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Abstract

A class of realizations (termed uniform realizations) for time-

variable impulse response matrices is defined which plays a role

similar to that of minimal (completely controllable and observable)

realizations for time-invariant systems; members of the class have

bounded coefficients and are uniformly asymptotically stable if the

impulse response matrix represents a bounded-input bounded-output

(BIBO) stable system. The necessary and sufficient conditions for an

impulse response matrix to be uniformly realizable are derived together

with an explicit realization procedure. Conditions for a system to be

realizable as a passive network are also obtained and it is shown that

any BIBO stable, uniformly realizable impulse response matrix may be

synthesized as the transfer response of a passive network composed of

constant positive inductors and resistors and bounded time-variable

gyrators.
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I. INTRODUCTION

A basic synthesis problem for both time-invariant and time-

variable linear systems is that of constructing a system of differential

equations having a prescribed input-output response. One formulation

of this problem which has received a great deal of attention in recent

years [1-5] can be stated as follows:

Given an mxr matrix functions of two variables H(t, t) ,

find a set of stable equations in the form

x(t) = A(t)x + B(t) (t) (la)

y(t) = C(t)x(t) (lb)

where A, B, and C are, respectively, nxn, nxr and mxn

matrices for some finite n , for which H(t, t) is the impulse response

matrix; that is,

H(t,T) = C(t)$(t,r) B(t), t >t, (2)

where $(t, t) is the transition matrix of the homogeneous part of (la).

If (2) is satisfied, (1) is termed a realization of H .

The above problem is of importance for several reasons. Primar

ily, the state equations (1) yielded an immediate physical realization of

H in the form of an analog computer. Furthermore, as has recently

been shown for time-invariant systems [6-8] and as will be demonstrated

here for time-variable systems they provide a useful starting point for

network synthesis.

In the time-variable case, most previous research has centered

on the more formal aspects of the realizability problem, such as ques

tions of existence and minimality of a system of equations in the form

(1) for a given matrix H , and providing a description of the class of
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all possible realizations [1-5] . It is clear, however, that not all real

izations are equally useful if practical implementation of the system is

desired. Unfortunately, the usual procedures in general yield realiza

tions having unbounded coefficient matrices and internal stability proper

ties which in no way reflect the external stability properties characterized

by H (e. g. , bounded-input bounded-output (BIBO) stability [ 9] ). Con

sequently, these realizations are useless even for analog computer

simulation. In the time-invariant case, the problem does not arise,

since any time-invariant realization of the form (1) certainly has bounded

coefficients, and if the realization is minimal (completely controllable

and observable) one is assured that it is uniformly asymptotically stable

[ 9] (exponentially stable [10] ), if the impulse response matrix represents

a BIBO stable system. For this reason, minimal realizations play a

crucial role in the analysis and synthesis of time-invariant systems.

The difficulty in the time-variable case, is that minimality of

a realization alone does not imply anything about its boundedness or sta

bility properties. In this paper, a class of realizations which appears

to be more natural for synthesis is introduced. This class (termed the

class of uniform realizations), which is equivalent to the class of minimal

realizations in the time-invariant and periodic cases, is examined in

detail and a set of necessary and sufficient conditions for an impulse

response matrix to possess a realization in the class are derived, together

with a general realization procedure. A simpler alternative set of condi

tions and synthesis procedure are also given for the special case of per

iodic systems.

The problem of network synthesis is also examined. A sufficient

condition for an impulse response matrix to be the "impedance" of a

passive network is given and based on this result it is shown that any

BIBO stable uniformly realizable system can be synthesized as the

"transfer response" of a passive network composed of constant inductors

and resistors and bounded time-variable gyrators.
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II. PRELIMINARY DEFINITIONS

For convenience, the system representation (1) will be denoted by

the triple (A, B, C). Initially, we will be concerned with properties of

equivalent representations of a given realization (A, B,C). The following

definition of equivalence is standard [1] .

Definition 1: The representation (A, B,C) is algebraically equivalent to

(A, B, C) if there exists a nonsingular matrix T with continuous deriva-

tive T such that

A = (TA +T)T"\ B =TB, C =CT"1. (3a,b,c)
The above type of equivalence will be denoted symbolically as

(A,B,C) -1^ (A,B,C).
It is easily shown that if (A,B,C) and (A,B,C) are algebraically

equivalent, then they are realizations of the same impulse response

matrix, and it is clear that continuity of (A, B,C) implies that of (A,B,C),

and conversely. However, this type of equivalence does not preserve

internal stability (e. g. Lyapunov stability or exponential stability) or

boundedness of the coefficient matrices so that the following type of

equivalence [1] will be of more importance here.

