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INTRODUCTION

Games defined on subsets of general linear topological spaces
can be viewed as a natural extension of classical games in Rn. However,
our interest in such games stems from differential games with open or
closed loop strategies. As a result, we shall confine most of our
arguments to certain relevant spaces only, viz. spaces of Lipschitzian
functions from RY into Rn, with the topology of uniform convergence on
compacta. Although at first glance, this may seem to be an unnecessary
restriction, it is more than justified by the strength of the results which

it brings within our reach.

The research reported herein was supported in part by the National
Aeronautics and Space Administration under Grant NsG-354. Supple-

ment 2, 3, and 4.



When a game is defined on 'subset\s of finite dimensional spaces,
it is often possible to obtain a solution by means of nonlinear program-
ming algorithms, but theré are virtually no algorithms for solving games
defined on abstract spaces. Consequéntly, the purpose of this paper is
to construct a theory of sequences of approximation games, defined on
finite dimensional spaces, and hence solvable, whose solutions converge
to a solution of the original game. We shall show that for games defined
on spaces of Lipschitzian functions such approximations always exist
and, furthermore, we silall give an algorithm for their construction.

To simplify exposition we adopt the following logical notation:

(V x)A is to be read as '‘for all x‘in A," 3 is to be rea.d ""there exists"

and s.t. is an abbreviation for ''such that."

I. APPROXIMATIONS TO GAMES

We begin by considering games in a general setting, unencumbered

by the complex structure of the problem that we want to consider eventually.

Definition: Let X, ‘% be two Hausdorff, locally convex linear topological
spaces. Let X, Y, be compact convex subsets of 3 , ‘i{ s respectively.
Finally, let (? be a real valued continuous function on X X Y, convex on
X for every yeY and concave in Y for every xeX. We shall call the

problem of finding an x€X and a ;eY such that for all x€X and yeY

B,y < FE, 7 < Fexy)
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a convex-concave game . f We shall denote the game by the triplet

%.: (X, Y,Z'; ) and we shall call any pair (x,y) satisfying (2) a
solﬁtioa .

The existence of solutions to games of the type described above
is guaranteed by Ky Fan's theorem (Ref. [1]), which states: ''Let E,
F be two Hausdorff, locally convex, linear topological spaces. Let
H, K be compact convex subsets of E and F, respectively. Let f be

a real-valued continuous function defined on H X K. If for each

(xo,yo)eH X K the sets

{er_If(x,yo) min f(x',yo)}

x'e H

max { (xo, v}
y'e K

are convex, then there exists a pair (;,;)eH X K such that

min max f£(x,y) = max min f(x,y) = f(;,;)"
xeH yeK yeK xeH

We shall now show that it follows immediately from the Ky Fan

theorem that convex-concave games always have a solution.

.

This definition of a game is somewhat more restricted than the one

usually encountered.
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Theorem: Let % = (X,Y,‘Kf) be a convex-concave game. Then it

has a solution (;:-,;) .

Proof: Since K’f is convex-concave, it follows that for each (xo,yo)exx Y
the sets

{xeX|f§(x,y0) = min @(X'.yo)} |

x'e X

{ye¥|F ey = max Fox, v}
yleY

are co;wex. Hence by Ky Fan's théorem there exists a pair (;, 3—r)ex>< Y
such that

min & (x,7) = max E &y = &)

xeX yeY
But (9) is equivalent to (2), and hence it follows that (;, ;r-) is a solution.

We now rest?ict ourselves to games in which the sets X, Y are

countably infinite dimensional. We shall try to construct a solution to such
a game %: {xX,Y ,5} by constructing a sequence of approximating games
%i = {Xi, Y., ;@} with XiC X, YiC Y, such that for i=1, 2, **-, Xi
and Yi are finite dimensional, convex, compact sets. Finite dimensional,
convex-concave approximating games can be solved by nonlinear programs=
ming algorithms and under suitable assumptions, we shall show that
their solutions converge to a solution of the original game. The following

theorem clarifies this question.
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Theorem: Consider the convex-concave game % = {X, Y, i‘f }. For
i=1,2, ++, let Xi C x, YiC Y be compact convex sets such that
© ©

19) Xi =X and U Yi = Y. Iffor any xe¢X and yeY there exist

i=1 i=1

sequences {xi}, {yi}, with xieXi, yieYi, i=1,2,3, -++, such that
X, X, V.V, then any convergent subsequence of {(;i, ;i)}’ a

sequence of solutions to the convex-concave games Czi = {Xi, Yi' § },

converges to a solution (:?,;) of the game % .

