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ABSTRACT

First-order necessary conditions of optimality for many problems in
optimal, control, nonlinear programming, and the calculus of variations can be
obtained by transcribing these problems into a simple canonical form. In finite
dimensional space this form reads:

(1) Basic Problem: Let f : En —E1, r : En —Em be continuously differentiable
functions and ft a given subset of En. Find x €ft such that r(x) = 0, and, for
all x € ft satisfying r(x) = 0, f(x) < f(x).

Roughly, the most general necessary condition for the Basic Problem (1)
is of the form:

(2) If x is an optimal solution to the Basic Problem (1), then there is a nonzero
vector ib e Em+1 with ib° < 0 such that

m . — .

(ib° Vf(x) + 2 ib1 Vr!(x), 6x) < 0 for all 6x in a convex cone which "approxi-
i=l

mates" the set ft at the optimal solution x.
This general necessary condition can be satisfied trivially in some cases,

such as when the gradients Vf(x), Vrx(x), ..., Vrm(x) are linearly dependent, lead
ing to a need for auxiliary necessary conditions for these cases.

In this paper the special case of linear dependence caused by the gradient
Vf(x) being zero is investigated. A new condition, involving second order partial
derivatives of the cost function f( • >, and first order partial deri
vatives of the equality constraint function r( •), is obtained. This new condition
holds for all perturbation vectors in the convex cone associated with the general
(first order) necessary condition (2) - a set which is larger than the one usually
considered in obtaining second order conditions.
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Introduction: In the last few years it has been shown [l, 2] that problems of the
calculus of variations, nonlinear programming and optimal control can be treated
in a unified manner as far as necessary conditions of optimality are concerned.
This was done by establishing that all these problems can be transcribed into a
simple canonical form, for which necessary conditions were developed. Special
ized necessary conditions of optimality for any particular problem then followed
from the structure of the problem.

For finite dimensional problems the canonical form mentioned above reads
as follows:

!• Basic Problem: Let f : En-E', r :En-Em be continuously differentiable
functions, and let ft be a subset of En. Find a vector x c ft such that: (i) r(x) =0
and (ii) for every x in ft with r(x) = 0, f(x) > f(x).

Thus, for example, the usual Nonlinear Programming Problem,
min{f(x)|r(x) =0, q(x)<0}, where f:En-E», r:En-*Em and q:En+Ek are continu
ously differentiable, is recognized to be the Basic Problem (1) with ft = {x|q(x)<0}.
Examples of the transcription of discrete optimal control problems to Basic Prob
lem form may be found in [l] .

Before giving the necessary condition for the Basic Problem (1) we require
an "approximation" of the set ft at a given point.
2. Definition: A convex cone C(x, ft) will be called a conical approximation to
the constraint set ft at x if for any collection {6xj, ..., 6xk} of linearly indepen
dent vectors in C(x, ft) there exists an e >0 (possibly depending on x, 6x,, ..., 6x,),
and^a continuous map £( .) from the convex hull (co) of {0, Sx^ ..., 6xk} into
ft-x such that £(6x) =£6x +o(e6x) where ||o(6x)|| / ||6x||-0 as ||6x||-0.

The most general necessary condition for the Basic Problem (1) is the
following one.

3« ^ Fundamental Theorem [1]: If x is a solution to the Basic Problem (1), and
C(x, sy is a conical approximation to ft at x, then there exists a nonzero vector

Jk =~Uj tf*1) in Em+1 with ib° <0 such that for every 6x in the closure,
C(x,ft), of C(x,ft): "

