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ABSTRACT

This paper presents a stability criterion for a class of

nonlinear RLC networks for which the nonlinear characteristic curves lie

in a Popov sector. The nonlinear elements considered are resistors,

charge-controlled capacitors and flux-controlled inductors. It is shown

that if the only nonlinear elements are resistors, then for arbitrarily

large sector boundaries the circuit is both asymptotically stable in the

large and, for properly placed sources, bounded-input bounded-output

stable. Furthermore, if the only nonlinear elements are inductors and

capacitors, any set of linear inductors and capacitors which can make the

circuit oscillate define the nonlinear sector boundaries. Conditions for

asymptotic stability and bounded-input bounded-output stability for networks

of nonlinear resistors, inductors and capacitors are developed.
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I. Introduction

The analysis of nonlinear RLC networks has been mainly con

cerned with the problems of placing network equations in some standard

form [l, 2], demonstrating the existence and uniqueness of their solu

tions [2, 3], and, without actually solving the equations, determining

whether they are "stable" [2, 4-6]. Chua and Rohrer [l] have demon

strated the existence of dynamic equations of the form x = f(x, t) for very

general networks with "unicursal" nonlinear elements (the input and

output variables are continuous functions of a parameter). Varaiya and

Liu [2] have placed Kirchoff's laws into an algebraic normal form for

a wide class of coupled networks and demonstrated uniqueness of solution

if, in the uncoupled case, the nonlinear characteristics are monotone

increasing. Desoer and Katzenelson [3] guarantee the uniqueness of the

solution of network equations providing the nonmonotone nonlinear

elements are properly placed in the network topology.

The methods used to determine circuit stability follow directly

from stability theory developed for nonlinear systems. Brayton and

Moser [4] and Stern [9] use Liapunov functions to obtain sufficient

conditions in terms of the nonlinear characteristics and the network

topology. Varaiya and Liu [2] show stability for their circuits if the

elements are all passive, i.e., (x, f(x)> > 0. Desoer and Liu [5] give

an example of an unstable circuit consisting of such passive elements

-2-



whose characteristics are not, however, monotone. Kuo [6] demon

strates stability for a circuit with monotone voltage-controlled capacitors,

current-controlled inductors and voltage-or current-controlled resistors

lying in Popov sectors and satisfying an additional constraint. Sandberg's

work on nonlinear equations [7] shows stability for some circuits with

nonlinear resistors.

The nonlinear elements considered in this paper are resistors,

charge-controlled capacitors and flux-controlled inductors all of whose

characteristics lie in a "Popov sector. " Hence there is no restriction

on the slopes of the nonlinear characteristics or requirement of con

tinuity, except at the origin. It is shown that for a fairly general class

of nonlinear coupled circuits the dynamic equations may be written in

a canonical form, and a stability criterion similar to the Popov criter

ion [8] is developed which is also applicable to input-output stability.

For circuits containing only nonlinear resistors or only nonlinear

inductors and capacitors (all other elements being linear) the sector

boundaries can be interpreted in terms of the physical circuit and

actually become coincident with the boundary for the linear case.

II. Notation

The mathematical notation used here will be essentially the

same as Sandberg [7] except that without further mention all functions

will be assumed measurable. The set of complex N-vector-valued
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functions satisfying J f*(t)f(t)dt< oois the linear space L or, if

N = 1, just L_. On L the inner product is defined by

(f, g) = JJ°° f*(t)g(t)dt, and for f eL the norm is defined by

||f || = (f, f)^ . The Euclidean inner product (f,g ) = S? Mt)g.(t)
2 1 x x

and the Euclidean norm ||f || = (f, f) 2 will also be used. For any

f «L the Fourier transform is defined component-wise as is the

Laplace transform of a vector.

Let M be any matrix. Then M', M#, and M denote the

transpose, complex conjugate transpose and, when it exists, the inverse

of M, respectively. The smallest eigenvalue of M is denoted by A{M}

The element in the ith row and jth column of M will be written m..(t).
— 1j

The linear space K is defined by

KpN={M| ^ |m..(t)|Pdt< oo Vi, j}

M is called positive definite (p. d.) or positive semidefinite (p. s.d.) if,

for any vector x, (Mx, x) > 0 or (Mx, x) > 0, respectively.

Associated with each nonlinear element e. will be an independent

variable, x.(t), and a dependent variable denoted by f.(x.(t)). The

nonlinear characteristic curves of x. vs f.(x) will be assumed to be piece-

wise continuous and to lie in a Popov sector. That is,

f.(x.)
i i

€. < -i—=— < k. - €.
1 — x. — 1 1
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where ^ is nonnegative and k. is positive. In particular, f(0) = 0.

A network will be referred to as stable if when the input is zero, there

exists a positive constant K_ such that |x.(t)| < K„ for all variables
B • 1 ' — B

x. associated with the network. If x.(t) —0 as t -* co that variable
i ix

will be called asymptotically stable.

We will employ the following notation:

S. = maximal number of linear L's from which no cut set

can be formed

S = total number of linear L's

S = maximal number of linear Cfs from which no circuit

can be formed

S_ = total number of linear C's

n = number of nonlinear cur rent-controlled resistors

n = number of nonlinear voltage-controlled resistors

Then the following vectors will be used:

x.

x = X.

•s2+i <k
S2+1

'Sl +S2
+
Sl + S2
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where q. , . . ., q are the tree capacitor charges and i\i , . . . ijj(
VS2

are the link inductor fluxes.

R,

V
R

V
R

where V , . .

