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ABSTRACT

Recent developments in the theory of linear dynamical systems have
generated an interest in efficient ways for calculating the Jordan canonical
form of a matrix. The present paper presents a computational method for
finding the Jordan canonical form, based on three subprocedures, each of
which performs elementary row operations. The advantage of the method is
that it is simple to program and is computationally more efficient than

methods based on the computation of elementary divisors.
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Introduction

Among the recently raised questions in system theory are those of
controllability, observability, equivalence and the minimality of a system
representation. For dynamical systems represented by a set of linear
first order differential and algebraic equations, these questions are
closely related to the nature of the invariant subspaces of a certain
matrix entering the differential equations [4]. Since in order to construct
completely controllable or completely observable or equivalent subsystems
one must eventually obtain descriptions for these invariant subspaces (4],
there is a great deal of interest in efficient methods for constructing
the Jordan canonical form of a matrix.

This paper presents an algorithm for constructing Jordan forms which
is conceptually very simple and computationally quite efficient. The pro-
gramming of this algorithm is considerably expedited by the fact that it
consists of only three straightforward subprocedures. The method presented
is based on a derivation of the Jofdan canonical form given by Godement [1],

;whose proofs have been modified so as to reveal the exact computations one
must perform in the construction of a Jordan canonical form. Finally, it
might be of interest to point out that since the method presented performs
elementary row operations on matrices whose elements are numbers and not

polynomials, it is simpler and faster than the ones described in [2], [3].



I.

Nilpotent Transformations from Cn into Cn

Definition: Let T be a linear map fromcn intocn. T is said to be
nilpotent with index of nilpotency p if ™x = 0 for all x scn and
there is a x € (" such that L # 0.

Remark: All the eigenvalues of a nilpotent transformation must be zero,
since otherwise there would be an eigenvector e with eigenvalue A # O

such that The = A%e £ 0 for k = 0, 1, 2, ...

Lemma: Let T: C n _bcn be nilpotent with index p, and let

N; = (x: Tx = 0) be the null space of T with i = 0, 1, 2, ..., p.

Then,
frq i+l‘: qi 1L = O, l, LY p’l
and

{0} =}10Cf]lC)12C coe cqp-lcﬂp =On

is a strictly increasing sequence.

Proof: Let i be an integer in (0, 1, 2, ..., p-1}, let x € f| ;41> then

Tl+lx

0, i.e., Ti(Tx) = 0, and therefore Tx aﬂi. Thus Tﬂi-i-l C‘Y,i

0, l, 2, csey p-l, Which proves (h)o

Now if T'x = 0, then Tl+lx = 0, and her1c<e;1:.L+:L D‘ni for 1 =0, 1, 2, ...,

for i

p-1. Suppose therefore that for some i in {0, 1, 2, ..., p-1], n 441 = n i

Then, for any x € cn
Px = 0 = - (P i 1y)
Thus for any x ¢ (", LA €] 4ps UL AT W, =1, we must have

P i) = P - o
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for all x € On which contradicts the assumption that p is the index

of nilpotency. |

Lemma: Let T and ']i, i=1l,2, «.., P~1, be defined as in lemma (3).
Let m be a linear subspace of Cn such that for some i £ {1, 2, ...,
p-1}, m n ’]i = (0}. Then (T 1‘/() n ni-l = {0} and T is nonsingular on .
Proof: Let x ¢ (TM) N ], , be arbitrary. Then there exists ay e /8
such that Ty = x and Ti-l('l‘y) = 0. Hence y ¢ #{n V!i and therefore

y = 0, so that x = 0. We therefore conclude that (T #{) n v,i-l = {0}.
Now suppose there is a y € m » ¥ # 0 such that Ty = O. Then Tiy = 0.
also and y € mﬂ ﬂi. But then y = O which contradicts our assumption
that y # 0, and hence T is nonsingular on /.