_ m i

4- <tb°Vf(x) + .S \l Vrx(x), 6x> <0
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Note that the Fundamental Theorem (3) may become degenerate in two
ways. The first occurs when ij}° must be chosen to be zero, and hence no infor
mation about the cost function f( •) enters into the necessary condition (4). This
most often occurs when there is only one x € ft satisfying r(x) = 0, and may be
avoided by introducing a regularity condition, such as the Kuhn-Tucker constraint
qualification, on r( •) and ft. The Fundamental Theorem also becomes degener
ate when the vectors Vf(x), Vr*(x), ..., Vrm(x) are linearly dependent since then

o *- m i i •*•one can always choose a ib 4 0 which satisfies \\t Vf(x) + 2 i|. Vr (x) = 0, and
i=l

hence (4), without reference to the optimality of x.
When a degeneracy in the first-order condition occurs, it is obviously

desirable to have a second-order necessary condition. However, there are other
cases when a second-order condition is also meaningful. Thus, suppose that in
C(x,ft) there are "critical" vectors y which satisfy (Vf(x), y) = 0 and
(Vrx(x), y) = 0 i = 1, ..., m. Then, under suitable assumptions, one obtains for
these vectors relations of the form:

2

5. yT ^4 (5) y >0
or

T 82f
y ~

8x

T/a2f r<y (—=• (x) -
8x^

m i 82 i

i=l 8x*
* ~ * -- . „ * k i sV -

i=l axz

(see, for example [3] , [4] ).
In this paper we consider a special case of degeneracy in the first-order

condition (4), namely the case when Vf(x) = 0, which causes the vectors Vf(x),
Vr!(x), Vr2(x), ..., Vrm(x) to be linearly dependent. However, we shall not re
strict ourselves to critical directions only as in [3], [4], and, instead, we shall

T a^f ~obtain a condition similar to (4), but with 6x 2_^. (x) 6x playing the role of
8x

(Vf(x), 6x).

II. A Second-Order Condition: Let us assume that x is a solution to the Basic
Problem (1) such that Vf(x) = 0, and suppose that f( •) is twice continuously dif
ferentiable. Then to the Fundamental Theorem (3) we can add the following new
second-order condition:

7. Theorem: If x is a solution to the Basic Problem (lj such that Vf(x) = 0,
and C(x,ft) is a conical approximation of ft at the point x, then the ray R,

8. R= {y€Em+1|y= P(-l, 0, 0, 0...,0) p>0}
has no points in the interior of the set L defined by:

2

9. Li{(y°,y) | y° =6xT £-| (x) 6x, y= || (x) 6x; 6x€ C(x,ft)}
8x

An equivalent statement of the Fundamental Theorem (3) is that the ray R
given by (8) has no points in the interior of the set L defined by:

10. Lo ={(y°,y)|y°= (Vf(x), 6x), y= |^ (x) 6x, 6x€ C(x,ft)}.
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Since L is also a convex cone, L and R must be separated, which is the
essence°of the statement of Theorem (3) in the original form given.

Since L defined in (9) is not in general convex it is natural to inquire if
there is a curved surface which separates R and L - rather than a plane. In
fact a parboloid of the form:

11. gx(y) =x°y°+s x^y1)2 with x°<o
* i=l

is the logical candidate, which, on substituting ye L gives the following quad
ratic in 6x,

12. g, (6x) =\°6xT ^-| 6x + 2 X1 6xT(VrX(x) >(VrX(x)) 6x .
X 8x* i=l

We are thus led to the following consequence of Theorem (7).
13. Theorem: If x is a solution to the Basic Problem (1) such that Vf(x) = 0,
and C(x, ft) is a conical approximation of ft at x. then there is a nonzero vector
X€ Em+1 with X°< 0 such that for every 6x in C(x,ft),

n T 8 f +> *** i i 214. X 6x ^ (x) 6x + 2 X( V r (x), 6x > <0
8x^ i=l

o
15. Moreover, if the ray R (8) is not a boundary ray of the set L (9), X may
be taken as -1.

16. Remark: The relation (14) can always be satisfied trivially if we allow
X° = 0. While there are cases in which X° must be chosen to be zero, the quali
fication (15) allows a nontrivial statement for many problems.

Thus, let us again consider the Nonlinear Programming Problem,

17. min{f(x) | r(x) = 0, q(x) < 0}
t» n iwhere f:En-^El is assumed twice continuously differentiable, and r:E -*E

q:En-^Ek are continuously differentiable.
Define I(x) ={i€ {l, .. ., k} | q*(x) =0} and lC(x) ={y| (Vq^x), y)< 0 ic I(x)}
We now obtain the following condition from Theorem (13).