Definition 2; The representation (A,B,C) is topologically equivalent to

(A, B,C) if (A, B", C) —• (A,B,C) and T is a Lyapunov transforma-
-1

tion [ 9] (i.e., T, T and T are continuous and bounded on (-ocvoo).

Definition 3; The system representation (A, B, C) is said to be bounded

if there exists a constant K such that

||A(t)||<K, ||B(t)|| < K, ||C(T)|| < K (4a,b,c)

where | | • | | denotes the Euclidian norm.

It is obvious from (3), that if T is a Lyapunov transformation,

then boundedness of (A, B,C) implies that of (A,B,C), and conversely,

and as is well known [9] , internal stability is invariant ander such a

transformation.
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The fundamental constraints we will impose on system realiza

tions, in addition to boundedness, are uniform complete controllability

and observability, concepts introduced by Kalman [11] . For bounded

realizations they may be defined as follows [11, 12]:

Definition 4: A bounded system realization (A,B,C) is said to be uniformly

completely controllable if there exists 6 > 0 such that for all t ,

M(t-6,t) ^^(6) I>0, (5)
where,

t

>6,t) = IM(t-6,t) = I $(t,T)B(T)B'(x) $'(t, T)dr. (6)

t-6

Definition 5: A bounded system realization (A, B, C) is said to be uniformly

completely observable if there exists 6>0 such that for all t ,

N(t,t+6) >«2(6)I>0 (7)
where,

t+6

N(t,t+6) =/ ^(T.tlC'fTjCfTjftfT.tJdT (8)

The above definitions are equivalent (for bounded realizations)

to Kalman's original definitions [11] , since if (4a) is satisfied, then [11]

||<j>(t,T)|| <ar3(|t-T |) (9)
and (4a)-(4c) imply [12]

M(t-6,t) < a4(6)I (10)

and

N(t,t+6) < *5(6)I (11)

The matrices M(t-6,t) and N(t, t+6) will be referred to as the

controllability and observability matrices of (A, B, C) and, when the

context is clear, their arguments will be suppressed.
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III. UNIFORM REALIZATIONS

The class of realizations proposed for synthesis is delineated by
Definition 6; (a) A system representation (A, B, C) is said to be uniform
If it is continuous2, bounded,and uniformly completely controllable and
observable, (b) If an impulse response matrix H can be realized by
a uniform system representation, it is said to be uniformly realizable.

The class of uniform realizations of an impulse response matrix
(when such exist) appears to be the most general for which time-variable
synthesis can be put on a systematic basis. In the time-invariant and
periodic cases it is equivalent to the class of minimal realizations [12]
and as indicated by the following theorem, proven in [12] , members of
this class are exponentially stable if the prescribed impulse response
matrix represents a BIBO stable system.

The°rem 1: K<A' B' C> is * uniform realization of an impulse response
matrix satisfying the BIBO stability constraint

t

/ ||H(t,T)| |dT <r^ <oo for all t
-oo

then there exist positive constants K and K such that
^ 3

||*(t,T)||<K2e-K3(t-T> fort>T .

Boundedness and stability may not be the only properties required
of a system one is trying to synthesize. It is quite possible that other
constraints, such as passivity, may be imposed. In the time-invariant
case, one procedure for handling additional constraints [6-8] is to start
with an arbitrary minimal realization and then generate (when possible)
equivalent realizations which possess the desired properties via constant
coordinate transformations. One is assured that all minimal realizations
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are considered by this procedure since the class of minimal time-

invariant realizations of an impulse response matrix is closed under

constant transformations. [ 1, 3]

A similar closure property is derived below for the class of

uniform realizations.

Theorem 2: (i) If (A,B,C) and (A,B, C) are uniform realizations of the

same impulse response matrix, then they are topologically equivalent

(ii) If (A,B,C) is a uniform realization of an impulse

response matrix H and (A,B,C) is topologically equivalent to (A,B,C)

then (A, B,C) is a uniform realization of H .

