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I. PRELIMINARIES

A. INTRODUCTION

There are optimization problems in the control

of dynamical systems for which the game-theoretic concept

of an adversary is appropriate. A typical example of this

is the pursuit-evasion problem. For these problems the

classical approach to the theory of games due to von Neumann

is inadequate because for dynamical systems a continuum of

moves is possible. A reformulation of this problem will be

done with great care in a later section. For now, the

situation that we wish to consider can be roughly described

as follows. Let t denote time and z(t) e E denote the

state of the system at time t. There are two persons, called

Player I and Player II, who can exert controls on the state

of the system through the differential equation

-——-*- - f(z(t),u(t),v(t),t)

where u(t) e Em and v(t) e E characterize the controls of

Player I and Player II, at time t, respectively. Let there

be given an initial time t , an initial state z , and a

subset T of Es x [t ,co), called the target set or the end

zone. Let there also be given a payoff or a criterion

function J(u(*),v(•)). At each time t, both players can



completely observe the state z(t). The purpose of Player I

(Player II) is to decide the value of his control, at each

time t, based upon observation of the state z(t), such that

the state of the system transfers from z to the target set

T with the minimum (maximum) payoff. Since the choice of the

value of controls is made based upon the value of the state

z(t) observed at each instant of the game, these games are

sometimes called the "closed-loop" (or feed-back) games.

Thus, the game mentioned above is a class of two-person, zero-

sum, infinite multimove games with perfect information. This

will be called the general differential game.

If there is only one person (Player I or II) concerned

with the system, the above problem can be reduced to the

classical optimization problem. On the other hand, if obser

vation of the state z(t) is made at discrete instants, the

above problem can be treated by classical game theory, at

least in theory.

Thus, differential game problems differ from classical

optimization problems in that the latter contains only one

control, whereas, the former contains two different sorts of

controls under conflict situations. On the other hand, differ

ential game problems also differ from classical game problems

in that the latter is mainly concerned with discrete proc

esses, whereas, the former is concerned with continuous

processes. Thus, the first difficulty in differential games

is the precise formulation of games with a continuum of

moves.



A possible approach is to approximate the time-

continuous game by a sequence of time-discrete games with

observation time intervals h>0, and to consider the limit as

h goes to zero.

W. H. Fleming [F2] ,[F3] successfully applied these

techniques to a special class of general differential games,

viz., differential games with integral payoffs and a fixed

duration. In games of this type, the payoff to Player I is

given by

J(u(-),.v(0) -g0(z(t1)) + IXg(z(t),u(t),v(t),t) dt

and the target set is

T ={ (z(t1),t1) g Es+1 :z(tx) g Es, t1 is fixed}

Player Ifs (Player IIfs) objective is to decide the value of

his control at each instant of the game, based upon obser

vation of z(t), so as to minimize (maximize) the payoff J.

Games of this type will be called fixed duration games. He

showed that JL converges to a certain limit J and J coin-
h o o

cides with the appropriately defined "value" of the time-

continuous game. Moreover, the "minimax" theorem holds for

these games [F3] ,[F4]

. Another important class of differential games arises

from the study of pursuit-evasion problems. In this case,

Player I (Pursuer) pursues Player II (Evader) who is moving

away from Pursuer. The game is considered terminated as soon



as the Euclidean distance between the state x(t) of Pursuer

and the state y(t) of Evader becomes less than or equal to

some prescribed non-negative number e. In this case, the

target set T is given by

T2 -jC»(t),t) «ES+1 :z(t) -f*j*jl ,||x(t) -y(t)|| £«j

and the payoff is the time up to the termination of the game.

Pursuer (Evader) tries to choose the value of his control at

each instant of the game, based upon observation of x(t) and

y(t), so as to terminate the game in the shortest (longest)

period of time. Games of this type will be called pursuit-

evasion games.

Here, we encounter analogous difficulties in the

precise formulation of these games with the additional diffi

culties that the duration of the pursuit-evasion game is not

prescribed a priori and that the target set T may not be

attained. At present, there is no satisfactory general

mathematical formulation of these games. Only some prelimi

nary results have been obtained [H3], [K8], [P2]. It is these

games that are studied extensively in this thesis.

Now, a general theory of differential games should

answer the following questions:

(a) Do there exist admissible "strategies" for Player I

which transfer the initial state z to the target set T
o

against any admissible strategy of Player II?



(b) If such strategies for Player I exist, does there exist

an "optimal" strategy?

(c) How can we construct the optimal strategy?

In a fixed duration game, the target set T, is always

attained. However, in a pursuit-evasion game, the target set

T may or may not be attained. The conditions that T2 is

attained are called capture conditions and studied in Chapter

III of this thesis.

Now, let us assume that the target set T can be

attained. In this case, our next job is to select some

"optimal" strategy pairs from those which are attainable to

T. The only compromizing definition of the optimality which

is satisfactory for both players under conflict situations

is. the von Neumann's saddle-point optimality. But, it is

known that the saddle-point definition is valid if and only

if the "minimax" theorem holds. The "miniroax" theorem for

the pursuit-evasion game, which is,in general, still an open

question at present, is studied in Chapter II-C under some

restrictive conditions.

Now, let us further assume that the target set T is

attainable and that the "minimax" theorem holds. In this

case, it has been conjectured that the saddle-point "optimal1.*

strategies can be obtained by v/riting down formally a

"modified" Hamilton-Jacobi-Bellman partial differential

equation (this equation was called the "Main equation I" by

R. Isaacs [il]). However, this approach is restricted by many



technical difficulties, above all by the fact that the domains

of regularity (in which the partial derivative of the payoff

is continuous) are, in general, extremely difficult to

obtain. Moreover, at present, mathematical validity of this

approach is not well established except for special cases [F5].

Another difficulty with the saddle-point "optimal"

strategy is that it requires continuous observation of the

states of both players. This is undesirable from the prac

tical point of view (see Chapter IV).

In this thesis, instead of trying to find "optimal"

strategies, we introduce the concept of "sufficient" strate

gies. A sufficient pursuit strategy as introduced in Chapter

IV guarantees capture within some finite, but possibly not

the shortest, period of time. This strategy requires neither

the verification of the "minimax" theorem, nor continuous

observation by Pursuer of the states. Constructive algo

rithms given in this thesis are geometric in nature and are

straightforward. It will be seen that the existence of such

strategies is closely related to the capture condition. By

applying this method, we have obtained some results which

subsume those obtained by L. S. Pontryagin [P2] and Y. C. Ho

et aL[H3}.

The organization of this thesis is as follows:

In Chapter I, we introduce some notation and definitions

which will be used in the thesis. The rules of the game are

explained. In Chapter II, we formulate pursuit-evasion,

time-continuous games by means of time-discrete approximations



(Section A). Time-discrete approximations used here are

different from those used by W. F. Fleming [F2] , [F3] and make

our discussions simpler. In Section B, we prove that optimal

capture times for approximating discrete games converge to a

limit as observation intervals h go to zero. The discussions

make essential use of geometrical attainability sets and

iterative relations by dynamic programming. In Section C, we

prove the minimax theorem under certain restrictive assump

tions by applying attainability sets, dynamic programming,

and the Kakutani's fixed point theorem. In Section D, the

relation between the limit of discrete games and the contin

uous game is discussed. In Chapter III, capture and escape

conditions for discrete games and continuous games are derived.

These are closely related to algorithms for constructing

sufficient strategies given in Chapter IV. In Chapter IV, a

new concept of sufficient strategies is introduced. Algorithms

for constructing these strategies are introduced. Existence

theorems for sufficient strategies are given and some examples

for.L controls are shown. Lower dimensional projections of

capture are discussed.



B. CHARACTERIZATION OF DYNAMICS

1. Dynamics of Pursuer and Evader

We shall consider a system (P) whose state at

time t is described by a vector x(t) in an Euclidean space

En, n=l,2,..., and whose control at time t is characterized

by a vector u(t) in Em, m=l,2, We shall assume that

the dynamics of this system (P) is described by a differen- .

tial equation

4Z&1 = f(x(t),u(t),t) (1;1)

where f(*,*,-) is a function from En x Em x E into En, This

system (P) will be called Pursuer.

Remark 1: In this thesis, the following definitions of a

mapping or a function are used[B4] . Let X and Y be two sets.

Corresponding to each element x of X, if we associate a

subset F(x) of Y, the correspondence x to F(x) will be called

a mapping from X into Y. If the mapping F(*) from X into

Y is such that the set F(x) always consists of a single

element, F(#) will be called a single-valued function (or a

single-valued mapping) from X into Y. Where no confusion is

possible, single-valued functions from X into Y will be

denoted by small Latin letters and called simply functions

from X into Y. General or multi-valued mappings will be

denoted by capital Latin letters.

8



Remark 2: Let F(») be a mapping from X into Y. By F('), we

represent a mapping and by F(x), x e X, we represent a subset

of Y. Similarly, let f(») be a single-valued function from

X into Y. By f(»), we represent a function and by f(x),

x e X, we represent a point of Y.

Similarly, we shall consider a system (E) whose

dynamics is described by a differential equation

•^^ =g(y(t),v(t),t) , (1.2)

where y(t) e En is a state, v(t) g Em is a control, and

g(•,.,•) is a function from En x Era x E into En . This

system (E) will be called Evader.

2. Admissible controls

Let tQ be a real number called the initial

time. Let U and V be non-empty, compact subsets of Em.

A measurable function u(«) from [t0,co ) into U will be called

a Pursuer's admissible control. The set of all Pursuer's

admissible controls will be denoted by \L , i.e.,

i** ={u(») : u(«) is a measurable function from [tQ,co )
into UJ .

A measurable function v(«) from [t0>oo) into V will be called

an Evader's admissible control. The set of all Evader's

admissible controls will be denoted by V . From this defi

nition, we see that if u,(«) is admissible, then for any



vector ueU and any tlf tQ < t± < co , the function ug(')

defined by

fu (t) t i t < t,
u2(t) -4 X ° -1 (1.3)

1 u tx ^ t < oo

belongs to 7/ •

Similar fact holds for rf .

In what follows, we shall assume that the sets U and

V are fixed.

10

3. Trajectories and graphs

Let I^ftj, tj be an arbitrary finite time

interval such that tQ £ tj < t2 < co . Let u(*) be a Pursuer's

admissible control. A function x(») from I into En will be

called a Pursuer's trajectory on I corresponding to a control

u(0 and an initial condition

nx(t ) = X-j^ 6 E

if

(a) x(«) is absolutely continuous on I

(b) -~^- =f(x(t),u(t),t) a.e. in I
(c) x(tx) - x1

An Evader's trajectory is similarly defined.

A Pursuer's graph on I, denoted by f£ corresponding

to an admissible control u(») and an initial condition

x(t^) = x-, is defined by



f" ={ (x(t),t) g En+1 :t G I
xl l

x(«) is a Pursuer's trajectory on I ^
corresponding to u(«) and x(t1) = x^j

11

(1.4)

When there is no possibility of misunderstanding, the super

script u will be dropped and the domain of definition I will

not be specified. An Evader's graph is similarly defined.

In what follows, we assume that the following condi

tions are satisfied for any finite time interval I.

Al-1 f(-,»,0 is continuous in (x(t),u(t)) on En x U for

each t 6 I.

Al-2 f(•,.,.) is integrable with respect to t on I for

each (x(t),u(t)) e En x U.

Al-3 There exists a Lipschitz constant K < co such that

f(x(t),u(t),t) - f(x'(t),u(t),t)

1 K x(t) - x'(t) (1.5)

for any x(t), x'(t) e En, u(t) c U , and t g I

Here, implies the Euclidean norm.

Al-4 There exists a constant M < co such that

||f(x(t),u(t),t)|| £ M( |x(t)|+ 1) (1.6)

It is known (see [Cl] , [Hi] , and [S3] ) that Assumptions Al-1

to 4 guarantee the existence and uniqueness of a global

trajectory x(«) on I for any admissible control u(») and

initial condition x(t^) = x1 e En . A finite escape time is

ruled out by Al-4.



Similar assumptions are made on g(*,',0. For simplicity,

Assumptions Al*-1 to 4 on f(»,«,-) and g(*,«,») will be called

Assumption Al.

12

C. ATTAINABILITY SETS AND ESCAPABILITY SETS

1. Attainability sets

A point (x(t2),t2) g En+1 is called
attainable from (x(t1),t_) g En+1 ,tQ <; t < t2 < oo , if
there exists a Pursuer's admissible control u(«) such that

(x(t2),t2) e f^(ti>

In other word, (x(t2),t ) is attainable from (x(t1),t1) if

there exists an admissible control u(-) such that Eq. (1.1)

with the initial condition x(t1) at time t_ has the solution

x(t2) at time t2.

The attainability set for Pursuer from (x(t;.),t1) e En+1,
t ^ t < oo is defined by

Ax(tx) »{(x(t),t) 6En+1 :tg [t^oo),
(x(t),t) is attainable from (x(t1),t1)} (1.7)

The fixed-time cross section of Ax(t y at time t, tQ £ t, £ t
1 < oo ,

is defined by

Ax(t )(t) "{x^t) e En :(x(t),t) g Ax(t )] (1.8)

n+1The attainability set A , v for Evader from (y(t]L),t1) c E



to £ *i < °° » and the fixed-time cross section of A *t * at
time t, tQ £ tjL £ t < oo , are similarly defined.

Now, by Assumption Al, it is seen that A f x(t),

*0 ^ *1 ^ * < oo , satisfies the following properties.

At-1 (Boundedness) For each x(t_) g En, t-,, and t,

to £ *i £ t < °° » Ax(t )^ is a bounded subset of En.

At-2 (Continuity) For each x(tx) g En ,A,t x(t) is

continuous in t, tQ £ t1 £ t < oo , namely, for each

x(t^) e En , tlf t, and e > 0, there exists 8> 0 such that

|t-f| *J. /Ax(tl)(t> cAx(tl)(i) +Be
J imply <

txif i ^(tl)(« cAx(tl)(t) +Be
where Bc g En represents the ball of center 0 e En and
radius e and

Ax(tl)(t) +Be ={a+b : agA^^t), bgbJ
At-3 (Semi-group property) For each x(tx) g En, t-p t2,

and t3, tQ <£ ti £ t2 ^ t3 < oo ,

Ax(t1)(t3) - .. L-l ' ,. /X(t )(t3) (1.9)
1 x^t2)eAx(t1)(t2> 2

Similar properties hold for A ,. x(t).y(tx)x

Now, any attainability set generated by a differ

ential equation of the form (1.1) has properties At-1, 2,

and 3 under Assumption Al. But we sometimes require further

restrictive properties for attainability sets, especially in

13
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Chapter II-C and Chapter IV. They are

At-4 (Compactness) For each x(t ) c En, t. and t,

t0 £ t^ <£ t < oo, A ,. v(t) is a compact subset of E .

At-5 (Convexity) For each x(t1) e En, t., and t,

t £ t^ £ t < co , A , *(t) is a convex subset of En.

Sufficient conditions for At-4 and 5 have been extensively

examined in connection with the existence of optimal controls.

Remark: Standard results which guarantee properties At-4

and 5 above are as follows:

(a) Nonlinear dynamics

Let f(',«,«) satisfy Assumption Al. If the set

(f(x(t),u(t),t) : u(t) e U>

is convex for each (x(t),t) e En x [t ,co), then

the set Ax(t )(t) is compact for each x(t1) e En, t^,

and t, t0 £ t£ £ t < oo [Rl] .

It should be recalled that U is compact.

(b) Linear dynamics

Suppose f(x(t),u(t),t) = C(t)x(t) + h(u(t),t), where C(t)

is an n x n matrix, h(u(t),t) is a vector in En, and C(»)

and h(»,») are continuous.

Then, the set ^x^ \(t) is compact and convex for each

x(tx) g En, t ,and t, tQ ^ tx £ t< co [Nl] .

Furthermore, we need the following property, especially in

Chapter II-C, which also follows from Assumption Al.

At-2' (Uniform continuity)



For each e>0, there exists S>0 such that

imply

x(tx) e Ax (tx)

^x(t1)<*)C Ax(ti)(t') + BG

Lx(t1)(tf)^Ax(t1)(t) +B€

15

2. Escapability sets

Now, we shall define the e-escapability set

which plays an important role in the following discussions.