Rl
. V are the voltages across linear resistors,

in

in

u

I

V

q

x"

= vector of input voltages

= vector of input currents

V.
in

I.
in

= n x 1 column vector of nonlinear resistor currents

= n x 1 column vector of nonlinear resistor voltages
2

= n x 1 column vector of nonlinear capacitor charges

= n. x 1 column vector of nonlinear inductor fluxes
4

Also, K is a diagonal matrix with k. as the ith diagonal element and

zeros elsewhere, and the matrix £is a diagonal matrix with € as the ith

diagonal element.

Coupling will be allowed between linear inductances and between

linear capacitors. We therefore define the inductance (capacitance)

matrix as follows: the i_-jth element is the. coupling between the ith

and j th inductors (capacitors) and the diagonal elements are the self

inductances (capacitances). If both these matrices are p. s.d. then the

network will be said to have "realistic" coupling. It is assumed
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throughout that each element may be in series with a voltage source

and in parallel with a current source.

III. Nonlinear Resistors

The networks to be discussed in this section consist of linear

resistors (R's), inductors (L's), and capacitors (C's), with coupling

between inductors and between capacitors, and nonlinear voltage and

current controlled resistors. For the nonlinear resistor characteristics,

k. may be arbitrarily large, e. arbitrarily small or zero in some cases

to be discussed. In this section, let N1 = (VI1) be an n + n column

vector of voltages and currents where V is the independent voltage

vector for the voltage controlled nonlinear resistors and lis the indepen

dent current vector for the current controlled nonlinear resistors. Let

R = -f(N) be the corresponding dependent current-voltage vector for the

nonlinear resistors. We will use the term proper normal tree for any

normal tree in which all current-controlled resistors are tree branches and

all voltage controlled resistors are links. The following two lemmas exhibit

the existence of a canonical form for the dynamic equations of the network.

Lemma 1: Let M be a network of nonlinear resistors in Popov sectors

and linear R's, L's and C's with realistic coupling between L's and

between C's, There exists an equivalent network with at least one

proper normal tree.
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Proof: Suppose no proper normal tree exists for the given network.

Then pick any normal tree. Each I-controlled resistor which is a link

is in series with a C, in a cut set of C's and I- controlled resistors,

or in a circuit of I-controlled resistors. Similarly, each V-controlled

resistor which is a tree branch is in parallel with an L, in a circuit of

L's and V-controlled resistors, or in a cut set of V-controlled resistors.

Since each of the nonlinear elements is assumed to lie in a Popov sector,

the I-controlled resistors can be represented as series combinations of

— ohm linear resistors and new I-controlled nonlinear resistors; the
Cm

V-controlled resistor can be represented as parallel combinations of

— mho linear resistors and new V-controlled nonlinear resistors.

Figures (la) and (lb) show this representation. Let us replace each non

linear I-controlled link resistor and V-controlled tree branch resistor

by its equivalent combination of elements. The new network which is

obtained has a proper normal tree. This tree consists of the original

tree with each V-controlled resistor replaced by its associated-r- ohm

linear resistor and the I-controlled resistors without their associated

— ohm resistors. For convenience, the new nonlinear characteristics

will be denoted by f.

Lemma 2: Let ft be a network of nonlinear resistors in Popov sectors

and linear R's, L's, and C's with coupling between the L's and between

the C's. Then, the dynamic network equations may be placed in the form
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x = Ax + BR + B u

N = Cx + DR + D u

where A, B, B , C, D, and D are appropriately defined constant

matrices.

(3-1)

Proof: Lemma 1 proves the existence of a proper normal tree for such

a network. ^Let b = S n + S + r + n + n be the number of elements,

and v be the number of nodes. Then the fundamental loop equations are

of the form (after substituting for charges on link C's and fluxes in

tree L's)

A. x + B. x + C. V„ + E V = D, f(I) + F,V.
1 1 1R1 1 1 in

and the node equations are of the form

A2x + B2x + C2V +D2I=E2f«v) + FI

Combining these

ci ° Ei

C2D2°

•A -Bj D 0 F 0

A2 "B2 ° E2° 2/
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Then by substituting into (3-4)

N = Cx + DR + D u

Lemma 1 and 2 are illustrated in the following example in which

we set up the dynamic equations for the network shown in Fig. 2a. Since

the only normal tree consists of the capacitor and the resistor, the re

sistor must be replaced by its equivalent shown in Fig. lb. The resulting

network is given in Fig. 2b. The loop equations, corresponding to Eq. (3-2)

are

- x, + x, - V = V.
c 1 2 in

-x.+x -V_ =-V.
C 1 2 R in
~1

The node equations corresponding to Eq. (3-3) are

Z X2 " *1 =°

iX2+l VR=-f<V>

Simple algebraic manipulation put these equations in the form of (3-1)

where the appropriate matrices are

'\
D=.;l D,= o

-a-
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The basis for studying stability of the circuits described by

Lemma 2 will be Eq. (3-1). We will assume throughout that inductor and

capacitor coupling is realistic, and that the linear subnetwork is passive.

Let

$(t) =(si - A)"1, *(t) =B$(t)C , tf^t) =B *(t)C

where $(t) = [0(t)] , tf(t) =[i|i. .(t)] and * (t) = [i|i!?(t)] .

First, we will consider the case where u = 0.

Lemma 3: For T < oo, N(t) is a bounded function on 0 < t < T.