Proof: First we observe that, by Theorem (6), the original game Ci
and the approximating games Cg i have solutioﬁs for all i=1,2, *°- .
Now, suppose that {(;i’ 3—ri)} is a sequence of solutions to the games

% i’ i=1,2,++, and that {(;ik, ;lk)} is a subsequence converging
to (x,y). Let (x,y) be any point in X X Y and let {xik}, {Ylk} be

sequences such that x, ¢ X, , y. €Y, and x, - x, y, -y. The

&

~ existence of such sequences is assured by the assumptions of the theorem.

Then, since (x. , ; ) is a solution of CX » we have that
(%, ,y.)<Fx 7)< B 5.
3 Tk 3 'k ok

Since ‘Z? is a continuous function on X X Y, by letting ik-*oo in (11),

we obtain

<%y <FmN < Ty

for any xeX, ye¢Y, which proves that (x, 37) is a solution to C,E .
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We are now ready to address ourslelires to a specific problem of

importance.

II. THE SPACE OF LIPSCHITZIAN FUNCTIONS A

The Hausdorff, locally convex, linear topological space with

which we shall concern ourselves from now on is the space of Lipschitzian

functions with the topology of uniform convergence on compacta. The

reason for our interest in this space is that many differential games, to
be discussed in the next section, can be treated in the framework we

are about to develop.

Definition: A function f:R-RP is said to be Lipschitzian on [to, oo) if
there exists a constant M such that for all tl, 1:2 in [to, ©) we have

gty - £ 1] < Mley -6
gP.T

where ||° II denotes a norm in

Definition: We define the set A of Lipschitzian functions on [to, o0),

t0_>_ 0, as
A = {f:[to,oo) -~ RP[(F M) (v tl.tz)[to,m)llf(tz)-f(tl)ll < Mltl-tzl}
1.

To extend this definition to functions f:S— Rp, where S is a subset
of Rq, simply substitute S for [to,cn) and ||*|| for || wherever

appropriate.
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Under the usual addition of functions, A is obviously a linear vector
space over the field of real numBers. We shall now define a topology
(which will be seen to be the topology of uniform convergence on com-
pacta) under which A becomes a Hausdorff, locally convex linear

topological space.

Definition: (fundamental system of neighborhoods of the origin). For
all n€I+ (the strictly positive integers) and 8 € R+ (the strictly positive

real numbers), let

U, €) ={feA|(v Ve gl O 55}
0’

Definition: (topology in A). Let T be a collection of sets U, contained

in A, with the property that

(ve)y(dn) (T E )R+ s.t. {g+UM, E)}C U
I

In other words,

T={UCANY g)y@n (3E) st {g+U@E)}C U}
I R

Obviously, T is a topology for A.

Lemma: The space (A,T) is a Hausdorff, locally convex, linear topological

space, and the topology T is that of uniform convergence on compacta.

-T=
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The first part of this lemma is readily established by verifying
that the assumptions of Theorems 5.1 and 6.5 of Reference [2] are
satisfied. This is a long but completely straightforward exercise,

which we omit. If we define the family of sets U by
1
U={U(n,;)|n=1,2,"‘}

then U is seen to be a countable local base for the topology T. This
can now be used to show that T is the topology of uniform convergence
on compacta. |

A very important class of subsets of the space A, as far as
differential games are.concerned, is the class made up of sets A (L, M)

defined by

A(L,M) = {feAlw bt [ ooy ) - £ [ < Mt -t)) ]|
0)

and e )l < L}

We shall now establish that the sets A (L, M) are compact in (A, T).
Consequently, we shall be able to apply Theorem 6 to differential games

whose sets of admissible trajectories are closed convex subsets of the

sets A (L,M) .

Lemma: For every L >0 and M >0, _the set A(L,M), defined in L,

is compact in (A, 7).
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Proof: First, for any fixed te [to, ®), the set {f(t)|feA (L,M)}C RP

is bounded, and hence it has a compact closure. Second, the set of
functions A (L, M) is equicontinuous. Finally, A (L,M) is a closed
subset of the space of continuous functions from R into RP with the
topology of uniform convergence on compacta. Hence, by Ascoli's
Theorem (see, for example, page 234 of Ref., [3]), A(L,M) is a com-
pact subset of A.

