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I.  INTRODUCTION

In the past decade, quite a number of papers have been written on the
topic 6f sampled-data feedback systems with finite pulse width. It is the
purpose of this report to give a summary, roughly in chronological order, of i
the metﬁods presented by different researchers. In the appendix, an exten-
sion of Murphy's exact method (6] is proposed, and an example is worked out
and compared with the results. obtained b& using two éther ﬁethods.

The different methods fall into two categories:

(i) Exact methodsi
(ii) Approximate methods

The first category is further divided into two main branches:

(a) Transform methods

(b) state space approach
The transform method has been studied by Farmanfarma (1, 2, 3], Murphy [6],
Tsypkin [4], and Nishimura and Jury [5, 19, 20]. The state space approach was
investigated by Kalman and Bertram [7], Gilbert [8], and Tou [9]. Benneﬁt
and Desoer [10, ;l] have also written some papers on linear network analysis
using essentially the same approach.

Approximate methods were developed by Tou [12], Kranc [13], and Murphy
and Kennedy [14, 15], who used new transform methods, or the conventional
transform methods after decomposing the.finite-pulse-width sampler intp a

set of ideal (instantaneous) samplers.



II. DESCRIPTION OF THE SYSTEM

r(t) = e(t) \e*(t) cl(t)
t )Tg,l’[ g KG]_(S)
H(s)
r(t) = input signal

e(t) = error signal
e*(t) = sampled signal

cl(t) = output signal

KGl(s) = forward transfer function
H(s) = feedback transfer function

—-)S)- = sampler with period T and pulse width h
T,h

Transforming the above system,

T, o®) x )e*(t) El(s)H(s) O /aGe)

e, (6)

So, essentia.ily, the following system is studied:

r(t)_: e(t)/i) e*(tz ) c(t)

III. EXACT ANALYSIS
A. Transform Methods
1. More or less a pioneer in sampled data systems with finite pulse

width, Farmanfarme introduced a new transform, modified from the Laplace



transform, called the p-transform, where p stands for pulse width. Here,
considering the sampler as a finite-pulse-train uT(t) modulator instead of

an impulse-train dT(t) modulator, where

©

Sp(t) = §(t - xT)
k=0

up() = ) [t - 1) - u(s - FFF)]
k=0

with the Laplace transform as

1
(s) = —=—=
By 1. e Ts
_1l-e
UT(S) T s -Ts
l-e

The p-transform of a function £(t) will be

P [£(t) ]

]

£Le(t)uy(t) ]

F(s)*UT(s)

1 - e
Tv
)

1
B3 F(s - v)

= av
v(l - e

. While the z-transform of f£(t) is

]

T le(e)] = 2e(8)é(t) ]

F(s)*AT(s)

1
on3 F(s - v) —=—— av



Using the new transform, the oﬁen loop linear sampled data system was
analyzed in [1, 18] and extended to multiple-samplers and nonperiodic
systems in [2, 18]. Closed loop analysis [3, 18] was studied in a direct
way of attack by decomposing the sampler into an infinite set of identical
noninstantaneous samplers of pulse duration p, ea¢h-closing only once in
different intervals. The response of the system in the first sampling
interval is studied first by noting that this is a single loop, single
sampler system. The continuous output is called Co(s). Then in the second
interval, Co(s) is considered as an input other than R(s), so that the
system is again a single loop, single sampler system. The total output is
this output Cl(é) superimposed on Co(s) with suitable deiay. 'Similai pro-
cedures are taken for later intervals.

Due to the étraightforwardness of this analysis no restriction is
imposeq on this method. Initial conditions can be thought of as an extra
input to a system with zero initial conditions. KG(s) may have a discon- -
tinuous step response, in which case the response before and after the
closing and opening of the samplers must be distinguishéd.

But, at.the same time, it should be clear that the numerical calcu-
lation is extremely el#borate; aé indicated by the example at the end of
this paper.