For each real number e^O the e-escapability set with respect

to (x(t1),t1) eEn+1 and (y(t2),t2) gEn+1 ,tQ £ ^ <oo,
*o £ t2 < °°» denoted symbolically by Ay(t )-(Ax(t )+B€), is

defined to be the component (= the maximal connected subset

(see Ref. [K6] ))Qf Ay(t ^\ (Ax(t )+Be) which contains
(y(t2),t2), where

Ay(t2) \ (Ax(t]L) +B€)

=[z gEn+1 : z gAx(ti> +Bc , z gA^,} ,

and Ax^t ^ + Bfi is defined such that its fixed-time cross

section at time t, tQ £ tx ^ t < co , denoted by

^Ax(t ) + Be)W> satisfies.

^xCtj) +BG)(t) =Ax(ti,<t) +bg (1.10)
for all t, tQ £ t-j^ £ t < co .



If e)>0 is fixed and there is no possibility of misunder

standing, we shall express the e-escapability set more suc

cinctly by

Ay(t2) " <Ax(tl) +Be> "^(t^.yd*) (1'u>

The set A v(t ) ~ ^fx(t ) + B ) is similarly defined.

D. RULES OF THE GAME

1. e-capture time

Let u(») (v(O) be a Pursuer's (Evader's)

admissible control, and let x(») (y(O) be the corresponding

trajectory with an initial condition x(t )=xQ (y(t )=yQ).

Let there be given a non-negative number e.

A A

If there exists a time t, t < t < co such that

||x(t) - y(t)|| <; g
- (1-12)and ||x(t) - y(t)|| > g for all t, tQ £ t < t

A A

we say that the e-capture occurs at time t and t - tQ will

be called the e-capture time. If there does not exist t

which satisfies (1.12), we define t = oo . The game is

considered terminated as soon as the 6-capture occurs. We

shall assume throughout that II x - yQ|| > g .

Let f„ and f represent graphs for Pursuer and Evader
xo yo

corresponding to admissible controls u(») and v(«), respec-
A

tively. Then, the above definition of t is equivalent to

16



t - min(t: If (t) - f (t)|| = e) (1.13)
1 xo y© "

Since the trajectories x(*) and y('), defined by x(t)=f (t)
o

and y(t)=fv (t), t < t < co , are continuous, the minimum
y<> o

with respect to t is meaningful.

2. Unbiased game

The rules of the pursuit-evasion game are as

follows:

Before starting the game, Pursuer and Evader are informed of

R-l the dynamics of Pursuer and Evader, and the admis

sible control sets, 7/and *\f ,

Rr2 the initial conditions, xo, yQ and tQ and

R-3 the value of c .

We assume that throughout the game R-l, 2, and 3 are fixed.

In addition to R-l, 2, and 3 above, Pursuer and Evader

can observe the states of both players, x(t) and y(t), at

each instant of the game, without error. Based upon this

information, Pursuer tries to determine a. value of u(t) e U,

at time t, such that the e-capture will occur within the

shortest period of time. On the other hand, Evader selects

a value of v(t) e V, at the same time t, so as to escape from

the e-capture as long as possible. The rules of the game

will be stated more precisely in Chapter II in terms of time-

discrete approximations.

This model of the game will be called the unbiased

17
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game G, since the information pattern available for both

players at each instant of the game is unbiased.

Since it is difficult to analyze this game any fur

ther, we shall circumvent this difficulty by approximating

the above time-continuous game by the time-discrete games.

Before proceeding to time-discrete approximations, it will

be convenient to introduce minorant and majorant games in which

the information pattern available for each player is biased

in favor of one player or the other.

Remark: It is also possible to consider games where the

value of u(t) (v(t)), at each instant of the game, depends

not only on the present states but all the past.

Howeyer, these games are considerably more complicated, and

are rarely considered in the literature. We shall not consider

these either.

3. Minorant and majorant games

In the minorant game G~, the game is played just

the same way as the unbiased game, except that Pursuer can

observe the value of the Evader's control v(t), at each instant

of the game, in addition to x(t) and y(t). The information

pattern available for Evader is the same as that of the un

biased game.

In the majorant game G+, the game is played just the

same way as the unbiased game, except that Evader can observe



the value of the Pursuer's control u(t), at each instant of

the game, in addition to x(t) and y(t). The information

pattern available for Pursuer is the same as that of the un

biased game.

19
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II. TIME-DISCRETE APPROXIMATIONS AND CONVERGENCE PROBLEMS

As pointed out by W. H. Fleming [F2] ,[F3] , profound

difficulties are involved in the precise mathematical formu

lation of games with a continuum of moves, because of the

fact that each player's control is affected by the other

player's state continuously.

A possible approach is to replace time-continuous

moves by time-discrete moves with time intervals h>0, and to

show that the values of the approximating discrete games con

verge to a limit as h tends to zero.

In Section A, the formulation of approximating time-

discrete games and some related definitions are introduced.

In Section B, we show that the optimal e-capture times

for the discrete games converge to a limit as h goes to zero.

In Section C, we establish a theorem showing that,

under certain assumptions, the difference between the optimal

e-capture times for the discrete minorant games and the

majorant games converges to zero as h goes to zero. This cor

responds to the "minimax" theorem in matrix game theory. Only

in this case, the unbiased differential game is "determined"

in the game-theoretic sence and the optimal pair of strategies

can be defined.

Finally, in Section D, the relation between the limit

of approximating discrete games and the time-continuous game

is clarified. Especially, we show that lira T~ (= lira T+)
h-K) n h-0 n



coincides with the appropriately defined "value" of the cor

responding time-continuous game, provided that the "minimax"

theorem given in Section C holds.

A. TIME-DISCRETE APPROXIMATIONS

1. Rules of the game

Since we encounter difficulties in the precise

formulation of the time-continuous, pursuit-evasion differ

ential game G, we start instead with a corresponding sequence

of discrete games G, which are defined below.
n

Let us recall that in the time-continuous game G,

the following information is given to Pursuer and Evader,

before the game starts:

R-l the dynamics of Pursuer and Evader, and the admissible

control sets Zt and *]? ,

R-2 the initial conditions, x^, y .and t , and
o •'o o

R-3 the value of c .

At each instant t, tQ ^ t < oo, both players observe the

states x(t) and y(t) and decide values of their controls u(t)

and v(t), at the same time t, based upon.this observation.

Now, corresponding to the time-continuous game G, a

time-discrete unbiased game Gn with a sampling time interval'

h>0 is played as follows:

Before starting the game, Pursuer and Evader are told R-l,

21
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2, and 3 above, as well as

R-4 the sampling time interval h>0.

We assume that throughout the game R-l, 2, 3»and 4 are fixed.

In addition to R-l, 2, 3, and 4 above Pursuer and

Evader can observe the states of both players at time

ti=tQ+ih, i=0,l,2,... , denoted by xi and y., respectively,

without noise. Unlike the time-continuous game G, neither

player can observe the states continuously. Now, at each

time ti=t +ih, i=0,l,2,... , based upon this information,

Puruser tries to determine his admissible control segment u^(«)

on [tA, ti+1) (see Remark 2 below) such that the c-capture

will occur within the shortest period of time. On the other

hand, Evader selects his admissible control segment vi(#) on

fci» *i+l) so as *° escape from the e-capture as long as

possible.

This model of discrete games will be called the

unbiased game since the information pattern available for both

players at each time t^, 1=0,1,2,... , is unbiased.

Remark 1: W. H. Fleming [F3] discretized both sampling inter

vals and dynamics; i.e., he approximated differential dynamics

by difference dynamics. Here, we discretize only sampling

intervals, leaving dynamics of both players unchanged. We

shall see that our discretization technique is more conven

ient for our analysis, especially in connection with suffi

cient strategies.



23

Remark 2: Suppose a measurable function u.(«) from [t^, ti+1)

into U, i«0,l,2, ... , is given. Then, the trajectory x(«)

on [t±, ti+1] is uniquely determined if the initial condition

x(ti)=xi is given (see Ref. [Z2] for consistency conventions

of dynamic systems).

A measurable function u±(-) from [t±t t±+1) into U, i«0,l,2,... ,

will be called a Pursuer's admissible control segment on

[ti? ti+1)« The set of all Pursuer's admissible control

segments on [t±, t±+1) will be denoted by^- Similar defi
nition for vi(«) and^holds for Evader.

In addition to the discrete version of the unbiased

game Gh just described, it will be convenient to introduce a

time-discrete minorant game G£ and a time-discrete majorant

game Gh . The discrete minorant game G, with the time inter

val h>0 is played just the same way as the unbiased game Gfa ,

except that Evader must tell his admissible control segment

vi(») to Pursuer, at each time t^, i=0,l,2,... , before

Pursuer chooses his admissible control segment u^O.

Hence, the information pattern available at each time t. is

advantageous to Pursuer.

The discrete majorant game g£ with the time interval h>0 is

played just the same way as the unbiased game G , except that.

Pursuer must tell ui(«) to Evader, at each time t±, i«0,l,2,... ,

before Evader chooses v.(«).

Hence, the information pattern available at each time t. is

advantageous to Evader.



24

Since both players make use of states x(t.) and y(t±),

observed at each time t^ i=0,l,2,..., to decide u (•) and

vi(«), the games just described are called closed-loop games.

If the rules of the game are modified such that

observation of states is not permitted during the game and

both players must decide their whole controls u(#) and v(«)

at the initial time tQ based upon R-l, 2, 3, and 4, these

games are called open-loop games.

Since open-loop games are considered as a special case

(h goes to co) of closed-loop games, we are mainly interested

in closed-loop games in this thesis, and when no confusion

results, the words "closed-loop" will be omitted.

2. Optimal e-capture time

Following the rules of the game, let us assume

that R-l, 2, 3,and 4 are given. If u(«) e 11 and v(-) g 7/*

are given, a Pursuer's trajectory x(«) and an Evader's tra

jectory y(«) are uniquely determined (by Assumption Al). Then,

the e-capture time denoted by t, is determined by (1.12).

Let m (=0,1,2,...) be defined by

tQ + mh < t^ t0 + (m+l)h (2.1).

For convenience, we define m«=co if t=co .

Now, let us decompose u(«) and v(.) by i^CO and v.(.), in

the sense that



u(t) « u.(t) t^ < t < t. ,, i=0,l,2, ... and
(2.2)

v(t) = v±(t) t± £ t < ti+1, i=0,l,2,...

where ui(*) and v^(») represent Puruser's and Evader's

admissible control segments on ft., t^+,), i=0,l,2,... ,

respectively. It is seen that corresponding to any u(«) c*^,

ui^') e UL'. >i=0» *»2> ••• » are uniquely determined. Similar
fact holds for v(*)

We define the optimal G-capture time for G~ by

T~ - sup inf

v0(0 u0(.)
sup inf t - t (2.3)
v (•) u (•) °
mv ' m

The supremums and infimums are over the sets ^ and uL± >

i=0,l,2,...,m, respectively.

It sould be recalled that m is given by (2.1).

T~ can be infinity. Conditions for T~ < oo, which are called

capture conditions, will be given in Chapter III. When no.

confusion results, we simply say the optimal capture time,

instead of the optimal e-capture time.

In what follows, we shall make the following assumption.

A2 (1) There exist u~(-) e 2£. a^d vT(.) c ^ ,
i=0,1,2,...,m, which attain the minimum and maximum of t

in (2.3).

Under this assumption, we have

25

T. « max min

h vo(.) uQ(.)
A

max min t - t (2.4)
v (•) um(-) °
m m



Let us define u""(.) and v"*(*) by

*i+l £ * < °° <2-5>

Sj(t) ,ti <; t < ti+1 , i=0,l,2,...,mf ui^u-(t) = \ x
UeU,

26

J*i(t) ' *i ^ * < t±+l ' i-0,1,2, ...,m
UeV, ti+1 ^ t< co (2.6)

where u and v are arbitrary vectors in U and V, respectively.

A A

By (1.3), uTv) and tft*) are admissible. We shall refer to

the pair (u""(-),v~(»)) as the optimal pair of controls for Gjj.

Similarly, we define the optimal e-capture time for

Gh *y

t£ «= inf sup inf sup t - t (2,7)
u (•) v (•) um(.) vm(«) °
o o mm

The infimums and supremums are over the sets %_and ^ ,
i=0,1,2,.-. ,.,m, respectively.

We shall assume

A2 (2) There exist u+(0 6^ •and vt(-) -g ?/^ , i-0,1,2,.. .,m,
which attain the minimum of t in (2,7).

The optimal pair of controls (u+(*),v+(«)) for G. is

similarly defined.

B. CONVERGENCE PROBLEMS

In this section, we shall show that the optimal

e-capture time TJJ for G^ converges to a limit T" as h goes



to zero. Namely, we shall show

lim Tjj = T" •
h-^0

Similarly, we shall show

lim T+ - T+
h-0 h

The optimal capture time for GjJ, defined by (2.3),

depends upon the initial conditions x , y and t .
o o o

Let us denote this dependence explicitly by

Th - Th(xo'yo>t0)

In general, let TjJ(x,y,t) represent an optimal capture time

for G£ with an initial condition (x,y,t) on En x En x [tQ,oo).

Similarly, Th(x,y,t) represents an optimal capture time for

GjJ with an initial condition (x,y,t) on En x En x [tQ,oo).
It can be seen that for any (x,y,t) g En x En x [tQ,oo) and

for any h>0, T£(x,y,t) and Tj(x,y,t) are uniquely determined.

For convenience, we define TJJ(x,y,t) = T£(x,y,t) = 0

if fx-y|| <; g .

Let us define, for each h>0, sets G~ and G* by

Gh ={<x,y,t) cEn xE" x[to,oo) :T^(x,y,t) <oo}

G£ ={(x,y,t) gEn xEn x[t0,oo) :T+(x,y,t) <oo}(2.8)

We also define, for each h>0, sets G~ ffl and g£ , m=l,2,... ,
by

Gh,m " { (x»y»t) e En x En x [t0,oo) :
(m-l)h <T~(x,y,t) £ mh }

r-+ f / n < n « r (2'9)Gh m " f <x»y.t> e En x En x ft ,co) :
' L O

(m-l)h £ T+(x,y,t) j< mh}
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With this notation, we have

Lemma 2-1:

(a) If for some positive integer n>2 and h>0, G~ *j>
n, n

then, Gh)in 4j> for all m=l,2, ... ,n-l.

(b) If for some positive integer n>2 and h>0, G* #$

then, G^m *<f> for all m=l, 2,.. ., n-1.

Proof:

(1) If G~ n*<l> ,there exists (x,y,t) g En x En x [to,co)
such that

(n-l)h < T~(x,y,t) £ nh

Since we can consider discrete games as multistage decision

processes, employing the "principle of optimality" by

R. Bellman [Bl] ,[B3] , we derive the following recurrence

relation.

10)

where

T, (x,y,t) = h + max min T. (x.., y, ,t+h) (2.
h v1(-) ux(-) h 1 1

xx «x+ Jt+h f(x(tD,u1(t'),tOdt'

yx -y+ j*+h g(y(t,),v1(tO,tOdt

v-,(«) = an Evader's admissible control segment on
. [t, t+h)

u,(.) = a Pursuer's admissible control segment on
[t, t+h)

Let *JK - the set of all Evader's admissible control
segments on [t, t+h)

T/Cj = tne se* of aH Pursuer's admissible control
segments on [t, t+h)
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The maximization and minimization in (2.10) are over the sets

of [f~1 and 2/-i such that (dist(«,«) is the Euclidean distance)

dist(fx1(t!), fyX(t')) >g (2.11)
for any f , t £ t' < t+h

Now, by Assumption A2, there exist u*(.) g 11 and

v*(.) c r\)~1 such that

T^(x,y,t) = h+ T^(x*,y*,t+h) (2.12)

and
* *

"l VldiSt(fxA(t'), ^(f)) >G
for any t' , t £ t? < t+h ,

where

x* =x+ Jt+h f(x(t'),u*(t!),tOdt'

y* - y+ [t+h g(y(t»),v*(t!),t!)dt»
^ t

From (2.12), we have

(n-2)h < T^(x*,y*,t+h) £ (n-l)h

Hence,

Gh,n-1 ^ (x*,y*,t+h)

Similarly, we can show

Gh,m * 0 for any m=l,2,... , n-2

(2) Similarly, by the "principle of optimality", we have



T?"(x,y,t) = h + min max T7(Xl,y,, t+h) (2.13)'u(x»y»t) = h + min max ^(x^y,,
h ux(.) V]L(.) h X X

for any (x,y,t) g G* , n=2,3,...
n, n

The minimization and maximization are over the sets T/6-i and

Q/*! such that (2.11) holds.