Proof: The solution to (3-1) may be written for x(0) = x as

N(t)=C$(t)x - \ *(t - t) f i_N(r) j dr - Df[N(t)] (3-6)
J0

and we can bound norms by

||N(t)xDf(N(t)]|| <||c«(t)x0||+ J ||*<t-T)|| ||f[N(r)]||d

Since a passive linear circuit has no roots of its characteristic equation

with positive real parts or multiple roots with zero real part, the 0. .(t)

andi(;ii(t) are all bounded. Therefore, if i|j '= max sup 4*. -(t-T)
i» j t

||N(t) +Df |>(tf] || <a+ ^ +MK||N(T)||dT (3-7)

where a is a constant. By definition,
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||N(t) xDf[N(t)] ||2 = [N +Df(N)] »[N +Df(N)]

= || N(t)||2 +2N»(t) Df [N(t)] + || Df [N(t)] ||2

At any instant of time t , f [N] = AN where

!6l(t0) 0

A =

9 6n(V

; k. > 6.(t ) >€
l l 0 l

(3-8)

so that N'(t)Df [N(t)] =N'(t)(DA)N(t). However, D is a driving point

matrix for the circuit obtained by short circuiting all C's and open

circuiting all L's. Hence D is positive semidefinite. It follows that

DA is p. s.d. so that N'(t )(DA )N(t ) > 0. Then in (3-8), all terms are

nonnegative. Therefore,

||N(t) +Df[N(t)] || > ||N(t)||

Substituting into (3-7) for b an appropriately defined constant

11 N(t) +Df [N(t) ] 11 < a + \ b 11 N(t) +Df [N(t) ] 11 dt
• 'a

Hence, by the Bellman-Gronwall LemmaQo)

btN(t)||< ||N(t) +Df[N(t]||<ae

-13-



Thus no component of N(t) grows faster than an exponential, and the

Lemma is proved.

Before stating the main stability result of this section, it is

interesting to note that this result may be proven by a direct application

of Sandberg's results [7] . The proof given here, however, will be

applicable to the nonlinear RLC case as well as leading to input-output

stability results. The following result is needed in the proof:

Lemma 4: Let f,, f_, f_ be real N-vector valued functions in L-„-
12 3 2N

and h be a real N XN K^^T matrix. Let F,, F_, F-, and H be their
2N 12 3

Fourier transforms. If F =~HF + F and if A{H + H* } > 6 > 0, then

•CVf3dt<l5 '0°Vf2dt-
The proof is a simple exercise in completing the square.

Theorem 1: Let J% be a network of linear, positive R's, L's, and C's

with realistic coupling, and nonlinear R's in Popov sectors. Then for

u = 0, N(t) and f [N(t)] are bounded L? functions which approach

zero as t -*• oo. Moreover, x(t) is bounded, and if all eigenvalues of A

have negative real parts, x(t) -* 0 as t -*• oo.

Proof: After using the representations described in Lemma 1, open

circuit all V-controlled resistors. Then, successively short circuit

all I-controlled resistors except one, and compute the input admittance

at the terminals of the remaining I-controlled resistor. If this admit

tance has a pole on the jw-axis decompose the I-controlled resistor
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as shown in Fig. la. Now, reverse the process by short circuiting all

I-controlled resistors and successively compute the open circuit input

impedance at the terminals of each V-controlled resistor. If any input

impedance has a pole on the jw-axis, decompose the corresponding

V-controlled resistor as shown in Fig. lb. The network obtained after

this procedure is completed still has dynamic equations of the form

(3-1). For the general solution (3-6), both $(t) and ^(t) e K2N'

At t = T assume all I-controlled resistors are short circuited

and all V-controlled resistors are open circuited (which is equivalent

to setting f[N(t)] = 0 for t > T). Let N (t) denote the new output

variable,

~N(t) for t < T
N (t) = •

I C $(t) x„ for t > T

After adding-K*" f[N (t)] to both sides of (3-6), the equation becomes

NT(t) - K_1f[NT(t)] =C<&(t) xQ - ^ *(t - r)f [NT(r)]dr

- Df.[NT(t)]-K_1f[NT(t)] (3-10)

By Lemma 3, N (t) € L so all terms in (3-10) are Fourier transform

able. Let us take Fourier transforms

Fl(jw) =^{NT(t) -K^ftN^t)]}, H(jw) =-"7{^(t) +D}

F2(jw) = -r{C$(t)x0} F3(jw) = 7{f[NT(t)]}
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Then, if we take the Fourier transform of (3-10), we obtain

Fx(jw) = -H(jw) F3(jw) + F2(jw)

By Lemma 4, if A{H(jw) + H*(jw)} > 6 > 0

r00 -1^ {NT(t)-K f[NT(t)]}'f[NT(t)] dt< ||C*(t)x0||.

or

.00

f (N(t) - K"1 f[N(t)] }' f[N(t)]dt < y

'0 ^ - ~ 'L2

where y is independent of T.

Then, since N(t) - K_1 f[N(t)] >[N(t) - K_1(K - £)N(t)] =K_1^N(t)

and f[N(t)] > £N(t),

r00 2\ [N(t)l 'N(t) dt < k yU . (where c . = min c. and k =max k )
.L — max mm v mm i max : v
*'0 l 1

That is, N(t) € L .

Now consider the condition A{H(jw) + H*(jw)} > 6 > 0- The matrix

H (j go) is a driving point matrix and hence is positive real. Thus,

for any k. > 0, the condition is fulfilled, so N(t) is a bounded L^^T
7 l 2N

function as is f[N(t)] . Returning to (3-9), the Riemann-Lebesgue

Lemma[l6]implies that || N(t) +Df [N(t)] || -* 0 as t -— oo and since

l|N(t)|| < ||N(t) +Df [N(t)] || ,||N(t)|| -0 as t - oo, and hence

N(t) -* 0 as t-* oo. From (3-1)
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x(t) = $(t) x - \ #(t - t) Bf[N(T)] dx
*'o

Although f[N(t)] c L , there may be constants or sinusoidal terms

in *(t) which did not appear in C $(t). In any case f[N(t)] €L2N and

$(t) bounded insures that x(t) is bounded. Furthermore, if all eigen

values of A have negative real parts, 0. .(t) will be linear combinations

of exponentials with negative real parts so again by the Riemann-Legesgue

Lemma, x(t) -*» 0 as t -^ oo. This completes the proof of the theorem.