18. Theorem: Suppose x is an optimal solution to the Nonlinear Programming
Problem (17), Vf(x) = 0, and there are positive constants p., p such that
f(x) >f(x) +p ||x-x||2 for all x satisfying r(x) =0, g(x) * 0 and ||x-x|| ^ p£. If
in addition lC(x) ^ <J>, and the Kuhn-Tucker Constraint Qualification [ 5] is satisfied,
then there is a scalar X such that

m «2, m . _
T 8 f ~ . % „ , <-, i,~% v 2

.m

19. -y ^ (x)y +X 2 (Vr(x), y) £ 0 for all ye IC(x) .
8x i=l

Since the conditions of Theorem (18) may be difficult to verify, it is perhaps
more meaningful to state the following local "sufficiency" condition.
20. Theorem: Suppose that x satisfies r(x) = 0, g(x) £ 0, and Vf(x) = 0. If
there is a scalar X such that
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T At ** *** ' 5
21. -y —- (x) y +X 2 ( Vrl(x), 6 x ) < 0 for all 6 x i 0,

8x i=l

then there are positive constants p p such that f(x) >f(x) + p ||x-x|| for all x
satisfying r(x) =0, g(x) ^ 0 and ||xix|f <p . X
m. Conclusions: We have shown in this paper that, when first-order necessary
conditions of optimality fail because the gradient of the cost function at the optimal
point is zero, it is possible to replace these first-order conditions with a new
condition. This new condition, involving second-order partial derivatives of the
cost function and first-order partial derivatives of the equality constraint func
tion, holds for all perturbation vectors in a set which is larger than the one
usually considered in obtaining second-order conditions.
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Appendix: Proof of Theorems (7), (13), (18) and (20)

Theorem (7):
Let x be an optimal solution to the Basic Problem (1), with Vf(x) = 0,

and assume that Theorem (7) is false, i. e., that the ray R (8) has points in the
interior of the set L (9). From this contrary assumption it follows that there are
linearly independent vectors 6x., ..., 6x . in C(x,ft), with corresponding map
£, (• ) defined as in (2), such that:

(i) £(€ 6x)G ft -x for all 6xGco{6x., ..., 6x ,.} and € £ [0,11.
1 m+1

(ii) The set 2 =co {Sy^ . . ., &ym+1}» where 6y. =~- (x) (6x.) for i =1, .. ., m+1,
is a simplex! in E , containing the origin in its interior.

(iii) f(x +£(e 6x))<f(x) for all 6x£co {6^, ..., 6x } and e £(0,1].
The existence of 6x_, ..., 6x . satisfying the above conditions requires

some verification, which we now give. First, we observe that there is a vector
6*x in C(x,ft) such that

( 6x, ^ (x) 6x > =- 1, and ( VrX(x), 6x > =0
8x

for i = 1, . . ., m, and hence there is a ball B(6x) about 6x such that

a2f
( 6x, (x) 6x) < - 1/2

for all 6x^B(6x).

f vectors 6y'..,6yf (1 form a simplex, co (6 y', .
,u .^_ zJi.- ,_._Lm+l ^ ^ r_ . 1 . ,x1, ...,6xm+1

m Secondly, if vectors 6y|, ..., 6y' ^form asimplex, co (6yi 6y' .},
in E J containing the origin in its interior, then there are vectors 6xJ, .. .m&x'
in C(x, ft) such that

flr —
6y.' = -g- (x) 6x ' for i =1, ..., m+1.

We now define 6x = ( 1 - \.) 6x.' + \. 6x for i = 1, .. ., m+1, where \.G[ 0,1)
linearly

impossible since

92f
(6x, (x) 6x) < - 1/2

dx

for all 6x£-co {Sx^, . . ., 6x^1, and 6x , . .., 6x are linearly independent,
there is an € > 0 such thatmwith 6x. redefined as™ 6x. for i =1, . . ., m+1,
conditions (i), (ii), and (iii) above are satisfied. ° l

t nA simplex in E is a convex polyhedron with n+1 vertices, which has a nonempty
interior.
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We now define the m x m matrix Y with i-th column 6y.-6y . for
i = 1, . . ., m and the n x m matrix X with i-th column 8x.-6x . for 1 = 1, . . ., m.