We now digress to discuss briefly differential games which have

motivated our interest in games defined in Lipschitzian function spaces.

III. A CLASS OF DIFFERENTIAL GAMES

The adversaries in a differential game are usually two dynamical
systems, referred to as the pursuer and the evader, whose motions are

described by differential equations of the form

ixa(:ﬂ = h(x(t), u(t), t)

where x(t) ¢R" is the state of the dynamical system at time t and u(t) eR™
is the input at time t. The motion of a system such as (1) is usually con-

strained by requirements such as that its initial state x 0 at to be a point

in a set XOC R" » that its control u be measurable and bounded, and

take values in a fixed set UC R™" and that for t Sttt with t.> ¢t

0 f 0

its trajectories x(t), i.e., the solutions of (26), be confined to a set X

in R”, with X D X,
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We designate by @ the set of all admissible trajectories x(t)

defined on [to,tf], i.e., £ is the set of all trajectories which satisfy
all the given constraints. We differentiate between the pursuer and
evader by means of the subscripts p and e, respectively.

We now define a differential game.

The Differential Game: Given a set of admissible trajectories Qp for

the pursuer, a set of admissible trajectories Qe for the evader, both
defined on the same time interval [to, tf] (where t. >t may be infinite),
and a payoff function @ mapping pr Qe into the reals, find an ;pe Qp
and an ;ee SZe such that

e (Ep,;{e) = Min Max Z§ (e px,) = Max Min Fix

' X )
x € x € x € x € p €
P P € e e P

e
As before, we shall call a point (;p,;e) satisfying (28) a solution (to the

differential game (27)).

Remark: Intuitively, one may arrive at the above formulation as follows.
Assuming that each system will do its ''best,'' the pursuer to intercept
and the evader to escape, we will show that they are lead to minimax
considerations in the choice of their control laws. To demonstrate this
in simple terms, suppose that, due to power and energy linitations, the
admissible control laws for the pursuer and evader must restrict their

trajectories to sets QP and Qe, respectively. Assume, furthermore,

-10-
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that for each x €2 , x ¢ , a real valued cost function i‘f(x ,XxX ) is
P P e e p e

defined by the sum of 3 terms, one expressing the "miss' distance
after a fixed time T, another expressing the amount of energy used by
the pursuer, and a third expressing the negative of the energy used by the
evader. With this formulation, it is clear that the pursuer wants to mini-
mize the cost (xp,xe), while the evader wants to minimize it.

Now suppose that the pursuer arbitrarily selects some trajectory

;pe Qp. Then, regardless of the evader's choice, the pursuer is assured

of the "cost'" being at most

max (; X ) = (x ,x ).
x € e p €
e e

Since the pursuer is trying to minimize the cost, he should, of course,

select his trajectory ;p so as to minimize Zf (;p’ ;e) . Hence he should

select an ;p for which

j(}?,:?): min max g(x ' X )
p e x e x €Q p e
. P P e e

Observe that (? (;p, ;e) is an upper bound on the cost for the pursuer.

Furthermore, it is the lowest upper bound on the pursuer's cost.

Similarly, we argue that the evader should select an §e with the

property that, for some §p’

:g(i’p,:’ie) = max min ﬁ(x

.xe)
x €2 x € p
e e

11-
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Furthermore, if equality (28) holds it becomes evident that 13221_ pursuer
and evader are doing their best simultaneoﬁsly. We now quote conditions
(see [4]) under which the sets of admissible trajectories are closed in
the space of continuous functions with the topology of uniform convergence

on compacta.

Theorem: Consider the system

dx (t)
dt

= h(x(t), u(t),t)

where h:R™ X R™ X R - R™ is a continuous mapping. Let U be a
r™
continuous mapping from [to, o) into 2 such that for every te [to, o),

the set U(t) is compact, and let u denote the set of all admissible con-
trols, i.e., the set of all measurable functions u: [to, ) > Rm such
that for every te [to, o), u(t)eU(t). Let % be the set of all admissible

trajectories x of (34) starting at a given point xo, i.e., x(t) =x(t;x0,u),

with x(tO;x , ) = x and ueau,. Then

0 o’

