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ABSTRACT

The usual definition of the capacity of a discrete-time,

memoryless Gaussian channel is generalized to the case

of a collection of such channels. Each member of the

collection is specified by a pair (A, S2) where A rep

resents the deterministic transmission matrix, possibly

infinite-dimensional, and ft is the covariance matrix

of the additive Gaussian noise. The definition is justi

fied by showing that the capacity is the supremum of the

attainable rates.
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1. Introduction

Suppose a communications system transforms a vector-valued

input signal x into a vector-valued output signal y according to an

equation of the form

y = Ax + z

where A is a linear transformation and z is a Gaussian noise vector.

Suppose further that neither the transformation A nor the covariance

matrix ft of z are precisely known, but are known only to belong to a

certain specified class. Then each possible pair (A, ft) defines a cer

tain Gaussian channel, and the collection of all pairs (A, ft) determines

a class of channels. For such a class, we define a channel capacity

and then prove that the supremum of attainable rates is equal to the

capacity.

Section 2 contains the proof of the direct coding theorem when

x, y and z are vectors of fixed finite dimension. Section 3 contains

the proof of the converse, and Section 4 extends the results of Sections

2 and 3 to infinitely many dimensions under the conditions that the

operators A are Hilbert-Schmidt and the noise is white noise.

It will be noted that the A's may be integral operators (of finite

rank to meet the conditions of Section 2, or Hilbert-Schmidt to meet

the conditions of Section 4) carrying L? fundtions defined on a finite

interval into L functions on a finite interval (not necessarily the same

-2-



interval). The conditions imposed here require that the channel be

reset to "zero state" after each transmission before being reused.

In the special case of convolution type operators it is more natural to

let the time interval for transmitting and receiving grow continuously

without limit (Ref.6). The different but related problem of defining a

capacity and proving a coding theorem for classes of channels in that

case is the subject of a paper with the same title, Part II.

The general outline of the proof used here is taken from

Blackwell, Breiman and Thomas ian.

2. Preliminaries

We consider communication channels and classes of channels

that can be described as follows. A transmitted signal x and a re

ceived signal y are (column) vectors of dimension p, with real-valued

components, and are related by

y = Ax + z

where A is a p X p matrix and z, the noise, is a Gaussian random

(column) vector of dimension p. We assume Ez = 0 and denote the

covariance matrix of z, Ezz', by ft. A channel is a pair (A, ft) .

Specification of a channel determines the statistics of the random vector

y once the vector x is given. We are concerned with classes Y? of

channels satisfying the following condition: there are numbers
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a, a , a , 0 < a, 0 < or < or such that for each (A, ft) € *Cp

(1) ll^ll 5. a» wnere ll-A-ll *s tne operator norm of the matrix A

(i.e., ||Ax|| < a || < a||x|| for all p-vectors x, where ||x|| is the

usual "distance norm").

x'ftx
(2) a < r < a for all p-vectors x.

° " llxll2 - 1

4Henceforth when we speak of a class ~%/? of channels these conditions

will be assumed. We shall sometimes refer to the set of indices y

its elf as •& .

The n-extension of a channel (A,ft) is denoted by (A, ft) ; it

carries n-sequences of p-dimensional input vectors into n-sequences

of p-dimensional output vectors according to

y. = Ax. + z. , i = 1, 2, • • • , n

where the z. are mutually independent random Gaussian-vectors, each

with mean zero and covariance matrix ft. It is convenient to denote

sequences of x's by u= (x , x , • • • , x ) and sequences of y's by

v = (y-,* v->> ' *' » y )» and to let U (V ) respectively, be the set of all
\. c> n n n

u(v) . The ith component of x(y) is written x (y ); thus x, is the ith

component of the input vector x,, and similarly y, is the ith com

ponent of y .
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The average power constraint on the input implies that we are

allowed only to send signals u via the n-extension channel which satisfy

2 ' 2
||u|| = S. , S . , (x.) < nM, where M is a fixed constant. M is the

j=l 1=1 j —

maximum allowable average signal energy per use of channel.

Insofar as it is reasonable to do so, we shall use the notation and

definitions of Blackwell, Breiman and Thomasian in what follows. A

:lass "£? oj(G,€,n) code with constraint set E for a class "£s? of channels for
n_

G > 1, € > 0 and n a positive integer, is a set of [G] ([G] denotes

"greatest integer contained in G") distinct sequences u, = (x, „,x, _, •••
k kl k2

x ), k = 1, 2, • • • , [G] lying in E C u » and a set of [G] disjoint

subsets B,, *•*, Br^n of the collection V of all sequences v=(y,, **',y ),
1 [GJ n 1 n

such that

P (BC|u.) < € for i =1, 2, •••, [G] and all Y€ t^,
V 1 1 — i i*-'

where P (B|u.), BC V , u. e U is the probability of the set B of
Y l n l n

output sequences, given the input sequence u. and the channel (A, ft) .
1 Y

The P probabilities are always given by pn-variate Gaussian density

functions, and P (B. lu.) will be defined for all v if B. (and hence its
Y i i * i

c

complement B.) is any Lebesgue measurable subset of the pn-dimen

sional Euclidean space V . We call B. the decoding set for the code

word u. . Suppose a (G, € , n) code is given, then when a code word u.

from this code is transmitted over the channel an output word v is

received. If v falls in some B, it is decoded as u, . Thus v is
k k
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correctly decoded if and only if it falls in B., and by the definition of a

(G, € , n) code the probability of error is uniformly dominated by € .

