academic Press, New York, 1965.

R. L. Stratonovich, A ncw representation for stochastic integrals,
Vestnick Moskov Univ., Ser. I Mat. Meh, 1 (1964), pp. 3-12.
Reprinted in SIAM Journal on Control, 4 (1966) 362-371.

E. Wong and M. Zakai, On the relationship between ordinary and
stochastic differential equations, Int. J. Eng. Sci., 3 (1965) 213-229.
E. Wong and M. Zakai, On the convergence of ordinary integrals

to stochastic integrals, Ann. Math. Stat., 36 (1965) 1560-1564.

Yu V. Prokhorov, Convergence of random processes and limit theorems
in probability theory, Theory of Probability and its Applications, 1
(1956) 157-213.

Edward Nelson, Regular probability measures on function space,
Annals of Math., 69 (1959) 630-643.

P. Levy, Processus Stochastique et Mouvement Brownien, Gauthier-

Villars, Paris (1948).

-23-



	Copyright notice 1967
	ERL-207