, . , . _, i i m +1
Then Y is nonsingular since S is a simplex, and hence XY (6y-6y -,) + 6x , is

r ^ . f r r 1 1X1+1 7X1+1
a continuous map from S to co{6x., . . .. 6x ,}.

1 m+lJ

For #£: (0, 1] we now define the uniformly continuous map G : S-*E by:
a

20. G (6y) =6y - 1/or r(x + t, (a XY-1(6y-6y .) +abx ))
a ^ m+1 m+1

which, on expansion, reduces to

21. G <6y) = siSL^JD
a a

where | \o{a, 6y) 11 /a -*• 0 as a •* 0, uniformly for 6y£ 2. Thus, there is an or'£(0,1]
such that G *(6y)£ 2 for all 6yG2, and, therefore, from Brouwer's fixed
point Theorem [6], there is a 6y*^S such that G ^(Sy'") =6y*.

From (20) we see that the point

x* = x + r (orXY~l(6y* - 6y .) +or* 6x )
b x x J 7m+l m+1

satisfies r(x*) = 0, and since by condition (i), x*(Eft, and by condition (iii),
f(x*) < f(x), x cannot be optimal, which is a contradiction*
Theorem (13): We shall only consider the case X.° = - 1, i. e. the ray R(8) is not
a boundary ray of the set L(9). Thus, there is a closed ball B , of radius €,
about (- 1, 0, ... 0) such that B fl L = <j> . ~

c. ^2 , | o c T 9 f - .
Now consider the cone in E , iy|y = ox -z (x) ox,

8x2
m

1 V1 . „ i.~. . 4 2
y = V (Vrl(x), 6x) 2, 6x€ C(x)ft )} .

i=l

Since y > 0 for all 6x this cone is separated from the ray R. If it is not separated
strictly then there is a 6x€ C(x,ft) such that

m

t A2f - V i ~ 2 26x £JL (x) 6x = - 1 and ) ( Vr (x), 6x ) < € ,
9x i=l

i.e. ( ( 6x\ ^4(x) 6x) , ( Vr (x), 6x) , ..., ( Vr (x), 6x> ) e Bg ,
3x

which is a contradiction, and this completes the proof.

Theorem (18): The theorem follows providing R is not a boundary ray of the set
L , thus assume the contrary. It follows that there is a sequence {y.,} of unit
vectors in IC(x), converging to y,€ IC(x) with ||y... || =1 such that

yT ^-4 (x) y ^0 and ( Vrl(x), y, ) =0 for i =1, . . ., m
* 9xZ *
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By the Kuhn-Tucker constraint qualification, r(x+ty „+o(t)) = 0,

and q(x+ty , +0(t)) ^ 0, t € [ 0,T ], for someT^O and some continuous function o(. )
satisfying

lim JkM =o.
t-0+ *

Since f(x+ ty + o (t)) expands as:

f(x +ty^ +o(t)) =f(x) +t2y/-^ (x) y# +o'(t2),
3x

T 3 f *
and y -i—r- (x) y, ^ 0 with y, £ 0, p. and p_ satisfying the conditions given in

9x * • * C

Theorem (18) cannot exist, which is a contradiction.

Theorem (20): Let x. be a sequence (with x. £ x for any i) converging to x such
that r(x;) = 0 and q(x.) ^ for all i. Let

x.-x

y. = \ ), i£ K, an index set, be any convergent subsequence
t II a

x.-x

of , converging to y. . Then yf IC(x), / Vr (x), y. \ = 0 for
II*!-ill •

i =1, .. ., m, and ||y 11 =1.

The set S of all such y, generated in this way is compact, and hence by
(21) there is a p > 0 such that

2
t a f *• 2y - (x) y > p = p || y || > 0 for all y £ S, and this

* 8x* * * *
leads to Theorem (20).
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