A number R > 0 is an attainable rate for a class "£? of channels

if there exists a sequence of codes (e , € , n) for t2? where € -> 0 as
n n

n -*• oo. The quantity C ( £?) for the class "£> is defined to be the supre-

mum of the attainable rates for & •

We choose to define the capacity C of a class of channels "fc?

A

artifically in terms of the mutual information, and then prove that C = C t

1 r» 1

the supremum of the attainable rates. Let q(u) = q(x , ••• ,x^;x , *•*,
pip

x ; • • • ;x , • • • , x ) be an np-variate probability density function, to be

regarded as providing a probability distribution for the input vectors u,

which are to be statistically independent of the noise z . Let p (v|u) be

the np-variate Gaussian density function determined by P (B|u), Bf V .
Y n

Then

P(v) = \ p (v|u)q(u)du

(where the integral is actually an np-fold integral over R ) defines a

probability density function for output vectors v. The mutual information

for the input density q(u) and the channel (A,ft) is defined to be

P (v/u)

JY(U'V) =log 1W '

where the dependence on q(u) is not made explicit. It turns out that we
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need consider only Gaussian densities for the input density p(u), as

might be expected since the additive noise is Gaussian. Let \&- be the

class of p-variate Gaussian density functions with mean zero which have

the property that their covariance matrices each has trace less than

or equal to M, It will be convenient sometimes to let Se*& denote

both a Gaussian density p(u) belonging to y& and its pXp covariance

matrix, and this should cause no confusion.

We now define the channel capacity for the class -&> of channels

subject to an average allowable signal power M to be

C( S) = sup g inf E J
p(u)e dyz^> y Y

where E J is the expected value of J according to the distributions
Y Y Y

given by p(u) and p (v/u) with u and z statistically independent. Let

T(S,A,ft) be the matrix ASA' + ft. Then it is essentially well known,

but will be verified below, that

|r(s,A ,ft )|1/2
E J = log Y P

Y Y ~* ,o |l/2ft

where |r|, |ft| denote the determinants of the matrices T and ft.

Hence,

|r(s,A ft )|1/2
C(<&) = sup inf log fr^ (1)

SeJyeJ, |ft |1/2
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3. Proof of the Coding Theorem

The coding theorem asserts that for any class "12? of channels as

defined in the previous section, the supremum of the attainable rates is

at least as great as the capacity of the class of channels as defined by

Eq. (1), i.e., C(-t^) > C(-&).

Our proof is a modification of the proof given by Blackwell,

Breiman and Thomasian in (1) for a class of finite-state channels and is

based on their fundamental lemma with adaptations to take care of the

particular structure of the channels we are considering. We also use

2
results and methods of Thomasian. The proof proceeds by a sequence

of lemmas, the first two of which are taken directly from the above

mentioned references.

Lemma 1 to follow applies to a larger class of channels than

were defined in the previous section; in particular, it applies to any

channel in which each input vector x determines a probability density

for the output vector y, p(y|x). This generality is needed temporarily

in Lemma 2, as will be seen. We shall denote such a channel in the

customary way, by (U , V ,p(y |x)). Each (A,ft) channel ist of course,

a (U , V , p(y|x) channel, but not vice versa.

Lemma 1.

For any channel (U , V , p(y|x)) with any fixed input density

function q(u), and for any integer G > 1, a > 0, and measurable subset
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E of U , there exists a (G, €,1) code with constraint set E where e

satisfies

where

and

« =Ge"a+P{J(x,y)<ff}+ P{E°},

•{EC} = f q(x)dx
JEC

P{J < a} = \ p(y|x)q(x)dxdy

J< a

2
Proof. See Thomasian, Theorem 2.

Lemma 2.

Let (A,ft) , y€ & = {1, 2, •• • , L}, be a finite class of channels,

and let q(x) be an input probability density function determining p (x,y)

and J (x, y) .

(a) Define a channel (U^ V^ p(y|x)) by p(y|x) =- 2 p (y|x) and

let q(x) determine p(x,y), J(x, y). Then for all a > 0, 6 > 0

1 -l.p{j "5
Y=l y Y

P{J <a}<f2 ,P (J <<* + 6}+Le
— — L v=l v v —

(b) Let E C U be a fixed constraint set. Then for any a > 0, 6 > 0,

G > 1, there exists a (G, € ,1) code for yp with code words in E such
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e = LGe"% L2e"6+ LP{EC} + S_L P (J < a + 6).
1 y Y ""

Proof. The proof is a trivial modification of that of Lemma 3 (1) . We

have stated more than we need, for only part (b) of the lemma is used.

