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1. Introduction

A coding theorem and (weak) converse are proved for classes

of continuous-time channels with additive white Gaussian noise in which

a different time-invariant linear operation is performed on the trans

mitted signal in each channel. The proof is accomplished by reducing

the problem to one involving discrete-time Gaussian channels with matrix

operators, which is solved in Ref. 1. The development in this paper

rests heavily on Ref. 2 -4 . The paper of Blackwell, Breiman and

Thomas ian provides the clue that the capacity of a collection of channels

to be considered simultaneously may be defined as sup inf [expected
P •£>

The research reported herein was supported in part by the National
Aeronautics and Space Administration under Grant NsG-2-59 to the
University of Michigan and by the National Science Foundation under
Grant GK-716 to the University of California, Berkeley.



value of the mutual information] , where the infimum is over the

class of channels, and the supremum is over input probability distri-

3
butions. The work of Gallagher effectively provides the formula for

4
the mutual information, and the paper of Kac, Murdock and Szego

provides an essential asymptotic relation for the eigenvalues of integral

operators of an appropriate type.

2. Description of the Problem

We consider communication channels and classes of channels

that can be described as follows. By a transmitted signal, or input

signal, over the time interval [-T,T] we mean a real-valued function

x which is square-integrable with respect to Lebesgue measure on [-T, T]

If x is the input signal over [-T,T], the received signal, or output

signal, y(t) over an interval [a,b] is to be given by an expression of

the form

y(t) = \ h(t-T)X(T)dT + z(t), a< t< b, . (1)

where z(t) is white Gaussian noise with average power density N and

mean zero. Unless otherwise stated we shall always assume a = -T,

b = T . Since the communication channel is completely specified once

the function h is specified, we may refer to a channel h, and to collec

tions J& of channels h.
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Footnote to page 2 .

The noise term z(t) in Eq. 1 must be interpreted symbolically

since white noise cannot be parametrized with a time variable, but

must properly be parametrized with an element of a space of "testing

functions. " However we deal only with functionals of y(t) of the form

] Y(t)9 (t) dt,

where <pcL?(a,b), or with quantities derivable from these functionals,

Hence we can define

I z (t) <p (t) dt

to mean

J ?(t)dUt)

where £ (t) is Brownian motion and the operations to be performed are

readily justified.



We say a channel has finite memory 6 if h(t) = 0, |t| > 6 , for

some 6 < co . Obviously this definition distorts the language a little,

because it also requires what might be called "finite anticipation. " It

is mathematically convenient, however, and includes the practical case

of a non-anticipative channel with finite memory. All the results to be

proved will hold, a fortiori, for non-anticipative channels with finite

memory. We shall require in everything that follows that each class i*>

of channels to be considered has the property that each h«K has finite

memory 6 , where 6 is some positive number fixed for the class "y> ;

this condition will be referred to by saying that "$£ has finite memory

6.

Let "^ bea collection of channels. By a (G,€ , T) code for -£>

we mean a set {x ,x-, ... , x } of distinct signals over [-T, T] and a

set {B , B?, ... , B } of G disjoint sets of the output space (of real-

valued functions over [-T,T]) such that

(i)

and

T

f x2(t)dt<2T, i =1, 2, ...,G
\J rp *•

(ii) Ph(y(t) €B.c x
i" —

) <€, i=l,2,..., G, Vh€ t^,

where P (Alx.) denotes the probability of the event A given that the
h l

input signal is x. and the channel is h. Here (i) represents the average
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input power constraint and (ii) the condition that the probability of error

is to be less than « uniformly for all code words x. and all channels

he V> .

We say that R > 0 is an attainable rate for -j£ if there is a
T R

sequence of codes {(e n ,€ , T )} such that lim T = + co and
n-*oo

lim € = 0. The supremum of all attainable rates for ^» is denoted
n

i-*-oo

by C(i&).

As in Ref. 1 we define the capacity C of a class of channels for

mally in terms of quantities characterizing the class, and then prove

that C = C. Usually when this is done C is defined first in terms of the

mutual information. However it is inconvenient here to talk about the

mutual information directly, so we go to an expression that is analogous

to that for the expected value of the mutual information for a class of

discrete Gaussian channels (see 1). Let h (v ) be the Fourier transform

of h(t), which will always exist because of conditions to be imposed on

the channels. Let s (v) be the spectral density of a real-valued station

ary process with mean zero, variance bounded by one and integrable

autocorrelation function (or, alternatively, s (v) is a real-valued, non-

negative, even function satisfying

»oo _

s (v)dv < 1
- oo

and with integrable inverse Fourier transform) ; let *& be the set of

-4-



all such s (v). Then the capacity of the class "£? is defined to be

C(£) =sup inf flog (l +l£M2'W) dv . (2)
s€«/hc^J-co \ /

The object of this paper is to show that under certain integrability

conditions on the functions h and certain compactness conditions on the

classes ^ , both of which are enunciated in the next section, C( *>) = C(£> ).

3. Notation and Further Conditions on

Let L denote L (-00,00), for 1 < p < 00, where L (a,b) is
p p ~ P

the L space of complex-valued functions p-integrable Lebesgue on the
P

interval (a, b). Let L (T) denote L (-T,T), for 1 < p < 00. If fcL
P P

or L (T), then ||f|| denotes the norm of f in that space. If f, g«L2
P P

or L (T), their inner product is written (f, g). An operator on a space

2G is a continuous linear transformation of tC into itself. PT is to

denote the projection operator on L , 1 < p < 00, defined by

(P x)(t) = x(t), |t| < T
(3)

= 0 , ltl > T

for all xeL .
P

Let fcL . Then its Fourier transform f is given by

f (V) = \ f(t) e dt ,
J-oo

-5-



and f is a continuous, bounded function. If moreover fcL-, then

f €L- and the operator f-»-f is an isometry of L_ . For each T < co,

f defines a compact (actually Hilbert Schmidt) operator F on L?^

given by

T

(F x)(t) = f f(t-T)x(T)dr, -T < t < T . (4)
•*• \J rp

Also f defines an operator F on L_ given by the convolution

pOO
(Fx)(t) = \ f(t-T)X(T)dT, -oo < t < co . (5)

- 00

With a slight abuse of notation we identify the operators FT and PTFPT<

If f has finite memory 6, then

PTF =PTF PT+6 and FPT =PT+6 F ?T . (6)

If A is an operator on L2(T) or L2 then A will denote its
*

adjoint. The operator A is defined by

<x,Ay) = (A x,y)

for all x, y€L_(T) or L , since it is required that A be bounded. If

A is a compact symmetric operator its trace, T^(A), is defined if the

sum of the eigenvalues of A converges, and is equal to that sum.