Proof; (i) It is clear that a uniform realization of an impulse response

matrix is also globally reduced in the sense of Youla [ 3] , so that any

two such realizations are algebraically equivalent. Let T represent

the transformation between the two realizations, let P be any matrix

such that M = PP1 , and let P = TP. If M is the controllability

matrix of (A, B, C) it is straightforward to show that,

M = TMT1 (12)

Consequently, M = PP1 . By our assumption of uniformity,

the matrices M, M, M and M are bounded which in turn implies

P, P, P and P are bounded. But since P= TP, it follows that T

and T are bounded. Continuity and boundedness of T follows from

the relationship

T = -TA+AT ,

and the continuity and boundedness of A and A. Thus, T is a

Lyapunov transformation.

(ii) The second part of the theorem follows directly the

relationships (3) and (12), and the dual of (12)

N= (T'VNT"1 . (13)

The following lemma and its corollary established in the appen

dix prove to be basic in constructing uniform and passive realizations

of an impulse response matrix.
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Lemma 1; If a symmetric matrix V is continuously differentiable

and positive definite on (-00,00), and if the maximum eigenvalue of

V V is bounded on (-00,00) then the matrix U U is continuous and
1/2

bounded on (-00,00), where U = V , the unique positive definite

square root of V .

Corollary 1; If V is a symmetric positive definite Lyapunov trans-
1/2

formation then U = V is also a Lyapunov transformation.

IV. CONDITIONS FOR UNIFORM REALIZABILITY

It is well known [1] that a matrix H(t, t) is realizable as a

system of the form (1) if and only if it is separable in the form

H(t, t) = iMt)©(r) , t > t . (14)

Corresponding to any such separation, is the realization (0,©,ijj) for

which we can define the controllability and observability matrices

t

M(t-6,t) = I ©(rJQMTjdT (15)

t-6

t+6

N(t,t+5) = I l|l»(TMl(T)dT • <16>
t

It is also useful to define the product of these two matrices

W(t, 6) = N(t,t+6) M(t-6,t) . (18)

It is apparent that an elementary realization of the form (0,0, \\i)

will rarely be uniform even when H is time-invariant. Of course,

this does not preclude the existence of algebraically equivalent
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realizations which are uniform. It can also be shown [13] that not all

realizable impulse response matrices possess uniform realizations.

Hence, it is of interest to determine precise conditions under which an

impulse response matrix is uniformly realizable. In [13] a sufficient

condition for uniform realizability of single-input single output systems

was obtained. A complete solution to the realizability problem is given

by

Theorem 3; H(t, t) is a uniformly realizable impulse response matrix

if and only if it is separable in the form (14), where y\t and © are

continuous matrices of finite order, and there exists 6 > 0 such that
3

for all t

(i) <rm {W(t, 6)) > Px(6) > 0

(ii) crM {®,<t)M~1(t-6ft)®(t)} <p2(6) <oo
(iii) o-M(i|i(t)M(t-6,tNj«(t)) < P3(6)< oo

(iv) <r {M"1(t-6,t)8/8t M(t-6,t)} < P (6)<oo

Proof (Sufficiency); Since \\i is continuous, N is finite on (-00,00)

so that (i) implies M > 0 on (-00, 00) (but not necessarily uniformly posi

tive definite). Hence, we may define the unique positive definite square

root of M, P = M . Let

A = -P"1!5, B = P"1®, C = i|jP.
It is now claimed that (A, B,C) is a uniform realization of H .

To prove this assertion, it is first noted that since M has a

continuous derivative (this is clear from (15)) then P must also have

a continuous derivative so that (A, B,C) is a continuous realization of H.

Since BB' is symmetric, (ii) implies BB' and, therefore, B is

bounded. Similarly, (iii) implies C is bounded. Furthermore, by

Lemma 1, (iv) implies A is bounded.

It remains to show that (A, B, C) is uniformly completely controllable

and observable. But, if M is the controllability matrix of (A, B, C) it
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follows from (12) that M = I so that the realization is certainly uniformly

completely controllable. Also, note that from (13) and (17), the observa

bility matrix N of (A,B,C) is given by N = PWP" . Since N is

symmetric and has the same eigenvalues as W , (i) implies the realiza

tion is uniformly completely observable. This completes the proof of

sufficiency.

(Necessity); Let (A, B, C) be a uniform realization of H , and let T

be a fundamental matrix for x = Ax , then (0,®1, ip) is an algebraically

equivalent representation of (A, B,C), where © = T B and i|i = CT.