The following lemma gives the known result for the expected

value of the mutual information for a Gaussian channel.

Lemma 3. For any channel (A,ft)

|r|1/2
EJ(x,y) = log •

n\1,z

where T is the matrix ASA' + ft.

Proof, y is a Gaussian random vector with mean zero and covariance

matrix,

Eyy' = AS A' + ft = r.

r is nonsingular, since ft is nonsingular. Hence

1

(ZirfP(Y) =iz^lrl1'2 exptTy'r"ly]-

The Gaussian random vector z = y - Ax has covariance matrix ft and

mean zero, hence

P(y'x) = p/2. .1/2 exp[-y(y-Ax)1ft"1(y-Ax)]
(2ir)p/^|ft|i/'; L
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Thus J(x, y) is given by

1/2
J(x,y) =log-£j + {iy'r'V -± (y -Ax)'ft_1(y -Ax)}

ft
1/2

The first term is a constant; the expectation of the second term is

JEty'r^y -z'ft^z] =y(p-p) = 0,

hence the lemma is proved.

We now obtain an estimate as to how rapidly the distribution of

J(u,v) peaks around its mean value. The calculation is an extension

of one given in (2) .

Lemma 4.

Let (A,ft) be a fixed channel and consider its nth extension.

Let q(x) be a Gaussian distribution for x with covariance matrix S ,
n

and let q (x , • • • , x ) = n q(x.) . Let A, ft and q(x) determine
n n p(yjx)

J(u,v) = 2 J(x.,y.) = 2 log . Then, for any 6 > 0,

p(y.)

P{J(u,v) < E J(u,v) - n6} < exp <"-2E
2

2\ 1/2
- 1

Proof. We have already observed in the preceding lemma that

1/2

J (xt, yt) = log
ft

1/2
+ i
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where

£.= -^(y.-Ax.Vft'V.-Ax-) +|. i y'r'V.
+ T 1 1

(2)

Now P{J(u,v) < E-J(u,v) - n6}

= P{2ng. < -n6} = P{ -(n6 + 2n£.) > 0}

,n.
-t(n6 + se)

= e E e , for any t > 0 ,

since the §. are statistically independent and identically distributed,

and where § is a random variable with the same distribution as each

£. . We now put h(t) = Ee , so that

P{J(u,v) < EJ(u,v) - n6} < (e"t6h(t))n. (3)

In order to compute h(t) we introduce the Gaussian random

vector w = column [x, y] of dimension 2p. Since x and y have mean

zero, w has mean zero, and its covariance matrix can be written

SA'

Eww' =

AS
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where the matrix is a partitioned matrix with pXp blocks. § is given

1

2

1 -1 -1
by Eq. (2) to be rr [yT y - (y -Ax)'ft (y -Ax)] . If we define partitioned

matrices

and

Y =

0 0

0 r_1_

A'ft ~lA -A'ft'1
Z =

-Q~lA o"1-

we can write

2£ = w'Yw - w'Zw

Then,

h(t) = Ee -tg

(2it)P|w|wll/2 J
exp ( - -

X exp[-— (w'Yw - w'Zw)] dw

where the integral is a 2p-fold integral overR P. It follows that
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f<

-1/2

= (|Q(t)W|)

h(t) = T7T 1exp (- -i w'Q(t)w) dw
(2tt)p|w|1/2 J 2

for t < t ,

where the 2p X 2p matrix Q(t), which is given by

Q(t) = W"1 + t(Y-Z) ,

is nonsingular for t less than some t > 0. Substitution for Y, Z and

W, and use of the fact that T = ASA' + ft gives

tA'

Q(t)W =

tr _1AS

By a standard result for partitioned matrices,

Q(t)W| = |i-t2r_1ASA'|

r"1! |r -t2ASA'| = Ir"1! |ft +(i-t2)ASA«

= |r"1||ft1/2(i+(i-t2)ft"1/2ASA'ft'1/2)ft1/2|

= Ir^Mftlli+a-t^ft^^ASA'ft-172!.

Let \^, • • • , X. be the eigenvalues of the positive semi-definite matrix
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ft_1/2ASA'ft1/2. Then, |l+ (1 -t2)ft "1/2ASA'ft "1/Z | = n(1+ (1 -t )K)

Since r = ASA' + ft = ft1/2[ft "1/2ASA'ft ~l/2+ I]ft1/2,

|r| = |ft| n (i+A.)

and hencei

|Q(t)W| = n
1 + X.

p/ 2 \so that h(t) = n( 1 -t
1+X..

-1/2

p 1+ (1-t )\ P/ 2 \
1 = n 1-t x

l+K

0 < t < 1

Then h(t) <

(1-t2)
p/2 '

-2"t-6t 2/p e Pand (e h(t)) < s g— , 0<t<l.
1-t

If we put

1/2

t =•
26

-1 + 1 +
46

P /J

-1 - 2 - t

then 0 < t < 1, and (1 -1 ) e P is equal to

-15-



1/2

>4 -1 + 1 +
46

exp -1 + 1 +

, -x/2
1 —x

Since (1+—x)e < e for x> 0, we have

1/2

e"6th(t) < exp[ -| 1 +
46

- 1

1/2
46

which, combined with the inequality (3), proves the lemma.