-6-



There are certain conditions required on the classes Tfi of

channel weighting functions h which will be needed in the proof of the

coding theorem. These are enumerated in the definition to follow and

some immediate implications of them are noted. We shall say £ is an

admissible class of channels if

(i) fif has finite memory 6.

(ii) Each he L2, and | |h| | 2 < 1

for all h € £ (It would be sufficient to take any bound, but there is no

loss of generality in taking the bound to be 1 . )

(Hi) If h is the Fourier transform of h, then

r-A cco ^
\ + \ |h(v)| dv -* 0 as A - co
-'-co "A

uniformly for all h e U> .

Now, since each h vanishes outside the interval [-6,6] by (i),

it follows from (ii) that h€1^ and ||h| | <̂V~26~ for all h^.
Therefore the Fourier transform h exists not only in the sense of the

Plancherel theorem, but also as a bounded continuous function on R .

It also follows from (i), (ii) and (iii) that 4 is a conditionally compact

subset of L . In fact we show that the functions h(v), hetJ, form a
Cm

conditionally compact subset of L Necessary and sufficient conditions

-7-



for this are (Ref. 5, p. 298) that the set {h(v)| he £ } is bounded,

that the condition (iii) stated above is satisfied, and that

\ |h(v+u) -h(v)| dv - 0
- 00

as |j. -* 0, uniformly in 4 But

co CO

Ih(t) e""111 - h(t) | * dt
~-co -a.

i2TT|at

= f |h<t)|2|ei2lt,lt-i|2dt<4*V°2Mh|l
-5

2 2.2ll.,,2£4ir2 262

We shall also have occasion to consider the set of functions

94(-£) = {|Wv)| In. = Fourier transform of h e ^}

Since each he L2, «W (£) is asubset of 1^. As asubset ofL^I^)
is conditionally compact. In fact, the necessary and sufficient conditions

that this be so are (Ref. 5. , p. 295) : ^ (I) is a bounded subset of

L ; condition (iii) is satisfied, and

f
co

h(v)| - h(v +n)| dv -* 0

-co

as (i -*• 0 , uniformly in the class. But

-8-



f
oo

h(v)| - |h(v +n)| dv < J |h (v) -h (v +u) | dv
- oo

< 2 h

- oo

^co ~

I |h(v) -h(v +|i)| dv
J-oo

1/2

which approaches zero as above.

4. Preliminary Lemmas

In this section we obtain certain results that allow us to extend

the application of the Kac, Murdock, Szego (KMS)4 theorem on the
asymptotic behavior of the eigenvalues of a type of integral operator on

L (T) as T -* oo We need to apply the KMS theorem to compact (in
2V '

an appropriate topology) classes of operators, instead of single operators,

and we need to apply it to certain truncated operators which do not meet

the conditions of that theorem. For convenience we state the theorem

we are referring to :

KMS Theorem. Let pe 1^ be an even function and suppose that its
Fourier transform £ also belongs to I*y Let p define the self-adjoint

operators RT and Ron L^T), L., respectively (RT#= PT RPT> • Let
a,b, a < b, be real numbers and let N(RT,a,b) denote the number of

eigenvalues of R which lie in the interval (a,b). If

(i) 0 i (a,b)

-9-



and

(ii) u{v|p(v) = a or p(v) = b} = 0,

then

lim -jj N(RT, a, b) = u{v|p(v)e (a,b)} .
T -*-co

jjl{E} denotes the Lebesgue measure of E*

Throughout this section *&> will denote an admissible class of

channels as defined in Section 3. Also throughout this section s will

denote the covariance function of a stationary stochastic process with

mean zero with the additional property that seLr By known properties

(Ref. 6, Thm. 9) of positive semi-definite functions it follows that

s e L .

For each T < oo, he4> and s as above let us define the

operators HT =PTHPT and ST =PT SPT where Hand Sare defined
in terms of h and s as in Eq. (5). HT is then a compact operator, so

the positive semi-definite operator

WT =PTHPTSPTH*PT =HTSHT* (7)

is also compact. Finally we define

QT =pthsh"cpt =ptQPt ts)

-lo



Q and Q are positive semi-definite, and Q_ is compact by virtue of

the fact that Q = HSH is a convolution operator with kernel in L .

Indeed, let q = h*s*h, where * means convolution, and h(t) = h(-t) .

Then q e L 0 L (since h e L 0 L , s e L ), and its Fourier transform

is

q(v) = |h(v)|2s(v) , (9)

which also belongs to L since s(v) is bounded. We note, therefore,

that the KMS theorem applies to Q . Lemmas 1, 2 and 3 extend the

application to W . Lemma 1 is included as a reminder of an essentially

well-known fact.

Lemma 1.

Let A be a positive semi-definite compact self-adjoint operator,

and P a projection operator on a Hilbert space. Let B = PAP. Let

a > a > and b > b > . . . be the eigenvalues of A and B res-
1 — 2 12

pectively. Then a. > b., i = 1, 2, . . . .

Proof: Let A1/2 be the positive square root of A; A is compact.

Let C= PA1/2, so that CC* = B. Now the eigenvalues pf B=CC =PAP

are the same as the eigenvalues of C*C = A1/2PAX 2, although the

invariant subspaces are different. Since A = A A dominates

A^2PA^2 the conclusion follows by a standard theorem (Ref. 7, p. 239).

-11-



Lemma 2.

Let the operators W and Q be as defined in Eqs. 7 and 8 and

q(o>) be as defined in Eq. 9 . Then

(i) YTr(QT) = 2 ) 3(v)dv for all T < oo
- co

(ii) lim ^•Tr(Wrr) =2 \ q(v) dv = 2 \ |h(v)| s(v)dv

uniformly for all h e V and all se».

Proof. Since s(v) > 0 one can take r (v) =V s(v) > 0; then r (v) = r(-v),

and r e L . Let R be the convolution operator determined by r, the

mvers e Fourier transform of r , as in Eq. 5. R is positive semi

2
definite and R = S, so

QT = PTHRRH PT = (PTHR)(PTHR)

and

WT =(PTHPTR)(PTHPTR)T <10>

One has,

(PTHR x)(t) = f ( I (t) f h(t-u)r(u-v)du \ x(v)dv
J-oo L J-oo J

-12-



(RH*P x)(t) = I r
oo

r(t-u) h (v-u) du > x(v) dv
- oo

and

(PTHPTRx)(t)

(RPTH PTx)(t) =

\ | I (t) \ h(t-u) r(u-v) du I x(v) dv
''-oo I - T J

' _T L "-T

r(t-u)h(v-u) du \ x(v) dv

where I is the indicator function of the interval [-T,T] .