2. In 1958, Tsypkin (4] presentéd an exact method to solve the séme

problem by'introducing the convolution integral:

s ) ey = [ Coles m - WECz, W

vwhere C(z, m) and E(z, m) are the modified z-transforms of the output and

error signals, and



Go(z, m = 1) =3,[G(s)e-uTs]

G(z; m - p) H<m
-uT
e Gz, L+m - p) n<p<l

So the problem of the finite-pulse-width sampler system can be solved
through investigating the ordinary z-transform and the modified z-transform,

and

E(z, m) = R(z, m) - C(z, m)

=R, m - [ G m - wete, W

= R(z, m) - LE(z, m)

where L is a Fredholm operator of the second type. Noting that the kernel
of L is degenerate, a solution thus exists and the problem can be solved.

3. 1In 1960, Nishimura [5, 19, 20] introduced the double z-transform, which
is a series summation (by applying the z-transform in the infinite Power series
form) of the "incremental responses.” This incremental response Acn(t) is
defined as the response of the system due to control error which enters

KG(s) during the (n + 1)st closure term, i.e., nT € © £ nT + h,

&,(8) = C,(s) - Rle Y(0")]

where Cn(s) = response of system to initial conditions and r(t) for

nl STsnT+h



R[cn'j(o-)] response of system caused by the storage of the system
before T = nT

nT

¢ %(07) = the 3% gerivative of the initial condition c(x) at T
and is further equated to
& (s) = W_(s) - Rlc_3(0")]
n m . n

response of system due to control error which originates

where wrn( s)

from the input supplied to the system during nT = Tt = nT + h

R[cn'j(0+)] = pesponse of system due to control error which originates
from the initial conditions of the system at T = nT"
and so
0
o(z) = z 2 _(2)
n=0

The response between sampling instants may also be obtained by using the

modified z-transform

o0

c(z, m) = Z z'nACn(z, m)

n=0

This summation process is defined by Nishimura by the symbol g’d[ 1, i.e.,

. 6(z) = %4160, (2)]

W and the overall procedure is called the "double z-transform.”
One of‘ the advantages of this method is that, because of the use of
the z-transform and the modified z-transform, it is possible to eliminate

*
the step of taking the inverse Laplace transform. Also, the response is

*
The labor involved in this step will be clear from the example in
Appendix II. .
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given in a closed form so that the final-value theorem can be directly
applied to find the steady-state condition, not only at the sampling in-
stants but also between them. This method was also extended to a 2-sampler
system and a simple open-loop multirate sampling system. Further extension
to finite pulse-clamped systems, closed loop multirate systems, and multi-
sampler systems are expected.

Due to.the use of the z-transform, this method is restricted to
periodic sampling systems.

L, Murphy [6] transformed the circuit from an error-sampled system
to a feedback-sampled system (still finite-pulse width), then transformed
the sampler into a set of ideal samplers followed by a transfer function.
KG(s) in this case may contain a time transport opera.toi eas’ the restriction
of o being discussed in the appendix.

The reason for this decomposition is that during a portion* of .thes;
sampling interval, the input to the loop is zero so that the state variables,
obtained by partial factorization of KG(s), vary as an exponential decay of
the initial states. Thus, the same response could be implemented by an
instantaneous .sampler (to get the initial sta‘bes.) followed by a transfer
function of the form k/s + p (to describe the decay).

In Murphy's paﬁer , KG(s) is assumed to possess only simple poles. The
extension to multiple poles is presented in the appendix.

Murphy's method is restricted to periodic single loop systems with
only one sampler of nonnegligible pulse width. In numerical computation,
the labor involved in this method is considerably less than Farmanfarma's

method, as indicated by the example in the appendix.

.
This procedure will be clarified in Appendix I.



B. State Space Approach
1. Kalman and Bertram [7] presented a unified approach to the

theory of sampling systems, including noninstantaneous sampling systems,

using the state space approach. Here, the important fact that

is ma&e use of, where ® is the transition matrix of the continuous dynamic
element (CDE); and the total response is the product of transition matrices
of the sampling element (SE), with or without a hold, the discrete dynamic
element (DDE) and CDE, taken in order.

This methdd is widely applicable, ranging from the most basic con~
ventional sampling systems, giving rise to stationary (i.e., time-invariant)
difference equations, to random sampling systems, giving rise to nonstationary
(time-varying) difference equations.

This method, and the state space approach in general, is the neatest
and simplest exapt method to soLve the present kind of problem; the least
amount of labor is involved éompared with the other methods menfioned above.
One drawback might be that the response at individual points in the sampling
interval must be calculated individually, unlike the mbdified z-transform,
which is a general expression of the response in the whole interval with m
as a variable parameter.