Since (A,B,C) is uniform, there must exist a 6 > 0 such that the inequal

ities (4), (5), (7), (9), (11) and (12) are satisfied. It will be shown below

that this implies conditions (i)-(iv) are satisfied for the seperation

H(t,r) = ^(t)©(r).

(i) If M and N are the controllability and observability matrices

of (0,©,^), then it follows by (12) and (13) that W = NM = T'NMCT1)"*1.
Let P = M and note that the eigenvalues of (NP )P are equal to

1/2 1/2
thoce of P N P . It is clear by (5) and (7), however, that the eign-

values of the latter matrix, and consequently those of W , are uniformly

bounded away from zero.

(ii), (iii); To establish (ii) and (iii), it suffices to observe that

©•M"1© = B'M"^ and tyM& = CMC.
(iv) Consider first the relationship

a/at M(t-6,t) = B(t)B'(t) -^(t,t-6)B(t-8)B'(t-6)$,(t,t-6) (19)
+ A(t)M(t-6,t) + M(t-6,t) A'(t).

It follows the above and equations (4a, b), (9) and (10) that if (A,B, C)
»

is uniform then 3 /at M(t-6, t) = M is bounded. Using (12), it can also

be shown that M= T [-AM-MA'+m] '̂)" so that

i * i i*i

MM =T'[_-M AM-A'+M MJ(Tfr
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From (4a), (5), (10) and (19), however, the bracketed quantity in the

above equation is bounded. This in turn implies that the eigenvalues of

M M are bounded, which completes the proof.

The general synthesis procedure for obtaining uniform realiza

tions is apparent from the sufficiency proof of the above theorem, but

several clarifying comments can be made.

It should first be noted that it is not necessary to consider all

possible separations of the form (14). In fact, it suffices to consider

any globally reduced decomposition [ 3] ; that is, one in which the rows

of © and the columns of \\i are linearly independent on the real line

(such a decomposition can be obtained in a straightforward manner

from an arbitrary one [ 3] ). The reason for this is that if one globally

reduced decomposition satisfies the criteria (i)-(iv) in Theorem 3, then

all such decompositions must satisfy the criteria. This follows from

the fact [ 3] that if

H(t,r) = »|i(t)8(T) = ^(t)©(T)

and both decompositions are globally reduced, then there exists a con

stant nonsingular matrix K such that *\>(t) = 4»(t)K and ©(t) = K_1 ®(t)
One drawback of the above synthesis procedure should also be

pointed out; when the impulse response matrix possess periodic or time-

invariant realizations, the realizations obtained in the in the prrof of

Theorem 3 will not in general be periodic or time-invariant for the

corresponding case. However, an alternate procedure is available in

these cases. This procedure, which was first outlined in [14] , is
given in the following section.
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V. PERIODIC AND TIME-INVARIANT SYSTEMS

It was shown in [12] , that minimal periodic realizations (A,B, C

periodic with the same period) are necessarily uniform, so that the

synthesis problem in this case reduces to finding criteria under which an

impulse response matrix has a periodic realization. As would be expected,

these conditions are considerably simpler than those of Theorem 3.

From the known form of the transition matrix of a period sys

tem, and equation (2), it is clear that a necessary condition for H to

possess a periodic realization is that a constant s exist such that for

all t>T

H(t+s, t+s) = H(t, t) (19)

It will be established below, by construction of an explicit periodic

realization, that this condition together with (14) is also sufficient. 5

Theorem 4; H(t, t) is realizable by a continuous, periodic system of

the form (1) If and only if it is separable in the form (14), where iJj

and © are continuous matrices of finite order, and there exists a con

stant s such that (19) is satisfied for all t > t .

Proof: (Sufficiency) Without loss of generality it can be assumed that

(14) is a global decomposition, so that a finite interval A exists such that

Mi = 40(T)0,(T)dT and Ni =J^+'frMiOdT
are nonsingular matrices [ 3] . Let

M2 = J^(T-8)0»(T)dT and N2 =f i|i'(TH(T+s)dT

and observe that (14) and (19) together imply

^(t+s)©(r) = iKt)@(T-s) . (20)
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Then, if (20) is post-multiplied by ®!(t) and integrated with respect

to t over the interval A the relation

i|i(t+s) = tp(t)Tx (21)

is obtained, where T = MM is a unique real constant matrix.