(a) If there exists a locally integrable function k:R - R and finite

numbers M and N such that

£, wat) -£6x', w, ) || < K(t)][x - ||

and ||f(x,u,t)|| < k(t)[M+N||x||] for all x, x' in R", uev U U(t)
” ” =
te[to,co)

and te [to, @), then for every control ue cU. and every X € R” there exists

a unique trajectory x(t;x_,u) of (6), defined on [to, @) such that

0

s(to,xo,u) = xo

-12-
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(b) Suppose that the hypothesis of (a) are satisfied. The set 2 of
admissible trajectories starting at a given point X, is closed in the
topology of uniform convergence on compacta if and only if for every
attainable phase (x',t') the set F(x',t') is convex, where (x',t') is said
to be an attainable phase if there exists an x€& such that x(t') = x' and
F(x',t') = {h(x',u,t')|ueU(t")} .

Thus, whenever a differential system satisfies the conditions of
the preceding theorem, its set of admissible trajectories 2, starting

at a given point x is closed in the space of continuous functions with

0’
the topology of uniform convergence on compacta. If, in addition, for
some real L, M, the set 2 is contained in A (L, M), defined in (24),

then © is obviously compact in the space of Lipschitzian functions A.

We now give two examples when this is true.

Example. Suppose that h is uniformly bounded by some positive constant

B. Then, it is readily seen that, for any U:

(i) the assumptions of part (a) of Theorem (33) are satisfied; hence

the set 2 is well defined;

(i) @ C A (B, ||x0||);

(iii) if F (x',t') is convex for every attainable phase (x',t'), then, by
part (b) of Theorem (33), 2 is closed in the space C of continuous func-

tions with the topology of uniform convergence on compacta, and it now

«] 3~



37

38

39

follows that © is closed in A C C, with the induced topology.

Example: Suppose that h(x,u, t) = Ax + Bu, where A, B are constant
matrices, and suppose that all the eigenvalues of A have negativé real
parts. If for all te [to, o), U(t) = W, a fixed compact set, then again
it is easy to show that the set 2 of admissible trajectories starting at

a given point x_ is compact in (A, T).

0

The set 2 will be convex when, say, h(x,u,t) is of the form
h(x,u,t) = Ax + g(u)

where A is a constant matrix, and g :R™ -+ R" is a continuous mapping,
U(t) = W, a fixed compact set such that g(W) is convex.

Finally, as an example of a convex-concave payoffs consider

Texx,) = <xp(T) -x (T), Q[x (T) -xe(T)]> - <xe,Rxe>

which can be interpreted as follows. The fight between pursuer and
evader is to be started at the time T, when the game is over, ‘a.nd at
that time the evader w‘ould like to be as close to home (the origin) as
possible. Note that the first summand of S represents the terminal
distance between pursuer and evader, the matrix Q (positive semi-
definite) having been introduced to enable us to consider, for example,
physical 'distance as opposed to state-space distance. Similarly, in the

second term, the matrix R (positive semi-definite) was introduced to

-l14-
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enable the evader to minimize, some, but not all, of his state components
(it may not be advantageous to be travelling at near zero velocity when the
fight starts). Now, if (Q -R) is positive semi-definite, then J is convex-

concavee.

Remark: This éection has been mainly devoted to differential games
played on the trajectories of both players. However, many important
differentiallgames are played on sets of admissible controls or cdntrol
laws. Now, if the controls u(t) are assumed to be Lipschitzian functions
(we mean here open-loop controls) then all our results apply automatically.
Incidently, games played on open loop control sets are ﬁsually simpler
than games played on trajectory sets of differential systems with inputs.
The reason for this is that it is usually easier to establish compactness
and convexity of a given set of control fuﬁctions than of the set of resulting
trajectories. Examples of games played on open-loop control laws and
methods for their solution can be found in Reference [5].

For games played on spaces of feedback control laws u, i.e.,
control laws u such that u(t) = u{x(t)), we extend definition (13) to read:
a function of RY -~ RP is Lipschitzian if there exists an MeR+ such

that

(V t),t,) q‘Ilf(tl)-:f(t,z)ll < Milt -0,
R

and our results become again automatically applicable provided the

-15-
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control laws in the game are Lipschitzian. (This follows from the fact
that exactly as in Section II, we can define A to be a space éf Lipschitzian
functions defined on R? and construct a corresponding fundamental sys -
tem of neighborhoods Uq(n, €) and a topology 9, Theorem (6) then
extends to these games.) |

An interesting class of games played on feedback control laws is

the one in which the control laws are linear since these are easy to

implement.