2. Gilbert [8] also gave o general systematic approach to the analysis
of linear periodic feedback systems by the use of the state vector repre-
sentation; this is especially suitable to cases of periodically varying
parameters such as gain constants, time constants, pulse duration, and
periodic variation. He introduced the terms "interval number" and "sampling

1]

number,” and presented a unified symbolic representation directly applicable



to differential analyzer setups. System response at multiples of the funda-
méntal period, obtained by z-transform methods, is presented in a concise
vector matrix notation.

Comments similar to those given above in section B.l are applicable
here.

3. Tou also wrote a section in his book [9] concerning the same kind
of problem, using the state space approach.

4. In Desoer's paper [10] on a linear network containing a periodically
operated switch he chose the voltages across‘the capacitors and the currents
through the inductors as the state variables. Dividing the period T into
two parts (i) when switch is open and (ii) when switéh is closed, Desoer
found a solution of the steady-state transmission as well as the transient
resp§nse of the network. He also solved the problem of discontinuity in the
state vector at switching instants by‘writing down the transition matrices.
So essentially his approach is the same as those of the other researchers
mentioned above.

Two years earlier Bennett [11] also wrote a paper on the same topic.

IV.  APPROXIMATE ANALYSIS

1. Tou [12] introduced a new transform calledvthe T-transform, de-
veloped through the use of the delayed z-tiansform. This is actualiy the
decomposition of the noninstantaneous sampler of duratién T into a set of n
identical samplers each with duration A such that nA = T. By adding the
individual outputs from the samplers, derived through the delayed z-trans-’
form, the total output is obtained. Applying the limit when A - O, and thus
n -+ o, the samplers become ideal samplers and so this total output tends to
the output from the pfactical sampler. The whble procedufe is known as the

T-transform,
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Due to the complexity of this T-transform, only exact open loop analysis
was developed. For closed loop analysis, the outputs of the samplers are
approximated by flat-topped pulses, leading to the equivalent ideal samplers
followed by transfer functions l—-:;-iﬁ representing the noninstantaneous
samplers, and thus conventional methods apply and the problem is solved.

2. Kranc [13] attacked the same problem by representing the finite-
pulse~-width sampler by a parallel set of n ldealized switches followed by
triangular holds. Then by solving a set of n + 1 linear simultaneous alge-
braic equations, the problem is solved.
| Incidentally, the same method can be used to find an exact solution to
multirate sampling systems.

3. Murphy [14] developed an approximate method for small h/T, in which
each pulse appearing at the output of the sampler was replaced with a rectan-
gular pulse of height equal to the height of the actual pulse midway between
the leading and trailing edges of that pulse. For large h/'l' , Murphy showed
that it is possible to transform the sampled data system into a continuous
system with the sampler replaced by an attenuator h/T with good approximation.

4. Murphy and Kennedy [15] also proposed an approximate method by
decomposing the noninstantaneous sampler into n’ samplers of pulse width T,
ntT = h, and then approximated the resulting samplers by equivalent ideal
samplers. Agein, solving a set of linear simultaneous equations, the problem
.is solved.

5. For small pulse duration, Desoer [16] also wrote a paper on "A
network containing a periodically operated switch solved by successive
approximations."

6. In a corresponding letter to IEEE, Mr. C. Y. Lee {171 approximated

the pulsed signel of width h by splitting it into 3 narrow pulses of width



h/3 each, then used Simpson's 3/8 rule to define the strength of this

pulse so that

e*(t) = ) [u(t - 1) - w(t - EEFH)
k=0

. [%e(kT)d-%e km+-§>+%e<km+§—-h>+-38=e(m+h)]

Taking the Laplace transform and using the approximation

Z <kT + 20 <RT+ 3. = z e(k'.!.‘)e-k"]:s =Es) «a=1,2,3
k=0 o }

the following is then obtained

3§ 5 ) 1)

From this, the noninstantaneous sampler could be represented by 4 ideal
samplers preceded and followed by the appropriate transfer functions.

In addition, Lee incorporated a nonlinearity in front of the sampler.
The stability of the sampled data system was then studied by the describing-
function method after the reduction into a multiloop ideal sampled data
system,

Obviously the epproximation is only good for small h/T ; otherwise the

delayed z-transform and the t-transform should be used.