Proceeding similarly, we obtain (b).

Lemma 2-2:

T~(x,y,t) ^ T+(x,y,t)

holds for any (x,y,t) g En x En x [tQ,co) and for any h>0.

Proof:

The geometrical proof will be given in Chapter III.

Remark 1: Formally, we can prove Lemma 2-1 as follows:

By (2.4), we have

T^(xty,t) = (max min )(max min )
vo**) uo<*) vl**) ul^

(max min )t - t
v (.) u (O
mv ' mv '

<^ (min max )(min max )
Ur»(#) Vo(") "l(') V,(«)

T£(x,y,t)

(min max )t - t
u(0 v (•)

m m

Remark 2: Since information pattern for G£ is more advan

tageously biased to Pursuer than that for Gj, Lemma 2-1 is

a reasonable result.
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Lemma 2-3:

(a) If (x,y,t) g G~ x , then

T~(x,y,t) + t

- max min (f : dist(fv(t'),AY(t) + B^) = 0)fyeAy t' y x . e

(a)' If (x,y,t) e G+ , then

»+Tj(x,y,t) + t

- min max min (t': dist(fv(t0,fv(tO + BJ = 0)
fxeAxVAy *' • "

(b) If (x,y,t) e G^ 2 , then

T^(x,y,t) + t

= max min max min
y,cA (t+h) x gA (t+h) f cA„ t'

•*• j x x yi yi

(f : dist(f (tO,Ax (tO + B > - 0)
yl Xl e

(b)' If (x,y,t) e G+ 2 , then

Tt(x,y,t) + t
h

min max min max min

•x eAx f v gAxi xi yi yi

— — — ••<.•.*. UIUA U1J.II

xxeAx(t+h) y1cAy(t+h) fx eA^ f^cA^ t'

(f: dist(fy (tO,fx (tO + Be) = 0)

Proof:

(1) Corresponding to any graph f and f , the e-capture
x y

time t is given by (see (1.13))
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t - min (f : dist(f(tf) ,fv(tO) = e) (2.14)

But, by (2.3) and by Assumption A2, we have

T7(x,y,t) + t =» max min t " (2.15)
v(.) u(.)

for any (x,y,t) e Gjj lf where the maximization and minimi

zation on the right-hand side are over the sets of all

Pursuer's and Evader's admissible control segments on

[t, t+h). From relations (2.14) and (2.15), we have,

1h(x,y,t) + t

» max min min (f : dist(fv(tO,f (tf)) = c)
v(-) u(0 t' y x

Hence, recalling Remark 2 in I-A-l, and A =Mf__, we have,

T~(x,y,t) + t

= max rain min (tf : dist(fv(t'),f (tO) «= g)

VAyfxcAx t? y
« max min (t» : dist(fv(tO,A (f)) =* g)
fyeAy f y x

«= max min (f : dist(f (t),Av(t!> + B ) « 0)
f ga t» y x e
y y

(2) Other relations follow similarly.

Lemma 2-4:

Suppose (x,y,t) e G~ n , 2£m, then

(a) there exists admissible v*(») such that
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T~(x,y,t) £ h+Tjj(X]L,y*,t+h)

holds for any admissible u (•),

where

X-, = x + Tt+h f(x(t0,u(tO,t0dt'
J t 1

y* -y+ [t+h g(y(tO,v*(tO,t!)dt'

(a)' for each admissible v..(0 , except such v.(») as

u "*

dist(fxi(t!),fy1(t')) £G

for some t' , t <£ t' < t+h; and for some admissible u1(*) ,

there corresponds admissible u*(«) such that

where

Th(x,y,t) ^ h + TjJ(xJ,y;L,t+h) holds,

x* -x+ [t+h f(x(tO,u*(t'),tOdt'

7± =y+ J*+h g(y(tf),v1(tO,tOdtf

Suppose (x,y,t) e G£ , 2^m, then

(b) there exists admissible u^(») such that

T+(x,y,t) >h+T+(x*,ylft+h)

holds, for any admissible v,(«) , except such v^, (•) as

* **

ui vidist(f (t!),f 1(t')) < g
x y

for some t' , t £ t' < t+h,
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where x. and y, are defined as in (a)' ,

(b)' for each admissible u1(»), there corresponds admissible

v*(«) such that

T+(x,y,t) £ h+Tj(x ,y*,t+h) holds,

where x and y* are defined as in (a)

Proof:

(a) By (2.10) and Assumption A2, there exists admissible

v?(0 such that

T~(x,y,t) - h+ min T~(x]L,y* t+h)
u (•)

ul VT
and dist(f (tO,f (tO) > c

x y

for any t' , t ^ t'< t+h; and for any admissible u],(«)

Since

T~(x,y,t) £ h+Tjj(X]L,y*,t+h)

for any admissible u,(•) .

(a)* If Evader uses admissible v^(») such that
A/

Ul Vl
dist(f (t'),f (tO) < e

x y •*

holds for some t' , t£ tf < t+h,and for some admissible u^(0, '

then the c-capture trivially occurs before time t+h.

If Evader uses admissible vJO other than v^O), the e-capture

does not occur before time t+h.



In this case

Tr(x,y,t) » h + max min
h v

ax min T~(x_,y,,t+h)
x(-) u1(.) n 1 x

^ h + min T~(x ,y ,t+h)
•u1(-) h l 1

for any admissible v (•).

Hence, corresponding to each admissible v (•) there

exists admissible u*(«) such that

T^(x,y,t) 2 h+T^(x*,yj-,t+h)

(b) and (b)' can be shown similarly.

Theorem 2-1:

If there exists h>0 such that Th(x0,yQ,t ) < oo holds for

any h, 0<h£h, then

(a) Th^o^yo^o^ co°verges to a limit as h goes to zero, and

(b) Th(x0,y0,t0) converges to a limit as h goes to zero.

First, we shall give an outline of the proof.

Outline of Proof

(1) We shall show

. ^WV i^V^o'V (2.16)'

and

Th<*o'V*o> ^Tih(xo'y0'V (2.17)-

for any h, 0 < h £ h .
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Then, we see that-(T*/2k(x0, yQ, tQ)} ,k=0,l,2,... ,is a
non-increasing sequence bounded below (i.e., non-negative

by definition), hence Theorem 2-1 (b) holds.

Similarly, {Th/ok^xo» yo' *o^} is a non-decreasing sequence
bounded above (by Lemma 2-2), hence Theorem 2-1 (a) holds.

(2) First, by applying Lemma 2-3, we shall show

T^(x,y,t) ^ T|h(x,y,t) (2.18)

for any (x,y,t) c g£ ^.
(3) Second, by induction method we shall show

T+(x,y,t) 2T|h(x,y,t) (2.24)

for any (x,y,t) e G* m, m«2,3,..." ,m+
where

(m+-l)h < T^(x0,y0,t0) £ m+h

The proof involves three steps:

(a) Corresponding to each x^ c Ax(t+h), there exists a point

y^(x ) (here, we express the dependence of y1 on x^ explicitly)

such that

T|h(x,y,t) £ h+T|h(x1,y*(x1),t+h) (2.28)

(Existence of such y1(x1) comes from Lemma 2-4 (b)').

(b) There exists a point x^ c Ax(t+h) such that

' T+(x,y,t) > h + T+(x*,y*(x*),t+h) (2.30)

(Existence of such x comes from Lemma 2-4 (b)).



(c) Assume (2.24) holds for m=2,3,... ,n<m+ (induction

hypothesis).

Now, corresponding to any (x,y,t) g G* _ , take x* (by
n,n+1 1

(2.30)) and y*(x*) (by (2.28)).

Then, by (2.30),

T*(x*,y*(x*),t+h) £ nh .
Hence, by induction hypothesis (c),

T^(x*,y*(x*),t+h) 2 T+(x*,y*(x*),t+h) (2.32)

Therefore, we have _ _

T|h(x,y,t) ^h+T|h(x*,y*(x*),t+h) (by (2.28))

^ h + T+(x*,y*(x*),t+h) (by (2.32))

^ T^(x,y,t) (by (2.30))

Remark 1: Heuristically, we can prove (2,16)' as follows:

Th(x y t ) = min max min max t - t
° ° ° u (•) v (•) u (.) v (•) °

° o mm

min min max max

u*(.) uf(-) v^(.) v2(-)

min min max max t - t

ui(,) um<') v^(.) v^(.)m m m mv '

J> min max min max

u*<'> vi<-> »«(•) v?(.)

min max min max t - t

u*(-> *£<•> »*<•> v|j(->
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where u.(0 = a Pursuer's admissible control segment on

fti^i+l* 1=0,1,2,... ,m

u|(») = a Pursuer's admissible control segment on

[ti,ti+ih) i=0,l,2, ...,m

u^(') = a Pursuer's admissible control segment on

[tj+ih.tj^) i-0,1,2, ...,n

1 2
v.(»), v.(«), and v.(«) are similarly defined.

We can prove (2.17)' similarly.

Remark 2: In g£, Evader knows the Pursuer's control segment

on [tj^t.+h), at each time t., t.=t +ih, i=0,l,2,... , befofe

he decides his control segment on [t.,t.+h).

On the other hand, in Gi., Evader knows the Pursuer's control

segment on [t^t^+Jh) at each time ti? ti«=t +ijh, i=0,1,2,... ,

before he decides his control segment on [t.,t,+Jh).

Hence, the information pattern available -for Evader is more

advantageously biased in G, than in Gi. .

Hence, (2.16)' is a reasonable result.

Similar facts hold for minorant games.

Proof of Theorem 2-1:

(1) Let h-*0 through a sequence h, Jh, ... , h/2k, .... t and

Th(wV ^ih(xo'vV ^

••• 2 Th/2^x0.y0.V ^ (2-16)
and



Th(vvv^ Vvyo<y *

••• * Th/2k(vyo'V ^ <2-17>

for any h, 0<h£h, are shown In what follows.

If (2.16) and (2.17) hold, by Lemma 2-2,

Th<xo>yo'V ^'h/ak'WV ^ Th/2k(Vyo'V

hold for any k=0,l,2,... .

But, by assumed hypothesis, we have

Th(VVV <°° '

hence, we have

Th/2k(xojyo,to) < °° for any k=0,l,2,...
and

Th/2k(xo»yo>to) < °° for any k=0,l,2,... .

Hence, {Th/2k(x0,y0,tQ)J is a non-decreasing sequence with
^/^^o^o'V*00 for any k=0,1,2,... .

Hence, Th/2k^xQ»v0'to^ converges to a limit as k goes to oo .

Similarly {Tj/2k(x0,yQ,t0)} is a non-increasing sequence with
^^o'yo^o^0 for any k=0,l,2, ... .
Hence, Th/2k^xo»y0'*o^ converges to a limit as k goes to co .

Since h, 0<h<£ , is arbitrary, we can conclude that Theorem

2-1 holds.

(2) Now, we shall establish (2.16).

Since we assumed (xo,yo,tQ) eG* ,0<b£h, there exists an
interger m+ such that
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(m+ - l)h <T£(xo,yo,to) ^ m+h

By Lemma 2-1, we see that

Gh,m * * for any ro=l,2,...,m+-l

We now show

T^h(x,y,t) ^T^(x,y,t) (2.18)
for any (x,y,t) e G+ .

h,l

It is easily seen that if 0<tJ(x,y,t)^Jh or (and)

0<T|h(x,y,t)^Jh hold, then the inequality (2.18) trivially
holds.

Suppose h<Ti (x,y,t) holds.

Since we assumed 0<Th(x,y,t)^h, there exists a graph f

such that (see Lemma 2-3 (a)» and Assumption A2)

T^(x,y,t) +t

2 min (f : dist(f (t),f (t) = e)
t' y x

for any f c A

Hence,

h + t ± mi« (tf : dist(f (t'),f (tO) - g)
t' y. x

for any f g A .
y y

This means that even in G7, if Pursuer follows f , the
ih x'

G-capture is guaranteed to occur before time h+t, independ

ent of the Evader's trajectory.

This contradicts assumed hypothesis.



The remaining possibility is

£n < T? (x,y,t) £ h and (2.19)
fh

$h < T+(x,y,t) £ h . (2.20)

Let f € A be a trajectory which attains the minimum of
« x

max min (f : dist(f„(t*),f (f) + B ) - 0) .
f cA t' y x e
y y

Then, by Lemma 2-3 (a)', we have

T^(x,y,t) + t

«= max min (f : dist(fv(t») ,f (tO + Bc) = 0) (2.21)
f gA t> y x
y y

Since, in view of (2.20), we have

<(x,y,t) + t

max max min

ylCAy(t+|h) f^cA^ f

(t' : dist(fv (tO,fv*(f) + B_) = 0) (2.22)
yl xl e

where x,=f (t+^-h) and f„* represents a graph emanating
JL X *^i

from (x,,t+£h) such that

fx*(t!) = fx(t!> for any f , t+§h £ tf < oo .

But, by Lemma 2-3 (b)' and (2.19); we have

T|h(x,y,t) +t
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£ max max min
y gA (t+ih) f gA t'

i y yi yx

(f : dist(fv (t»),f (t?) + Bj - 0)
yl 1 e

for any fY c A and for any x_ c A (t+Jh) (2.23)
J xi x, 1 x

By (2.22) and(2.23), we can obtain (2.18).

(3) Next, we shall show

T|h(x,y,t) £ T^(x,y,t) (2.24)

for any (x,y,t) g g£ m, m=2,3,... ,m+ , m+^2 .

(if m+=l, (2.18) completes the proof).

+First, for any (x,y,t) e Gfa , 2^m<;m+ , by (2.13),we have

Th(x,y,t) = min max (h + T^(xx,y ,t+h)) (2.25)
ux(-) vx(.)

Second, for any (x,y,t) g Gj£ , 2«£m£m+ , if

(x,y,t) g Gih mt , m'=l,2, then we trivially have (2.24).

If (x,y,t) e Gi. , , m'^>3, then using the recurrence rela-

tion (for the £h processes) similar to (2.13) twice, we have

Tt, (x,y,t) = min max min max

u^(0 vj(.) u^(.) v^(.)

(h + T+ (x-,y_ft+h)) (2.26)
$h J- 1

where rt+Jh
f(x(t»),u*(t!),t!>dt'x_ = x +

1 't
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rt+h 2
+ f(x(tO,uf(t*),t')dt'

Jt+Jh 1

12u1(-),u1(0 = a Pursuer's admissible control segment
on [t, t+Jh) and [t+Jh, t+h), respectively

12
T^i'^i = the se* of a11 Pursuer's admissible control

1 segments on [t, t+§h) and [t+£h, t+h),
respectively

and y1, v*(«), v1^'hVm\* and^ are similarly defined.
The minimization and maximization are over the sets^^T/^
and 1J~}, IfZ such that

1
1 o 12

U +U "~ -V +V

dist(f l ^(f), f X X(t')) > G
* y

for any t' , t £ t < t+h .

From (2.25), in view of Lemma 2-4 (b), we see that there

exists admissible u*(«) such that

T*(x,y,t) ^h+T+(x*,y]L,t+h) (2.27)

for any admissible v (•)

provided that

ul vl
dist(f («,f (t)> > e for any t' , t ^ t'< t+h

*
u, v.

x ^"~y

where

.'t+h
xz « x +*• - x + rx+n f(x(t),u^(to,t')dt'

From (2.26), in view of Lemma 2-4 (b)', we see that for each

admissible u^O and u^(«), there correspond admissible
vj*(«) and v^*(.) such that



T|h(x,y,t) £ h+T|h(x1>yJ,t+h) (2.28)

where

. ft+^h -i*
y* - y + 1 g(y(tD,vj;*(tf),t')dt'

rt+h
+ f .g(y(t'),v?*(tO,t!)dt'

Jt+4h x

In this case, we have

1 2 1* 2*

dist(fxx /(tO, f l (t»)) > g (2.28)"

for any admissible u,(«) and u^(.) and for any t' ,

t £ t» < t+h .