Theorem 2: Let % be a network of linear, positive R's, L's, and

C's with realistic coupling and nonlinear resistors in Popov sectors.

Let u(t) be bounded. Suppose the I-controlled resistors are shorted

and V-controlled resistors are opened. Then, if the driving point matrix

with respect to the input ports has no poles on the jw-axis, x(t), N(t)

and f[N(t)] are bounded.

Proof: The solution to (3-1) is now

N(t)

t rt
=C$(t) x + C tf.(t - t) u(t) dT +D u(t) - \ tf(t - T)f [N(t)] dT

0 J0 l J0

-Df[N(t)] (3-11)

First, let Z(t) =C*(t) xQ, r(t) =/* ^(t - t.)u(t) dT+ Dx u(t) and note
that Z(t) and r(t) are bounded since «C [^(t)] has no poles on the

jw-axis. Then, we can rewrite (3-11) as
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N(t) =Z(t) +r(t) - \ ¥(t - r)f[N(r)] dr - Df[N(r)] (3-12)
J0

The remainder of the proof is a modification of Bergen, et. al. [ll] .

at ,
Set u = 0 for t > T. Then, if we multiply (3-12) by e , we obtain

(NT(t) - K"1 f[NT(t)] } eat =[Z(t) +rT(t)] e0* - Df[NT(t)] e"*

- [ e(t"TW - t) e*Tf[N (t)] dt - K"Xf[N (t)] e
0

where a > 0 but sufficiently small that Z(t) e € L and e ^(t) e L2 N-

Then taking Fourier transforms,

Fx(jw) =F2(jw) - [H(jw - a) +D+K~ ] F^jw - a)
where

Fx(jw) =^{NT(t) - K^ftN^t)]] eat},
. Oft!F (jw) =?{[Z(t) +rT(t)]e }

F3(jw)= ^«NT(t)]}

H(jw) =^{*(t)}

Bergen et. al. have shown that since H(jw) +D+K_ satisfies

Lemma 4with parameter 6>0, H(jw - or) +D+. K*1 satisfies it with

parameter 6?6>6'"> 0. Hence
T

fT{N(t) -K-Xf[N(t)]} -f[N(t)] e2atdt< -fa- § eZat |Z(t) +r(t) f dt
J0 0
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-1
Let k = max k. and € . = min €.. Since {N(t) - K~ f[N(t)] }'f[N(t)]

max

> i €2 . N'(t)N(t)
— k mm x ' '

max

min i 1

.T n k JT
i 2<*t max\ N'(t)N(t)e dt< —^ —
•'0 4c . 6*

min

T

C e2Qrt|Z(t) +r(t)|2 dt (3-13)

We will use the subscript (i) to denote the ith row of a matrix. From

(3-12)

|N(t) +Df [N(t)] | <|Z(i)(t) +r(i)(t)| +| j e"(t-T)*(i)(t - T)e-*(t"T)f [N(t)] drj

Let | N(t) +Df[N(t)] | = |cr.(t)|. By the Schwartz inequality,

^(t)ll|Z(i)(t) +r(i)(t)|

Joe-|Vx)|2dx 2 -at
€

Then, using (3-13)

^(t)|< |Z(i)(t)xr(i)(t)|

L u

-. 1_

e2aX |*#.J2dx !2 M
(i) J

t

k \ e N'(T)N(r)dT
max X

iir e-2«(t-T)|z(t) +r(t)|2dt|

The first integrand is an L function, and the second integral is a con-

volution of a strictly stable function and a bounded one. Thus each term

-19-



is bounded and so is | N(t) + Df[N(t)] |. But N'(t)N(t) < [N(t) + Df[N(t)]]'<

[N(t) + Df[N(t)]] which is bounded implies N(t) bounded. From (3-1),

x = Ax - Bf [N(t)] + B u(t). Thus x(t) is bounded since this is a strictly

stable linear differential equation with a bounded forcing term. There

fore, the theorem is proved.

Based on the proof of Theorem 1, it is now possible to interpret

the meaning of the sector boundary c for the nonlinear resistors. In

all cases with € > 0, c may be arbitrarily small. Suppose we follow

the procedure of Theorem 1 in order to find a proper normal tree. It

may be that there are nonlinear resistors which need not be represented

as the series on parallel combination of an -j* ohm or mho resistor as

shown in Fig. 1. Instead, we can represent these elements as the series

or parallel combination of R = - c/2 ohm or G = - r mho linear resistors

and nonlinear resistors with characteristics -f(I) - —I or -f(V) - — V,

respectively. For c small enough all statements made in the proof

still hold and for these newly modified resistors, the Popov sector

need be only [0, oo). That is, any nonlinear characteristic lying in the

first and third quadrants and passing through the origin of the I-V plane

will not alter the conclusions of the above theorems. The only resistors

for which it is necessary to require e > 0 are those "facing" resonant

circuits, V-controlled resistors in V-controlled resistor cut sets or

in parallel with an inductor, and I-controlled resistors in I-controlled

resistor circuits or in series with a capacitor. If € = 0 for a
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V-controlled resistor in parallel with a capacitor or an I-controlled

resistor in series with an inductor, it is impossible to write the

dynamic equations in canonical form. This is illustrated by the network

shown in Fig. 3 taken from Stern [9] . Also, for a non-monotonic non

linear curve there is not a unique solution to the network equations.