V.  CONCLUSION

A summary of the work by past researchers on the topic of linear
sampled data feedback systems with finite pulse width has been given above.
It should be noted that all the methods, except those using the state space
approach, no matter whether exact or approximate, aim at essentially the
same goal: to propose a new transform method, or to reduce the non-
instantaneous sampler into some configufa.tion consisting of only ideal
samplers, and then to employ time-transport factors to bring all the samplers
into synchronism, so that the wealth of the z-transform may be utilized. In

passing, the authors would like to indicate that the state space approach in

some cases'is often preferred to the other methods.
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APPENDIX I

Discussion on Murphy's Exact Analysis [6]

1. Restriction of «

In Murphy's paper, equation (1) reads

N
c(s)H(s) = 5 Z 5 I.S(pk
k=1

without defining the limits of «.

Figures 2 and 3 in the peper are repeated here:

X
b, (t)
r (%) m<t) n(s)| LE-P 1
r(t) /S\ » &5 o : b@_’ 1/3(5) ‘————C(t)
X
5 [ on®)
bp('b) /S\SZ

l—g(5-PXT|_ |

cl)
Y ——>

~e (5R N‘;(T-Dl‘.
S Pl
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Claim: Murphy's analysis is only good for nonnegative .

Proof: In equation (5):

0 nTstsnT+h
x(t) = {y (5)
Z b (t) mT+hE < (n+ L)
k=1
Y
© nTst<nT+h
= { (6)
il pk(t-nT-h)
Zbk(n‘.l‘-l-h)e nT+hst<(n+1)T
k=1

.

The equality of (5) and (6) lies in the fact that bk(t) during nT + h s t <
(n + 1)T is an exponential decay of the initial condition bk(nT’+ h). But
this is only valid when there is no input n(t) during this period of time.
Obviously, during the same period, samplers S, and 82 in Fig. 2 are open

so that m(t) = 0. Now if « is nonnegative, n(t) will also be zero. There-
fore, the equality between (5) and (6) is valid. But, if « is negative,
n(t) will not be zero during a part of this period, e.g., if |x| < T, n(t)
will not be definitely zero till t = nT + h + |a|. So the equality of (5)

and (6) is invalidated and thus the whole analysis needs modification,
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2. Correction of equation (7)

Eq. (6):
(o nTSt<nT+h
x(t) = ¢
- N k(t-n'.r-h)
E: bk(nT + h)e nT+hst<(n+ 1)
k=1
N
pk(t-nT-h)
= }: b (nT + h)e [u (t - nT +h) - u_ (t - Efifrr)]
k=1

as compared to equation (7) in the paper

N

p, (t-nT-h)

) b(nT-f-h){ u_,(t - ¥ EH)
k=1
pk(t-EIT) pk('l'-h)
- e u_l(‘b -7+ IT)e ]
~. the transfer function in Fig. 3 is
-(2-n)s p,(2-h) -(s-p, )(2-h)
- e e - l-¢e

as in the paper.
3. Extension to multiple poles
Consider a G(s)H(s) with only one multiple pole and some other simple

poles, i.e.,

G(s)H(s) = [Z t'j-;—- + simple poles]
=
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D.fsregarding the simple poles (because the analysis is exactly the same as

before) and assuming nonnegative a,

N
G(s)H(s) = &° >_4 ——IEK—-;
k=1 (S - P)

Similar argument will give (see Fig. 2')

~

0] nT=t=nT+h
x(t) = { y
Z bk(t) nT + hst<(n+ 1)T
k=1
L .
(0 nTSt< nT +h
= <
N (t - TwF B~ p(t-nT+h)
Zbk(nT-fh) k-1 e nT +hst<(n+l)T
=1
.
N K1 »
= Z bk(n'l‘ + h) w-nT e [u_l('r) - u_l(t - T - h) J
k=1

where T =t - nT + h

The transfer function required will be

Tk" l

F4 ﬁi--_lr ep‘t[u_l(r) - u_l('t - T_-_Ti)]}

k-1 k-1
T T T T
“C'_k- 1): ep“-l("‘)]”“cl_k- 1)! epu-l(r‘a)}
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1
(s - p)*