The same sort of argument is now used to obtain an exponential

bound on P{E } .

Lemma 5.

Let x., i = l, *' •, n, be independent identically distributed

p-dimensional Gaussian random vectors with mean zero and covariance

matrix S . Let the trace of S be equal to M . Then, for any 6 > 0 ,

P{Sn||x.||2> n(M +6)} < <1 +M> e

where ||x.|| = 2? , {*]) .

Proof. Tr(S), the trace of S, is equal to

-16-
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r> i 2
2P E (x.) = E||x. || = M for all i. Let x be a random vector with

j=l 1 ' l

the same distribution as the x. , then
l

P{2n||x.||2 > n(M +6)} = P{2n| |x.||2 -n(M +6) > 0}

t(2n||x.||2-n(M +6))
< Ee

n

e-(M+6)tEet||x|

since the x. are mutually independent. By a standard calculation,

tllxll2 tx'x P 1/2Ee l|X" = Ee =n(l-2tji.) , t < tQ

(4)

where u,, • • •, M- are the eigenvalues of S , for t_ small enough so that
1 p 0

all the factors are positive, whether S is non-singular or singular (i.e.,

the equation holds even if some of the M-. = 0) . .Since
l

n (1 - 2tji.) > 1 - 2t(u + • • • + [x ) = 1 - 2t M ,
l - 1 p

e-(M+6)tEet||x||2< r^+«>'
Tfl' 0<t<2M"

(1 - 2tM)

1 T\

Putting *= I M(6 +M) yieldS-

e-(M+6)tEet||x||21(1+l)1/2e-6/2M
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which combined with the inequality (4) proves the lemma.

Only the case where ~d? is finite in the following lemma on

approximation is needed for Theorem 1, but the stronger result is

needed for Theorem 2 and it is convenient to put it all together.

Lemma 6 .

Let € > 0 be fixed arbitrarily. Then, there is an S«fef such

|F(S,A ft )|1/2 'j J
that (1) TrS<M, (2) log \r^ > C(12?) - € for y€^-

|ft |1/Z
Y

Proof. First consider a finite set of y's ^'» & ' = {1, 2, ••• , L} . By

the definition of C(z£>) one can find an S € *£t such that

ir<so'W|1/2 y * /.log V/T > C(^') " 7 for all ye& .
Ift |1/2 " 2

If Tr" S < M, there is nothing to prove. So suppose TrS = M. For

|r|1/2
fixed y » l°g — " *-s a continuous function of S (where the topology

N1/2
on » is given, say, by regarding each S as an element of R with the

usual Euclidean norm) . One can therefore change S slightly to give

S €*/so that Tr S < M while

|r<s,A ,o )|1/z
log -fTo > C-e, y = !» 2, •••,L.

Ift I1/2

-18-



This can be accomplished, for example, by writing S = O'DO where

O is an orthogonal matrix and D is diagonal and positive semi-definite,

and decreasing one of the positive diagonal elements of D.

Now consider an arbitrary class X^ meeting the conditions

stipulated in the previous Section. A triple (S, A, ft), S^, (A, ft)€ &?,

2
can be regarded as a point in 3p - dimensional Euclidean space where

each of the matrices is a point in R . The product set \4 of all Seszr"

with all (A, ft)€ -£? is a conditionally compact set, because the conditions

on the matrices A, on the positive semi-definite matrices S, and on the

positive definite matrices ft guarantee that this product set is bounded

in R . Now the function £ = log -• —'._ ' is continuous on the

n n in' ~~closure Csr of Ls? and hence is uniformly continuous on L? . As before,

one can find Sn**4- such that

log —LJ > c(-tb) - T for all y( •&>
a l1/2 " 2

If Tr S < M, there is nothing to prove. If Tr S = M, we can find, by

the uniform continuity of £ on P, a number 6 > 0 such that

|£(S,y)-£(S Y)| <. ~ for all y ^ lls-sJl£S. We can then, as

before, change S into S in such a way that ||S - S || < 6 and

Tr S < Tr S = M. S satisfies the conditions of the lemma.

We now prove the direct half of the coding theorem for a finite

class of channels.
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Theorem 1

If T '̂ = {(A,ft) }, Y=1. 2, *•' , L, then C( &) > C( -£') .

Proof. Let R be any positive number less than C( -&?') and put

9=C(t^') - R. By Lemma 6 one can find S €«^such that TrS =M-P,

p > 0, and

1/2
|T(S A ft )|

EJy =log ^T^ > R+f . (5)
Ift I372 "

for all Y€ Sy . For the n-extension channel let E be the set of all
• n

2 n 2input sequences u such that ||u|| = 2 ||x. || <nM. Then, by

2 .A „., "n2 . A
Lemma 5, P{||u|| > n(M +(3)} < e where M = M -p and

P=£-log(l +~J>0. Now define G=e*1 , a=n(R +-), 6= n-.