Lemma: Let T and ‘y‘i, i=1,2, «.., P-1, be defined as in lemma (3).

n
Then there exist subspaces 14{1, ’mz, cssy WP of c such that

H; = Wiy @ W!i for i =1, 2, cvuy B

and, for i =2, 3, 4, .ees P, T maps 'W{i into mi-l one-to-one.
Proof: Suppose that for any i € {2, 3, ..., P}, we have found a sub-

space |, such that
ﬂi = "1-1 @ Mi
Obviously 111_1 n Wli = {0}
and hence, by lemma (8),
ooz Hy =

and T maps Mi onto T mi one-to-one.

The symbol @ denotes the direct sum operation.
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Now, since mj c 'Ili, it follows from lemma (3) that T mi c 7’1_1;
it also follows from lemma (3) that "i—z c ”i-l" Let @i-l be the

orthogonal complement of T mi ® 7'1_2 (which is well defined because

of (14)) in 1|, ), i.e.,

01-1 ®@ (M, & 1, - L

i

Now let
Mooy = 030 @ T
Then, T maps mi into mi—l one-to-one, and because of (15),

Nia= N2 @ M;.

hence, mi-l satisfies the postulates of the lemma. Now, let ﬂ/(p be
the orthogonal complement of np-l in np = c B Then (15) and (16)
define the subspaces 'Mp-l’ mp-a’ ooy ml uniquely and they satisfy
the conditions of the lemma. This completes our proof.

Theorem: If T: c ., On is a linear, nilpotent transformation, with
index of nilpotency p, then there exists a basis in Cn with respect

to which T has a representation
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Proof: With | i-’Mi defined as in lemmas (3), (8) and (9), we find

Mo = {ol
n =M @ ﬂo=Wl1
qzzma@ Yll:Me@wh

® 06860 500G OO NNESSEEELNEELESIEGESLIOIBOEDNOIOEOOSESOGEROEBSTOSIOTOSE

np =,Mp @ qp-l -—,-Mp @ Mp-l @ Mp—Q @ .- Wll
and 'Ilp=cn. |

Now, by the proof of lemma (9), we may take m p to be Op the orthogonal

complement of np-l'in qp'

Let . ‘be a basis for and let
gp,l’ P,2’ g ep,kp MP > F’p-l,l’

gp-l,2" coey Ep-l’kp-l be a basis for O’p_l, the orthogonal complement

of TH, @ f,in Y|,q- Then, by lemma (9),

Mo =W, @0 pa

-1
basis for mP-l° Continuing this construction, we obtain the following

result. For i =1, 2, ..., p-1, let £

-i,1? gp-i,2’ tee2 p—i,kp_i

be a basis for O’P_i, the orthogonal complement of T”{p-i £ ® "p-i-l

in np-i then the resultant bases for mp’ mp-l’ cees '}'l/(l are



s

Wlp: Ep,l, gp’ab ¢ees gp’kp

mp‘l: Tf,p’l, sev ey Tgp,kp’ &p_l’l, seey ap"l,konl

-

2 2
mp-zc T gp,l, es ey T gp’kp’ Tgp—l,l’ s 0oy Tgp-l,k rY gp—2,l’ seey 69_2,}{70-

22 4 -
4 . .p-1 p-1 p-2 -2
ml—mlo Tp gp,l L ] T gp’kl)’ IP gp—l’l’ o0y Tp gp-l’kp-l,
\

) erv ey gl,l’ gl’a, oo gl,k

sk 1

P-3 e, T3
gp-2,l’ . ? I gp-2 -2

Now, proceeding in the array (22) from bottom to top and from left to

right, we make the following substitutions:

~

= -1 : = -2 . =
Cl - Tp gp’l, Cg Tp gp,l, oeoy Cp Ep,l

‘ :
-1 -2
c = % 5 ¢ =P g g =¢&
k -1 k ? k ~1)p+2
R PR CIS b Pk, ke " opi

— -2 . . =
2 Ok p+l ? p-1,1% *:°3 Ckp(p+1)-1 81,1

cesee U

{?n—k - &1’15 Cn-k

. = 1,05 03 6 =8 -

1

Note that each vector cp,i (i=1,2, ..., kp) is in 751,but not in
7zp-l5 for this reason it is called a generalized eigenvector of order p.
To each such generalized eigenvector corresponds a chain of p basis
vectors; to each such chain corresponds (in the Jordan form) a Jordan

block of order p. Similarly, for a generalized eigenvector of order k,

2
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say €k 12 corresponds a chain of k basis vectors and a Jordan block of
S

order k (k =2, 3, +..5 D).