Suppose a V-controlled resistor is in a V-controlled resistor cut set or

an I-controlled resistor is in an I-controlled resistor circuit. If € = 0,

each such V-controlled resistor may be replaced by an open circuit or

each such I-controlled resistor may be replaced by a short circuit.

The network response may then sustain oscillations or constant terms

and no guarantee about stability can be given. Such a situation is illus

trated in Fig. 3b.

Another interesting case arises when the nonlinear characteris

tics are bounded. As long as such elements are not situated so as to

require the representation described in Theorem 1, and they also

satisfy /x, f(x)) > 0, then the conclusions of Theorems 1 and 2 can be

shown to hold.

Corollary 1: Let '/(, be a network satisfying the hypotheses of Theorems

1 and 2. Suppose there exists a positive number f such that for all
max

nonlinear resistor characteristics, |f(x)| < f and /x, f(x)\ > 0. If
1 ' — max x '

no nonlinear resistor is situated so as to require the representation

described in Lemma 1, then the conclusions of Theorems 1 and 2 hold.
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Proof: From (3-1)

||N(T)|| <||C«(t)x0||+|| ^ *(t- T)f[N(r)] dr H+ll Df[N(t)] ||

and since each term on the right-hand side is bounded, ||N(T)|| < N

where N is a constant which depends only on the initial conditions,
max

Hence, given the initial conditions, N(t) will be the same as it would

be if the nonlinear characteristics were given by

r

£(xj =
f.(x.) x. < N
11 l max

r i- /
' f.(N )

l max
x. x. > N

N i i max
max

and f(x) lies in a Popov sector with lower bound

min f(x)
x<N

max
€ =

N
max

Since the stability behavior is the same whether the nonlinear charac

teristics are f(x) or f(x), the analyses of Theorems 1 and 2 are now

valid.
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IV. Nonlinear Inductors and Capacitors

For the networks to be considered next, all resistors are

linear, capacitors are linear or charge controlled, and inductors are

linear or flux controlled. Coupling will be allowed between linear

inductors or between linear capacitors only. For all nonlinear charac-

teristices e.> 0 and k. will be a finite (possibly arbitrarily large) posi

tive number. As in Sec. Ill, the dynamic equations are first put into a

canonical form. In this section, N = f , ) , where q is the vector of
\x7

charges on the nonlinear capacitors and ^ is the vector of fluxes in the

nonlinear inductors. As before, R = -f(N). Now, the components of

R represent voltages on charge controlled capacitors or currents in

flux controlled inductors.

Lemma 5: Let ]% be a network of linear R's, L's and C's with coupling

between L's and between C's, and nonlinear flux controlled inductors

and charge controlled capacitors in Popov sectors. Then there exists

an equivalent network for which the dynamic equations may be written as

x= Ax + BR + B u

(4-1)

N = Cx + DR+D u

where A, B, B_, C, D, D are appropriately defined matrices.
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Proof: Pick any normal tree. Represent each nonlinear capacitor

which is a link, by the series combination of an ——- farad linear capaci

tor and a nonlinear charge controlled capacitor with characteristic

V = -f(q) • -q (see Fig. 4a). Represent each branch nonlinear inductor

2
by the parallel combination of a henry linear inductor and a flux

controlled nonlinear inductor with characteristic I = -f(ijj) - -z i\> (see

Fig. 4b). Then the original normal tree with the nonlinear inductors

2replaced by the — linear inductors and with the nonlinear capacitors
€

added is a normal tree of the network. For this network the fundamental

loop and cut set equations are of the form

AjX +Bxi + CjVR +Djip =Ejffq) +FjV^ (4-2)

V +B2X +C2VR +D2q =E2i{V +Vin (4"3)

where the vector x contains the charges and fluxes of all (linear) C's

and L's respectively. It may be assumed that variables corresponding

to charges on link capacitors and fluxes in branch inductances, being

linear combinations of other variables, have already been eliminated.

Then using the same arguments as in Lemma 1, it is possible to solve

•

uniquely for V , iJj and q in terms of the other variables. Making
R

this substitution in (4-2) and (4-3), the equations take the general form

A3x + B2x = E3f(N) + F3u
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which upon algebraic manipulation can be reduced to the form

x = Ax + BR + B u

Substituting this into the expressions for \\t and q gives

N = Cx + DR+Du

Equation (4-1) may be interpreted from a systems approach with

the aid of Fig. 5a. The block labeled N. L. receives the vector N(t)

as an input, produces the vector f[N(t)] as an output, and feeds this

back to the input of the linear plant as shown. For this system we

define the following functions G(s) and G (s), which may be calculated by

means of (4-1), by

N(s) =G(s) f[N(s)] N(s) = G (s)u(s)
u=0

(4-4)

f[N] = 0

Refer now to Fig. 5b where each component of N(t) has been fed back

around the linear plant and fed forward around the nonlinearity. Clearly

this produces no change in N(t), so in Fig. 5c a new linear plant (the

old one with feedback) and new nonlinearities has been drawn.

The new nonlinear characteristics are given by f[N(t)] - -r N(t)

and will be labeled g[N(t)] . In the frequency domain, the system

equations become

G (s)

N(s) = ^-[g[N(s)] -€N(s)] + -±— u(s)
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Then, if G(s) =[g..(s)], H(s) = [h..(s)] = [s I +€G(s)] ~1 G(s), and

„(S)A [l +f Gfs). rlf»i^#
u s s

tvt/ % rT , G(s) i -1 G(.s) r_Tl . . ., r_ , G(s),-1 u . .N(s) = [I + € —*-*-] -^ g[N](s) +[l + c -M-] — u(s)
s s s s

= [si +€G(s)]"1 G(s) g[N] (s) +[si +€G(s)]"1 G (s) U(s)

N(s) = H(s) g[N](s) xHu(s)u(s) (4-5)

The following properties of H(s) are of interest:

(1) Since g..(s) is a proper rational fraction, h. .(s) is strictly proper,

(2) H(0) = (cl)" so there will be no pole of H(s) at s = 0.