It follows from Lemma 2 applied to the n-extension channels that there

is a (G, e , n) code for & ' with
n

, . nR -n<R +8) , T2 6 2
€<Le • e + L e + L e

n —

L

+V P{Jy(u,v) <n(R+|)}.
Y=l

Since E J (u, v) = n E J (x,y), it follows from Eq. (5) and Lemmas 3
Y Y

and 4 that

-20-
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P{J (u,v)< n(R+|)} =P{Jy(u,v) =n(R+|) -n|}

<P{J (u,v) <EJ (u,v) -n|}

_2E
2 1/2

e
< exp 1 +

Then, from (6),

n9 np

e < (L+ L2)e 8 + Le 2
n —

+ L exp
1+42

L- P

- 1

2 1/2
9

- 1 (?)

which approaches zero as n ->• oo . Since R is any number less than

£(•£>') the theorem is proved.

To extend the theorem to arbitrary classes i^we need to es

tablish an approximation inequality, and a probabilistic bound on output

power to make the approximation inequality applicable.

Lemma 7.

a a

Let (A,ft), (A, ft) be two channels and let u be an input n-sequence

of vectors x. . Let p {v/u} be the np-variate probability density for

the output signal sequence v, given u, for the n-extension of the (A, ft)

f 1 /N a
channel, and pA A{v/u} be the corresponding density for the (A, ft)

-21-



channel. Then, for those y satisfying ||v|| < nT

A, ft
{vu} iar/2

PA ft^v u* '^'n
exp< r

0

T + a M + aVMT

4+ —I ^ MT + aM

ro
A-A

ft -ft

where the norm signs on the matrices denote operator norms, and where

[ i. e. ,z'ftz z' ftz
or, a, M are numbers such that : a < r- and _

n«ir ii-n

l|0_1||. IIQ"1!!!^-). ||A|| and ||A|| <a, ||u|| 2=Sn||x ||2 <nM .
0 /

Proof. . , i , = tt^ exp{- 7 (y -
pA,ft(yN ft

1/2

• -1 1 A 'A .J A \Ax)'ft (y-Ax) +^ (y -Ax)ft (y-Ax)j

(8)

-1 A /A _]_ A
Now, | (y - Ax)'ft (y - Ax) - (y - Ax)ft " (y - Ax) |

-1 -1< |(y-Ax)'ft (y-Ax) - (y-Ax)'ft" (y-Ax)|

:-i A A_j A
+ |(y-Ax)'ft (y-Ax) - (y-Ax)'ft" (y - Ax) | (9)

The first term enclosed within absolute value signs on the right side of

(9) is dominated by

ft ^llfj y||2+||A||2||x||2+2||A|| ||x|| ||y ]•
-1 A-l -1 A A-l

Since ft -ft =ft (ft-ft)ft , this in turn is dominated by

-22-



^||0-Q||I ||y||2+a2||x||2+2a||x|| ||
0

enclosed within absolute value signs on the right side of (9) is dominated

by

]• The second term

a

2||A-A|| ||x|| \\nl\\ ||y||+||n-1/2Ax||2-||S-1/2Ax||2

=2||A-A|| ||x|| llB"1!! ||y||+(||£-1/2Axi|-||n-1/2Ax||)

. (||fi-1/2Ax|| +|l«"1/2Ax||)

< ± ||A-A|| ||x|| ||y||+ —
0 */%

a||x|| ||n-1/2(A-A)x||

<f ||A-A|| ||x|| ||y|| +^-||A-A|| ||x||2
0 0

Now, using these inequalities to dominate the absolute value of the

argument of the exponential in (8), using ||x|| < M and requiring

2 n||y|| < T gives the lemma for n =l. Since pA 0{v|u} = II pA n(y.|x.)
A, *£ . A, i* l l

1=1

and similarly for pA a{v|u}, the lemma follows immediately.

Lemma 8.

Let (A, ft) be any channel satisfying the conditions (-1) and (2) of

2
Section 2. Let u be any input n-sequence satisfying ||u|| < nM. Then

the output sequence satisfies

1
n/2

A=PA,ft{llVH2 - n^M +2P"i+ 2)lu> 1 V P^n/

par
0
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2 „n it 112 ^,n
Proof. J|v|r= S llYill = 2 IIVAx.H i

,n< 2 S"( z, + ||Ax I )

< 2 Sn||z.||2 + 2a2nM

2 „ 2Hence, A< P{2 Sn||z.|| +2a n M>n(2a M+Zpa^ 2)}

=P{Sn||z.||2> ntp^+l)} <P{Sn||z.||2> n(Trft+l)}
n/2

P",(l+-L)e "I

by Lemma 5 and the fact that p or < Tr ft < p a .

The direct half of the coding theorem for an arbitrary number of

matrix channels follows.