Then, by inspection, C;l, L:2, ewey cn is the desired basis. This

completes our proof.

Arbitrary Transformations from Cn into C/n

We shall now give without proof the remaining theorems which are
necessary to establish the existence of the Jordan canonical form for
a matrix.

Lemma: Let T: cn - C" ve a linear transformation and let
ﬂi = {xlTi x =0} fori=0,1, 2, .... Then there exists a positive

integer p £ n such that

OY=fo= =M= H,

is a strictly monotonic sequence and
o= . for all i 2
e ™ s i

i, e., V]p is invariant under T.

Furthermore, the dimension of f]p is equal to the multiplicity of zero
as a root of the characteristic polynomial of T. |

Definition: Let T: C,n - cn be a linear transformation and let p
satisfy the conditions of lemma (24). We shall call the subspace ‘r]p,

the generalized null space of T.

Lemma: Let T: Cn - C/n be a linear transformation; let its distinct
eigenvalues be Al,')\a, ...,‘)\s, (s $n). Fori=1,2, .:., 5, let

Y‘Ii)i be the generalized mull spacc of (T - )\iI), where I is the identity
operator, then,



29

30

31

32

1 2
Co=Hp, @ 1y, @ - o1

s
Theorem: Let T: C;Il-* CLn be a linear transformation, let its distinct
eigenvalues be Al’ A2’ cees As (s = n), and their respective multi-
plicity as roots of the characteristic equation is m., 1=1, 2, cauy s,
Then there exists a basis in C}l with respect to which T has a

representation of the form

_ ,
g 0 o |
o e 90080 O
o 3, .
O ’ O e 9O 0ODOGOD J
h— S—

where, for 1 =1, 2, ...y S, Ji is a m; X m, matrix of the form

i 1
9 Ai . 62 L I 3 ?
* dm.-l
L] l

O 00 C0sOOSQEOO0OC A.

With dj =00rlf01‘j =l, 2, eeey mi"lo

Proof: For i =1, 2, ..., S, let n ; be the generalized null space
i ' .

of (T - AiI). Then, by lemma (24) the m, dimensional subspace n ;

is invariant under (T - AiI) and hence also under T, therefore the

restrictions of these operators to 1]; are well defined. Now, let
i



9

N i
(T - )siI)i be the restriction of (T AiI) to q B’ Then (T AiI)i
is nilpotent with index p; and according to theorem (18) there exists
a2 basis in ﬂ ; with respect to which (T - AiI)i has a representation
i

(o]
O
o-
O

o
o
(=3
°

(e}

33 N, =

Q oo
(@
o
[« " WA )

i-1°

But then, with respect to the same basis, Ti’ the restriction of T

where N, is a m, X m, matrix and 63 =0Qor 1l for j=1,2, cos, M,

to ﬂ; has a representation
i

>
(=7
(@]
o
[ ]

(@]

o
>
O
o
o

34 J

[}

Qoeevecsce
Cr o000 00ee

i-1

(@]
(o]
o
>

i
The existence of the representation (31) now follows from (29) and
(34). This completes the proof.
We shall now show how the above indicated calculations can be
mechanized.