IV. APPROXIMATIONS TO LIPSCHITZIAN GAMES

We now return to convex-concave games, defined on spaces of

Lipschitzian functions. Thus, by a Lipschitzian, convex-concave game

we shall mean a convex-concave game, defined as in (1), in which Z{?,"ld
are spaces of Lipschitzian function, with the topology of uniform conver-

gence on compacta.

We now introduce the finite dimensional approximations to Lipschitzian

convex~concave games.,

Definition: Let (% e {X, Y,g"} be a Lipschitzian convex-concave game.
Let {xl’XZ’ e xk} be a set of elements in X, let {yl,yz, cans Yg} be a
set of elements in Y, and let co{xi}, é’o{yj} denote the convex hulls of

these sets, respectively. For n=1, 2, ..., we shall say that the game

(%n = {CO{Xi}, co{yi},g} is a 1/n-approximation to the game % if

k
xXC U {xi+ Ux(n,lln)}

i=1

“16-
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and

4
Y C U {y.+U_n,1/n)}

where Ux(n,lln) C x, Uy(n,lln) C Y are sets defined by (18).

Remark: Obviously, since X is compact, the covering U {x+ U_(n, 1/n)}

‘k , xeX
contains a finite subcover of the form \_J {xi+ Ux(n,lln)}, with xieX. A
i=1

similar argument also holds for Y . Consequently 1/n-approximations

to a Lipschitzian game always exist.

Lemma: Let %n = {co{xi}, co{yj}, § } be a 1/n-approximation to a
Lipschitzian, convex-concave game % = {X, Y,g }. Then an has a

solution.

Proof: The sets co{xi}, co{yj} are closed, convex subsets of the com-
pact sets X and Y, respectively. Hence they are compact. It now
follows from Theorem (6) that the game %n has a solution.

We now show that any sequence { %n}’ with n=1,2,3,..., of
1/n—approximations to a Lipschitzian convex=-concave game Q satisfies

the assumptions of Theorem (10).

Theorem: For n=1,2,3,..., let {an} be a sequence of 1/n-approxi-

mations to a Lipschitzian convex-concave game % = {X,Y,:g}, where

Al7-
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%n = {f:o{xin}, co{yjn}, :g }, with i= 1,2,... ,kn and

Jn= 1.2,..-,2n¢

Let X denote c:o{xi } and Yn denote co{yj } for n=1,2,3... . Then

an = {X_, Yn,‘.’,g} and .

(i) For any xeX, yeY, there exist sequences {xn}, {yn}, with

xne Xn, yne Xn’ n=1,2,3,..., such that xn-> x and yn -+ y and

——
———

o) [o 0]

@ x=UXx,v=UY
n n

n=1 n=1

Proof: Let x be any point in X. Then, by definition (42) of Cin, for
every n=1,2,3,..., there exists an index @ e {1,2,..., kn} such that
the vertex x of X satisfies

@ n

n

xe{xa + Ux(n, 1/n)}
n

ioeog {x"'xa }GUx(n,lln).
n
But, the neighborhoods Ux(n,ll n) form a countable base about the origin
and hence the sequence x, » n=1,2,3,..., with x, eXn, converges to
n n

x. A similar argument holds for arbitrary points in Y. This completes

the proof of (i).

-18-
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Now, from the above, it follows that

(o0] [0 0]
xC an, YCUYn

n=1 n=1

But, since Xn C X and Yn C v for n=1,2,..., it follows that

(00} 0]
xDUx, YDy .
n=1 n=]

Since X, Y are compact, we conclude that

(0 0) Qo
XD\ X and Y DUY_.
i=1

n=1

But (50) and (52) imply that (ii) is true, which completes our proof.

Theorem: For n=1,2,3,..., let {C&n}’ with %n = {co{xi }, co{yj }.ﬂ},
n n

in =1,2,¢00, kn, jn =1,2,000,48 o’ be a sequence of 1/n-approximations to

a Lipschitzian convex-concave game % = {X,Y,:g }. Let (;n’;n) be a

solution to an and let {(xa,ya)} be any subsequence of {(xn,yn)}, con-

verging to a pair (x, ;) . Then (x, ;) is a solution to % .