Similarly,

@(t-s) = T2®(t), (22)

where T^ = N" N2 . Substituting (21) and {22) in (20), it is seen that
i|;(t) T ©(t) = i|i(t) T @(t) which in turn implies that N T M = N T M

1 2 r 111121
or, since N and M are nonsingular, T = T = T. Since the

-L Cm

rows of i|i(t) are linearly independent on (- oo, oo) the same must be

true of 4»(t+s) so that (21) implies T is nonsingular. Consequently,

T is positive definite so that there exists a unique, real, constant
2 2sA At

matrix A such that T = e . Let C(t) = i|i(t)e and
At

B(t) = e ©(t), then it follows easily from (21) and (22) that

C(t) = C(t+2s) and B(t) = B(t+2s). Hence, (A, B(t), C(t)) is a con

tinuous periodic (with period 2s) realization of H . This completes
the proof of the theorem.

The realization obtained in the above proof, in addition to being

uniform, is also canonical in the sense that it has a constant A-matrix.

As shown in [14] , this implies that the system can be synthesized

directly with passive RLC elements and periodic controlled sources.

A further advantage of the realization procedure is that when H(t, t)

represents a time-invariant system (H(t+s, t+s) = H(t, t) for all s

and for all t > t [ 1] ) the realization obtained will be time-invariant

(any choice of s leads to the same realization). Hence, we have an

alternate method to that of Youla [ 3] for realizing time-invariant

impulse response matrices. The present method has the computational

advantage of not requiring differentiation of ijj and ©.
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VI. PASSIVE REALIZATIONS

If u = i , an N-vector is the current entering an N-port net

work and y = v is the corresponding voltage vector then H(t, t)

will be termed an impedance matrix.

Definition 7; An N-port network is said to be passive if for zero initial

conditions at time t
0

r v'(T)i(r)dT > 0 , VtQ,Vt >tQt (23)

*o

In the time-invariant case, passivity is equivalent to positive

reality of the laplace transform of H . Recently [6,15] , algebraic

conditions for positive reality (passivity) have been given in terms of

the matrices A, B, and C (and the direct transmission matrix in the

more general case). It will now be shown that these conditions extend
4

quite simply to the time-variable case.

Lemma 2: H is the impedance matrix of a passive N-port if for any

realization (A, B, C) of H there exists a symmetric matrix K > 0

and a matrix L such that

-K + AK + KA' = -LL' (24)

and

CK = B' (25)

1/2
Proof: Let J = K and consider the realization defined by

(A, B,C) £_» (A, B,C) . It is straightforward to show that

A + A = -1Z« (26)

where L = J L , and

C = B» (27)
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Let x denote the state of (A, B, C), then it may be shown with

the aid of (26) and (27) that

dt
(x'x) = -x1 (LL«) x + 2 v' i

so that if x(tn) = 0,

2 I v«(T)i(T)dT = x'(t) x (t) + I x'(t) L(T)L«(T)x(T)dT

This relationship clearly implies (23), which completes the proof.

A procedure for synthesizing a passive network follows directly

from the representation (A,B,C) obtained in the above proof precisely

as in the time-invariant case. For example, we may use the technique

of Anderson and Brockett [18] by observing that an alternate represen

tation for (A, B, C) is

x = 1/2 (A-A1) x + B i - lA/2 L C

v = B'x

v*= - 1/V2 L*x

together with the constraint v' = -i^ . A network realization is then

obtained by terminating the time-variable (N + n + k)-port gyrator

(k = number of columns of L ) defined by

(N)

O

O

B

(k)

O

O

(n)

-B1

1/V2 L1

-1//2 L 1/2(A-A)'_

as follows: the last n ports are terminated in unit inductors, the

preceding k ports are terminated in unit resistors.

Corollary 2: If (A, B, C) is a bounded realization of an impulse response

-14-
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matrix H and there exists a symmetric matrix K with

a I < K(t)<a I for all t and a bounded matrix L such that
I ~~ 2 #

-K + AK + KA« = -LL»

and

CK = B»

then H can be realized as passive network composed of constant

inductors and resistors and bounded time-variable gyrators.

The proof of this corollary follows directly from Lemma 2 and
1/2

the realization given above together with the fact that J = K is

a Lyapunov transformation by Corollary 1.

It should be noted that time-variable gyrators are not merely

theoretical circuits; practical methods for constructing them have been

given (see, for example, [18] ). Previous synthesis methods employ

ing time-variable gyrators have not, however, guaranteed circuits

with bounded elements and internal stability (see, for example [17]

and [19]).