ols 4zt k-1 ep(r+Aﬂ
(k - 1)! |

k-1

_ _=(s-p)a 1 k-1-j .J _ptT
= e £ k- 1)° k-lcj T A%e
§=0

The first term =

The second term

]

where k-lcj is a binomial coefficient

k-1
_ ~(s-p)a 1 k-1-3 J (k - 1 - j)!
= e k-7 k1% T A (s - p)E
J’:O P
k-1 .
_ o~(sp)n Z o’
. k=-j
(s -
2 3¥(s - p)
k-1 5
=  fTransfer function = —-—-J;—E - e-(s-p)A 2 A 3
- .' -
(s - ») L 3i(s - 9)
The equivalent block diagrams will be:
Fig. 2':
S -X0)
» 5-p '

j&\ + . S N : b (‘l:_)__>

—

Ve

Lo KN Vibylh)
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Fig. 3':
6,6 W sl I ehs e
K,
S-p b,&)
_/S : ’Qets ‘ _ '/H(s) —
+ K by,
(-p)N o )

X-1 a

: J
G( ) =._......].'._......._ e"(’S"P)A JA) —
RN J-ZQAJ'!-(S - )"

So, the analysis in the paper is again applicable because Fig. 3' has the

same configuration as Fig. 3 in the paper.

4. Extension to negative a with T - h> la| > h

Referring to Fig. 2 again,

(N
Zbk(t) nTStsnT+h
k=1
bp(t)=<
_ O nT +hst<(n+1)T
-
¥ P, (t-nT)
Z bk(n'l‘)e nT=t<nT+h
k=1
= ¢
o] nT + hst<(n+1)T

N t-nT
z bk(nT)epk( "’ )I:u_l(t - nr) - u_y (b - m)]
k=1

]
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So, the equivalent Fig. 3 is:

I-¢5hh IS —
N

K,
? S-pPy
+g— .
’/ig - *® : 544@0 ____
» KN
$—PN
[t I o N
L3P |
The. equivalent Fig. L4 is:
+
% bra— —» G(s) —
‘ K
Gf e zQ\‘ =,
e
Gy zk\ aly

S-Pnl

G _ 1 - e'(s-Pk>h
fk | S - Px

This block diagram is just a special case of Fig. 4 in the paper. So,
Murphy's analysis can again be applied.
This analysis is obviously also applicable to the case when

T-h>|a|] -mT>h, m=0,1, 2, ..., and can also be extended to the case

with multiple poles.
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The authors believe that, for a« outside this range, Murphy's method
cannot be applied, even with extension and modification of the block
diagrams, because in neither portion of the period is the input n(t) com-
pletely zero so that bk(t) would not be an exponential decay completely in

either portion, and transfer function representation is impossible.
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APPENDIX II
An Example
Step input
+ \ } _ 1
» /g/ > = KG(S) = 5
(s +1)
Th
H(s) = 1
ax =0
T=1
h =0.25

1. By Murphy's Method
As extended in Appendix I.3 the following equivalent block diagram

is obtained:

y) v |
—% T—* SR
Ge(s) |~ — (’s%r) z"l
where G,(s) = - 11)2 _ o~(s#1)(1-h) [(s :1)2 5 E‘: - 3]
Now
o(e) = Ryfe) L s - +11;2 — (o)1) 1)
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Multiplying both sides by ehs:

hs
hs - e 1 hs
e*°c(s) = R (s) TSI Gf(s)}[e c(s)]

Taking z-transform:

)
o) -3[3,0) — i’: —] +§[(s j;i; —] R

Transposing:

?[RP(S) (s + :.j‘: + 1]

2,[8 C(S)J - (2)
e ét(s +l) +1G (s):'
Substituting (2) in (1):
hs
- R (s) €
C(s) = R (s) 12 + e G (S) }[ P (s +1)°% + l]
P (s +1)" +1 (s+l)2-:~lf 1 (S)]
(s + 1) + 1 °
(3)
Taking z-transform:
) hs
R - R (s) £
C(Z) 2‘: (S) ] 3[ e h: Gf(s)] }[ P -(_§ + ;)2 + lJ
(s-l-l) +1 (s +1)+1 1 1 G(s)]
(s + l)2 +1 T