Theorem 2.

dLet 6 bea class of channels (A, ft) satisfying the conditions

(1) and (2) of the Section 2. Then

> C(S) =C(£?) > C{&) sup inf log

S €^fy6 *>

|T(S,A ,ft )|1/2
Y Y

ft
1/2

£ :i^)-Proof. Let R be any positive number less than C(t£?) and put 26= C(-&>) -R

By Lemma 6 one can find ScJ such that Tr S = M -p, P> 0, and
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E J (x, y) = log
Ins A..o )|1/2

Y V
1/2

ft

> r + e (10)

for all y €^ •

We now pick a finite subset *t^?' of -<£ such that for every

(A,ft)e -fc? there is an (A, ft) €12?' with the property that ||A-A|| < r\,

||ft - ft || < T|. This can be done because "& is a bounded subset of a

finite-dimens ional Euclidean space and hence is totally bounded. By

the inequality (10), and since C{Q?y) > C(.-&), C(&}) > R + 9. Hence,
Rn ^

by the calculations of Theorem 1 there is an (e , e ' , n) code for "^'
n

such that:

(a) The code words u= (x , • • • , x ) are constrained to lie in E ,
In n

2
i. e. , ||u|| < nM.

(b) The probability of error is uniformly dominated by

n9 j3
2 " 8 n 2

€'<(L+L)e +Le
n — r\ T) r\

+ L exp
np

4
1 +

1/2 H

- 1 (11)

where p is independent of n, and L is the number of elements in ^'.

Note that the 0 appearing in (ll)is C(-fe>') - R, whereas we can take the

9 appearing in (11) to be C("%) "R < C(^') - R, which actually
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weakens the inequality and hence is permissible. 0 does not then,

however, depend on the approximating class *d? ' .

We now consider the use of the code words and decoding sets

Rn i Sbelonging to the (e , € , n) code for <b ' with the larger class of

channels <0. Let (A, ft)€ <c> and (A, ft)c lb' and such that ||A-A|| < r\,

||ft - ft || < T). Let u be a code word for t2>' and B the corresponding

decoding set. Let F = {v
2 2

v|| < nT} where T= 2a M + 2p<* + 2

Then

€ = PA 0{BC|u}= P {(BCnF)U(BCnFC)|u}
n A'" A,ft

< P {BCflF|u} + P {FC|u}.
A, ft A, ft

1

By Lemma 8, P 0{FC|u} <
A, ft'

1 + e
pa

0.

By Lemma 7 ,

n/2

PA o{B^0F|u}<
A, ft

u} < 'I i, exp^-^r- T+a2M +a^MT ||
" |ft|n/2 WL J_

X exp r^JyMT +aMj ||A-A||jPA^{BCnF|u}

Now P£ ^{BCf|F|u} < P^ ft{B°|u} < €n.
A, ft' A, ft'

-26-
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Hence, using the fact that

<*£ < |ft | < af
0 - ' y 1

for all y€ ^ » we have by substituting fo

€ <
n —

1+-Me r"°
pcV

1
n/2

par

r e ,
n

a.

exp n

T+a M+ajMT ^MT + aM
_ +

a.

X

2a

0 p
2 "n ft" "n 2

(L+L)e + L e

1/2 -I

+ L exp - n
£ 1 + - 1

a
0

(14)

It is evident that the exponentials in (14) are all of the form:

-n^-K^n)
e where K. and K? do not depend on r\, where PC is posi

tive and K_ is non-negative.

Consequently for r\ sufficiently small the (e , e , n) code for
n

72?' is an (e , e , n) code for -£ with
n

-27
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Thus C(-&) > R for every R < C(-fc>), which proves the theorem.

4. Converse of the Coding Theorem

In this section we prove the weak converse of Theorem 2 . The

proof is a trivial modification of the one given by Ash (3) for the case

where the class -^ consists of a single element. We shall need the

following lemma which is a straightforward extension of a result due to

Fano (4, p. 144).

Lemma 9. Let q be the distribution function of a p-dimensional random

variable y, with covariance matrix T, Then

H (y) <7(P +log(2TT)p|r|)
q —2

where H is the entropy function and |r| is the determinant of T . The

equality is achieved if q is Gaussian.

Corollary. Let (A,ft) e ^. Let q be a distribution on the p-dimensional

input vectors x. Let y be the output vector. Then I (q) = E J(x, y)
Y Y»"

|r(s,A ,ft )|1/2
< in(y Y Y where S is the covariance matrix of x due to

|Q l1/2
Y

the distribution q. Again, the equality is acheived if q is Gaussian.

Proof. We have

Vq) =HY.q(y)~IWy|x)
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Now the random variable y = Ax + z has covariance matrix r=T(S, A ,ft )

so that by Lemma 9>

H^ „(y) <7 (p +iog(2ir)plrl) (15)
Y» H ~~ &

Also, H (vlx) = H(z) and z is a Gaussian random variable with co-
Y>q

variance matrix ft so that by Lemma 9

H(z) = j(p +log(2Tr)P|ft|).