In the following lemma, an extension of passive network syn

thesis to include transfer responses is given. The technique employed

is believed to be novel even in the time-invariant case.

Lemma 3; If H has a bounded exponentially stable realization, then

it can be synthesized as the transfer response of a passive network

composed of constant inductors and capacitors and bounded time-

variable gyrators.

Proof; Let (A, B,C) be a bounded exponentially stable realization of

H with transition matrix $ , then it is easily shown that

V(t) = I #(t,T) <t>'(t,T)dT
- 00

is a positive definite Lyapunov transformation. Hence, by Corollary 1,

U = V is also a Lyapunov transformation. Consequently, if
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(A,B,C) - --•» (A, B,C), then (A, B, C) is bounded and exponentially

stable. Furthermore, A + A' = -V
-1

Consider now the augmented system

|y:

y

= Ax + [ B C ]

B1

c

u

It is clear that this system satisfies the hypothesis of Corollary 2 so

that it defines an (r+m)-port passive network composed of unit induc

tors and resistors and a bounded time-variable gyrator, where u rep

resents the current input to the first r ports; u* represents the current

input to the last in ports; y* represents the voltage output of the first

r ports; y represents the voltage output of the last m ports. Hence,

if the last m ports are open circuited the network realizes H as the

current - voltage transfer response from the first r ports to the last

m ports.

Finally, combining Theorems 1 and.3 and Lemma 3 we have

Theorem 5: If H is uniformly realizable and there exists a constant

K such that for all t

f ||H(t,T)||\lT <K
J
-oo

then it can be synthesized as the transfer response of a passive network

composed of constant inductors and resistors and bounded time-variable

gyrators.

If the hypothesis of Theorem 5 is satisfied, we can also give a

closed form expression for the network realization. By defining
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V(t) =lim M(s,t) = j QCtJQ'Ct) dT
s •••»- 00 J

-oo

1/2
and U = V it may be verified that (A, B, C), where

A = -U_1U, i = U_1® , C = 4;U t

is a uniform realization of H with the property that A + A! = -BB»

so that a passive network realization obtains directly as in the proof of
Lemma 3.
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APPENDIX

Proof of Lemma 1: Since V is positive definite, there must exist

an orthogonal matrix T such that V = TAT where A., is a

diagonal matrix with diagonal elements \.{t) > 0 on (-00,00). There-
i / ? 1 / 7

fore, U = V = T-A- T'. Continuity of U follows from that of

V since U = exp (1/2 inV) is an analytic function of V on (-00, 00).
-1 •

To show that U U is bounded requires a somewhat more com

plex argument. Let U U = D , and observe that

v_1v = U"2(UU + UU)
= D + U_1DU

If the above equation is multiplied on the left by TfU and on the right

by U T , it is seen that

T'U^VU^T = T'DT +.a} (T'DT^V"1'2 (28)

Let F = T'DT and G = T u'Vu" T, and let f. and g..
th l8 lJ

denote the ij elements of F and G, respectively. Then, it is clear

from (28) that

gij -%J+ (w1'2] • (29)
Since \.(t)> 0 for all te (-00, 00) and all i, (29) implies

fijft) £ gj-ft) for a11 t ' Hence, if G is bounded then F is bounded.
i

But G is symmetric and has eigenvalues equal to those of V~ V so

that G is bounded. Since T is orthoganal, boundedness of D

follows from that of F .

Proof of Corollary 1; If V is Lyapunov then V^V , and consequently
the maximum eigenvalue of V" V is bounded. Hence, by Lemma 1

-1* -1
U U is bounded. Since U and u" are bounded it follows that U

is bounded so that U is a Lyapunov transformation.
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Footnotes

1. If A and B are symmetric, A>B (A > B) means A-B is

positive (nonnegative) definite, £^(6) is a positive constant deter
mined solely by 6 , I denotes the identity matrix of appropriate

order, and • denotes matrix transposition.

2. Continuity is included in the definition for simplicity rather than

necessity, all of the results in the sequal hold,.with slight modifi

cation, for piecewise continuous systems.

3. ^tyi^} ant* °"vr^^ denote the minimum and maximunn eigen
values, respectively, of a matrix A .

4. Conditions for passivity of time-variable systems have also been

given recently by Rohrer [ 16], who considered the case when a non-

singular direct transmission matrix was present. Anderson [17]
has also considered this case.
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