If we let k(t, w) be the kernel of the operator QT, it follows that

,w) =I (t)I (w) f f f h(t-u)r(u-v)h(w-u')r(v-u') du du'dv ,k(t,

whence, using the fact that r is even,

T

i rTr(Q ) =•=" \ k(t,t)dt
T' T ,

rp qq

1 (" ||n*r||2dt= 2 \ |h(v)t2|r(v)|2dv.
T c _T ^ - co

The existence of the integrals and interchanges of order of integration

all follow from the conditions, heL^L^ r €L^ and r(v) bounded.

This proves (i).

-13-



We actually prove (ii) under weaker conditions on "6? , which

will be stated below. Observe first that

^Tr(WJ =| ( dt f f h(t-u)r(u-v)du
T T T J-T 'J-or>lJ-T J

For convenience, put

-oQO pT
A = \ h(t-u) r (u-v)du, B = \ h(t-u) r (u-v) du

^-co "-T

Then

i i rT r°° 2 2
~- (TrQ_ - TrW ) =— \ dt \ (A - B. ) dv
1 l K-T x -oo

and

2

dv .

i- |Tr QT - Tr WT| <-^ j dt \ |A+B| - |A-B| dv (10)

One has,

pCO
|A+B| <2 \ |h(t-u)r(u-v)|du = <p (t-w) (1X)

- CO

where <p , which is defined by this equation, belongs to L^ , and in

fact satisfies

-14-



*\\2< llhlljlrll =||h|| ||VT |'| < Uhll,

Also,

A-B| < y | h(t-u)r(u-v)|
ju|>T

du

f | h(t-u)| du
|u|>T

1/2
f | h(t-u) | | r(u-v)| 2du

Llu|>T

1/2

(12)

The second factor on the right side of Eq. 1 2 is dominated by |<*(t-v) |
1/2

where

and

r°° 2a(t-v) = y |h(t-u)| | r(u-v)| du
- oo

hlljll s \\x < \\h}ll||*1/2M2 = \\a\\x< Mhlljl/U^ UhllJI s\\r < ||h||

Hence, from Eqs. (10), (11) and (12),

4" ITr QT- Tr WT | <-±r f dt [ dv <p (t-v) o1/2(t-v)
T' - T

<4- C dt<
-T

<P
1/2

a

-T ^-oo

-IS-

\ | h(t-u)| du
l'|u|>t

1/2

\ |h(t-u)| du

Vl>T

(c-ant 'd)

nl/2



cont'd.

< ii<"Mt*
-T

[ |h(t-u) | du
L%|>T

1/2

(13)

Now, given a > 0, suppose there is a number A(e) > 0, not depending

on h such that

f |h(T)| dT < g2 (14)
M > A(€)

for all he ^. If ^> is admissible this condition is satisfied a fortiori

since the integral vanishes on the set | t | > 6. Then, for | t| < T -A(c),

f |h(t-u)| du <e2 ,
|u|>T

and we have from Eq. 1 3 and 14

£-|TrQ -TrW | <|| 3/2
f

T-A f-(T-A)
4" dt + I
T K)

-(T-A) -T

1/2 dt

T[iMIi

*Y [iiHM\/2f]]Hwr{^^+^iiHiif
T-A

A(e)
If T is taken greater than , then
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^-|TrQT -TrWT| < llhll^^Z+Zllhll1/2)^

Since | | h| | is less than a fixed constant, this proves the lemma. Wo

have proved in fact the stronger result:

Lemma 2 a .

Let j£ • be a set of functions h(t), - oo < t < oo, such that je>

is a bounded subset of L and such that

lim \ | h(T)| dT = 0

t >A

formly in ^ •. Then, with the notations of Lemma 2,uni

jOO

T —T» =2 .!
T-*oo

- OO

uniformly for he^1 and s e sd .

Lemma 3.

Let 0 < a < b < oo and suppose that

H-{v |q(v) = a} = |J.{v|q(v) = b} = 0

Then

lim 4r Tr (Wm) = 2 \ q(v) dv

(i) lim ^N(QT, a, b) =|x{v|q(v)€ (a,b)}
T-^co

-17-



(ii) lim i[N(WT,a,b) - N(QT,a,b)] = 0
T-*oo

(iii) lim ^N(WT,a,b) =u{v|a»*(a,b)}
T-^co

Proof: The assertion (i) is given by the KMS theorem, and (iii) follows

from (i) and (ii), so it is sufficient to prove (ii) .

Since h has finite memory 6 ,

QT =PTHSH*PT =PTHPT +6SPT +8H*PT

=VPT+8HPT +6SPT +6H*PT +6]PT

P W P (15)
*T T + 6 T

If w > w > w > ... are the eigenvalues of WT +g and qx > q2 > q3 >-
1 — £• -5

are the eigenvalues of QT, then by Lemma 1,

It is evident that

w . > q.
l—i

lim i Tr (WT) = lim i Tr (WT +g)
T-oo T->oo

so that from Lemma 2 we obtain

-18-
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lim ±Tr(Q )= lim ^ Tr (WT +&) . (17)
T-*oo T-oo

3 n
From Eqs. 16 and 17 it follows [see Gallager , Lemma 8.5.3 J that

lim ^N(Q ,a,b)= lim ^ N(WT+6> a, b) . (18)
T-*co T-co

But evidently,

lim i N(W ,a, b) = lim ^ N(WT+fi, a, b) . (19)
T-co T-oo

Combining Eqs. 18 and 19 gives Part (ii) of the lemma.

The next two lemmas build on Lemmas 2 and 3. to give the results

needed for obtaining a limiting expression for the average mutual infor

mation for the class "U> .

Lemma 4.

Let he^ , and H be the corresponding operator as given by

Eq, 5 . Let Q , W then be given as in Eq. 7 and 8 and denote their

eigenvalues by q^T) > q2(T) > ... , and w^T) > w2(T) > ... , res

pectively. Let f be a continuous monotone increasing real-valued function

on the real numbers which satisfies f(0) = 0, f(x) > l^x in some neigh

borhood of 0 and |f(x) -f(y)| < k|x-y| for all x, yeR for some k<oo.