Corollary : If the game % = {X,Y, ‘3"} has a unique solution (x,y) , then
any sequence of solutions {;En, ;n} to 1/n-approximations (Sn to Q con-

verges to (;, ;r.).

Proof: This theorem is an.immediate consequence of theorems (10) and

(47).

-19-
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V. CONSTRUCTION OF APPROXIMATIONS TO GAMES

We consider in this section a special class éf Lipschitzian con-
vex-concave games for which the sets X, Y are of the‘ form A (L, M),
as defined in (24). As we shall now show, it is not difficult to construct
finite dimensional approximations to the sets A (L,M). We begin by
assuming that the functions f.eA (L, M) are real valued. The extension

of our results to vector valued functions is trivial.

Theorem: Let A be the space of real valued Lipschitzian function defined
in (16) and let A(L,M) be as in (24). Then for any positive integer n

there exists a finite set of functions fi, i=1,2,...,£2 such that

2
Aw,M C U (£ +Un,1/n)},
i=1

with the cardinality £ of the set {fi} satisfying
SEACEIRDE

where for all real x, [x] denotes the smallest integer larger than x and

N = [nZM].'

Remark: The cardinality number £ defines the dimension of the

approximation co{fi} to the set A (L,M).

Proof: We shall characterize the functions fi, i=1,2,...,2, as paths

~20-
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in a graph. First we note that if feA (L, M), then

(v t)[to,op,Hf(t)ll < L + Mt.

Hence the set A (L, M) consists of functions whose graphs never leave

the shaded area of Fig. 1. To construct the graph for characterizing

the fi (see Fig. 2), we draw half li?es parallel to the upper and lower
boundaries of Fig. 1. These half lines originate from points with abscissa
t. and ordinate - [nL/2]+1, -[nL/2]+2, ..., =2, -1, 0,1, 2, ...,

0
[nL/2] - 2, [nL/2] -1. We define a forward path as any path in the

graph of Fig. 2, connecting an extreme left node, such as Ai to an
extreme right node such as Bj’ with the path always travelling from
left to right. In Fig. 2, we show the case £ =9, N=10. With each path

we now associate a function of the form

N-1
f(t):-z—r+a s(Mt -Mt ) + (@, ~a _)s(Mt-Mt -1—<-)
n 0 0 k k-1l 0 n

k=1

where, re{-[nL/2] +1, -[nL/2]+2,..., =2, =1, O, +1, +2, ...,

[nL/2] - 2, [nL/2] -1}, s:R - R is the ramp function, i.e.,

0 for t<o0

s(t) =
t for t> 0

and o € {-1, +1} for k=0,1,2,...,N-1. Note that f(t) as defined in (58),

-21-



is Lipschitzian and belongs to A (L,M). We shall denote by ae the sets

of all functions obtained from (58) when r, QO’ Gy oesey aN-l range through
all their permissible values.

- We first show that the cardinality of o[: is £ . Obviously, r can

assume any one of 2 [%-]:'] -1 possible values. Similarly, each of the

N ai's can assume 2 different values. It is immediately clear that no

two different (N+1) -tuples (r, a ) define the same function

0’ e s ,‘ aN-l
f(t) . Hence the cardinality of oC is indeed £ .

Next we prove that (55) holds. The reader will find it helpful
again to refer to Fig. 2. Note that (55) is equivalent to the statement

that for every feA (L, M) there exists a fieot such that

!

60 fe({£,} + Ula, )

Equivalently, we only have to establish that

8|

61 (Y Dp a2 fi)S) s.t. (V t)[ N ]Hf(t) SACTIES

torto? ¥m

’a’ttl'a

0’1 N-l) *
The proof of (61) proceeds by induction on NT. For N=1, (6l)is

and fi(t) is as in (58) for some (N +1) -tuple (r, @

T Rather than proceding as below, we could have proved (61) by establishing

a one-to-one correspondence between Lipschitzian functions and monotonic
increasing, upper semicontinuous functions and then used known results
in measure theory. However, we prefer to give a direct demonstration.
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62

63

64

65

66

clearly true for £, = i—r + @ S(Mt -Mt ) where r is such that
1

ey -2 <2

N -1 and will prove that'it is true for N. By the induction hypothesis,

we have been able to find an (N-1) - tuple (r, ao 1

| 1
vo. +1\_1;!] £y - g0l < 2
0’0 nM
where
N-2 |
) = 2Z 4 o s(Mt-Mt ) + (@ -a .)s(Mt-5 .Mt
&% =% 0 0 Z Kk~ %k-1 “a - Mty
k=1

