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ABSTRACT

\

An algorithm is presented to determine a multicommodity flow
n ,
pattern which maximizes the objective function Z . lai fi for‘ graphs
i=
having n sources and a common terminal where fi is the amount of
flow of the ith commodity and {ai} is a given set of nonnegative con-

stants, The algorithm can also be used to minimize the function

n
z B, |ri -fil for a given set of nonnegative constants {ri} and {ﬁi} .
i=1 :
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I. INTRODUCTION

In this paper we investigate an important special case of the
general multicommodity flow problem. [1] The networks to be con-~
sidered consist of a finite set of nodes, n of which are source nodes and
one of which is the common terminal node. Between pairs of nodes are
directed branches having nonnegative capacities. The flow of any
commodity must be cohserved at all nodes except its source and the
terminal. The sum of all flows through an arc cannot exceed the capac-
ity of that arc.

Let fi denote the amount of flow of commodity i from the _1_th
source node, i, to the terminal node t. We will present methods for

solving the following problems:

(i) For a given set of nonnegative constants, {ai} , find a flow

1

n
pattern which maximizes Z o fi .
i=l

(ii) Test the simultaneous feasibility of a given set of flow
requirements, {ri} .
(iii) Given a set of flow requirements and a set of nonnegative

constants, {ﬁi} » find a flow pattern which minimizes

n
Z.dﬁilri - g1

1

For the general multicommodity flow problem, necess.ary and

sufficient conditions for the feasibility of a set of simultaneous flow
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requirements are unknown. However, for networks with a common
terminal, we can given a simple procedure for testing feasibility, and
also perform the optimizations indicated in (i) and (iii). This network

model corresponds to many practical situations. Some examples are:

(i) n warehouses each shipping a commodity having a specified
relative value to a common destination through a given road
network, and

(ii) a communication network with a headquarters requiring
simultaneous communication with certainfield locations having

different priorities.
II. ALGORITHM FOR OPTIMIZING THE OBJECTIVE FUNCTION

We first consider the problem of finding a flow pattern which
n
maximizes the linear objective function Z a, fi . In applications this
i=1?
function usually represents some performance criterion such as profit.

It is convenient to represent those a's with the ith largest numerical

value by a single constant &i o More explicitly.

-~

a = max [+ 79K} & = max a, 9 © o e o o = max (04

Vg 02 504 ida, ta, a &,
Fa @ Fa, @yseeey @y

where d is the number of distinct values in the set {ozi} . The algorithm

below presents a method for maximizing the objective function:
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(1) For each &i, create a new node S Direct branches of
infinite capacity from s to all source nodes, j, for which
aj = &j° Also create a new source node s,

(2) Direct branch of infinite capacity from node s to node S,
where initially i =1.

(3) Maximize the s-t flow using the single-commédity labeling
algorithm[ 1] .

(4) If i <d, increase i by one and retﬁrn to step (2). If i =4d,
go to step (5).

(5) Perform an arc-chain decomposition on the flow pattern.

Assign to commeodity i those flow chains using that branch

created in step (1) which is incident to the ith source node.

We now prove that the flow values obtained from the algorithm
: n
maximize the objective function Z @ fi . Let fi be the sum of those
i=1
flow values whose coefficients in the cost function are equal to &i s lo€ey

k ‘ k
f, = Z f.. Define F, = Z f. and C, = Z @, f. and denote
i e~ ] k A | k . i

Jaozj-afi i=l i=l

by f‘k and C, the respective maximum values of these sums. The sub-

k
script "o' will be used to denote values obtained from the algorithm.

In successive repetitions of step (3) of the algorithm, Fk is maximized

in the order k=1, 2, o . ., do Thus

fko = Fk— Fk-l for k=2, 3, o o oy d (]’a‘)

-4-



and

flo = Fl . (lb)

We will now show by induction on k that the algorithm maximizes

C For k=1, C, = a f Therefore to maximize Cl we need only

k’ ' 71 171°
maximize fl . Thus from (lb) Clo = 61 and the statement is true for

k=1.

We now assume

Cro = Ck (2)

and show that C(k+1)o = Ck+1' From the definition of C(k+1)o we have

Ciet)o = ko T % Hktlyo * (3)

Combining (la), (2), and (3) gives

Ciettyo = Cie T %t Frent ™ %ot Fiet (4)

We will prove that C(k+1) = Ck+1 by showing that if fk+1 is either

the resulting C is less than C

smaller or larger than £ K+l v (k+)o®

(k+l)o’
Case A. In(3) C,_ = Ek by the inductive hypothesis (2). Thus an

fk+1 < f(k+1) results ina C

k4l < C(k4)o”

Case B. Next consider a flow pattern for which f (k+1) i.e.,
fk+1=Fk+1'Fk+p’ p>0. | (5)

By definition we have F, = F, . = { which together with (5) yields

k k+l "k’

Fi = (Fip = Fiep) + F - B> (6)



-

~

. < .
Since Fy ., = Fk+1’ (6) gives

F,sF -8. (7

As an intermediate step we now use (7) to show that the corresponding

Ck must satisfy

(@l

< -
Cr = C~ %P (8)
Suppose to the contrary, i.e., Ck > Eik - “kﬁ . Since by (7) we could

Kk K by at least azk[3 since

&j > &k for j <k. But then the new value of C

increase F, by B, we could increase C

Kk would be greater than

61(' This contradiction establishes (8).