(3) At a pole of g..(s) ,

H(s) =[si +€G(s)]_1G(s) = [sG^sj+rl]"1

Hence the poles of H(s) are poles of [si +•€ G(s)] which are zeros

of det[sl + e G(s)].

(4) [(o- +jw) I +€G(s)]"1.= {[o-I +eRe G(s)] +j[wl +€ImG(s)] } ~l

Since Re G(s) is p. s. d., for cr > 0, [trl + e Re G(s)] is p. d.

It then follows [12] that

| det[(o-+ jw) I + e G(s)]| > | det[o-I + € ReG(s)] | > 0

Thus H(s) has no poles for o- > 0
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(5) H(jw) = {6 ReG(jw) + j[wl + € ImG(jw)] } " . Then for all w for

which ReG(jw) is p.d., there can be no pole of G(jw) as in remark 4.

If det[ReG(jw )] = 0, there exists a linear dependence among the rows

of ReG(jwQ). Hence, det[H(jwQ)] = 0 only if det[w I +€Im G(jw )] = 0,

But for any w except arbitrarily near a pole of G(jw), ImG(jw) is

bounded. Let this arbitrary distance be a and define

S = {w: | w - w | < a} . Then € can be chosen small enough to insure

det[w I + € G(jw )] > 0, and this distance, a, can be chosen small

enough to insure that Re G(jw ) is p.d. for w within S. (The exception

to this statement is if Re G(jw) = 0, i.e., all poles and zeros of G(s)

on the jw-axis, or if G(jw) = 0). Thus all entries of H(s) are proper

rational fractions with poles in the open left half plane. The general

solution to Eq. (4-1) can then be written as

N(t) = N (t) - \ h(t - t) g[N(x)] dr + \ h (t - t) u(t) dr (4-6)
J0 Jo u

where N (t) € L^ since all observable modes are strictly stable.

h(t) =- "^(s) e K2N
and

hu(t)=':"lHu(s)

The zero input case is considered first.
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Theorem 3: Let$ be a network of linear, positive R's, L's, and C's,

with realistic coupling, and nonlinear charge controlled capacitors and

flux controlled inductors in Popov sectors. Suppose the nonlinear

capacitors and inductors are replaced with linear capacitors and induc

tors, respectively. Let {C,, C_, .. ., C , L_, L_, .. ., L } be this set
1 c n0 i c n.

3 4

of linear elements, and suppose that with these terminations the network

oscillates. Then, if the upper bounds on the Popov sectors for the

corresponding nonlinear capacitors are k. = C (i = 1, . .., n ) and for

the nonlinear inductors are k. = L." (j = }, 2, . - . ,n ), N(t) and f [N(t)] are
J J *

bounded, L functions which go to zero as t -*• oo. Furthermore,

x(t) and N(t) are bounded and if all eigenvalues of A have negative

real parts, both go to zero as t -*oo.

Remark: If no set of linear C's and L's can make the circuit oscillate,

all k. can become arbitrarily large. An alternative condition for this

is that whenever Re G( jw) is only p. s.d., Im G( jw) is at least p. s.d.

The proof of Theorem 3 will follow from the next lemma.

Lemma 5: For the network described in the hypothesis of Theorem 3,

if there exist 6, \i > 0 and a p. s.d. K~ such that A{P + P*} > 6 > 0

where P(jw) = [i + jwu] H(jw) + K , then the conclusions of Theorem 3

hold.

Proof: For u = 0, (4-6) becomes

N(t) =N (t) - f h(t - T)g[N(T)] dT (4-7)
J0
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This equation is the standard vector form to which the Popov criterion

can be applied, and meets the usual restrictions on NQ(t), h(t) and the

nonlinearities [13] . Thus, defining P(jw) = [i + jwji] H(jw) + K , if

A{P + P*} > 6 > 0 then N(t), and hence f[N(t)] are bounded, L2N

functions which go to zero as t -^ oo. Now, let us return to the original

circuit (as shown in Fig. 4a). From Eq. (4-1), since x(t) is the solution

of a stable differential equation with an L- driving term, x(t) is

stable and if the roots of its characteristic equation all have negative

real parts, x(t) -*0 as t —oo. Also, (4-6) shows that N(t) is continuous

since g[N(t)] is bounded. This implies that N(t) is also bounded. Then

from Eq. (4-1) it is clear that N(t) goes to zero as t -* oo if x(t) does

and this will be true if all eigenvalues of A have negative real parts.

Proof of Theorem 3: Based on Lemma 5, it is only necessary to check

the condition A{P + P*} > 6 > 0. By definition,

(P + P*) = [Re(H + H') - wuIm(H + H') + 2k" ]

+ j [wuRe(H - H') + Im(H - H')]

where H(jw) = [jwl + € G(jw)] G(jw)

Let M = wuRe(H - H') +Im(H - H»). Then M = -M», and

<(Mx, x>= 0 .
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Thus, A{P + P*} > 6 > 0 if

~ Re(H +H») - -| wuIm(H +H') +K'1

is positive definite. Since

H(jw) =/cReG(jw) +j[wl +elmG(jw)] I" [ReG(jw) +jlmG(jw)]

={(cReG)(€ReG)' +[wl +tlmG] [wl +clmG] '} ~*

• {€[(ReG)(ReG)' + (ImG)(ImG)»] + wlmG

+ j[€[(ReG)« ImG + (ReG'ImG)'] -wReG}

Then

•|[H(jw) +H«(jw)] ={(€ReG)(€ReG)' +[wl +eImG][wI +«ImG] '} -1

{€ [ReGReG' +ImGImG'] + y w[lm(G +G')]

- jwiRe(GxG')}

{I + -~ [wIm(G +G') +{(ImGImG1 +ReGReG')] }~\
w .