III. Three Basic Procedures

We begin by describing three elementary procedures from which we

shall build up the algorithm for constructing Jordan canonical forms.
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(P1) Procedure for Computing a Basis for the Subspace {xle = 0} of (Z,n

35

36

Let A be 2 n X n matrix of rank m with real or complex components

(it may have any number of zero rows). Consider the subspace
L = {x|Ax = 0}

and let D by any n X n nonsingular matrix. Then x € L if and only if
DAx = O, We make use of this fact in the construction of a basis for
L. For i, je (1,2, ...y n}. Let Uij be a n X n matrix which is
obtained from the n X n identity matrix by interchanging the izﬁ and
jzh rows., For i, j £ {1, 2, ..., n} let Vij(a) be a n X n matrix which
is obtained from the n X n identity matrix by adding a« times the iEQ
.th .
row to the j= row, and for i ¢ {1, 2, ..., n} let Wi(B) be anxn

natrix obteined from the n X n identity matrix by multiplying the i-gl

row by B, with B # O. Thus,

0 0] 0. e o 1 0] i
0] 0] O, ...0 0

Yis = | :
0O 1L 0....0 0O 3
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!
B o<:)...oo o |
01<:)...oo 0
OOZ:L...OO o| i
Viglad =4 :
0 O(If...l o o 3
ooc:>...01 0
0 0(:)...001
_ | i

Wi(3)= 0 0 0o B...0 O} i

The matrices Uij R ViJ.(a) R Wi(B) are nonsingular. By inspection, the
premultiplication of A with any one of them will perform the corre-
sponding elementary row operation (i.e., the one which was performed
on the identity mé.trix). Hence, if A is a n x n matrix obtained from
A by means of elementary row opezfations » l.e., by successive left
multiplication by matrices Us 4 Vij(u), W.(B), then x satisfies Ax =0
if and only if Ax = O.

To obtain a basis for L proceed as follows.
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Step 1: Use elementary row operations to obtain from A an upper

triangular matrix Z

- -

a1 Ho vt By
0 PO

3= . 22 .2n
0 0 ...a

nm

Step 2: Let i € {1, 2, ..., n} be the smallest integer such that

~ ~ . .th . th

= = — o+ e
a;; = 0. If a‘i+l,i+l 0, interchange the i— and (i+l)=— rows to
make the element ai,i - 0. Ir a; +1,1+1 # 0, subtract a multiple of
the (i'i-l)ﬂ row from the il row to make 3, 0. Proceed in a

i,i+l

similar fashion to make the rest of the i—tfb' row zero, with A remaining
upper triangular.

Step 3. Let j be the first integer greater than i such that ;jj =0
after step 2 has been completed. Proceed as in step 2 to make the ,jyl
row zero.

Step 4: Continue the procedure implied by steps 2 and 3 to obtain a
triangular matrix A with the maximum number of (n - m) zero rows.

Note that the m nonzero rows are now linearly independent.

Step 5. Contract: the matrix A by deleting the zero rows to produce an
m X n rectangular matrix Kc. Let K< {1, 2, ..., n} be the index set
characterized by i € K if ';'ii # 0 in A after step 1!- is completed, and
let 'Ei be the i column of 'i{c. Then, by inspection, the m columns

c. i g K are linearly independent and form a m X m matrix. Now,

1

x € L if and only if
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Rearrange the components of x and the columns of Xc in such a way

that (39) becomes
~. ~y -
ACx_L + Acx2 o

where A(': is a m X m square matrix whose columns are cso i € K, while
A; is am X (n-m) rectangular matrix whose columns are [aci} i € K, the

complement of K in {1, 2, ..., n}. Then, from (40),

'~ ’ -l ~
- - 1 ",

= (Ac> A¥o
which is best. computed by back substitution in (hO).
NOW, for i = l’ 2, oeay n-m, let XZi = (O, O’ cs ey 0, l, O, .-.0) ioeo,

.th . . n-m . .

the i— unit vector in c and let x5 be the corresponding solution
of (41). Then the vectors (xli’ x2i)’ i=12, ..., n-m, are a

basis for L. (The components must be rearranged again, of course.)

Procedure for Computing a Basis for the Orthogonal Complement of the

Subspace. {x|Ax = 0} in the Subspace (x|Bx = 0}

Let A be a n X n matrix of rank m and let B be a n X n matrix
of rank £, with the components of A, B real or complex. Suppose that

the subspace

N, = (xlax = 0)
is contained in the subspace
:/l/B = {x|Bx = 0}

Then £ £ m. Note that there is no restriction on the number of zero

rows in A or B and hence B may be the zero matrix, i.e.,/B = Cn,



)

45

(P3)

16

W7

14

To obtain the orthogonal complement of Ll in L2 proceed as follows.