Otherwise, we clearly have

T|h(x,y,t) £h

which contradicts assumed hypothesis (x,y,t) e Gj. . , m'J> 3

Let us suppose

T|h(x,y,t) £ T+(x,y,t) (2.29)

holds for any (x,y,t) g G* , m=2,3,...,n , 2£n<m+

Let us suppose (x,y,t)eG, ,,
n, n+l

* 1*Corresponding to u^(»)=u (•)•

v**() and v^*(.) by (2.28). Then we have
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♦ 1$ 9$Corresponding to u1(»)=u (O+u (•) (see (2.27)), we construct

T^h(x,y,t) £h+T|h(x*,y*,t+h) (2.28)'
2>
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In view of (2.28)" , we have, (by (2.27))

T£(x,y,t) 2 h+Th(xi»yt't+h) (2.30)

Therefore, we have

(x_,y,,t+h) g G+ , m<n (2.31)
1 1 h,m

Hence, by induction hypothesis (2.29), we have

T+(xJ,y*,t+h) ^T|h(x*,y*,t+h) (2.32)

Therefore, we have

T|h(x,y,t) £h+T|h(x*,y*,t+h) (by (2.28)')

i h + T+(x*,y*,t+h) (by (2.32))

£ T+(x,y,t) (by (2.30)) (2.33)

By induction, taking n+l=m+ , we can conclude that

Th<vvV^T!h<vvV <2-34)
(4) By almost identical arguments, we see that

From (2.34) and (2.35), using Lemma 2-2, we obtain

(2.36)



In view of (2.28)" , we have, (by (2.27))

+ / * *TJ(x,y,t) 2 h + T£(xJ,y*,t+h)

Therefore, we have

(x ,y ,t+h) g G* , m<n-
xi n, m

Hence, by induction hypothesis (2.29), we have

T+(xJ\y*,t+h) J> T|h(x*,yJ,t+h)

Therefore, we have
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(2.30)

(2.31)

(2.32)

T|h(x,y,t) £h+T|h(x*,y*,t+h)

* h+Th(X!>yt't+h)

£T+(x,y,t)

(by (2.28)')

(by (2.32))

(by (2.30)) (2.33)

By induction, taking n+l=m+ , we can conclude that

^VVVi^wV
(4) By almost identical arguments, we see that

Vvvv ^Th(VVV

From (2.34) and (2.35), using Lemma 2-2, we obtain

^VW^^wV

(2.34)

(2.35)

^ih(xo'VV ^T£(v vV
(2.36)



By the repetition of same arguments, replacing h by £h,

we obtain

^Ih^o-vV^Ih^o-yo'V
Proceeding similarly, we obtain (2.16) and (2.17).

This completes the proof.

Corollary:

If there exists h*>0 such that TT(x .yft,t )<oo holds for

any h, 0<h£h , then TJ(xQ, y ', tQ) converges to a limit as

h goes to zero. - .

Proof:

By the proof of Theorem 2-1, we know that •[ Tu/2k(x0, yQ,t )} ,
k=0,l,2,... , is a non-decreasing sequence for any h,

0<h^h* .

By hypothesis, we have

Th/2k(xo'yo'to) < °° > k-0,1,2,

Hence,

Jlra Th/2k(xo»yo»to) exists.
h*oo '
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C. MINIMAX THEOREM

In this section, we show a minimax theorem for

*?closed-loop'f games. First, conditions which will be neces

sary for our theorem are enumerated.

Let there be given an e , 0 <j g < e ,(see M-5) and

an initial condition (x0,yo,t0) e En x En x(-oo, oo) .

Let us define a set B = | | A (t) x A (t) x t
t0^t<co *° yo

Conditions:

M-l There exists h>0, such that for any h, 0 < h £ h >

BCGh •

M-2 For any x e Ax (t) and y g A (t), Ax(t^ and A (tO
o ?o y

are compact and convex for all t and t',

*o £ * i *f < °° <see At~4 and At-5).

JM For any t, tQ £ t < oo, and for any h, 0 < h £ h ,

T~(x,y,t) and Tj(x,y,t) are continuous in (x,y) on

Ax (t) x An (t) .
o y0

M-4 For any t, tQ ^ t < co, and for any h, 0 < h ^ h ,

(A) Tr(x,y,t) is quasi-convex in x on A (t) , for each
x,

o

y e A (t) , and
*o

(B) for each x g Ax (t) , there exists only one point

y** g A (t). such that
yo

+ * afc& .. +Th(x,y ,t) ^ Th(x,y,t) for all y e Ay (t)
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M-4' For any t, tQ £ t < oo , and for any h, 0 < h £ h ,

(A) Ti"(x,y,t) is quasi-concave in y on Av (t) , for each
*o

x g Ax (t) , and
o

(B) for each y c A (t) , there exists only one point
o

x** c Av (t) such that
o

Tj;<x**,y,t) £ Tjj(x,y,t) for all x e Ax (t)
o

M-5 There exists co>0 such that Tj£ €(x,y,t) (see Remark 1)

is equicontinuous (see Remark 2) in e on [0, el for any

(x,y,t) e B and any h, 0 < h £ h>.

Remark 1: For convenience, we shall express, when necessary,

dependence of the optimal e-capture time T^(x,y,t) on e

explicitly as

T^(x,y,t) =T+e(x,y,t) (2.37)

for any (x,y,t) e B and h, 0 < h £ h .

Similar notation will be used for T~(x,y,t) .

Remark 2: We say Tj£ e(x,y,t) is equicontinuous in e on

[0, eQ] for any (x,y,t) c B and any h, 0 < h £ h , if for any

d>0, there exists e>0 such that

IVC2U e \

o<T±l £e°) iraply K. «£*•*•*> -T£,e2<x.y.*> I*<»
(x,y,t) c B /

Remark 3: A scalar function f(«) defined on a convex set X C En



is said to be quasi-convex on X if the set

jx :x gX , f(x) £ k}

is convex for each scalar k .

A scalar function f(») defined on a convex set X(Z E is

said to be quasi-concave on X if the set

{x : x e X , f(x) J> k}

is convex for each scalar k .

Theorem 2-2:

Suppose Conditions M-1, 2, 3, 4 (or 4'), and 5 are satisfied.

Then, for each d>0, there exists h1# 0 < h, <; h, such that

0 < h£ hx implies T+(xo,y0,t0) - T-(x0,y0,tQ) £ d
(2.38)

In what follows, we shall assume Conditions M-1, 2, 3, 4

(or 4'), and 5 are satisfied.

Outline of Proof:

For each d>0, we show that there exists h1(d) which

satisfies (2.38).

(1) Construct h2(d) (by Lemma 2-5), ex(d) (by (2.58)),

h(ex(d)) (by Lemma 2-7), and define

hx(d) = min(h2(d), h(ex(d))).

(2) Take any h, 0 < h £ h1(d) and consider three cases;

(a) llxo - y0ll -e^ ei(d):
By definition of e.(d), (2.38) automaticaly holds,

(b) (x0,y0,t0) c Glfl:

By definition of h2(d), (2.38) automaticaly holds.
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(c) llxo - y0ll -€ >ei(d> and (xo'y0'V i Gh,i:
. By Lemma 2-6, there exist xx and yx which satisfy

Th<*o>y0>V - Th(xo»y0'to)

£*£<*!•*i'V -T-(xi>yi,ti)

(3) Considering (x^y^t^ as a new initial state, repeat (2)

above. It should be noted that the constructions of

h2(d), ex(d), h(e1(d)), and hj(d) are independent of initial

states.

(4) Since there exists an integer m>0 which satisfies (2.61),

in view of (2.63), after the repetition of at most m-1 times

of above procedures, we can complete the proof (i.e., the

iterative relations always end, see (2.68)).

Lemma 2-5:

For each d>0, there exists h2, 0 < h2 £ h, such that

0<h£ h2 implies T^e(x,y,t) -TjJ>e(x,y,t) £ d,

for any (x,y,t) e B fl G[J x and any c, 0 £ c < c .

Proof:

(1) From Assumption Al, we see that corresponding to each h ,

0 < h£ h, there exists a real number dfa which satisfies

d, « max

h x
ax |lXl - x2||
1,x2GAx(t)(t+h)

for any t, tQ £ t < oo, and for any x(t) e Ax (t).
o

For simplicity, let us denote x(t) = x .
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(2) For any f and f' c A , we have
X X vx X

fX<^ + B(G+dh) "=> *i<« + BG
for any t' , t £ V£ t+h

Hence,

fx<*> +B(e+dh) => ,.U (*i(« +Be)=Ax(tHBe
*x € x

for any V , t £ t'£ t+h

This holds for any fx c Ax and any x c Ax (t) .
o

(3) By Lemma 2-3 (a), we have, for any (x,y,t) e BflG^ x

Tj;>e(x,y,t) + t

- max min (t1 : dist(fv(t),A (tO + B-) « 0)fycAy V y x e

2 max min (V : dist(ftr(tO,fv(t!) + B,OJ_. O - 0)fycAy f y x (e+dh)

for any fx c Ax

Hence,

Th)C(x,y,t) + t

^ rain max min (t« : dist(f (tO,fv(t!) + B, xj 0=0)fxcAx fycAy f 7 x <e+dh)
" Th,c+<L <x>y.t) + t (2.39)

n

(4) By Lemma 2-2 and (2.39), we have

Th,G+dh(x'y't} ^ Th,G<x»y^> £ *hf.cU,y.t> (2.40)

for any h, 0 < h£ h, any c, 0 £ c < cQ, and any

(x,y,t) g B fl G^ x .

(5) By Condition M-5, for any d>0, there exists d>0 such that

0< dh < d implies T+ e(x,y,t) - T+ d (x.y.t)^ d
' h
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for any h, 0 < h < h, any e, 0 < c < g , and any
— o

(x,y,t) g B fl Gj^x .

By the continuity property of attainability sets (see At-2),

for any d>0, there exists h2>0i such that

0 < h £ h2 implies 0 < 6^ £ d

Hence, for any d>0, there exists h^>0 such that

0<h£ h2 implies T£je(x,y,t)-T^€+d(x, y,t) £ d

But, by (2.40), we seejthat

^c^y^ - T^e^y**)
^T+e(x,y,t) - Tj>e+d (x,y,t)

Hence,

Th,c<x,y,t) -T^e(x,y,t) £ d

holds for any h, 0 < h £ h2, any e, 0 £ e < e , and any

(x,y,t) g B n GJ^jl . This completes the proof.

By Condition M-1, for any (x,y,t) e B , we have

(x,y,t) c GjJ , hence (x,y,t) g GjJ .

Therefore, there exists a positive integer m such that

(m-l)h < TjJ(x,y,t) £ mh ,

Let us consider the case where n£>2.

In the majorant game, by Lemma 2-4 (b)' , corresponding to

any Pursuer's admissible u^O), Evader can find admissible

v, (•) such that
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Tj(x,y,t) £ h+ Tj(x1,y*,t1) (2.41)

where

t, « t + h

:x -x+j^(xdO.u (t^tOd^

* f*l
X=y+)t g(y(tT),v*(tO,tOdtf.

Namely, for any x g Ax(t1), there exists yjte.,) g A (tj)

(here, we express the dependence of y (xx) on x explicitly)

such that

T+(x,y,t) £ h+T+(x1,y*(x1),t]L) (2.41)'

holds.

On the other hand, in the minorant game, by Lemma 2-4 (a)' ,

corresponding to Evader's state y* above, Pursuer can find

admissible uj(«) such that

T£(x,y,t) 2 a'+ ^(x^y*,^) (2.42)

provided

uf V
*

dist(f 1(t0, f 1(t*>) > g (2.43)
x y

for any t' , t <; t'< t1

where

x* - x + I 1f(x(tO,u*(tO,tf)dt' .
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Namely, corresponding to y*(x ), there exists x^(y*(xx))cAx(t )
(here, we express the dependence of x*(y*(x )) on y*(x )

explicitly) such that



Th(x,y,t) > h+T^(x*(yJ(x1)),y*(x1),t1) (2.42)'

holds, if (2.43) is satisfied.

It should be noted that if

A <f# n (A <t} + Bfi)« jf (2.43)'x-' -y

holds for any t* , t £ tf < t ,

then, (2.43) always holds.

Lemma 2-6:
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If (x,y,t) g B and h, 0 < h£ h , satisfy (x,y,t) e g|J m,
mj>2 and (2.43)' ; then there exists xj g Ax(t1) such that

xl " xi<y*<xi>>

Fixed-point theorem (S. Kakutani [Kl] ,[B4] ) is first recalled.

Let C be a non-empty, compact, and convex set in En.

If F(0("general mapping, see Remark 1 after (1.1)) is an

upper semi-continuous mapping from C into C and if the set

F(x) is convex and non-empty for each x in C, then there

exists a point x in C such that

x g F(x )
o o

Following C. Berge [B4] , we shall use the following terminol

ogies. Let F(-) be a mapping from a topological space X into

a topological space Y. Let x be a point of X. we say that

F(«) is upper semi-continuous at x if for each open set G

containing F(x ), there exists a neighborhood U(x ) such that
o o

x e U(x ) implies F(x) r" G
o ™— •
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We say that F(.) is upper semi-continuous in X if it is upper

semicontinuous at each point of X and if F(x) is a compact

set for each x in X.

We say that F(•) is a closed mapping from X into Y if when

ever xoeX, yocY, yo«*F(x ) there exist two neighborhoods

U(x ) and V(y ) such that
o "o

x g U(xrt) implies F(x) fl V(y ) » 6
° o .

Following facts are proven in [B4] .

Fact 1: (see [B4] )

The graphical representation

51 F(x) =f(x,y) :xeX, ycY, yeF(x)} (2.44)
xeX l J

of F(») is closed in X x Y if and only if F(») is a closed

mapping.

Fact 2: (see [B4] >

If Y is a compact space, a mapping from X into Y is closed

if and only if it is upper semi-continuous.

Proof of Lemma 2-6: •

(1) (Sets Y(xx) and X(xx))

For convenience, we consider (x,y,t) e B flGh m , n£2, and h, •

0 < h £ h , as fixed. However, we shall see the following

discussions hold for any such (x,y,t) and h.

For each point xx c Ax(tx), t^t+h, let us define a set Y(x]L) by



Y(xx) »{y1€Ay(t1) :T+(x,y,t) £ h+TjjUpy^ tx)} (2.45)

By Lemma 2-4 (b)' , for each x^ g Ax(t.), Y(x ) is a non

empty set.

For each x_ e Ax(t.), define a point y (x ) by

T£(x1,y1,t1) <;T+(x1,y**(xi),t1) (2.46)

for any y^ e A (t1>

By Condition M-4 (B), y, (x ) is uniquely determined for each

xl G Ax^* ^' It is easy, to see y?',e(x1) g Y(x ),
for any x_ e Ax(t^) .

For each xx c A (t,), let us define a set X(xA) by

X(X]L) ={x*GAx(t1) :T~(x,y,t) ^ h+T^(x{,y**(x1),t1)}
(2.47)

(2) (X(x^) is non-empty, compact, and convex)

In view of (2.43)' and Lemma 2-4 (a)' , we see that X(x,) is

non-empty for each x^ e Ax(t1). Since. Ax(t.) is bounded,

X(x.) is bounded for each x.. e A (t ). We can also verify

that X(x^) is closed for any x~ c A (t^) just the same way

as (2.50) to (2.54).

By Condition M-4 (A), T7(x,y,t) is quasi-convex in x on

A '(t) for each t, t < t < co. and y e Av (t). Hence, the
xQ o •* ' yo

set

{x' eAx(tx) :k^ T-(x;[,y**(x1),t1)} (2.48)

is convex for any k.
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Taking k=T^(x,y,t)-h, we see that X(x±) is convex for any

xl e Ax(tx).

Now, X(0 is a mapping from A (ti) into Aft.), which is a
% X * X x

non-empty, compact, and convex set in En. Furthermore, for

each x c Ax(tx), the set X(x,) is non-empty, compact, and

convex in Ax(tx). Remaining task to apply the fixed-point

theorem is to show that X(») is an upper semi-continuous

mapping.

(3) (X(-) is upper semi-continuous)

By Fact 1 and Fact 2, X(«) is upper semi-continuous mapping

if and only if

Yi X(x )-{(xx,xp :x x'cAx(t ),x'eX(x,)}
xxeAx(t ) .