Then,

-19-



oo oo

(T))lim ±= V f(q.(T)) = lim j= S f(w {
T-co 2T £i X T-co £

i=l 1-1

r°° - 2-
= \ f(|h(v)| s(v)) dv

J-oo

Proof. For any e > 0, let

S(T,c)=^ £ fta^T))
{f(q.) > € }

where the summation is over all i for which f(q.,(T)) > e . From a

standard argument that involves bounding both the sums and the inte

gral from above and below by the integrals of simple functions and using

the KMS theorem, it follows that

where

lim S(T,€) = f f(|h(v)|2 s(v)) dv (20)
T-co JE

E£ ={v|f(|h(v)|2s(v) >€}

(This argument is given in detail in Ref. 8 for a special case, and the

extension is straightforward). One then has that

-20-



lim lim S(T,c) = lim ( f(|h(v) | 2s (v)) dv
e-*0 T-^co c-^0 * E

poo ^ 2
f(|h(v)| s(v)) dv

J-oo

since the conditions on f guarantee that f(|h(v) | s (v))c ^ . To get the

limit relation asserted in the Lemma requires some additional argument,

however.

First, since Q has finite trace, we have for all T > 0,

h I <^T> +h I qi(T> =Tr l*i <T>
q. > e q.<€
^1 1—

By an argument like the one indicated just above,

where

lim ± J q.(T) = f |h(v)|2S(v)dv
i

F£ ={v| |h(v)|2s(v) >€}.

By Lemma 2 ,

lim -— S q.(T) = J |h(v)| s(v)dv
T-*oo 4^ -co

-21-



(actually the left side equals the integral for all T ). Hence ,

Urn ± £ q.(T)

exists. Furthermore, since

|h(v)| s(v)dv = \ |h(v)| s(v) dv,
c-*u F -co

€

it follows that given arbitrary e > 0, for all sufficiently small *,

lim ± Y q^Di^.
T-*oo L-><

qi-'

Hence, by the conditions on f,

lim ^ \ f(q.(T)) <k€]L
T->oo ^

qi-e

for all sufficiently small € ; and finally

lim £ £ f(qi(T»<k.1
T^OO .. y.^

^q^i6

for all sufficiently small e . Then,

-22-
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oo

Tim" ± Y f(q.(T)) <155 S(T,€) + lim" •— S f(q (T))

i —

for any € > 0 ; hence by Eqs. 20 and 21

co
•oo

lim" ^ ) f(q.(T)) < f(|h(v)| s(v))dv +k6l
T—oo hi - oo

1=1

for arbitrary € > 0. But

oo

V € > 0lim —i Y f(q.(T)) > f f(|h(v)|2s(v)) dv
T+oo fi * JE

w i=l €

Hence,

lim r-jf )f(q.(T))= I f(|h(v)| 1(v)) dv
T-co hi X -co

i=l

The proof that

»oo

lim -^r.y f(w.(T)) = f f(|h(v)|2s(v))
T-wv* I—I - GOT-*oo t-; -oo

i=l

dv

is identical, if one uses the extension of the KMS theorem given by

Lemma 3 .
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Lemma 5.

Let %l {&) be the class of |h(v) | , h€ ^ , as defined in Section

3. Then it is a conditionally compact subset of L1. Let f be a real-

valued function satisfying the conditions imposed in Lemma 4. Since

Q , and W depend on h, we can define functions qT : £~+ R and

: ^->R by
WT

co

qT(h) =jf 7 f(qi(T)) (22)
i=l

and

oo

wT(h) =± £ f(w.(T)) ,
i=l

where q (T) and w.(T) are as defined in Lemma 4. Then,
i i

(i) lim q (h) = \ f(|h(v)| s(v)) dv
T->oo J-oo

uniformly for he ~&? .

(ii) lim (w (h) - qT(h)) = 0
T->oo

uniformly for h € ~fa .
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Joo ^ 2^
f(|h(v)| s(v))dv

T-*co -oo

uniformly for he "£ •

Proof: Clearly (iii) follows from (i) and (ii) .

We first prove (i). It is pointed out above that HSH is a con-

volution operator whose kernel has Fourier transform q(v) = |h(v)| s(v) .

Therefore Q , and consequently qT, may be regarded as a function of

|h(v)|2€^J-("^), and we sometimes write qT(|h(v)| ), although it is an

abuse of notation. Since it is already known from Lemma 4 that qT(h)

converges to the indicated limit, and since %l (V) is a conditionally

compact subset of L , it suffices to show (by the Arzela -Ascoli theorem)

that the family of functions {qT>, 0 < T < oo , each qT considered as

a mapping from H4 (& ) to R , is equicontinuous.

Let |Mv)|2, |h?(v)|2€^J-(£) and let T<oo . Define an Lj
1 £

function <p by

~<p{v) =mindh^v)! s(v), |h£(v) | t (v)}

Let (p{t) be the inverse Fourier transform of ?(v). Let $ be the con

volution operator on L defined by </>. Put $T = PT* PT» and denote

the (real, nonnegative) eigenvalues of $T by ^(T) > ^(T) > . . . .

The function q is defined for <p{t) through Eq. 22, even though <p may

not belong to 4.
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Then, for j = 1, 2, $_ < Q. „ so that <p.(T) 1 q, .(T), i = l,2,... ,
i J»i l J*1

where Q. „, is the operator defined by |h.(u>)| and q. .(T) are its
j» T J J» i

eigenvalues. Therefore, for j=l,2

|qT(|h.|2) -qT(?/s)|

T

oo

y f(q. .(T)) -f(*.(T))
i=l

oo

<| ^ | f(qjj:L(T)) -f(^(T))|
i=l

oo

i|£ \%im-v.m\
i=l

oo

k

T £ [qj,i(T) "*i(T)] =I '̂̂ j.T* -Tr<$T)]
i=l

[|h(v)|. s(v) -?(v)] dv
-oo

r°° I .- ,2< 2k I Mh^v)! - |h2(v)|
-oo

s (v) dv .

An application of the triangle inequality then gives

qT(l^| ) -qT(|n2| )
pOO I ^

<4k j Mh^v)! - |h2(v)|
*-oo '

<4kmax(s(v))||h12-h2||1

-26-
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so the family of functions q on ^W ( y>) is equicontinuous for 0 < T < oo.

To prove (ii) we recall that Q = ptWt+6PT and that therefore,

by Lemma 1, q.(T) < w.(T +6) for i = 1, 2, ... . Then

oo

wT(h) -qT(h)|
2T

[f(w.(T) -f(q.(T))]

i=l

oo

2T
Y [f(w.(T +6)) -f(q.(T))]
i=l

oo

2T
[f(w.(T + 6)) -f(w.(T))]

i=l

The first term on the right side of this inequality is dominated by

_k_
2T

oo

£ [w.(T +6) -q.(T)] =^ [Tr(WT +6) -Tr(QT>]
i=l

which converges to 0 uniformly over l& as T -*• oo by Lemma 2. The

second term obviously converges to 0 uniformly over l£ , so the lemma

is proved.