Combining the above equality with (15) gives the result.

Lemma 10. If there exists a (G, €, n) code for *l2> with G an integer,

and with average power constraint M, then

loe " i„
G<nC(t£) +log2

Proof. Again we use the letter q, with various affixes to denote dis

tribution functions on the input space R , and the expected mutual

information corresponding to a distribution q and a channel ye t& will

be denoted by

I (q) = H (x) -H (x|y) = H (y) - H (y|x) (16)
y Y»q Y»q Y»q Y>q

Let the codewords be given by u = (x , • • • , x. ), • • • , u = (x_., • • • ,x ),
1 11 In G Gl un

We will say that x.. is a component of the codewords. Also if
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z = (z , • • •, z.P) for i =l, 2 are any two vectors in R , we say z < z
i i 1 l c

if and only if z < z for every i. Now for each p-vector x let
1 "

q"(x) = — (number of components x.., i = 1, • • • , G, j = 1, **" , n

which are < x.)

and for j = 1, * • • , n let

q.(x) = — (number of components x.., i = l, • • • , G

which are < x . )

i _

Then q (x) = — 2. q.(x) so that by the concavity of I (see (5), p. 131),
n J=l J

we have for each y € 4

1 ~n - ' ' • (17)I (q) > - 2. . I (q.)
Y - n J=l Y J

Also if S is the covariance matrix on the input vectors induced by q then

the trace of S < M and by the corollary for each (A,ft) €

|r(s,A ft )|1/2
i (q) < log \]i (18)
Y " Ift l1/2

Now let q(u) be the pn-dimens ional distribution which assigns probability

— to each of the codewords u., i = l, ' ** , G. Then (see 5, p. 125) we
G i

have for each y6 •&>
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yq) £ sj=iyV <19>

Finally if we express I (q) as

I (q) = H (u) - H (u|v) = log G - H (ulv)
y Y»q Y»q ' Y>q

then by Fano (5, p. 187) we have

H (u|v) < log 2 + e log G
Y»q -

so that for each y€ 4.

I (q) > log G - log 2 - € log G (20)

The chair of inequalities (17) - (20) yields

i ,1/2|T(S, A , ft )|

|ft |1/2
log G < n log ^ (21)

1 - €

for each yz\a. Taking the infininum over yz<a first and then the

supremum over Se d- on both sides of (21) gives the result.

Theorem 3. C(-&) < C(-^).

Proof. Let R be an attainable rate for 10 , so that there is a sequence
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nR for *C& wi1of (e , € , n) codes for *&> with e -* 0 as n -*• oo. By Lemma 10
v n ' n

r wl <r nC(-fe) -Hog 2
n

Dividing both sides by n and taking the limit as n -»• 00 we see that

R < C(t^).

5. The Case of 00-Dimensional Channels

In this section we extend the results of the previous sections to

to the case where the matrix A, and hence the input vector x and the

output y are 00-dimensional. For simplicity, we assume that the

additive noise is white. Thus if x is the input vector to the channel A,

then the output vector y is given by

y = Ax + z

1 2where z = (z , z , • • •) is an 00-dimensional random vector with inde

pendent components each of which is a Gaussian random variable with

2
zero mean and variance o* . The n-extension of A is defined as before

so that it carries an n-sequence of input vectors u= (x , • • * , x ) into an

n-sequence of output vector v = (y , • ** , y ) with

y. = Ax. + z., i = 1, * * *, n
1 11

where the z. are mutually independent.
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As before i%> will represent a class of channels, i. e. , a class

of matrices A. We assume the following:

(1) Each matrix A€t2>, is Hilbert-Schmidt, i.e., if A = {a..} then

2
Z). . a .. < oo .

(2) For any two Hilbert -Schmidt matrices A = {a..} and B = {b..},

2 2
define ||A-B|| = 2. . |a..-b..| . Then || II defines a metric (in

ii ii i,j ' ij ij'

fact a norm) . We assume that 6 is a totally bounded subset of the

metric space of all Hilbert -Schmidt matrices.

As before we impose the average input power constraint M. We

define in a similar manner, a (G,e, n) code for & , and an attainable

rate for "d? . Again let C(^>) be the supremum of all attainable rates.

Now let *£ be the set of all oo-dimensional covariance matrices S whose

& and S e*^ jtrace is less than or equal to M. For each A e £ and S € *£•, the matrix
Y

A SA is symmetric and positive semi-definate. Let its eigenvalues
Y Y

be V > \^ > ••• . We define the capacity of t2? to be

Y x

4, - • - J -°°
\

C(i2?) = sup. inf j si=1loS I 1+ — j
Se*/ ycto \ <r /

We now proceed to show that C{<e>) = C(*d?).

k k
For any matrix B= {b..} and positive integer k, let B = {b..}

k • k
be the matrix given by b.. = b.. if i < k, j < k and b.. = 0 otherwise.

ij ij - - ij

9 y k k k'
For S € >Q- and A € ^ we denote the eigenvalues of A S A by

Y Y Y
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>?' k>\£ k>••• . Note that Sk€ -J.