(2.49)

is closed in Ax(t1) x Ax(t.).

Let us take a sequence of points (xn,x'), n«l,2,... 9 such that

(xn,xQ) —— (x,x') and
(2.50)

xl g X(x ) for all n=l,2f...
" n

Suppose x' ft X(x). Since Ax(tA> is closed, x' g A (t^).

Therefore, our hypothesis implies

Tj;(x,y,t) < h+T^(x', yj*(x), tj (2.51)

But, x' g X(x ) for all n=l,2,..., we have

T"(x,y,t) > h+T-(xn, y^*(xn), t^) (2.52)

for all n«l,2,... .
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Now, by the continuity condition of T~(-,«,t) (see M-3),

we have

|tj;<x', y**(5), tj -t;(x;, y**(xn), tx)\

<;iTh<*'> yj*<*>. V - Th(v yl*<5)' ti)l

+ lThK. yr(J)> V - Th(xA' yr(xn>. Vl—• °

(2.53)

as x^ __,» x» ,and x„ __. x ,if yj*(xn) — yj*(x) (i.e.,
y^ (•) is continuous.) From the uniqueness condition (M-4)

of y**(x-L) and the continuity condition (M-3) it can also be
verified that y**(») is continuous on Ax(t]L). Since (2.53)

contradicts (2.51) and (2.52), we have x' e X(x). Therefore,

the set given by (2.49) is closed in Ax(tx) x Ax(tx).

This implies that X(*) is upper semi-continuous.

(4) (Fixed-point theorem)

Invoking the Kakutani's theorem, there exists x, e A„(tn)

such that xx c X(x_). In view of (2.45) and (2.47), we have

Tj(x,y,t) £ h+T^(x1,y**(x1),t1) and (2.54)

Tj(x,y,t) ^ h+Tjj(x1,y**(x1),t1) (2.55)

This completes the proof.

Lemma 2-7:

For any g^O and for each e>0, there exists h(e)>0 such that

A (f) Q (Av(tO + B_) = 0 (2.56)



for any t' , t £ t' < t+h(e), and

for any (x,y,t) e B such that llx - y|| - e > e

Proof:

Directly follows from the property At-2' of the attainability

sets. Namely, for any e'> 0 there exists hj>0 and h2>0

such that

(t) + Be,
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|t - V\£ hx

t0i-t1it<oo

t0^ tx <; t'< oo

xit±) G Ax (t1)

|t - V\£ h2

t0 £ tx £ t < co

tQ £ *i £ tf < oo

y(tx) e A (tx)
yo

imply

Lx(t1)(t)<ZAx(t1)
and

Ax(tx)(trc:Ax(ti)(t) +Be,

y(tl)(t)CAy(ti)(t!) +Be,
imply and

iy(t1)(t^Ay(t1)(t) + Be,

Taking tj= t, x(tx) = x, y(tx) = y, we have

|t - V\£ min(h1,h2)

t0^t^f<oo

X G Ax (t)
o

y g AyQ(t)

Ax(tf) CZ x + Bet

imply ( and

Ay(t!) C y + Be»

If ||x - y|| > g + 2e' , then Ax(tO A(Ay(tO + B€)- f
for any t' , t £ t»£ min(hx,h2) . Regarding 2e' « e and

min(h1,h2) = h(e), we complete the proof.

Proof of Theorem 2-2:

We are given an initial condition (x0,yQ,t ) and €, 0 £ e < eQ



60

For each d>0, we show that there exists h. which satisfies

(2.38) in Theorem 2-2.

(1) For each d>0, construct the following constants:

(a) Construction of h2:

By Lemma 2-5, for each d>0, there exists h2, 0 < h2 £ h,

such that

0 < h£ h2 implies T^(x,y,t) - T~(x,y,t) £ d
(2.57)

for any (x,y,t) e BflGJJ 1#

(b) Construction of e,:

By Assumption M-5, for each d>0, there exists e_>0,

such that

Mix - y]| - e|<£ ex
1 XW K.J*'*** - t* ^-^y.t) £ d

- > /
0 < h £ h

0 i|x - y\\£ c
° / that is

/ Th e(x'y't} ^ d (2-58)(x,y,t) c B ' h>e

It should be noted that Tj£ \\x-y\{x>y>*) 5 ®
If (2.58) holds, in view of Lemma 2-2, we have

Th/e^y**) " Th,c(x'y,t) ^ d (2.58)'

Remark: If cQ £ e+e^, then replace e^ by c - e (>0 by

assumption) in the following discussions.

(c) Construction of h(e,):

By Lemma 2-7, for each e,>0,. there exists h(e1)>0

such that

A (t9 A (Av(tf) + Bc) - $ (2.59)



for any t' , t £ t' < t+h(e), and

for any (x,y,t) c B such that ||x-y||- c > e,.

(d) Construction of h,:

We define h]L - min(h2, h(e1)) C2.60)

(2) For any h, 0 < h£ hl$ we consider the following

three cases:

(a) Suppose ||x - y || - e£ e± holds.

Then, by (2.58)', we see that the proof completes.

(b) Suppose (x0,yQ,t0) g Gj| x .

Then, by (2.57), we see that the proof completes.

(c) Suppose ||xQ- yj|- c>e:L and (x0,yo,tQ) 0 G~>]L .
First, we note that there exists (see Condition (M-1))

an integer mj>2 such that

(m-l)h < Th(xo,yo,t0) £ mh (2.61)

Now, since ||x0- yj- g > e^ by (2.59), we have

A (tO A (A (tO + B )« pf (2.59)'
o Jo e

for any t» , tQ £ t» < t0+h

Hence, the requirements for Lemma 2-6 are satisfied.

Therefore, there exist x, e Ax (t), t^t +h, and
1 xo 1 1 °

yl e Av **•!* such that
yo x

Th(xo'y0'to) ^ h+T+(x1,y1,t1) (2.62)
and

^^o^o^o' ^ h+T^Xj.y^tj) (2.63)
Hence, we have
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^ T+(x1,y1,t1) - T"(x1,y1,t1) (2.64)

(3) Since the constructions of h2, ej, h(e,), and h. are

independent of initial states, if (x,,y ,t.) above

satisfies [(x^ y^J - c£ e± or (x^y^t^ cG~>]L ,
similar to (2)(a) and (b), we can complete the proof.

If IIxl~ yJI" G > ei and ^i^!**!) G Gh,l '
similar to (2)(c) above, we can construct x2 e Ax (t2)i

t2« tj+h, and y2 € A (t2) such that

T^(x ,y ,tx) £ h+T+(x2,y2,t2)
and

(2.65)

Th(xi»3ri»ti) ^ h+Th(x2»y2't2) hold

and proceed similarly.

(4) Now, after repetition of at most m-1 times of above

- procedures, we obtain

mh± T£(x0,yo,t0) ^ h+TjJCx^ y1,t]L) ^ .....

^ ^-^^h^m-l'ym-l'V^ (2'66)

Hence,

Hence, by Lemma 2-5, we get

^m-l^m-l'V-P -I'Vl'Vl'Vl' ^ d (2'67)

But, similar to (2.64), we have

62
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T£<xo'VV -VvvV

* Th(xm-l'ym-l'.tm-l) ~ Th<xiD-l»ym-l.*.n-l>
(2.68)

By (2.67) and (2.68), We have

^WV "Th<WV * d

This completes the proof.

Remark: We prove the case where Assumptions M-1, 2, 3, 4,

and 5 are satisfied. If Assumptions M-1, 2, 3, 4», and 5

are satisfied, we can similarly prove the theorem.

D. TIME-CONTINUOUS GAME

In this section, we clarify the relation between

the limit of approximating discrete games Gn and the time-

continuous game G.

Now, let there be given an initial condition (x0,y0,tQ)

of the games G and Gh. For each h>0, define t »t +ih,
a i o

1=0,1,2,... , as before, and let ^tA represent the set of

all such t± . Let Uh(»,-,») be a single-valued mapping

from En x En x{tjinto the set of all measurable functions.
For a given h>0, if

%± 9 UQ(x(ti), y^), ti) (2.69)

for any i=0,l,2,... , for any x(t±) c Ax (t.), and for any
o

y(tj[) cAy (tjL), where 1£± is the set of all admissible
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controls on [t±, ti+1) (see II-A-1), the function Uh(-,*»0

will be called a Pursuer's admissible strategy for discrete

games Gh. For each h>0, the set of all such functions will

be denoted by Un. An Evader's admissible strategy Vh('»#»#)

for discrete games Gfa and the set Vh are similarly defined.

In this thesis, we define a Pursuer's admissible

strategy for the time-continuous game G by a pair

(h, uh(.,-,/))

Namely, a Pursuer's admissible strategy for the game G con

sists in choosing a positive number h and a function Uh(«,-,*)

in Ujj. An Evader's admissible strategy (h, Vn(«,«,«)) for

the time-continuous game G is similarly defined.

Let us consider the following modified minorant game

Gh h* * B©*ore the game starts, Pursuer and Evader are in

formed of R-l, R-2, and R-3 (see II-A-1). In the minorant

game G£ , both players observe their states with the time

interval h>0. In G^ ht , Evader observes states with the time

interval h>0, whereas, Pursuer observes states with the time

interval h'>0. Other rules for G^ fal are the same as those

for GJJ . Similar to the definition of the e-capture time for

GJJ (see (2.3)), the c-capture time for Gj[ ht , h^ h' > 0,

is defined by

Th,h»(xo»y0»to) = SUP (i?f inf inf)
V> u*(.) u2(.) un(.}

sup (inf inf inf) t - t (2.70)
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where t„ < t <£ tm+1, tm»tQ + mh, m=0,l,2, ... ,00

u^(«) =a Pursuer's admissible control segment on
tti+(j-l)h', t^jh'), i=0,l,... ,m, j«l,2,... ,n-l

u^(*) = a Pursuer's admissible control segment on

[ti+(n-Dh» , *i+i>> • (n-l)h'< h£ nh'
1/i. J=the set of all admissible u^(«), i=0,l,... ,m

j«=l,2,... ,n .

v (•) and 7/^, i=0,l,... ,m, are defined in II-A-2.

The supremums and infimums in (2.70) are over the sets '£/".

and^^ , i=0,l,... ,m,- j=l, 2,... ,n, respectively.
Now, since

uj(.) +u*(.) + +u^(.) =u±(.)
for i«0,l,... ,m

Th,h'(xo'y0'to) - su? , in* ,••••• su? , in* xt- tQ
vo(,) uo<-> vB(.) un(.)

^h^o^o'V <2-71>

The c-capture times T^h, (xQ, yQ, tQ) ,h'> h> 0, and

Th,h' ^0^0**0^ for the modified majorant game G+ f are
similarly defined and the following relations are similarly

verified

Th,^xo»yo,t0) 1^VVV for h'> h > 0 ,(2.72)

Th,h'<xo'y0'to) - Th^o^o'V for h'2 h > 0 ,(2.73)
and

Th,hf(xo'yo,to) ^ Th(xo'y0»to) for h > h»> 0 (2.74)

Remark: In G~ , at each time t±, i=0,l,2,... , Pursuer are
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told the Evader's control segment v±(0 on [tif t. ,) before

he decides his control segment uA(0 on [tif ti+1).

Namely, at each time tjl, i«0,l,2,... , Pursuer knows Evader's

whole trajectory y(-) on [tA, ti+1] , Therefore, in GjJ ht ,

h > h*> 0, even if Pursuer can observe Evader's state y(t),

*i £ t £ *i+ii with the time interval h», the information

pattern available for Pursuer does not change.

Hence, (2.71) is a reasonable result. We can interpret (2.72),

(2.73), and (2.74) similarly. With this observation, the

following Lemma follows directly. In what follows, we shall

assume Assumption A2 (II-A-2) holds.

Lemma 2-8:

(a) In discrete minorant games GJJ , for each h>0, there

exists an Evader's admissible strategy (h, V.(•,*,•)) which

guarantees that the e-capture does not occur before time

Th^x0»yo>to^+to agains* any Pursuer's admissible strategy
(h», Ujj(-, •,.)), h'>0.

(b) In discrete majorant games Gj , for each h>0, there

exists a Pursuer's admissible strategy (h, U (•,-,.)) which
h

guarantees that the e-capture occurs no later than time

^^o^o^o^o aSainst any Evader's admissible strategy
(h',Vh, (.,.,.)), h'> 0.

Proof:

We shall prove (a).

(1) For a given h>0, suppose (x .y ,t ) e G~ . Then, by
o o o n, l ' *

the proof of Lemma 2-3 (a), there exists admissible v?(-)
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such that if Evader uses v,(0, Th(x .y ,t )+t - min t holds.* 1 h o o o o (#)
Take V. (•f •f•) c Vh such that x

vl<*> - Vh(xo'yo'to> <2-75)

Then, the strategy (h, V^(',*,»)) gurantees that the c-capture
does not occur before time TT(x ,y ,t )+t against any

n o o o p

(h, U (•,«,•)). But by (2.71) and (2.72), the strategy
#(h, Vfa(•,•,•)) guarantees that the e-capture does not occur

before time Tjj(x0tyoit ^+to aSainst any Pursuer's strategy

(h», Uh, (-,-,-)), h'> 0.

(2) Suppose (x0,y0,tQ) e G~ m , n£2.

By Lemma 2-4 (a), there exists admissible v*(0 such that

the resulting state y? satisfies ,

Th<x0'y0'to) ^ h+Th(xi»yrti) ' Wh

for any admissible u1(*) .

If (xi»yi>ti) e Gh n ' n•^2, tnere exists admissible v2(«)

such that the resulting state y% satisfies

T^(x1,y1,t0+h) £ h+T~(x2,y*,t2), t2«tQ+2h .

If (x fylft-) e Gh i Proceed as in (1).

Thus, we can construct admissible control segment* v*(«),v2(*)..

Take v£(#,-tO such that

vi(#)= Vh(xi'yi'V ' tiesto+ih' ^0,1,2,... (2.76)

Then, the strategy (h, VJJ(-,»,*)) guarantees that the c-capture
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does not occur before time T~(xQ,y0,t )+tQ against any

(h, Uh(», •,•)), hence, against any (h', Uht (•,.,.)), h'>0.

(3) (b) will be shown similarly.

Now, the relation between the time-continuous game G

and the approximating discrete games Gjj is not known, in

general. In this thesis, we define a value of the time-

continuous game G as follows:

If there is a real number T such that, for any e>0, Evader

has an admissible strategy (h, Vh(«,•,•)), h>0, which yields

a payoff (i.e., an c-capture time) of at least T-e against

any Pursuer's admissible strategy (h', Un'(•,•,•)), h' >0;

and Pursuer has an admissible strategy (h, U (•,.,.)), h>0,

which prevents yielding a payoff (i.e., an c-capture time)

of more than T+e against any Evader's strategy (h1, V., (•,-,•)),

h' >0, then T will be called the value of the time-continuous

game G. The game G which has the value is called determined.

Furthermore, if the game has the value T, any Evader's

admissible strategy (h, Vh(-,«,•)), h>0, which yields an

c-capture time of at least T-e, ej>0, against any Pursuer's

admissible strategy (h', uht <*»•>•)), h'>0, will be called

an Evader's e-effective strategy. A Pursuer's e-effective

strategy is similarly defined. It is easy to see that the

game has the value, if and only if, for any e>0, there exist

e-effective strategies for both players.

Remark: The value of discrete games Gfa, h>0, and Pursuer's

and Evader's e-effective strategies for Gh are similarly

defined.



Theorem 2-3:

Suppose Condition M-1, 2, 3, 4 (or 4'), and 5 of Theorem 2-2

are satisfied.

Then, ^
T = lim T" - lim T+ (2.77)

h-0 h h-0 h

is the value of the time-continuous game G.

Proof:

(1) By Theorem 2-1, Condition M-1 guarantees that {T~l is

a non-decreasing sequence and that lim T7 » T"
h-0 h

Since, for any e>0, there exists h*>0 such that 0 < h^ h*

implies T" - e £ T~ . (2.78)

Similarly, there exists h** > 0 such that 0 < h^ h**

implies T^ £ T+ + e. (2.79)

Let min(h*, h**) - h .
o

(2) By Lemma 2-8 (a), for each h>0, there is an Evader's

admissible strategy (h, V^*,.,.)) which yields an e-capture

time of at least TJJ against any Pursuer's admissible

strategy (h', Ufaf (•,•,•)), h'> 0.