Step 1. Use the procedure (P1) to compute the m X n matrix Kc. Then,

~ ¥ ) . nt
the columns of (AC) span the orthogonal complement of L, in O .
~ * 3 - .
Step 2. Let C = B(Ac) , i.e., C is a n X m matrix of rank £ S m. Let

M be the m - £ dimensional subspace of cm dfined by
m
M=(ye C IcCy=0

Then the orthogonal complement, (¥ , of L, in L, is obviously given by

2
0’={XECn|x=(KC)*y,ysM}

Use procedure (P1) (modified trivially to account for the fact that C

is not square) to construct a basis for the m - £ dimensional subspace

M, say yl, y2, cooy ym-ﬁ,’ Now compute a basis for O’ Xys X5 eees xm_z,
~ %

according to the formula x, = (Ac) yi» for i =1, 2, ..o, m-2.

Procedure for Computing a Basis for the Orthogonal Complement of the

%ot vi} in the Subspace {x|Bx = 0}

Subspace {x|x

Let B be a n X n matrix of rank £ and let v,, V5 ..o V_be a
1° 2 2 'm

set of linearly independent vectors in the subspace
.T..2 = (x|Bx = 0}

Let Ll be the subspace defined by

_ m
Ll ={x|x= 2 cxl vi, (xl € Cl} A
i=

To obtain the orthogonal complement of Ll in L2 proceed a5 follows.

Step 1. TForm a m X n matrix V whose 3’.:('—}3 row is v, Use procedure (PL)

to compute a basis for the complex conjugatc of the orthogonal comple-

ment of Ll’ i.e., for thec subspace

¥ The symbol ¥ denotes the complex conjugate transpose.
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{x|vx = 0)

Call this basis Wis Vs eees Ve Let W be a (n-m) X n matrix whose

iﬂl- row is Vis then an alternate description for Ll is
Ll = {x|Wx = 0)

Step 2. Use procedure (P2) to find a basis for the orthogonal comple-

ment of Ll (49) in L2.

Algorithm: Jordan Canonical form for Nilpotent Operators from C/n

into C .

Let T: Cn - Cn be a nilpotent linear operator for which we
have a representation with respect to some basis in the form of a matrix,
say A. To compute the basis established in theorem (18) (see (22)) pro-
ceed as follows.

Step 1. Compute A2, A5, ..., AP™L (where AP = 0).

Step 2. Use procedure (Pl) to find bases for the null spaces
s = x|alx =0} 1 =1, 2, vees p-1. Call these vectors 1'(,il,
niz’ cees ’Liz.’ respectively.

Step 3. Use proc:dure (P2) to find a basis for 71'[ " the orthogonal

complement of np-l in an‘ Then ﬂt p = O/p' Call the basis con-

structed gp,l’ Ep,a, ceey &P’kp.

Step 4. (i) Compute the vectors A‘Ep,l’ cees Aﬁp,kp’ Then

Agp,l’ csey A&P’kp, ﬂrp-Z,l’ ﬂ/p_a,g, ceey np_e’kp-e are a ba.SiS for

T”lp ® Np-2: ‘

(ii) Use procedure (P3) to compute a basis for 0/p the orthogonal

...]_’

complement of T mp ® Np-2 in rlp-l' Call this basis § ) 1,
2

veos & . The
E'p-l,;’b » “p-1, ol n



16

e e 0 A o e 0
Agp,l’ Ag ,2, 3 Ep’kp’ gp-l,l’ Ep_l,e’ H Ep'-l’kp_l

is the required basis for ”L p-1°
Step 5. Continue the construction of the vectors in (22) using the
procedure (P3) in the manner indicated above until the entire basis

is obtained.

Example: Consider the nilpotent matrix A given below.