=C. +a . f ., with (8) gives

Combining the definition Ck 41 k¥ % Tk

Crort = ety fren ~ %P (9)

Substituting (5) into (9) we have
< ~ ~ ~ - ~ ~ - bad _ -
Cra1 = [Ck tonFrn - an ¥ :l (q - @ )8 (10)

Comparing (4) and (10) and noting that @ > Y gives Ck+1 < C(k+1)o .
Case A and Case B establish that the algorithm yields the opti-

mum value of £ Since C was assumed maximum, we have

k+l® ko
C(k+l)o = Ck+1 and, in particular, Cdo = Cd' Noting that
d . n
Cd = Z &i f. = Z @, f,, it follows that the algorithm maximizes the

izt ? j=1 " *
given objective function.

-6-
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We now illustrate the algorithm by maximizing the objective
function 14f1 + l4f2 + l3f3 + 6f4 + l5f5 for the graph of Fig. la, where
fi denotes the amount of flow from source node i. The set {&i} cor-
responding to this cost function is: &l =15, &2 =14, a, =13, &4 = 6.
The added nodes and branches specified in step (1) and an s-t flow pat-
tern obtained by the initial execution of step (3) are shown in Fig. lb.
The dashed line indicates a saturated s-t cut set. Figure lc shows the
result of a second iteration of step (3). The third iteration increases
the flow by one unit along the path s, S31 € f, a, b, ¢, d, t and the
final iteration increases the flow along the path s, 4, d, t. The result-
ing flow pattern is shown in Fig. 1ld. In Fig. le an arc-chain decomposi-~
tion has been used to identify commodity 5. Note that the order of the
identification process is arbitrary. The final flow pattern is shown in
Fig. lf and the maximum value of the objective function is seen to be
490.

It is important to note that the validity of the algorithm depends
upon waiting until the final step to identify the flows of the individual
commodities. Simply sending maximum amounts of each commodity in
priority order will not in general yield an optimum solution. For
instance, if in the above example we had initially sent a maximum

amount of flow of commodity 5 according to the pattern shown in Fig. 1b,

an optimal solution could not result without subsequent rearrangement

i



of this pattern. In fact, it can be shown that every optimum solution to
the above example has 3 units of commodity 5 in the branch from £ to e

and 4 units of commodity 5 in the branch from f to a.

IV. NETWORKS WITH FLOW REQUIREMENTS

The algorithm suggests a simple procedure for testing the simul-
taneous feasibility of a set {ri} of flow requirements, where r, is the
flow required from source node i. We modify the network by forming a
node s and directing from s to each source node i a branch, called a
requirement branch, having capacity equal to i'i .

The requirements {ri} are feasible if and only if the require-
ment branches form a minimum s-t cut set. If these branches do form
a minimum s-t cut set, then they are saturated by every maximal s-t
ﬂow; The flows of the individual commodities can be identified by per-
forming an arc-chain decomposition and assigning to source node i those
flow chains which use the requirément branch from s to i. On the other
hand, if the requirement branches do not form a minimum s-t cut-set,.
then an s-t flow equal to the sﬁm of the requirements cannot be
achieved and the set of requirements is not fea.sible.‘

We consider next the situation where in addition to the given
set of flow requirements we have a penality, pi . associated with the

jth commodity. Specifically, B, represents the loss incurred for
X Yy Yo By
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each unit of the ith requirement left unfulfilled. We seek a flow pattern
n

which minimizes the function Z pilri - fi| e The common-
i=1

terminal multicommodity algorithm can be applied here, with the fol-

lowing modifications.

(i) The set {ai} is replaced by {ﬁi} .
(ii) The branches from the nodes s to the source nodes are
now given capacities equal to the source requirements

instead of infinite capacities.

As an example, we use the network of Fig. la with the require-

- ments r, = 10, i =1, 2, 3, 4, 5 and the penalities [31 = (32 =10, (53 = 5,

[34 =3, 55 = 70, For these ﬁi‘s , the commodities have the same
relative priorities as in the previous example. However, the introduction
of the requirements changes the solution to that shown by Figs. 2a and 2b.

The minimum value of the penality function is seen to be 65.

V. DISCUSSION OF RESULTS

The class of graphs treated in this paper includes those which
contain undirected branches. Such branches pose no new problems
since all the technqiues used in the a.lgorithrh can be applied without
modification. In addition, the algorithm can be used to solve the

reverse problem: given a network ha ring a common source and n



n
terminals, find a set of flows, {fi} , such that Z a. f. is maxi-

. 411

mized. An optimum solution can be found by first 1r:al'\re'rsing the direc-
tion of all branches and interchanging the roles of source and terminal,
then applying the algorithm, and finally reversing the flows thus
obtained.

The algorithm presented is very efficient for both hand computa-
tion and computer implementation. In particular, only one execution of
the single commodity labeling algorithm is, in effect, required, and

only two commodities need be simultaneously considered when perform-

ing the arc-chain decomposition.
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