Hence, for any e>0, Evader has an admissible strategy

(h» vn(•>*,•)), 0 < h^ hQ , which yields an c-capture time

of at least T~ - e against any Pursuer's admissible strategy

(h',Uht (•,.,•)), If > 0.

Similarly, Pursuer has an admissible strategy (h, Uh(*,•,•)),

0 < n ^ h0 » which prevents yielding an c-capture time of

more than T+ + e against any Evader's strategy.
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(3) But, Condition M-1, 2, 3, 4 (or 4'), and 5 guarantees

that T" - T+ (« T) .

Hence, T is the value of the time-continuous game G.

Corollary:

The time-continuous game G has the value if and only if

T = lim T~ == lim T± exists. (2.80)
h-0 n h^>0

Proof:

(1) If (2.80) holds, then, by Theorem 2-3, we see that

T(» lim T" = lim T* ) is the value of G.
h-0 h h-0 h

(2) If (2.80) does not hold.

Suppose T~« lim T~ and T+ = lim T?" exist, but T~ < T+ .
h-0 n h-0 n

(T- > T+ is not possible by Lemma 2-2).

Then, for e>0 sufficiently small, say £(T+ - T~) > e ,

we see that at least one player fails to have the desired

strategy.

Suppose T~ and T+ exists for any h>0, then by the proof of

Theorem 2-1, T" and T+ must exist.

Suppose T~ or t£ diverges to infinity, since the value of the
game should be finite, it can be seen that at least one player

fails to have the desired strategy.
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III. CAPTURE CONDITIONS

In the preceding chapter, some aspects of conver

gence problems were studied and the relation between the

time-continuous game and discrete approximating games was

clarified. In this case, we made the essential assumption

that capture occurs within a finite period of time.

In this chapter, capture and escape conditions are

derived in terms of attainability sets and escapability sets.

It will be seen that the introduction of these sets is con

venient in giving a common framework with which we can treat

capture and escape conditions. Namely, by using these sets,

the relations between minorant and majorant, open-loop and

closed-loop, capture and escape conditions become transparent.

General conditions obtained in this chapter v/ill be

applied to some invidual cases in the next chapter.

In Section A, necessary and sufficient conditions for

capture and escape are derived. Some duality relations are

studied. These conditions are in terms of trajectories or

graphs and difficult to apply. They are almost in the nature

of definitions. Hence, in Section B, we proceed to consider

some sufficient (possiblly not necessary) conditions for

capture and escape in terms of escapability sets. These re- '

suits are still difficult to apply but they are important in

preparing the background to the concept of sufficient stra

tegies to be introduced in the next chapter. With the concept

of sufficient strategies, we obtain conditions which are
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easily verified. The resultsof this chapter, though not

easily verified,are nevertheless interesting. For example,

the results of N. N. Krasovskiy et al. [K8] can be shown by

the results here to be faulty at least in part. Finally

algorithms for constructing capture and escape strategies are

given.

A.' GENERAL CAPTURE CONDITIONS

In this section, conditions under which the

e-capture is guaranteed within a finite period of time are

derived, for both closed-loop and open-loop, minorant and

majorant discrete games. Escape conditions are also derived.

Some duality relations between them are derived.

1. Capture and escape conditions for minorant games

As in the preceding chapters, let us assume

that the game starts at time t , with the Pursuer's initial
o

state xrt c En and the Evader's initial state y c En . Let
" o

there be given a time T, tQ < T < oo . Let h>0 be a dis-

cretization interval. Let t^ •• t +ih, i«0,l,2,... ,

t £ t £ T , and Pursuer's and Evader's states at time t±

are denoted by x. and y., respectively.

Now, we shall introduce some auxiliary notation. For
- $

each t^9 tQ £ t. £ T , we shall define a subset Ax# of the

Pursuer's attainability set Ax. by (see (1.7))



AXjL «{<x<t>,t) eEn+1 : t c [tlf t.+1] ,
(x(t),t) is attainable from (x^t^} (3.1)

A subset A* of A for Evader is similarly defined.
i yi

We shall also define a graph f* by (see (1.4))
xi

fx. *={(x(t)'t> €eD+1 :tc [tif ti+J , (3.2)
i ti»ti+l)

corresponding to some admissible u(»J f
x(») is a Pursuer's trajectory on
correspondin
and x(t4)=x.

1 l

A subset f* of En+1 for Evader is similarly defined.
yi

Similar to the definition of Ax^t )+Be , we shall define an

(n+1) dementional pipe (f* +BG), such that its fixed-time
xi

cross section at time t, denoted by (f* +Bc)(t), satisfies

(fxi+Bc)(t) -fx±<« +Be for a11 *• Vi*i *i+l
•» pf otherwise.

Aset A* +B€, defined on [ti,ti+i] ,is similarly defined.
Let Graph (xQ,x1,... ,x.) or simply (xQ,x1,... ,x.) ,

xi+l e Ax.(ti+l)* i=0,l,... ,j-l, tQ £ tQ+jh £ T, represent

an (n+1) dementional graph connecting points (xj^t.) to

^i+l^i+l^' ° ^ i^ ^"1» successively using some admissible

control segments Ujl(») .

Namely, (xQ,x1,... ,x ) is a graph f£ , defined on [tQ,t.]
such that f" (t.)=x , 1=0,1,... ,j (3.3)

o x
Since xi+1eAx (ti+1), i=0,l,... ,j-l, there exists admissible

u(.) which satisfies (3.3).

An Evader's graph (y^y,,... ,y.) is similarly defined.
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With this notation, we shall give conditions under which the

c-capture is guaranteed to occur no later than time T.

Theorem 3-1: (Minorant closed-loop capture)

For any h>0, c > 0, and T, tQ < T < co , tQ+TJJ •£ T holds if

and only if Condition 3-1 is satisfied.

Condition 3-1:

Corresponding to any Evader's graph (yQ,y1,... ,yn) ,

tQ+(n-l)h < T ^ tQ+nh, following the rules of the game (see

II-A-1), Pursuer can find a graph (xQ,x1,... ,x ) such that

<fv n ^Ax + Be)Xt)^ holds for some i, 0 £ i£ n-1,
yi i and for some t, t0 £ t <£ T

(3.4)

where

fy.3 (yi+l^i+l* for a11 *» ° £ * i n-1 .
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Proof:

(1) Suppose Condition 3-1 holds. Then, for some i, 0 £ i £ n-1,

there exists a point (a, t), such that (a, t) e f* A (A* +BC),
yi xi

t0 <; t <;T .

Hence, (a, t) e fv and (a, t) c (Ax +B0).
*i * i e

But,since any point in Ax is attainable from (xi,^), there

exists an admissible control segment u?(.) such that the
u*

corresponding graph f^ (= {(x(t),t) cEn+1 :tc [t^t^J ,
x(.) is a Pursuer's trajectory on r-fc^/t^ ,1 corresponding

to u*(.) and x(t±) « x±}) satisfies
u

ki
*x.<*> - all i c



u

Since U±,t±) is attainable from (x .tn), (f *(t),t) is
O " n

attainable from (x0,tQ).

Hence, the e-capture occurs at time t £ T.

But, by the definition of optimality (see (1.13) and (2.3)),

we have tQ + T~ £ t . Hence, tQ + T" £ T .

(2) Suppose Condition 3-1 does not hold.

Then, corresponding to some Evader's graph (y ,y ,... ,y ),
o 1 n

Pursuer can not find agraph (x^x^... ,xn-1) such that

(fy. n <Ax. '+ BGKt)^ for some i, 0 £ i^ n-1,
1 1 and for some t, tQ £ t <£ T.

Namely, so long as Evader follows the graph (y ,y,,... ,y )

(f- fl (Ax + B€)Xt)«^ for any i, 0 £ i£ n-1,
1 x and for any t, t^ t£ T

Hence, for any (y(t),t) e f* and for any (x(t),t) e A* ,
yi xi

0 £ i ^ n-1,

||y(t) -x(t)|| >c , tQ ^t£T .

Therefore, Evader is not captured before or at time T.

Theorem 3-1': (Minorant closed-loop escape)

For any h>0, c ^ 0, and T, tQ <T <co , t^TJJ >T holds if
and only if Condition 3-1' is satisfied.

Condition 3-1* :

Corresponding to any Pursuer's graph (xQ,x ,... ,x ),

t0+(n-l)h < T <; tQ+nh, following the rules of the game,

Evader can find a graph (yQ,ylt... ,yn) such that
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((f* + Be) n A* )(t)=0 for any i, 0£ i£ n-1,
1 *• and for any t, t £ t £ T.

(3.5)

where-

fyi 9 (yi+l'ti+l) for a1?- *•» °£ *^ n-1 •

Proof:

Directly follows from Theorem 3-1, noticing that

((f* + Bc) H A* )(t)^<=>(f* (1 (A* + Bc))(t)=j*
yi i yi xi

for any t, t £ t £ T.

In the minorant open-loop game, Evader must tell his control

admissible v(-) to Pursuer before the game starts. Therefore,

the minorant open-loop game is regarded as a special case

of minorant closed-loop games with h->oo . Hence, the next

corollaries follow directly from the above theorems. For

convenience, we shall denote the c-capture time for the

minorant open-loop game by T^ .

Corollary 3-1: (Minorant open-loop capture)

For any e ^ 0 and T, tQ < T < oo , tQ+T^ £ T holds if and

only if Condition 3-1-0 is satisfied.

Condition 3-1-0:

For any Evader's graph f c A
yo yo

(f n (ax + B ))(t)^ holds for some t,
o o e t < t < T.

° (3.6)
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Corollary 3-11 : (Minorant open-loop escape)

For any c > 0, and T, tQ < T < oo , t +T^ > T holds if and

only if Condition 3-1M) is satisfied.

Condition 3-l'-0:

There exists an Evader's graph fv c A such that
*o y0

(fv H (A + B ))(t)«/z* for any t, t < t < T
yo Xo e ° * (3.7)

Remark: Since MAX CZ A always holds, if Condition 3-1
i xo

holds, Condition 3-1-0 always holds (see Theorem 3-1 and

Corollary 3-1).

Hence, if minorant closed-loop capture occurs for some h>0,

minorant open-loop capture always occurs.

Hence, if T~ exists for some h>0, then T^ also exists and

Tco ^ Th holds- This is a reasonable result, because in

the minorant open-loop game, the information pattern avail

able for both players is biased most advantageously to Pursuer

Similarly, we see that if minorant open-loop escape is

possible, then, minorant closed-loop escape is also possible

for any h>0.

2. Capture and escape conditions for majorant games

Next, we shall consider capture and escape

conditions for majorant games.
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Theorem 3-2: (Majorant closed-loop capture)

For any h>0, e ;> 0, and T, tQ < T < co , t +T+ £ T holds tf

and only if Condition 3-2 is satisfied.

Condition 3-2:

Following the rules of the game, Pursuer can find a graph

(x0,x1,... ,x ), tQ+(n-l)h < T£ tQ+nh, such that

(fv n (fx4 + Be))(t)^ (3.8)
yi i

holds for any Evader's graph (yQ,y ,... ,y ), for some i,

0 £ i <£ n-1, and for some t, tQ ^ t £ T

where

for all i, 0 £ i'^ n-1.

Proof:

(1) Suppose Condition 3-3 holds. Then, for some i, 0 £ i £ n-1,

there exists a Pursuer's admissible control segment u?(«)
u* x

such that the corresponding graph f* satisfies
xi

u*
f * « f* and
*i **

* u*(f n(f-1 + B ))(t)^ for some t, tQ £ t < T,
J± xi and for any f* c A*; .

. i , yi

Let u?

^/^ +B€> a(a.t).

Then,
if,



79

Since (a, t) e f* , the c-capture occurs at time t < T.
yi

This holds for each f* c A* . By the definition of optimality,
yi yi

we have t^+T+ < t.
o n -*

Hence, t +T+ < T.
on

(2) Suppose Condition 3-3 does not hold. Then, corresponding

to some Evader's graph (y ,y,,... ,y«)> Pursuer can not find
o l u

a graph (x0,x1,... ,x ) such that

<fv n <fx + Bc>)(t)^ for some i, 0 £ i £ n-1,
yi i and for some t, t £ t £ T.

Hence, for any (y(t),t) e f* and for any (x(t),t) c f* ,
yi • i •

y(t) - x(t)|| > c t^t^T..

Therefore, Evader is not captured before or at the time T.

Theorem 3-2': (Majorant closed-loop escape)

For any h>0, e^O, and T, t0 < T < go , t +Tj > T holds if

and only if Condition 3-2' is satisfied.

Condition 3-2T:

Corresponding to any Pursuer's graph (x ,x ,... ,x ),
u 1

t +(n-l)h < T ^ tQ+nh, following the rules of the game,

Evader can find a graph (y ,y,,... ,y ) such that

((f« + B ) n fx )(t)=0 for any i, 0 £ i £ n-1,y , ~ , u *x
x nnn nnv t.. t.i and any t, t_£ t£ T.

(3.9)

where

for all i, 0 £ i £ n-1 .
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Proof:

Directly follows from Theorem 3-2.

Similar to minorant games, the following corollaries follow

from the above theorems. For convenience, we.shall denote

the e-capture time for the majorant open-loop game by T^ .

Corollary 3-2: (Majorant open-loop capture)

For any e^ 0 and T, tQ < T < oo , t0+T+ £ T holds if and

only if Condition 3-2-0 is satisfied*

Condition 3-2-0:

There exists a Pursuer's graph fx c* Av such that
xo x0

(fv n (fx + B ))(t)*0 (3.10)
yo Xo c

holds for some t, t £ t £ T, for any Evader's graph fy c Av
° o

Corollary 3-2': (Majorant open-loop escape)

For any c£ 0, and T, tQ < T < a> , VT+, > T holds if and

only if Condition 3-2«-0 is satisfied.

Condition 3-2*-0:

Corresponding to any Pursuer's graph f e Ax , there exists
° °

an Evader's graph f„c Av such that
yo *o

((f + B ) A f )(t)-0 for any t, tQ £ t £ T .
yo . o '

(3.11)

Remark 1: Since! |A..C A„ always holds, formally, if
yi yo

Condition 3-2-0 holds, Condition 3-2 always holds (see Theorem
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3-2 and Corollary 3-2).

Hence, if T^ exists, then, T+ also exists for any h>0 and

Too ^Th holdS-
This is a reasonable result, because in the majorant open-

loop game, the information pattern available for both players

is biased most advantageously to Evader.

Similarly, we see that if majorant closed-loop escape is

possible for some h>0, then, majorant open-loop escape also

is possible.

Remark 2: Next, we shall compare the rules of the game for

the minorant game and the majorant game. In the majorant

(closed-loop) game, at each time t., i=0,l,2,... , based

upon observation of the Evader's state y^. Pursuer chooses

fj.c Ax , trying to realize,

((f* + B )flf* )<t)** for any f* c A*
i * 'i. yi yi

and for some t, tQ <; t <£ T,

(3.12)

fx will be told to Evader, before he chooses vi(«).

On the other hand, in the minorant (closed-loop) game, at

each time t^ i=0,l,2,... , based upon observation of the

Evader's state yA, Pursuer chooses A* (namely he chooses xA),
trying to realize,

<(Ax + BJnf£ ><t)^ for any ft c A*
i e yi yi yi

and for some t, t <£ t <£ T '

(3.13)



A* will be told to Evader before he chooses vJ,(«). •
Xi i

Now, we see that if f£ is replaced by A* , the rules for
i xi

the majorant game coincide with those for the minorant game.

Since, f* c A* for any i=*0,1,2, .. ,: , we see that if Pursuer

can find fx , at some stage i, 1=0,1,2,... , which

satisfies (3.12), then (3.13) also holds no later than

stage i .

Hence, if Tj exists for some h>0, then TJJ exists for the

same h and

T~ ^ T+ holds.

This is true for any e > 0 and any initial condition.

Combining the results in above Remarks, we see that

T^ £ T~ <;T+ <; T+> (3 14)

holds for any h>0, e J> 0, and initial condition.

Similarly, it is easy to see that if Condition 3-1* is

satisfied for some h>0, then Condition 3-2' is satisfied for

the same h.