1 o -1 o0 o o 0 0 0 0

The index of nilpotency p = 3.

a) To find 1‘ 1

(i) dinterchange first and last rows of A, then add the first row to
the second row, then add the third row to the fourth row and subtract

the third row from the fifth row. We get in succession -

1 o -1 0O O l1 ©o -1 0O oO
0 1 1 -1 O o 1 1 -1 O
51 0o -1 -1 1 0 0O O 0 0 O
0 1 1l o 1 O 0 0 1 1
0O -1 -1 1 0 0O o 0 o o0

We therefore get
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o 1 1 =1 0 }] x
O O o 1 1 x3
L
X
x5

Thus Tl is two dimensional.
1
(ii) Letting x' =1, x> = 0, and x* = 0, x> = 1, we find that a basis

for is (1, 0, 1, 1, -1) and (0, 1, O, 1, -1).
1

b) To find ﬂz
(i) add to the first row of A% to the second and subtract the first

row from the third to get

0O 0 0 0 O
0o 0 0 0 O
53
0 0 0 0 O
0O 0 0 0 O
Hence
1
5 ‘r|2=[x:(11001) X = 0]
2
X
3
L
X
©

This is obviously a four dimensional space.
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(ii) We do not need a basis for 1] o

¢) From (54) a basis form 3 is the vector (1, 1, 0, 0, 1) = &3 1
b

d) To find M o

(i) A basis for A M3 is g, = (-1, 0, -1, 2, 1)

(ii) Combining the basis for ’\1 with A€3,l’ we get

~
1l

(‘ql@Am3)l=[x: -1 0 -1 2 1 1 0)
1 0 1 1 -1 X

o 1 o0 1 -1 %

This is a two dimensional space, for which we compute a basis by

putting x =1 to get

3

=1, x. =0 and x, = 0, x

p) 3 >

(ls 1, 0: O, l)’ ("l, 0: 1, 0, 0)

18

Thus, the orthogonal complement of ’ll @ A ”’l 3 relative to t] o is

the set

2L 1 0 0 1) /1 -1\ [« =0 amax=f1 -1\ [uh
1 o\, 1 o0 ue
o 1 o 1
o o o o
1 0 10

Our only choice for ul, u2 is ul =1, u2 = 3 (within a scalar multiple)

and hence a basis for ( f] ® a MB)‘L n '12 is the vector
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58 52’1 = ('2, 1, 3, 0 l)

Hence & basis for ”1 > is
59 A& = ('l’ 0, -1, 2, l), &2’1 = (‘2’ 1, 3,0, l)

e) To find A basis for f” 1

Since we have already found three vectors for our bases:

. 2 .
E’Sl’ AE,31, and 821, and since A 2,3’1, A&Q’l must be part of the basis
for ﬂ't 12 we find that we already have five basis vectors for our five

dimensional. space, and hence %41 must be spanned by

.

60 A%y, =(3,-3,3,0,0), &, = (k9 -k 5, -5)

V. Algorithm: Jordan Canonical Form for Linear Operators for (L % into Cl}{

Let T: (:,n'* CLn be a linear operator for which the n n matrix
A is a representation with respect to a given basi;° To compute the
basis with respect to which T will have a Jordan canonical form repre-
sentation proceed as follows to implement the proof of theorem (30)

Step 1. Compute the distinct eigenvalues A, A ceey A of A.
oLlep - 1

2’
Step 2. Compute (A - A I) D. Use procedure (Pl) up to (39) to

compute D . Compute D% and (D2) as before. If (D ) has the same
3

number of rows as Dc’ stop. IEG?% has fewer rows than Dc, compute D

~rar

and (D ) Continue this until the first index p, such that (Dpl)c

m

and (Uplﬂ')c have the same number of rows. Then Py is the index of

AT

Step 3. Carry out the steps 2, 3, 4, and 5 of algorithm (IV) to obtain

nilpotency of (T -

the desired basis for ‘)1; .
1
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Step 4. Compute (A - 7\22[) and repeat the above four steps. Continue
until the entire required basis is constructed.
This concludes our presentation of the algorithm for computing the

Jordan canonical form of a matrix.
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