' {—[ReGReG1 + ImGImG'] + -~-[lm(G + G»)]
C* £ lAf

W

.j_LRe(G +G.)}
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Finally

~ Re(H + H») - iwuIm(H +H') +K"1

=(I - cM '̂1 {(I +cK'1) -ylReGReG' +ImGImG1] +pRe(G +G')
w

+~- [lm[(G +K"1) +(G +K~V] ] }
Zw

=(I- cMj)"1 M2

Suppose Re(G + G') is p.d. Then for w anywhere except arbitrarily

close to a pole, G(jw) is bounded. Therefore, for u large enough ML

is p.d. and M is bounded. Then choosing € small enough so that the

magnitude of all the eigenvalues of €M (denoted by € \.) are less than 1,

(I - cM)*1 M2 =(I +(e Mx) +(€ M2) +. . ., ) M2

2= M + €M M + (€ M ) M2 + . . .

Since M_ is p.d., there exists a nonsingular transformation V
Cd

such that if X = VY then

n n

X'(M2 xcM^ +. . .) X= 2<1 xcXj +". . . )y. =/ J^J\ yi >°
i=l i"l *

and (I - eM ) M? is p.d. At a pole of G(jw), —(H + H!) is positive

definite since H has no poles on the jw-axis. Hence, arbitrarily
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close to a pole of G(jw) the continuity of H(jw) implies A{P + P*} > 6 > 0,

For Re(G + G') only p. s.d., the first two terms of M^ are p. s.d..

l2Then for any k"1 such that Im[(G +K~ )'] is p.d., M is positive

definite, and by the same argument as above so is (I - eM ) M2#

Thus, if Im(G + G') is p. s.d. whenever Re[G(jw) + G'(jw)] is only

p. s.d., A{P + P*} > 6 > 0 for arbitrarily large k.. For Im(G + G*)

not p. s.d. but Im(G + G« + 2K~ ) p. s.d., replace the j.th nonlinear

capacitor by a linear capacitor of capacitor 1/k. and replace the jth

nonlinear inductor by a linear inductor of inductance 1/k (for all i, j).

For this circuit G(jw) = Re G(jw) + jIm[G(jw) + K~ ] and G(jwQ) is

"* -1p. s.d. Therefore, G (jw) has a pole at w = wQ. Consequently,

the characteristic equation for the linear circuit has a root at s = + jwQ

so there exist initial conditions for which oscillations can occur.

To illustrate the meaning of Theorem 3, the circuit shown in

Fig. 6a will be analyzed to determine the largest value of k for which

V(t) can be guaranteed to be an L function. For this circuit

2
2s< s + s + 1)

G(s) = y(s) = — ~
2s + 4s + 3s + 3s + 1

is the input admittance at the capacitor terminals. Since there is only

one nonlinear element, A{P + P*} > 6 > 0 reduces to

Re{[l +jwu] H(jw) +i} > 6>0
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or

ReH(jw) - u wlmH(jw) +-j- > 6 > 0 (4-8)

From the plot of ReH(jw) vs wlmH(jw) shown in Fig. 6b, it is clear

that (4-8) can be satisfied for — > 2.

Now replace the nonlinear capacitor with a linear 2 farad

capacitor. Writing the state equations in the usual manner for this net

work [14], it is found that the characteristic polynomial of the "A"

2 2
matrix is s(s + l)(s + 1) . Thus there are initial conditions which

cause oscillations of frequency jl. In fact if a charge q is placed on

the linear capacitor which replaced the nonlinear one, the voltage across

its terminals contains the term q sin(t). Clearly it would be futile to

hope for asymptotic stability for a nonlinear sector [e, k - c] for any

k > 2.

It is useful to know that for the circuits described in Theorem 3

that if a bounded input is applied, all variables will remain bounded as

long as the impedance at the terminals of each current source and the

admittance at the terminals of each voltage source contains no poles on

the jw-axis.

Theorem 4: Let fj be a network of linear, positive R's, L's, and C's

with realistic coupling, nonlinear charge controlled capacitors and flux

controlled inductors in Popov sectors and voltage and current sources.

Then, if the driving point matrix with respect to the input ports, with
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all nonlinear inductors removed and nonlinear capacitors shorted, has

no poles on the jw-axis, all variables are bounded.

Proof: By the discussion before Theorem 3 and the statement of

Theorem 4, H (s) has all roots in the open left half plane. Then

N(t) = N (t) - V h(t - T) g[N(T)] dT + V h (t - T)U(T) d"
J0 J0

where NQ(t) € L£N

h(t) =^_1[H(s)] €K2N

K{t) ^:-1[hu(s)) €k2N

The rest of the proof is the same as that of Theorem 2 except that here

it is directly shown that N(t) is bounded.