Hence, if minorant closed-loop escape is possible for some

h>0, then majorant closed-loop escape is also possible for

the same h.

Remark 3: We now compare minorant open-loop capture

conditions (MIOC) and majorant open-loop escape conditions

(MJOE).

From Condition 3-1-0, MIOC is;

82
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Corresponding to any fv c A , there exists f c A such that
. o 'O o o

(f H(fx + Be))(t)^ for some t, tQ <; t £ T .
o o

(3.15)

From Condition 3-2f-0, MJOE is;

Corresponding to any fx c Ax , there exists f c A such that
o o yo yo

(fx Q(f + B€))(t)=£ for any t, t £ t £ T .
o yo

(3.16)

Now, a dual relation is found between MJOE and MIOC.

Namely, if we replace f in MIOC by fx , some by all, and

* by « ,we obtain MJOE.

Similar duality relations hold between MIOE (minorant open-

loop escape conditions) and MJOC (majorant open-loop capture

conditions). Similarly, the same duality relations can be

found in closed-loop conditions.

B. SUFFICIENT CAPTURE CONDITIONS

In this section, sufficient conditions for capture

which will play an important role in the construction of suf

ficient strategies in the next chapter are derived.

The main notion used in this section is escapability

sets introduced in I-C-2.

Theorem 3-3: (Sufficient conditions for minorant
closed-loop capture)

For any h>0, e > 0, and T, tQ < T < oo , tQ+TjJ £ T holds if

Condition 3-3 is satisfied.



Condition 3-3:

There exists a time t7, t < tJT £ T, such that

(a) ^o^o^^ =? and
(b) for each t± = tQ+ih, i=0,l,... ,j-l, tQ £ t^ < t~ £ t ,

if x. c Ax (t ) and y. c A (t.) satisfy
o * y©

^y^h* ~* and

t* .inf(t :SXi>yi(t) ~0) >t.+1

then, for each yi+1 c Ay (t±+1),

either there exists a point xi+1 c Ax (t. ,) such that

sx v ^h* " 0xi+l'yi+l h

or, the e-capture occurs between time t. and ti+1.

Proof:

We shall show that if Condition 3-3 holds, there exists a

pursuit algorithm which guarantees the c-capture at some

time t £ t~ . If so, tQ+Tj; £ t £ t~ £ T. Hence, tQ+T~ £ T.

Let us recall that, before starting the game, Pursuer and

Evader are informed of R-1, R-2, R-3, and R-4 (see II-A-1).

In addition to these, we shall assume that

R^5 the time T, tQ < T < co , are to be given.

Now, we shall give a pursuit procedure. This procedure will .

be called the minorant capture algorithm (MIC).

MIC (1) Calculate attainability sets Av and A for both
xo y©

players using R-1 and R-2. By Av , A„ , and R-3, calculate
xo yo
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the c-escapability set Sx
o o

Calculate t* = min(t : Sx (t) = 0) (see remark below).
0 xo'yo

For a chosen h, by R-4, calculate t^t +h.
A O

If t* ^ *i» SO to MIC (2). If t* > t1$ go to MIC (3).

MIC (2) If t* £ tx
the c-capture occurs no later than time t*(£ tJJ) and the
game ends.

We shall prove this:

First, we show that, for any choice of admissible control

segment vq(«) , there corresponds a time t* , tQ < t* ^ t* ,

such that

y(t* ;v (•)) g Ax (t*) + B
o Ao c

where y(t* ; vQ(.)) is the Evader's state at time t* ,

corresponding to vQ(«), showing dependence of the state on

v (•) explicitly.

Suppose, for some admissible v0(«), there does not exist t ,

to < ** ^ *o » such that

y(t* ; v*(.)) g Ax (t*) + Bc (3.17)
o

Then, the graph defined by

fy° ={(y(t ;v*(-)),t)••: tc [t0,tg>
satisfies

(a) f° fl(Ax + B ) =^ (By (3.17).)
*o o e
v0

(b) f is connected
yo
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(O *;» * (y0, t0)
v

Hence, fv° c Sv v (see I-C-2) .
yo Vyo

Therefore, Sx (t*) ¥> fi , which cohtradicts assumed hypothesis

Since any point in Ax is attainable from (x .y ), the
o o * o

c-capture occurs at time t* (see Corollary 3-1).

Hence, t* ^ t0 <£ tJJ , we complete the proof.

Remark: If min(t : S (t) « 0) does not exist, taking
xo'yo

t* « inf(t : Sx y (t) ~ 0),
u o* ^o

we can assert that if t* ^ tj^ , then the c-capture occurs no

later than time t^+e fore>0. The proof is almost identical.

For simplicity, in what follows, we shall assume

min(t : Sx >y (t) « 0), i«0,l,2,... , exists without loss

of generality.

MIC (3) If t* > tx , for each yx e Ay (t ) ,

either Pursuer can find x, c A__ (t_) such that
1 Xo X

and go to MIC. (2)' (if tf £ ti+1) or (3)' (if t? > ti+1) with

i«l, or, the e-capture occurs between time t and t., and

the game ends.

We shall prove this:

In the minorant game, Evader roust specify y-i e A (t,) before
yo

Pursuer chooses x, g Ax (t ).
o 1

Hence, Condition 3-3 implies that corresponding to any choice



of y- e A (t-), Pursuer can find x, g A (t ) such that
i o 1 o l

SXl y <tp - 0 '
Xl,yi "

or, the c-capture occurs between time t and t and the game
o i

ends. (If for some y, e A (t ), Pursuer can not find such
o L

xl € Ax (t,), we do not know whether the e-capture occurs
o

within a finite period of time).

MIC (2)' If t* = min(t : Sx y (t) - 0) £ t±+1 ,

the e-capture occurs no later than time t* and the game ends.

The proof is the same as in MIC (2).
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MIC (3)' If tj > ti+1 , for each yi+1 e A (ti+1) ,
i

either Pursuer can find x±+i c Ax (t. ,) such that

S (t") = 6
xi+l'yi+l^h; 9

and go to MIC (2)' or (3)' with i-*i+l,

or , the e-capture occurs between time t. and t^+^ , and the

game ends.

Now, we shall prove that the game always ends.

With the repetition of MIC (3)', suppose we arrive at time

tj-lf with t5 < t- <; tj+1 .

Suppose tt , « min(t : Sv (t) = 0) < ti ,

then, by MIC (2)*, the e-capture occurs no later than time

Suppose tj«! > tj .

Then, by Condition 3-3 (b), we see that for each y± e Av (ti)
J ^i-1 J
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either there exists x. g Ax. ft.) such that
J j—i . J •

SxJ,yj(th> -0

or, the e-capture occurs between time tj^ and tj (in this

case, since tj < tjj , the game ends no later than time tJJ ,
as required).

Since tf » min(t : S__ _, (t) =0).
J xj'yj '

we have tj £ tjj , hence, tj < t| £ tj+1 .

By MIC (2)' , the c-capture occurs no later than time

t* ^ tj £ T . This completes the proof.

The following follows directly.

Corollary 3-3: (Sufficient conditions for minorant
open-loop capture)

For any g^ 0 and T, tQ < T < oo , t^TJ^ £ T holds if

Condition 3-3-0 is satisfied.

Condition 3-3-0:

There exists a time t£> , tQ < t^ ^ T < oo , such that

SVyo(t-}-0

Remark: It is interesting to note that Condition 3-3-0 is

not, in general, a necessary condition for minorant open-

loop capture.

Next, we shall give a sufficient condition for

capture which is convenient in constructing pursuit algo

rithms for majorant discrete games. This will also be

used to construct pursuit algorithms for time-continuous games



In what follows, we use the property At-2' for the

Pursuer's attainability set. By this property, we see that

corresponding to any c > 0, there exists a positive real

number l^such that for each h, 0 < h £ h ,

A* c f* + B (3.18)
xi xi €

for some f c Ax. , for any x. g Ax (t.) , and for any i,
i i x o i

0 ^ i ^ n-1,

where

tQ + (n-l)h < T ^ tQ + nh .

It should be recalled that f* and A* are defined on
i xi

[ti, t-.+h] , t±=t0 + in ..

If e=0, a necessary and sufficient condition for the ex

istence of h_ > 0 which satisfies (3.18) is A* = f* for
i xi

any x± c Ax (t±) and i, 0 ^ i ^ n-1.

This is a restrictive requirement.

We shall denote the escapability set with e=0 by S?
xi,yi

namely,

Av " Ax " Sx. v <see (1-1D) (3.19)yi xi xi'yi

for any y± e A (t.) and x. e A„ (t.) .
yo 1 1 o 1

Theorem 3-4: (Sufficient conditions for majorant
closed-loop capture)

For any h, 0 < h^ hQ, c > 0, and T, tQ < T < co , t0+T£ £ T
holds if Condition 3-4 is satisfied.
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Condition 3-4:

There exists a time tjjj ,- t < t+ <[ T, such that
o ^ "h

«o

:o'*o
(a) S° (t+) = 0 and

90

(b) for each t± = tQ+ih, i-0,1,... ,j-l, tQ £ tj < t£ £ tj+1

if x. e Ax (t.) and y c A (t.) satisfy

^i^ ** and
t** =inf(t :S°. >y (t) -0) >ti+1

then, "there exists a point xi+^ e Ax.(t1+1) such that

^i+i.yi+i^ " * tor a11 yi+i e Vti+1> "•

Proof:

We shall show that if Condition 3-4 holds, there exists a

pursuit algorithm which guarantees the e-capture at some

time t£ tjj £ T .

If so, tQ+T+ £ t£ tj £ T. Hence, tQ+T~ £ T.

Now, we shall give a pursuit procedure. This procedure will

be called the majorant capture algorithm (MJC).

MJC (1) Calculate Ax , A , S° , h by (3.18), and
o yo xo,yo °

t**«=min(t : S?_ (t)=0).
• xo'yo

** 'tj* £ tx, go to MJC (2). If t** > tx, go to MJC (3).

MJC (2) If tj* £ tx ,

the c-capture occurs no later than time t** and the game ends.

We shall prove this:



First, by (3.18), for each h, 0 < h £ h , we have

f* + Be =} A* for some f£ c A*

Hence, we have

Sx v " Av " Ax ^ Av - <fx + V <3-20>o,yo yo xo yo o e

for some f* c A*
o o

—** * *Let tQ - min(t : Ay - (f + B ) - 0)
o o

Then, by (3.20), we have t** < t** .
o -* o

Hence, corresponding tcTany admissible control segment v0(.),

there exists t* , tQ < t* ^ t** such that (see the proof
of MIC (2), Theorem 3-3)

y(t* ; vft(-)) e f* (t*) + B (3.21)
° o €

for some fx c A*
o o

Hence, similar to the proof of MIC (2) of Theorem 3-3, we

see that the c-capture occurs no later than t* .

But t* ^ t £ t , we can conclude that the e-capture

occurs no later than time t** .
o

Remark: If t** does not exist, we replace
o

t** - inf(t : S° (t) - 0)
o'yo

and treat the problem similar to Remark after MIC (2).

Similar fact holds for t** .

MJC (3) If t** > t1? find xx e Ax (tx) such that
o
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Sxliyi(th+)^ fora11 yieAyo(tl) '
and go to MJC (2)' (if tj* £ t.i+1) or (3)' (if tj* > t1+1)
with i=l.

In the majorant game, Pursuer must choose x. e A__ (t.) before
l x0 i

Evader chooses y, e A (t ).
yo 1

Hence, Condition 3-4 implies that there exists x, e A__ (t,)
a *0 l

such that, so long as Pursuer specifies x,, S° (tj) «= 0
i i' yi

holds independent of the choice of y,.
»*l

MJC (2)' If tt - nlritt : S° (t) = 0) £ t. ',
i,yi 1+1'

the e-capture occurs no later than time t** and the game ends

The proof is the same as in MJC (2).

MJC (3)' If tj* > ti+1, find xi+1 c Ax (ti+1) such that

^i+i^i+i^^ "* tor a11 yi+i eAyi(ti+i) and g° to
MJC (2)' or (3)' with i—i+1. • '
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Similar to Theorem 3-3, we can prove that the game always ends.

This completes the proof.

Remark: Similar to Condition 3-3, the statement in " " of

Condition 3-4 (b) can be weakened as follows;

(b) "there exists a point xi+1 c Ax (ti+1) such that any

yi+l e Ay. Cti+j_) satisfies

either S$ (++) » 0
•- i+l,yi+l h

or, dist(Graph (xi,xjL+1) (tf), Graph (yi,yi+1) (tO) £ g

for some t' , t^ £ t'< ti+1 "



where Graph (xi»xi+1) is defined in III-A-1, and

Graph (xi»xi+i) (t!) represents a fixed-time cross section

at time t' .

The following follows directly.

Corollary 3-4: (Sufficient conditions for majorant
open-loop capture)

For some c J> 0, suppose there exists hQ such that hQ J> T.

Then,t0 + T+, ^ T holds if Condition 3-4-0 is satisfied.

Condition 3-4-0: ,.._..

There exists a time t^, tQ < t+Q £ T < oo , such that

S° (t+ ) « 6
xo'yo °° P

Remark: Since the majorant pursuit algorithm (MJC) given

above is independent of the Evader's observation interval

(see (2.73) and Remark after (2.74)) we see that this pur

suit algorithm for Pursuer remains valid even for the time-

continuous game. This will be discussed in the next chapter

in detail.
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IV. SUFFICIENT STRATEGIES

Based upon general capture conditions derived in

Chapter III, we shall consider a new and important class of

strategies. These strategies are called sufficient strat

egies. Existing papers are mainly concerned with saddle-

point "optimal" strategies which require "continuous" obser

vation of the states of both players. From the point of view

of applications,"continuous" observation and feed-back are

sometimes undesirable, because they are difficult to realize.

The sufficient pursuit strategy introduced here is essentially

a discrete version of continuous controls, and guarantees

Pursuer c-capture against any Evader's strategy within some

given finite period of time, requiring only discrete obser

vation on the part of Pursuer. The geometrical approach

taken here is straightforward, yet rigorous. Furthermore,

it provides new insight and interpretation for existing re

sults which were obtained by heuristic optimization techniques

In Section A, the concept of sufficient strategies

is introduced and their relationship to "optimal" strategies

of the saddle-point type is discussed.

In Section B, some algorithms for constructing suffi

cient pursuit strategies are derived. They are applied to

simple examples.

In Section C, existence theorems for such strategies

are derived. The relationship to capture conditions is

explained.



In Section D, these results are applied to some

specific problems. The concept of lower dimensional capture

is introduced and briefly explained. Although this is an

y% interesting generalization of the capture problem, our

results in this regard are still preliminary and somewhat

fragmentary.

A. MOTIVATIONS AND DEFINITION OF
SUFFICIENT STRATEGIES

Suppose a time-continuous game G has a value T.

Namely, for any e > 0, Pursuer and Evader have e-effective

strategies (see II-D). In this case, by an appropriate

choice of strategies, Pursuer guarantees himself an c-capture
A

time of at most T+e, and Evader can prevent Pursuer from

yielding more than T-e. This holds for any e > 0, no matter

how small. However, this "equilibrium" situation is realized

if and only if the minimax relation (2.80) holds.

On the other hand, saddle-point "optimal" strategies

have been studied by several authors using existing optimi

zation techniques, such as the calculus of variations and

dynamic programming [B6] , [B7] , [H3] ,[K5] . Saddle-point

strategies are described as follows:

"Analogous to (2.69), we define a mapping U (•,.,.) by

u(t) - UQ(x(t),y(t),t) , t ^ t < oo

where u(«) is a Pursuer's admissible control. The set of all
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such mappings will be denoted by t^ . A mapping V0(-,»,»)

and the set V^ for Evader are similarly defined. For given

U (•,*,•) g Uq and VQ(•,«,•) c VQ, the c-capture time can

be formally determined. This will be denoted by

T(Uo(.,.,0, Vo(.,.,.)) .

If there exist U*(•,♦,•) eUQ and V*(•,.,.) c Vq such that

T(Uo(.,.,.), V*(-,.,.)) ^T(U*(.,.,.), V*(.,.,.)

1 T(U*(.,.,.), VQ(.,.,0) (4.1)

the pair (U (•,•,•), V (•,•,•)) is called the optimal pair

of strategies and the corresponding controls u*(#) and v*(«)

are called optimal controls."