Numerical calculations

~hs
=xi-e - - b _
Rp(s) =3 T T=1, h=0.25 5 =0.25

. [ R (s) ] __2 < 0.081z + 0.005 5)
3 (s +1)%+1d 1-21\2. 0.397z + 0.13

-

[R (s) e | = L..( 0.026z° + 0.056z
2 Pls+ )2+ 1d 1-271\P - 03972 + 0.13

-(s+1)(T-
= —t— [1 - e-(s‘*'l)(T‘h)] _e :’;’i) b)

,3[ 1 Gf(s)] _ 2o.oluBz + 0.018
z° - 0.397z + 0.135

1 _ z° - 0.397z + 0.135
-]
(s +1)" +1

e _ __0.032z + 0.033
5[ Gf(s)] =3
z = 0.397z + 0.135

(T - n)
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1 10.082 + 0.005

1-21 2% - 0.3972 + 0.135

0.032z +0.033 ., __ 1  _0.0262° + 0.056z _ . z° - 0.397z + 0.135

2° - 1.3972 + 0.135 1 - z * 2% - 0.397z + 0.135 z° - 0.445z + 0.117

o 0.08932" - 0.004523 + 0.025722 + 0.0006z
2’ - 1.8h3zh +1.27223 - 0.535z° + 0.1222z - 0.016

0.0893z"F + 0.16122 + 0.209z"3 + 0.2282°% + .-

e(0) =0
e(1) = 0.0893

e(2) = 0.161

———"

c(3) = 0.209
c(l4) = 0.228

.

2. By Farmanfarma's Method

Equivalent block diagram

] Co(s)
Gr1)?
Cs)
\ G (s)
ISl //
I 4
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(i) For interval 0S¢t =T

Eo(d X\E T  Cols)
~ Gy C (s)
h

(i) Tst s or

T |
( E| l 103, .&(S)
RS + R, =)>-E:<%) -.ﬁ]*” oy 2 e MY ORI RO
-i T+h

Cols)

From equation (55) in Farmanfarma's paper [3]

Co(s) = {Po —ﬁ&%&g:’ KG(s) (5)

Ts Q
- [R -C
Cl(S) = e Ts (Poh {e @T (s) o(S))} Ka(s) 6)

1 + XG(s)

nTs gyeo
T [R(s) - Cy(s) - € (s) = === = C__(s)
o -7 g [ PRER O )
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Numerical calculations

n__R(s) |_pn1 1 (s +1)2
ﬁ)0 1_1 - PKGZSS_} 6)0 LS L 4 ——t 1 & {‘S[(S + 1)2 + l]}

(s +1)°
Now:
2 o o
(s +1) ki, 2 1 11
si(s +1)2+1] 25 E‘]-Es+°‘j B s+ o)
where
txl=l-j 5
roots of (s + 1)< + 1
O =1+

(?Oh : (Ss++li;.)2+ l)} &h(l 6)0)(8 + o ) O \s + o )

4 « ~h(s+x, ) o -h(s+a,)
11 -ns %2 1 14T, 2 1
=§-§(l-e >+h—3'{1-6 ]s+al'h;j[l © :ls-l-(xe
So
11l -hs 1
Cs) =3<(L-e >
() 25( s(s + 1)
o ~hx, -hs (4 -hx, -hs
+h—2../l-e Le > L -fr‘(l-e 2e ) < 5
TN (s + a))(s +1)2 ¥ (s + o,)(s + 1)



Now

1 - . R S 3
(s + cxl)(s + 1)2 s+ay s+ 1 (s + J.)2
1 _ 1 1 3
2 + - >
(s+ot2)(s+l) s+a, s+l (s + 1)
1 - 1 i 1
2 2
s(s + 1) s s+1 (s+1)
1 -hs\ {1 1 1
C(s)=—<l-e )[—- - ]
0 2 S s+ 1 (s + 1)2
+j‘_‘_g<_ mle-hs>l:_ 1 1,52 }
Lj s + 0y s+ 1 (s+l)2
% <1 i e'h‘"ze-hs> [_ 1 | :\
4] s ey s+l (::'.+l)2
Taking inverse Laplace transfomi
1 1.1 1.1 _1,1.075,1 -0.75
c(l)--z--ae -5e -5+5e +20.75e
«, , =&, =, _i  _g.75 ~0-25 ) )
+'E§-.-<-e lie l+el-eo'75e l+jel-jeo’750.75e
x - - - - -0.25x - _
_-?j.e2_'e2.’.el_.eo.7‘5e 2-jel+jO.75eO'75