As a corollary to Lemma 5 we have :

Theorem 1

Let *y> be a collection of channels h with finite memory 6 , such
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that Q± (-&>) is a conditionally compact subset of L][. Let s(t) be a

covariance function belonging to ^ with Fourier transform 's (v). For

each T < co , he^ , let W be the self-adjoint positive semi-definite

operator

WT= PTHPTSPTH PT

with eigenvalues w (T) > w2(T) > .. . . Let N be a fbced positive

number. Then,

lim

T-^oo

1 V ( Wi(T)\ f00, (~ • lMv)l2s(v) \ „

i=l

uniformly over 4.

(23)

Proof: The function f(x) =log (1 +^) satisfies the conditions required

for Lemma 5 .

5. The Coding Theorem

In this section we use Theorem 1 of the previous section and the

results of [l] to prove that C{&) > C(-£> ) for an admissible class of

channels l£ . Let R < C(^) be fixed. Then it follows from Theorem 1

that there exists T < oo and stj such that

1

2(T + 6)

oo

g 1 +

i=l

w.(T)
> R (24)
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uniformly over -£> , where 6 < oo is the memory of -j£ and

w (T) > w (T) ... are the eigenvalues of the operator
1 ~" £•

WT =PTHPTSPTH*PT =(PTHPT)(PTSPT)(PTH"PT) .

Let {(p.\ l<i<oo} be a complete orthonormal basis in L2(T).

Relative to this basis the operators P HPT> PTSPT, and PTH PT

have a representation as infinite-dimensional matrices which we denote

by H , S , and H ' respectively. We note that HT is the transpose

of H and the collection ^ T of matrices HT form a conditionally com
pact set in the Hilbert-Schmidt norm. Furthermore, ST can be considered

to be the covariance matrix of an infinite-dimensional random Gaussian

vector, and the trace of S is less than or equal to 2T . Finally the

additive white noise z(t), - T < t < T , will have the representation

oo

z(t) = S z1 ^(t)
i=l

1 2where z , z , .. . are independent identically distributed Gaussian random

variables with zero mean and variance N.

Now consider the class of discrete, memoryless, infinite-dimen

sional Gaussian channels l£ = {HT> . The input vectors to these
1 2

channels are infinite-dimensional vectors x = (x , x , . .. ) and the output

y = (y »y »•• • ) corresponding to the channel HT and input x is given by
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y = HTx + x

where

2 12
z = (z , z ,...), and z , z , . . . are independent identically

distributed Gaussian random variables with zero mean and variance N

The n-extension of the channel H is defined in the usual manner so

that it carries an n-sequence of input vectors u = (x , . . . , x ) into an

n-sequence of output vectors v = (y , . . . , y ) with

v = Hm x.+z. i = 1, . .. , n
Ji Iii

where the z. are mutually independent. If x = (x , x ,...), we define

oo

2 V , i,2
xll = > x«z- I

i=l

and we impose the average input power constraint on an n-sequence

u = (x , . . . , x ) by requiring that

n

u||2 = y ||x.||2 <n(2T) =2nT .
i=l

We define the capacity C (l£ ) of the class & T of channels by the

formula
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• wa(T)
CT(^T)= sup inf \ £ tog(i+-i

ST«*T HT€^T i=l

where &/ is the set of all covariance matrices ST whose trace is

dominated by 2T and where w (T) > w2(T) . . . are the eigenvalues of

the matrix HT ST HT . From (24) it follows that

CT(4T) > (T +6)R. (25)

If C (^ ) denotes the supremum of the attainable rates for *V* T (for

a precise definition of CT see Ref. (1)) , then by Theorem 4 of Ref. (1)

have £_(;£„) > C-f-^) so that from Eq. 25 we obtainwe

CT(^T) > (T +6)R .

f (T+6)Rn ^ . 0
{e , € , n) codes for 3& „, withTherefore there exists ie' , € , nj codes lor >s> wren e -* 0

n x n

as n-*-oo .

Lemma 6.

If there exists a {e n, € , n} code for </> , then there
n 1

, (T+6)Rn , ' r ft
exists a \e , e , (T+6)n) code for & .

n

(T+6)Rn , ,
Proof. Let G = e , and let the code words and decoding sets for

4> T be ul =(xll' •••' "in*' ' **' UG =(XG1 XGn) and \' ''' ' BG
respectively. We have ||u.|| < 2nT for each i and
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PHT «Yi---'Y„>< BilUi> l£n

for all i =1, ... , n and all HT e-£?T . Here PR {A^} is the prob

ability that the event A occurs when the sequence u. is the input to the

channel H . We now proceed to construct a code for IP .

1 2
Corresponding to each vector x.. = (x.. , x.. , ... ) define the

function x..(t), - T < t < T by,

CO

V^ k
:..(t) = > x.. <p. (t) i = 1, . . . , G. j = 1, . . . , n
« /; !J k

k=l

Now for i = 1, . . . , G define the function u.(t), 0 < t < 2n (T+6 ) by

u.(t) = x..(t-T -2(j-l)(T+6) - 6) for 2(j-l)(T+6) + 6 < t < 2j(T+6) - 6

j = 1, . . . , n .

= 0 elsewhere.

Next define the functions u^t), ... , uG(t) on the interval

-n(T+6) < t < n(T+6) by ,

u.(t) = u. (t + n(T+6)) .

From the construction of the function u.(t) (see Fig. 1) and the fact that

"Uf has memory 6 it is evident that u,(t), . .. , u_(t) are the codewords
1 Km
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Theorem 2.

C(^) > C(^) .

Proof. Let R < C(&). Then by Lemma 6 there exists a T < co and

a sequence of {e* n, e , (T+6)n} codes for •&> with e -* 0 as
^ n ' • n.

n -* co . Therefore R < C (*£).

6. Weak Converse of the Coding Theorem.

In this section we will prove that C{*&) < C{&). • The usual

way of proving the weak converse to a coding theorem is the following:

One starts with a sequence of codes which yield an attainable rate R .

Then, a stochastic process is constructed from the codes with the

probability measures determined by the empirical distribution. Next

the logarithm of the number of codeword is essentially dominated by the

value of the mutual information determined by this stochastic process

and the channel. Finally it is shown that the rate of mutual information

is dominated by the channel capacity so that R is less than or equal to

the channel capacity. Unfortunately, in our case we cannot follow this

program completely, because the empirical distribution obtained in the

above manner gives rise to a non-stationary covariance function, whereas

the capacity was defined by taking the supremum over stationary covariance
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functions only, so that one cannot immediately assert that the rate of

mutual information corresponding to the empirical distribution is dom

inated by the capacity.