Let us now define a function fi by

‘fi(t) = gi(t) + (aN-l - QN-Z) s (Mt - —(IFZ - Mto)

Obviously (V t) fi(t) = gi(t), i.e., from (62),

N-1
[tO' o * nM]

1
(V' t) . +N_1] £ - £l < =
0’0 nM
We now proceed to determine 4.1 such that
1
(Vt)[t +N-1 ¢ +-§-] ”f(t) "fl(t)” ..<_ ;
‘0 nM ' 0 nM
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s Xogaooey QN-Z) .such that



67

68

69

70

we should choose «

A N-1 N
N - [t + —

From (64), we can 'rewrlte fi(t) in the mterw{al A ot T t0+ M

as

N-1 N-1
£,(t) = gi(nM) * “N-l(Mt' n 'Mto)

Note that for «

N1~ 1 the graph of the function fi(t) goes upwards in the

above time interval and for g = -1 it goes downwards. To determine

: . N-l) N-1 1
- S—— - - - S— < —
aN-l we note that if (V t)ANHf(t) gi ( M (Mt Mt0 = ) || Ay
N1~ 1. On the other hand, if this relation does not
hold, it meaﬁs'that there exists a tleAN such that

|1£(t;) -gi(ﬁnﬁ) - (Mtl-MtO - Q‘%))H >%

and we should choose aN-l = =1, Indeed, in this case, if we could find a

tz € AN such that

N-1 N,_l) 1
“f(tz) -gi<m) + (Mtz-Mto-S—n—)“ > =

we would conclude from (68) and (69), together with the continuity of £,
that “f(tl) - f(tz)” > MHt1 -tZH, which contradicts the assumption

that fe A (L,M).

Remark: The extension of Theorem (54) to vector valued functions

f= (:El, fz, cees fn) is obviously trivial under the norms

n
e = sup £, or |lE®]| = z 1€ -
ie{l,2,...,n} g
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71

With a very small amount of effort, the extension can also be carried

out for other norms.

Remark: Instead of playing games in spaceys of Lipschitzian functions

f defined on the semi-infinite interval [to, ), we could have played in
spaces of Lipschitzian functions defined on a given finite interval [to, T],
as is the case in fixed time differential games. When the Lipschitzian
functions we consider are defined only on a finite interval [to, T], we
find that the set of neighbo?hoods {u(T -to,lln), n=1,2,... } forma
countable base for this Lipschitzian function space, with U (T, 1/n)
defined as in (18). Referring t§ Fig. 2, we now see that the number of
functions fi necessary for the construction of a 1/n-approximation to
the set A (L,M), with the interval of definition changed to [to, T] in
(24), grows considerably slower with n than in the case where the
interval of definition for the funtions is [t o’ ). This is due to the fact
that the index N, which was equal to [an] in (54), now becomes

N = nM(T -to) and hence is approximately proportional to n and not to
5 _

n .
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CONCLUSION:

The underlying philosphy behind thé use of penalty functions and
decomposition methods in ol;timization prbblems is to‘ substifute a
sequence of relatively easy problems for a very difficult one. In this
paper, we have applied this type of thinking to games defined on infinite
dimensional spaces. | |

We have established a set of properties with which finite dimen-
sional approximations must be endo‘wed, and we have shown that for
certain classes of differential games and games played on convex, compact
subsets of Lipschitzian function spaces such approximations always exist.
We have also shown how to construct finite dimensional approximations
for games played on the subsets A (L, M) of Lips chitzian function spaces,
and have obtained an upper bound £ » on the minimum dimension of an
approximation (of fineness 1/n). We suspect that the bound £ is actually
a least upper bound.

Although we have not done it in this paper, it is reasonably easy
to show that the construction used to obtain finite dimensional approxi-
mations to games played on the subsets A (L, M) of Lipschitzian function
spaces can readily be modified to obtain finite dimensional approximations
for games on subsets consisting of upper (lower) semi-continuous functions
which are bounded from above and from below.

Thus, the decomposition techniques discussed in this paper can

be applied to a broad class of problems and we hope that they will lead to
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new and interesting computational results.
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Fig. 1. The Bounds on Functions in A (L,M).
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