-0

e

29

0250tl>

-0.250(2)
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by observing fl[cl(s)] at t = T is zero because the plant has continuous
step response.
Due to the extremely large number of terms in :C'l[cl(s)] , ¢(2) =

£ (s) + ¢ (s)] is not calculated.
° S P

¢(0) =0
e(1) = 0.09 |
) J
3. By Kalman's Method
x4 (t) x, (&) x, &)
+ | + l/s Vs
tle) — SE ? v

{-1)
—/
For KT <t =kT + h
r
x,(t) = 7(t) - x(t)
e A B
x2=-x2+x3=-x2-xl+r(t)
.
Xy -1 1 Xy (0]
= + r(t)
x2 -1 -1 X5 1
-1 1
Let A= ’

c(®)
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cos t sin t

- sin t cos t

as

eAtgc_(kT) +‘/.T eA(T-v) ° r(v)av
0 1

x(kT + 1)

g p— - _ 1 p— - o _ —1
xl(k'l"i"tﬂ eTcost e sint O xl(kT) -;‘ - % e ‘(sin T + cos T)
% (kT+t) | =|-e " sin T e Ccost Of|x,(kT) |+ L42Le(sin T - cos 1)

2 2 2 2
x.. (KT+t) e T eost -e “sint Of]x,(kT) 1,1 e T(sin T + cos T)
i 3 3 L2 2
- R(e) + £, ™
For kT + hst s (k+ 1)T
x5(t) = 0
i
X, = - %y
J.Cl -1 1 Xy
: -
X5 o -1|}| =%,
-1 1
Let B =
0 -1
e_t te-t
Bt
e =
-t
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_xl(kT+h+1:)_ _e-T te " o- rxl( k‘1‘+h)—
x,(kP+he) | = | 0 e’ 0 X, (KT+h)
_x3(k1‘+h+r)a -o 0 0 _x3(k'1‘+h)
= &(t)x(kT+h) (8)

Combining (7) and (8):

x(k + iT)

®(T - h)x(kT + h)

oT - h)B(n)x(kT) + &(T - b)s, (n) (9

Numerical calculations

e 075 0.75e'°'75 o_1 o.b72 0.35% 0O
o(T - h) =|0 e 0:75 ol=1o0 o.k72 0
0 0 0 0 0 0
_ - - -
2 -2 %% (sin 0.25 + cos 0.25) 0.027
_§l(h) = %’-4- !2‘- e 0:2 (sin 0.25 - cos 0.25) | = | 0.220
—é— +-§— e 925 (sin 0.25 + cos 0.25) 0.993
L. pus L p—
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¥(n) =

x,(0) =

x(17) =

x(27)

x(37)

x(L7) =

e-0.25

-e-0025

o~0:25

0 xa(O) =0

O(T - h)é.l(h) =

e-0.25

e-0.25

_e0-25

0.091
0.104

sin 0.25

cos 0.25

sin 0.25

T - n)o(n)x(1") + &T - h)s,(n)

0.154 |
0.140

-
0.185

0.1k40

[ 0.194 |

0.137

e(0) =0
e(l) =0
c(2) =0
c(3) =0

c(4) =0

*

.001
.15k
.185
.194

g e

x(1)

x(2") =

x(37) =

x(4%) =

0.755

-0.192

-0.755 -0.192

0.091

0.104

-0.15’4

0.140

-0.185_
0.1k0

0,194 |

0.140
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L. Comparison and comments on the results obtained by the three

different methods

Murphy's method Farmanfarma's Kalman's
c(0) = 0 c(0) =0 c(0) =0
c(1) = 0.089 , e(l) = 0.09 c(1) = 0.091
c(2) = 0.161 . c(2) = 0.154
e(3) = 0.209 ) e(3) = 0.185

. *

The résult obtained by Kalmen's method is most accurate because of least
numerical calculation. Murphy's result is not as accurate because the
numerical calculation involves too meny differences between small numbers
which lead to errors in final results. From the example it should be clear

that the state space approach is the neatest and simplest.
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