We now proceed to prove the converse in a sequence of steps.

(i) Suppose we are given a (G, —e, T) code for & i. e. , G distinct

functions xn(t), . .. , x_(t) defined on the interval [-T,T], satisfying
1 Cj

the power constraint

rT 2
\ x (t)dt < 2T

U rp ^

for all i, and G disjoint Borel subsets B , ..., B of the output space

of real-valued functions on [-T,T] such that

P^{y(t)eBC |x.(t)} < ~ e i =l, ...,G, Vhe^.
h l l — ^

Now let -y? f be a fixed finite subset of V> . Then it is clear that if

x. (t), n = 1, 2, ... is a sequence of continuous functions which con

verges to x. in L?(T) then

lim Ph{y(t)€B.C|x.n(t)} = Ph{y(t)€BjC|x.(t)}

for each helS? and hence the convergence is uniform over the finite

set -&> . Thus we can assume that there is a {G,e , T} code for -£> .

whose codewords, which we again denote by x_, ...» x , are continuous
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functions.

(ii) Next we construct a stochastic process £(t), -T < t < T from

the continuous codewords x., ..., x by :

P(£(tJ < a,, ... , £ (t ) < a } = -z: {number of codewords x.
l*v 1' — 1 n' — n G 1

such that x. (t.) < a., .. . , x. (t ) < a }
l 1 — 1 i n — n

for every finite subset {t , ... , t } C [ ~T, T] .

The £ process is extended to the interval [-T+6, T+6] by defining

|(t) = 0 for T < |t| < T + 6. Finally the £ process is extended to a

periodic process on the real line, with period 2 (T+6), as follows: we

regard § as a random function, i.e. , as a random variable whose

values are real-valued functions defined on the interval [-T+6, T+6] .

Let £ , n=0, + 1, + 2, ... be a sequence of independent random func-
n - -

tions each of them having the same distribution as the random function £ .

Now define the £ process on the line by (here co is an element of the

underlying probability space) ,

£(co,t) = £0(co)(t), - (T +6) < t < T + 6

|(co,t) = £ (co)(t-2n(T+6)) , (2n - l)(T+6) < t < (2n+l)(T+6)
n — "*"

n = 1, 2, 3

and
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£(oo,t) = £ (co)(t+ 2n(T+6)), - (2n-l)(T+6) > t > -(2n + l)(T + 6)
n ~~

n = -1, -2, ...

(iii) For convenience, let T = T + 6 . For each integer k > 1 let

k A Aix (t) be the process defined on the interval [-kT, kTJ by,

xk(t) = £{t), |t| < (k-l)T

= 0 , (k-l)T < |t| < kT ,

a a k k
and for each Te [-T,T] let x be the translations of the x process

defined on [-kT, kT] by,

xk(t) = xk(t-T) for |t-TJ < kT
T

= 0 elsewhere , see Fig. 2.

k A A iFinally for each positive integer n let z (t), t€ [-kT, kT] be the pro

cess defined by

n

k(t) = Y a1 xk (t) (26)
n Li Ti

i=0

/% i '^ u n
where t. = - T + — 2T and a = lex , . . . , a ) is a random vector,

in n

k
independent of the x process, and taking on values (1, 0, ... , 0),

(0, 1, 0, ... , 0), . .. , (0, 0, ... , 0, 1), each with probability —- . Thus
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k kz is the process obtained from x by n random, uniform shifts,
n

a k k k(iv) Now we let he-# be any fixed channel. If x (t), x^ (t), *n(t)

are the inputs to h, let the corresponding outputs (over the same

interval [ -kT, kT ]) be denoted by y (t) +n (t), yr (t) + n (t), wn(t)+n (t)
k irespectively. In these expressions n (t) denotes the additive white noise

/v A.

on the interval [-kT, kT] . It is important to note that since the channel

k k
in time-invariant, y (t) = y (t-T); also

T

'> =I "^

0 r»
where a = la , . .. , a ) is the same random vector as in Eq. 26.

n

k kFurthermore, with probability one, each of the processes x (t), x^ (t) ,
i

k k k-1
y (t) and y (t) have exactly N= (G) equiprobable sample functions;

i k k
whereas with probability 6ne, the processes z (t), w (t) have (n +l)N

equiprobable sample functions. In the following, when we refer to the

sample functions of these processes we mean those which have nonzero

probability.

k k k k
(v) Let the sample functions of x = x , x , . . . , x^ be

T0 1 n
i9v .... *N}, {%+1,..., *2N> ..., {?nN+r .. •, v+dn} resPectively-

k k k k
Similarly let the sample functions of y = y » YT »• • • » YT be

0 1 n

UV .... V> {W •••' *2N} {k"nN+l VW' resPectivelV-
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Finally let {<p .} i = 1, 2, .. . be an orthonormal set of functions
A a

which span the orthogonal complement in L [-kT,kT] of the space

spanned by {<?,..., <p. +nN)» and similarly let the orthonormal set
A A

{di ; i = 1, 2, ... } span the orthogonal complement in L [-kT,kT]
(n+l)N+i L

of the space spanned by {i|> , ... , *K +]vN} • Relative to these bases we

have the following representations:

oo

X (t) = X
T

(t) =y (xk).?.(t),
0 H,

i=l

oo

xk (t) =y (xk ). <p.(t) j =0, .. .,n,
i=l J

oo

zk(t) = y (zk) <p(t) ;
n £_j n l i

i=l

oo

yk(t) =yk (t) =y (yk).*.(t) ,
o f-'

1=1

oo

. k
i, • • • , n ,yr.(t) =y. ^T.^ ^ j =°'

3 i=i J

oo

wk(t) = V (wk) ik(t) ;
n l_, n l l

i=l
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and finally,

co

nk(t) =y (nk). i|i.(t)
i=l

Remark

In these representations, the coefficients of the basis functions

are random variables. For future reference, we note that with probability

one (xk ). = (yk ). = 0 for j 4 {iN +1, ..., (i +l)N> and (z k)j = (wk) =0
t. j t. j n n

11 k
for j 4 {1, ... , (n+l)N} . We also note that the random vectors ((n ) , ....