V. Generalization

When we combine the results of Sees. Ill and IV to determine the

stability of circuits containing nonlinear R's, L's and C's, we find

that while the mathematical result's are still valid, it is no longer

simple to physically interpret these results. To simplify notation, in

this section we make the following definitions:

Nl=(j N2=(^) V-«V R2=-f(N2>
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Lemma 6: Let// be a network of linear R's, L's and C's with

realistic coupling, and nonlinear R's, charge controlled C's and flux

controlled L's in Popov sectors. Then, the dynamic equations may

be written as

x = Ax + B R + B R + B u

N1=C1xxDnR1xD12R2xD13u (5-1)

N2=C2X+D21R1 + D22R2+D23U

Proof: As in Lemmas 1 and 5 pick a normal tree and use the represen

tations shown in Figs. 1 and 4 to I-controlled resistor links, V-controlled

resistor branches, nonlinear capacitor links and nonlinear inductor

branches. The loop and cut set equations are then of the form

A. x + B.x + C. V_ + D. ^ + E. V = G. f(I) + H. f(q) + F, V.
1 1 1R 1 1 1 j »-*/ lm

A2X *V +C2 VR +D2^ +E2I= G2f(V) +H2f(+> +Fzhn

The rest of the proof is the same as that of Lemmas 1 and 5.

To apply the Popov criterion to this network we make a trans

formation similar to the one discussed in Sec. IV and shown in Fig. 5.

The original network is now represented in Fig. 7a and the transformed

one in Figs. 7b and 7c. From Fig. 7a, a driving point matrix is

defined by

N (s) \ / G(s) H(s) \ / R (s)
* ' • (5-2)

N2(s)y \H2(s> GR(^/ \R2(S)
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Then for Fig. 6b we find that

Nx(s)\ /T(s)G(s) T(s)H1(s) \ /r^s)
N2(s)/ I H2(s)[I - €T(s)G(s)] -H2(s) €T(s) H^s) +GR(s) JI R2(s)

(5-3)

where T(s) = [si + eG(s)] " .

Note that the matrix G (s) is equal to the matrix H(s) + D obtained for
R

the nonlinear resistor case if all nonlinear inductors and capacitors are

removed, and G(s) is the same as for the nonlinear LC case if all

nonlinear resistors are removed. Thus by the same reasoning as in

Sees. Ill and IV, if we represent Eq. (5-3) as

N(s) = M(s) R(s) (5-4)

N(s) has no poles on the jw-axis or in the right half plane. The main

result of this section gives a sufficient condition for L_ stability and

appears to be the most general result that can be obtained directly by

the Popov approach for the nonlinear RLC case.

Theorem 5: Let "jf[. be a network containing linear R's, L's and C's

with realistic coupling, and nonlinear R's, charge controlled C's and

flux controlled L's in Popov sectors. If there exists 6, |i > 0 such

that A{(P + P*)} > 6 > 0, where P(jw) = (I + jwu) M(jw) + K~ , then

nonlinear resistor voltages and currents, nonlinear capacitor charges

and inductor fluxes are bounded, L? functions which go to zero as
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t -*oo; all other network variables are bounded and, if the eigenvalues

of A have negative real parts, go to zero as t-*oo,

Proof: The general solution of Eq. (5-4) is

N(t) =N (t) - ( m(t - T)g[N(T)] dT
J0

where m(t) = ^""^Mfs)] «K

N0(t) « L2N

The rest of the proof is the same as that of Theorem 3.

Unfortunately, no general conclusions about the network defined

by Theorem 5 can be drawn from the theorem not only because of the

complicated form of M(jw), but also because all that is known about its

submatrices is that G(jw) and G (jw) are p. s.d. We conclude with an
R

extension to input-output stability.

Theorem 6: Let V' be a network containing linear R's, L's and C's

with realistic coupling, and nonlinear R's, charge controlled C's and

flux controlled L's. Suppose the driving point matrix M (s) at the

input ports with all nonlinear inductors and V-controlled resistors

removed and nonlinear capacitors and I-controlled resistors shorted

has no poles on the jw-axis. If there exists 6, |i > 0 such that

A{(P+ P*)} > 6 >0 where P(jw) =[(I +jwp.) M(jw) +K"1], then N(t),

f[N(t)] and x(t) are bounded.
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Proof: The general solution of (5-4) is now

N(t) =N (t) - C m(t - t) g[N(T)] dT + \ m (t - t) u(t) d-
*A) 0 u

where m(t) = ^-1[M(s)] £K
'2N

m(t) =^-l[Mu(s)] cK2N

N0(t> = £ L2N

The rest of the proof is the same as that of Theorem 4.

VI. Conclusions

The main results of this paper have been to demonstrate the

existence of canonical forms for the dynamic equations of nonlinear

RLC circuits and from these equations derive some stability criteria

for nonlinearities which are neither necessarily monotone nor neces

sarily continuous. The former category includes devices like tunnel

diodes while the latter covers relays with deadzone. It should be noted

that all results hold if the nonlinear elements have time-varying

characteristics as long as these remain within the Popov sector for all

time. It can also be shown that in Theorems 3, 4, 5 and 6, e^ may be

zero for certain elements using the same type of arguments as following

Theorem 2. The results of Sees. IV and V are valid /or any system

containing nonlinear elements with memory as long as their dynamic
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equations can be put in the general form of Eqs. (4-1) or (5-1), or more

generally if their outputs can be expressed as a convolution of a stable

function with their inputs.

The results presented here should be useful to the problem of

designing circuits containing nonlinear elements. Because of the

generality of Theorems 1-4, the designer, by simply noting the sector

boundary, can take advantage of the properties of nonlinear devices

without having to worry about producing unwanted oscillations.
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Fig. 1 Equivalent representation for nonlinear resistors
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Fig. 2 Circuit analyzed in example of application of Lemmas 1 and 2.
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Fig. 3 Circuits for which no proper normal tree exists
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Fig. 4. Equivalent representation for nonlinear capacitors and inductors
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Fig. 5 Representation of network containing nonlinear capacitors and

inductors.
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Circuit with finite Popov sector boundary and its modified

frequency response plot.
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Fig. 7 Representation of a nonlinear RLC network.
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