Lemma 11. Let S € rS be a fixed, diagonal matrix, i. e. , if S > { s }

then s.. = 0 for i £ j . Then for each e > 0 there exists k = k (e) < oo
ij 0 0

such that for all k > k and for all y € A,

A(yk) log 1+-7
00 / \V \ °°

1=1 1=1

< e (22)

Proof: Since S is adiagonal, the operator represented by A SA

k '
dominates the operator represented by A S A . Hence the eigen-

t k '
values of A S A dominated the eigenvalue of A S A . Now

Y Y Y Y
k k k1 k k ' k k

ASA =PASAP for some projection operator P . Hence
Y Y Y Y ,

k t k k k
the eigenvalues of A S A dominate the eignenvalues of A S A

8 Y Y Y Y

Therefore X.: > X.. for each i,k and y. Hence
l — i

oo

A(Y,k) =-I
i=l

log 1 + - log 1 + -=.
2

cr

1=1

\Y >, xY»ksince X.. > K;
l — l

t(
i • k k k'

Trace ASA - Trace ASA
Y Y Y Y
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Let A = {a..}. Then using the fact that S is diagonal we obtain
Y. ij

oo oo k k

Trace (A SA* - Ak SkAk') = Y s.. Y a2. - Ys.. Y a?.
Y Y Y Y L JJ L ^ L JJ L XJ

j=l i=l j=l i=l

00 00 00 00

< ) s.. > a.. + > s.. ) a.. .
- Zy JJ Z; LJ L tt L !J

j=k+l i=l j=l i=k+l

Since the matrices A e -\jp are uniformly bounded, there is a number
Y

00 2 ' " - " * /.NowsJN < oo such that 2. , a.. < N for every A e -£> . Now Se^-so that
1=1 ij Y

00 00 €
2 . , s.. < M. Hence there is a k < oo such that 2. . , . s.. < —— .J=l JJ - 1 J=l^+ 1 jj - 2N
Also since the set is totally bounded there is k- < oo such that

oo 2 € /
2. , _ a.. < rrr for every y e -£? . Then krt = max(k.,k0) satisfiesi=k^+l ij — 2M 7 ' 0 1 2'

(22).

Theorem 4. C(l£) > C(^) .

Proof. Let R < C(<0) be fixed. We want to show that R is an attainable

rate. By definition of C(t^) there exists S € y& such that

oo . y

log (i +-| ) > r + eil 2

i=l

for some 6 > 0 for every yzxa . By choosing an appropriate basis

for the input and output space we can assume that S is diagonal. We
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note that the matrix representation of a channel relative to this new

basis may be different, but this does not change C("t£) which is defined

in terms of the eigenvalues and these are invariant under change of

basis. Since S can be assumed diagonal, it follows from Lemma 11,

that there is a finite k such that

oo , ^y» k

il log (1+-^— ) > R+0/2 (23)
i=l V '* '

0 v k k k k'
for every ye -Q? . But the \: are the eigenvalues of the matrix ASA

which is effectively a k-dimensional matrix channel so that from (23) and

Theorem 2 we conclude that C(t2 ) > R + 9/2 and the theorem is proved.

The detailed proof of the weak converse of Theorem 4 is laborious

but straightforward and hence only a sketch is given.

Theorem 5. C(t^) < C(t^).

Proof: Let there be a (G, €,n) code for -^ with G an integer. Let the

codewords be u. = (x,,, • • *, x. ), ** •, u_ = (x__, • • • , x_ ) and let the
1 11 In (j (j1 Lm

c i
disjoint decoding sets be B., • • • , B_ . Then P (B. u.) < e for each i

1 G y \ \ —

and y« Clearly the same codewords and decoding sets define a (G, €,n)

code for every finite subset ^ f of t£ . Now we can find a k. =k.(e) < oo ,

and disjoint sets B , • *• , B (see 5) such that P (B. |u.) < 2e for all
1 G y l l —

ye •&? and such that the B. are cylinder sets determined by the first lc
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<i.components of the output. Thus we obtain a (G, 2e,n) code for "&? . with

the same codewords and with decoding sets given by the first k outputs.

Next we find a k_ = k7(e) < oo such that the codewords u , • • *, ur obtained

from u_, • • • , u_ by setting all but the first k_ components of the x.. to
1 G <£ ij

zero satisfy, P (B.|u.) < 3e for all i =l, •••, G and all y€ &*• Thus
Y i' 1 f

the codeword u_, * * * , u_ and deconding sets B , • • • , B determine a
1 o 1 Cj

(G, 3e,n) code for *&? . which effectively uses only the first k = max(k ,k_)»r -^

inputs and output components. By Lemma 10 therefore,

nC( <£ ) +log 2
log G <

1 - 36

Taking the infimum of both sides over all finite subsets -&. of t£yields

nC(t^) +log 2
log G <

1 - 3e

A reproduction of the proof of Theorem 3 now gives the result.
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