(n )(n+l)N) and ((n ^n+DN+1 } are indePendent«
Now we define

!(XT :yT + n ) = lim I((xt ) *.. . , (xt )^ ; (yT ^ + (n )y . . . ,
i i i-*-co i i i

(yT\ +<n\ )

and

I(z ; w + n ) = lim I ((z ),..., (z ) ; (w ) + (n ) ,
n n : n i n x. n l 1

i-*oo

(wnk), +<n\ )

where for finite-dimensional random vectors t, and r\ I(£;n) is the

average mutual information between £ and r\; thus I(£;n)=H(n) -H(n |£)
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where H is the entropy function.

Lemma 7

(a) For each 4 > (n +l)N

I« zk)r •••,(*n\ ; (wk)x+ (nk)r ..., (wk)^ +(n\ )

>1{{X\, ... , (xk)^ ; (yk)1+ (nk)r ... , (y\ +<nk). )

so that

(b) I(zk; wk+nk) > I(xk;yk+nk)
n n —

Proof. We first prove that

H<(w^ +(n\,.... (w ^)i +(nk)i )

n

>^i T H«yT\+ A *T.h +<n\> (27)
/-i i i
i=0

P{(Y^ \ +i*\ i ar ... , (yk ), +(nk)jg <a^ }
i i

P{(yk)! +(«\ 5ax <yk ) +(nk)(n+1)N 1 a(n+1)N.
i i (n+l)N

k k •»

(n ^n+DN+1 - a(n+l)N+l (n h - ai ]
(cont'd.)
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=P{(yk)x+ <A 1 «! ^t.WdN +A»+1)N - a(n+l)N> *
1 1

P{(nk)(n+1)N+1 - a(„+l)N+l' **•' A 1 ai >

by the remark preceding this lemma. Therefore,

H( (yk \ +A (yr Ji +A *
i i

=H((yTk )x +(n^. .... (yk ) +(nk) )
1 1

+H«nk)(n+1)N+1 A )* (28)

Similarly,

H((w k)x +{n\, .... (wk)^ +(n\ )

H((wk)1+ (n\,..., (wk)(n+1)N +An+1)N)

+H«°Vi)N+i-" A> (29)

Also,

P{(y k)]L +(nk)1 <ax , ... , <Y *)(n+1)N +<nk)(n+1)N <a(n+1)N>

(cont'd.)
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N

=h£ P{(n\ <V-'-f ^iN+j - aiN+j "l' '' *' (n V+DN

< a }- (n+l)NJ

because (yk). =0 for j4 {iN+1, ..., (i +l)N> and the process yT (t)

has exactly N equiprobable sample functions. Similarly,

P{(wk)1 +(*\ <ax , .... (wk)(n+1)N +(n )(n+1)N <*(n+1)N>

(n+l)N

(^p £ P{ A i al> •••' A 1^ -1. ... ,An+1)N - a(n+l)N}

n

=(nTi) XP{(yx. >1 +A ^ ^r.^n+DN +̂ (n+DN ^a(n+l)N}
i=0 1

From the concavity of the entropy function we therefore have

H((wk)1+ <n\ <A(n+l)N +An+DN*

n

^SFl I H((yx >1 +(nk)l (yr. W«N +'̂ (n+DN' •
i=0 *

Combining the above inequality with (28) and (29) we obtain (27) . Now

since the noise is additive we also have that
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H((Wn h+{n\' "" {Wnh +(n h (zk)l""'(zk)i)

H((n\, ... , (nk)^ )

H((yk)1+A (yk)i +A
i i

(xt )v . . . , (xt )t )
i i

Combining this result with Eq. 27 and using the fact that I(£;r|) =H(n) -H(n|£)

we see that

i«A (A •• <A+ A-—- <A+ A>

n

idi l^v
hL x
i=0

••»(xT )jL ; (yT )x +(n \»
i i

••<v>i+ A >

k k •But the processes x (t), x (t) are identical except for a translation.
T. ' T.

1 J
Furthermore the channel is time-invariant and n is stationary so that

I((xk)r ... , {x\ ; (y\+(nk)x , ... , (y1^ +(n^ )

=I((xk) , ..., (xk ) ; (yk ) +(nk)r ..., (y*), +[*\ )
iii i

and the lemma is proved.

(vi) Using a standard identity we have
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I((xk)1, ... , (xk)^ ; (y\ +(n\ .... (yk)jg +(nk)^ )

H((xk)r .. ., (x1^ ) -H((xk)1,... . , (xk) (y\ +(nk)r ..., (y\ +(n\)

log Gk_1 - H((x)k, .. . , (xk)
S.

{y\ +{*\> ..., (yk)i +{n\)

> (k-l)logG - (k-1) [€ logG + log 2]

k k-1since x has G equiprobable samples and since the error probability

is bounded by e (see Ref. 9, p. 187).

k k k k
(vii) We now obtain a lower bound for I((x ),..., (x ); (y )+ (n ) ,

k k k
.. . , (y ) + (n ) ). An examination of the construction of the x process

k
shows that the x process is obtained by transmitting a sequence (of

length (k-1)) of codewords each obtained independently and with uniform

probability so that

I((x )x , . .. , (x )i ; (y )x+ (n ^ .. . , (y )^ + (n )£)

=(k-lJIKx2^,.. ., (x2^ ; (y2)^ (n2)^ ... , (y2^ +(n2)^ )

= (k-l){H((x )l$ ... , (x )i)-H((x ),..., (x )j) 2 2
(Y )x+(n )y

(v\ +(A >

= (k-1) A, say.
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2
Now the x process consists of G equiprobable sample functions so

2 2
that H ((x ),..., (x ) ) = log G. An application of two results of

Fano (Ref. 9, p. 185, 187) shows that

H((x ),..., (x )^ (v\+ (n\, ..., (y )f + (n ). )

> e log G + log 2 so that

A > (1 -e) log G - log 2

and therefore

I((xk)r ..., (xk)^ ; (y\ +[n\, .. ., (y1^ +(n2)^ )

> (k-l){(l-€)logG -log2}

Combining the above inequality with Lemma 7 yields

I(zk; wk +nk) > (k-1) [(l-€) logG - log 2]
n n —

k -k
If the process z is replaced by a zero-mean Gaussian process z with

k — k k
the same covariance function as z and if w + n denotes the corres-

n n

ponding output of the channel h then (see Ref. 1 , Corrollary to Lemma 9)

I(zk; wk +nk) > (k-1) [(l-€)log G - log 2] (30)
n n —
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Let Zk(t,s) =E{(z*(t) - Ez*(t))(a£(s) - Ez*(s))} = E(z£(t) z£ (s))
n k k

be the covariance function of z , and similarly let X (t, s), X (t, s)

k k x
and U (t,s) be the covariance functions of x , x and £ respectively.

Then

1

X^t.s) = ^(t,s) for -(k-l)T < t, s < (k-l)T

A

= 0 for |t| > (k-l)T or |s| > (k-1) T

and

Xk (t, s) = X(t-T., s -T.).
T

i

C ons equently,

n

Zn(t'S) =ii I ^"V'-V
i=0

n

1 i ,> i '^
,. , X(t-- T, s -- T) .

n+1 l_j n n
i=0

k
Since X is piecewise continuous, the Z are a convergent sequence of

Riemann sums, and we may write

A A

Zk(t,S) = lim Zk(t,s) =\ f X(t-T, S-T)dT= \ fA& (t-T,S-T)dT
n-*oo 2T -T 2T -T
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-k
Thus if z denotes the zero-mean Gaussian process with covariance

k
function Z (t, s) we see from Eq. 30 that

I(zk, wk+nk) > (k-1) [(l-€) log G -log 2] (31)

k k - k
Here w + n is the output of the channel h due to the input z . Finally

from Eq. (3 1) we obtain

lim -j I(zk, wk +nk) > (l-€) log G-log 2 (32)
k-*oo

Now let u(t) be a zero-mean Gaussian process defined on the line and

with covariance function U(t,s) given by

A
,T

U(t,s) = -7T J a****-1"' s"T)dT-
2T V-T

A

We note that since ^ is doubly periodic with period 2T, U(t+T, s+t)

k
= U(t,s) so that U is stationary. Furthermore Z (t,s) = U(t,s) for

-(k-l)T < s,t < (k-l)T . Thus if v + n is the output process of the

channel h corresponding to the input v then

lim r- I(u ; v + n ) = lim — I(z ; w + n ) (33)
k-*"co k-*oo

k k k
where u , v and n are the restrictions of u, v and n to the interval

[-kT, kT] . But by the Appendix,
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lim -^ I(uk;vk +nk) = f log I 1+
k->co kT J-oo \

|h(v)|2s (v)
; dv (34)

N

where s (v) is the Fourier transform of s (t) = U(0, t) . Combining
u u.

this equality with Eq. (32) and (33) gives us (35).

roo / |h(v)|2s (v)\
I log 1+ - dv > £ [(1-6) log G -log 2] (35)
-oo V N j T

Taking the minimum of both sides over h€ £> we obtain

roo / |h(v)|2;(v)\
inf log 1+ dv > i- [(1-OlogG -log 2]

heg£ J-oo \ N / T

The left-hand side can be dominated by taking the supremum over all

s e t&L so that we get
u

C(£ ) > ~ [(l-c)logG -log 2] =-i— [(1-6) log G-log 2]
1 T T +6

We have therefore proved Lemma 8 :

Lemma 8.

If there exists a (G, 1/2 €, T) code for •£> then for every finite

subset ^ „ of ** t
f
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•ig-[(l-01og G-log 2] < C{-d£)

Theorem 3.

RT

Proof. Let R < C(-£) so that there is a sequence of (e , € , T )
n n

codes for "u» with T -+ oo and e -* 0. For each finite subset i/>
n n I

of V* we get

C(^f) > FT5 [a-2cn)RTn-log2]
n

Taking limits as n -*• oo this yields

C{6£) > R.

Taking the infimum over all finite subsets «£f of %e> this gives us

inf C(£,) > R

j£fc£ f "

It remains to show that

inf C{£ f) = C(£) . (36)
*fc £ f

Clearly, the left-hand side is not less than the right-hand side. Now
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since the set {h(v)|he *(/> } is a conditionally compact subset of- L ,

and since the Fourier transform is an isometry, the set {h(t)|h€ y? }

is a conditionally compact subset of L . Also if he^. then h(t) = 0,

|t| > 6, so that {h(t)|hej£?} is a conditionally compact subset of L

and therefore (h(v) |he j£ } is a conditionally compact subset of L ,

Hence given e > 0 there is a finite subset j£ f of > such that for

each he y& , there is an he jS such that

ll£-£,IL 5 € •fMco

Therefore for all s €

f log (1+
oo

|h(v)|2s(v)
N )* -r

oo (1 + |hJ2s(v))
log

N
CO

5S \ lMv)|2-|hf(v)|
' -OO '

s (v) dv

- € J S(V) dv < ^ € .
- N

-oo

1 2It follows that C(^*) < C(^) + - e which proves Eq. 36
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APPENDIX

In this appendix we prove Eq. (34). Recall that u(t) is a stationary

Gaussian process with zero-mean and covariance function s (t). v(t) + n(t)

k k k
is the output of the channel h corresponding to input u(t). u , v , n are

a a

the restrictions of the processes u, v, and n to the interval [-kT,kT].

Lemma.

k kwhere \7 > \- > . .. are the eigenvalues of the operator
1 — CU "—

AT =PTHPTSuPTH*P.

where

(i) T = kT

and

(ii) H and S are the operators defined by the kernels h and s
* ' u

respectively.

Proof. AT =HTSTHT" where HT = (PT HT PT) and ST =PTSuPT
Furthermore, S is a positive semi-definite self-adjoint compact

operator and hence can be expressed as S = SS where S is positive

u
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semi-definite, self-adjoint and compact. Thus A = A A where

A = H S. The operator AT = A A is also positive semi-definite,

self-adjoint and compact, and has the same eigenvalues as the operator

A . Therefore there is a complete orthonormal basis {6.}. of L (T)
T i i=l ^

a *
such that A_ = A A is defined by the kernal

Let

Then

co

6(t,r) = S \k6.(t)6.(T)
i=l

T|.(t) = -pzzr (A6)(t).

i

( \= 1 (a6..A6,) =-===-( 6, A*A6)
i j 1 J

= 6J. - the Kronecker delta; so that {n.}._, is also a complete ortho-
i 1. X~JL

normal basis of L (T). Finally, relative to these basis functions we
Cd

have the representations.

uk(t) =y (uk). a. (t)
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vk(t) =y ^.^(t)

nk(t) =y (nk). n. (t)

k k kwhere (u )., (v ). and (n ). are appropriate Gaussian random variables,

k k k
Furthermore the variance of (v ). is \. and variance of (n ). is N.

11 i

It is easy to check that with the various independance relations

I((u\, ... ,fr\ ; (yk)1 +(nk)r .. ., {y\ +(nk)i )

\k

•- i W1 +*r
i=l

and the lemma is proved.

Finally, combining this lemma with Theorem 1 establishes

Eq. (34) .
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