It is seen that "optimal" strategies of this type

formally correspond to our e-effective strategy with e=0.

In this chapter, instead of formulating differential games

as above and trying to obtain "optimal" pair of strategies,

we introduce the concept of sufficient strategies, which,

we hope, will be convenient in circumventing the following

difficulties which are inherent in "optimal" strategies.

(a) It is known that saddle-point "optimal" strategies exist

if and only if the following minimax relation holds,

min max T(U (.,.,.), V (.,.,.))

e UA c V

max min T(U (•,-,-), Vo(-,-,-)) (4.2)
V->''-> Uo<->''->
«2o e\>

96



97

Conditions under which this relation holds are not known, in

general.

(b) Even if (a) holds, in order to realize "optimal" controls,

continuous observation of states is necessary. From the

point of view of applications, this is undesirable.

(c) The applicability of existing optimization techniques

for finding above "optimal" strategies is limited to only

simple problems, mainly because of the fact that domains of reg

ularity (in which partial derivatives of the capture time

are continuous) are usually difficult to find.

Now, we shall introduce the concept of sufficient

pursuit strategies.

From the point of view of applications, it is sometimes de

sirable to find an algorithm which guarantees Pursuer c-capture,

e > 0, against any Evader's strategy, within a given finite

period of time T* .

Thus, with a given initial condition (xQ,y0,t ), an
Ik

(ct T ) sufficient pursuit strategy, c > 0, 0 < T* < oo, is

defined to be any Pursuer's strategy (h, Ufa(•,.,.)), h > 0,

which guarantees the e-capture no later than time tQ + T* ,

against any Evader's strategy (h', Vfaf( •,.,.)), h'> 0.

Similarly, an (e, T ) sufficient evasion strategy, c > 0,

0 < T < oo , is defined to be any Evader's strategy

(h, Vh(•,«,•)), h > 0, which guarantees the e-capture not to

occur before or at time tQ + T* against any Pursuer's strategy

W-$ uh,0, •,•)), h'> 0.



In this chapter, we are mainly concerned with sufficient

pursuit strategies.

Remark 1: The concept of (e, T*) sufficient pursuit strate

gies is defined such that it is possible (and natural) that

there exist "better" strategies. For instance, if Pursuer

takes a smaller sampling interval h' , 0 < hf < h, there may

exist (tf , Uht(-, •,•)), 0 < h'< h, such that the e-capture,

'o
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*'
0 < c'< c, is guaranteed to occur no later than time t + T ,

0 < T*f< T* , against any Evader's strategy.

Moreover, suppose (h, Uh(«,«,«)) is an (c, T*) sufficient

pursuit strategy. Even for the same sampling interval h,

there may exist (h, U"h( •»•,•)) which is an (c', T*f) suffi
cient pursuit strategy, with 0 < c'< e, 0 < T*f< T* .

Remark 2: Further modification is to change the sampling

interval as the game proceeds. Heuristically, as the game

proceeds and the states x(t) and y(t) for both players get

nearer, more frequent observations are required.

This will be commented later by an example (Example 4-2).

B. CONSTRUCTIVE ALGORITHMS FOR SUFFICIENT
PURSUIT STRATEGIES

The following theorem follows directly from

Theorem 3-4.

Theorem 4-1:

For each e > 0, and T* , 0 < T* < co , an (e , T*) sufficient
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pursuit strategy exists for each h, 0 < h < h .(where h is
* -* o o

given by (3.18) with T = T*+tQ) if there exists t+,

t0 < *£ £ t0+T* ' which satisfies Condition 3-4.
Furthermore, an algorithm for constructing the (c, T*)

sufficient prusuit strategy, for a given h, 0 < h £ hQ , is

given by MJC.

Remark 1: Suppose we are given e > 0 and T* , 0 < T* < oo .

Then, by (3.18), we can calculate hQ . Let us take some h ,

0 < h £ hQ . With this h, we examine whether there exists

tj , t£ £ tQ+T* , which satisfies Condition 3-4. If there

is, an (e, T*) sufficient pursuit strategy exists for that

sampling interval h > 0, and it can be constructed by MJC.

Remark 2: Suppose e « 0 . Then, majorant capture with a time

interval h > 0 is possible only under restrictive situations

such as;

Example 4-1:

Both players move on a line;

Pursuer's dynamics is given by

~£^. »u(t) f x(t) eEl 9X(to)=0 ;|u(t)|<£2 ,to=0
Evader's dynamics is given by

*$& -v(t) , y(t) eE1 ,y(to)=3 ;|v(t)|^l

In this case, if Pursuer uses strategy (h, Un(•,.,.)) such
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that the value of Uh(x(tjL),y(ti),t±) at time t, 0 ^ t < co ,

is 2 for any x(t±) c A (t±) and y(t-) e Av (t ),(and h > 0
o x yQ l

is arbitrary), then the 0-capture (e » 0) occurs no later

than time 3.

In general, the 0-capture (e = 0) does not occur for discrete

majorant games (h > 0).

Therefore, in general, we can not construct (0, T*) suffi

cient strategies by Theorem 4-1. Hence, we exclude the case

e = 0 from Theorem 4-1.

In Theorem 4-1, we treat the problem in terms of escapability

sets. The following modified version of Theorem 4-1 is of

use in applications.

For a given e > 0 and 0 < T* < co , a positive real number .h*

is determined such that, for any h, 0 < h £ h* ,

SVp A /4. ^Jlxi+1 - xi+ll| ^ e (4'3)
xi+l'xi+leAxi<ti+h>

for any x. e Ax (t.) and for any i, 0 ^ i ^ n-1
**• o 1

with (n-l)h < T* £ nh .

By At-2' , it is seen that such h* exists.

Theorem 4-2:

an<J>
For each e > O^T , 0 < T* < co , an (e, T*) sufficient

pursuit strategy exists for each h, 0 < h ^ h* , if there

exists t£ , tQ < tjj ^ tQ+T* ,which satisfies Condition 4-2.

Furthermore, an algorithm for constructing the (e, T*) suffi«
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cient pursuit strategy, for a given h, 0 < h £ h*,is given

by SCA (1), (2), (2)' , (3),and (3)' below.

Condition 4-2:

(a) Ax (t£)=> A (t*) and
o yo "

(b) for each t* - tQ+ih, i«0,lf... ,j-l, tQ £ t. < t£ £ tj+1 ,
if xj'c A (t.) and y. e A__ (t4) satisfy

O

V^V*^ and
tf = inf(t :Ax.(t)Z) A (t)) > ti+1 ,

1 yi

then, there exists a point xi+1 e Ax.(t^+i) such that

Axi+1(th> => Ayi+1(th> for ali *i+i cAyi<ti+l>.

Proof:

We shall shov/ that if Condition 4-2 holds, there exists a

pursuit algorithm which guarantees the c-capture at some

time t£ t* <; tQ+T* .

The following pursuit procedure will be called the sufficient

capture algorithm (SCA).

SCA (1) Calculate Ax ,A ,and t*=min(t :Ax (t) Z) Ay (t)) .
# o yo o o

If t* £ tx, go to SCA (2). If t* > tx, go to SCA (3).

Remark: We assume min(t : Ax (t)3 A (t)) exists.
o yo

If it does not exist, we replace

t* - inf(t :Ax (t)Z)A (t))
o . yo
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and treat the problem just, the same as in MIC and MJC.

SCA (2) If tg <; t-p the c-capture occurs no later than

time t£ and the game ends.

The proof follows from MJC (2) or;

Pursuer takes any admissible uA>), then fx°(tf) e Av (t#)
v ° o ° x0 °

But, fy°(t#) eA (tJ)CAx (t#) for any admissible vQ(.).
^o o o °

Hence, u v
4? O/^ffN _ .pvo/••.»'

O yo °

holds for any admissible uQ(«) and v (•).

Hence, for any admissibfe u0(0, taking uQ(*)= Uh(x0,y0,tQ),

(h, Uh(«,-,«)) is an (e, T*) sufficient pursuit strategy.

SCA (3) If t£ >tx ,find x1 eAx (tx) such that

Ax (t^)~)Ay (t*) for all y;L eAy (t^ (4.4)

If t* -min(t :Ax (t) ZDAy (t)) £ t2, go to SCA (2)' with 1-1.
If t* > t2, go to SCA (2)' with i=l.

Remark: To find x1 c Ax (t,) which satisfies (4.4) is
x o x

equivalent to find x^^ e Ax (t..) such that

V^V^ <4-5)
This fact will be used later.

SCA (2)' If tf = min(t :Ax (t)Z) A (t)) £ t±+1
the e-capture occurs no later than time t![ and the game ends

The proof is the same as in SCA (2).



SCA (3)' If t? > ti+1 ,find x±+1 e Ax (t±) such that

S+l^^^i+l"^ ^ aU yi+1 €\(ti+l)
If *i+l ^ *i+2 > go to SCA (2)* with ±m~i+1-

If *i+l > *i+2 ' SO to SCA (3)' with i—> i+1.

The fact that the game always ends is shown similar to

Theorem 3-4.

Remark: Condition 4-2 (b) is weakened just the same way as

in Remark after MJC (3)' . The same fact holds for Condition

4-3, 4-4, and 4-4' .

With these results for closed-loop games, we shall examine

Example 4-2, which was presented by J. H. Eaton [El] as an

improper example for the open-loop game.

Example 4-2:

Pursuer *s dynamics;

dx(t) _
dt

fo -%"
1*. °.

x(t) + u(t)

with x(t) e E2 ,x(tQ) = x =
o

0'

0
, |u(t)|

Evader's dynamics;

dy(t
dt

with y(t) cE2 ,y(tQ) -y0 =̂| ,|v(t)| £1
Suppose we specify e « 1, and T* «= 2, then by (4.3) h* = 0.25.

1 -[0~*|<y(t) -yQ) +v(t)

; « 0
o

103
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It is easy to see

Ax (t) ={x : ||x||^ 2t}
o

AyG(t) ~ty : l|y"yo!l * *}
Take h = h* - 0.25 and t£ - tQ+T* - 2 .

and we examine if Condition 4-2 is satisfied.

Condition 4-2: (a)

A* <t*> = Ax <2> ={X :HXH^ 4}
o 6

VtJ) "V2) ={y : l|y"to]|U2i
Hence, Ax (t*)Z)Ay (t*)

Condition 4-2: (b)

SCA (1) tjj - min(t :Ax (t)^A (t)) = 2
0^0

tx = tQ + h « 0.25

Since t* «2>0.25 = t]L go to SCA (3).
SCA (3) Want to find xx cAx (0.25) ={x :||x|| £ 0.5}

o

such that

Av (2)Z)Av (2) (4.6)
xl yo

It is easy to see that the only point that satisfies (4.6) is

>* ^5 [11

Now, we shall calculate

tf « min(t : Ax*(t) Z) Aw (t))
1 Xl yl



If Evader chooses

yx e Ao(0.25) ={y : ||y - [J]|j <; 0.25}

other than

* F21

then, we have

yi=lo + 0.25 X ri
/2" 0

min(t : Ax*(t)Z)A (t)) < min(t : A*(t) Z) A *(t))
1 ^jl xx vl

for any yx e Ax (0.25) , y]L ^ y*

Namely, if Evader chooses y e Ax (0.25) other than y* , the
o

game ends earlier than time t# = T* = 2
o .

Although, we are only concerned with pursuit strategies here,

and the value of y± is to be observed during the game,

anticipating the worst case, let us suppose that Evader

chooses y .

Then, t| = 2

t0 « t + 2h « 0.5
^ o

Since t# > t2 , go to SCA (3)' with i=l .

SCA (3)' Want to find x2 eAx (0.5) ={x :||x - g J|| ^ 0.5}
such that

AX2(2)Z)Ay*(2) (4.7)

It is easy to see the only point that satisfies (4.7) is

x2 -
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Similar to SCA (3), we get

with

n =la * IS. J and tg-2

SCA (3)' until ive arrive at
* *

X7 ' y7 '

s - IS! yo - [3

< - 3s5 III *y* . BbttMSl

4 - III
*

y2 - lol+U
* 1.5 r-ll * [21 0.75 r-11

lor js liJ

4 - [o2] y4 - KM;1]

•s-^ca
*

y5 - 120}+Wl:l\
-S - I-J y6 - GM-iJ

* 3.5 rl 1

X7 = J2 I—Xl y? - GptfMiJ

106

and t? = 2, i=0,l, ... ,7 .

Hence, going to SCA (2)' with i=7, we can conclude that the

e-capture occurs no later than time tZ = 2 and the game ends.

sk

Hence, we see that the (1, 2) = (e, T ) sufficient pursuit

strategy exists.

Remark 1: The attainability sets for linear systems are

compact and convex (see At-4 and At-5, I-C-l). Hence, some

improvements of the above algorithm SCA are possible.

Especially, in the above example, since attainability sets

for both players are always 2-dimentional circles, SCA is

improved as follows;



In SCA (2)' with i=7, denoting the center of A *(t~) by x# ,
X|y /

if Pursuer chooses admissible u2(«) such that

*

then, for any x e AY*(t,L)
x7

x - x#|| £ $c

Hence,

>U7,J\ *7,^#,
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for any admissible v (•) .

Therefore, we see that the (0.5, 2) = (£e, T*) sufficient

pursuit strategy exists. This is an improvement of (1, 2)

strategy.

Remark 2: Another improvement is as follows:

For given e=l and T =2, it is not necessary for Pursuer to

observe the Evader's state at the end of every incremental

interval h.

Actually, it is easy to see, instead of observing the Evader's

state at times tQ, tQ + h, tQ + 2h,... ,tQ + 7h, Pursuer can

construct the same pursuit strategy observing the Evader's

state only at times t , t + 4h, t + 6h. t + 7h.
o o o o

Heuristically, this is because, at the. beginning of the game,

Pursuer has a greater flexibility, and as the both players'

states get nearer, Pursuer needs more frequent observations

of the Evader's state.
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Remark 3: It is interesting to note that the admissible

trajectories connecting the points x , x?,... ,x^ and the

points y0, yT,... ,Vy (it is easy to see that such trajectories

are unique) coinside, in this case, with the solutions for

the open-loop game obtained by the formal application of the

maximum principle pSl] .

The geometrical approach used here provides simple insight

and a rigorous treatment of "closed-loop" games.

C. EXISTENCE OF SUFFICIENT PURSUIT
STRATEGIES FOR LINEAR SYSTEMS

Although Theorem 4-1 and 4-2 are of use of

construct an (c, T*) sufficient pursuit algorithm, following

theorems for linear systems are more convenient in verifying,

a priori, whether an (e, T*) strategy exists. These theorems

are geometric in nature and provide simple interpretation for

capture conditions. Some examples given in the next chapter

subsume the results previously obtained by applying classi

cal optimization techniques.

Let Pursuer's and Evader's dynamics are described

by the linear differential equations

4|iii =Ap(t)x(t) +Bp(t)u(t) x(t0)=x0 (4.8)

•^XH =Ae(t)y(t) +Be(t)v(t) y(t0)=y0 (4.9)
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where A (t) and A (t) are n x n continuous, time-varying
P e

matrices defined on [tQ, co ) and B (t) and Be(t) are n x m

continuous,time-varying matrices defined on [tQ, oo).

In this case, it is easy to see that the following property

concerning attainability sets holds.

At-6 For any t, trt < t < oo, and for any x(t), x'(t) e A (t)

there exists a vector z e En such that

Ax(t)(t?) = Atf(t)(t'+Z for any *' » t £ V< °° #

The same property holds "for Evader's attainability sets.

Other conditions and the rules of the game are the same as

before.

Now, we are given e > 0 and T*, tQ < T* < oo . A positive

real number h* is determined such that, for any h, 0 < h ^ h ,

max I|x - x'|| £ e holds (4.3)'
x,x'cAx(t)(t+h)

for any x(t) e Ax (t), and for any t, tQ £ t £ T*-h.
o

This is a modified condition of (4.3). The existence of such

h is easily verified.

Theorem 4-3: (Linear systems)

For each e > 0 and T*, 0 < T* < co , an (e, T*) sufficient

pursuit strategy exists for each h, 0 < h <^ h* , if there

exists tj, t < t£ <; tQ+T*, which satisfies Condition 4-3.



Condition 4-3:

(a) Ax (t*)D Ay (t*) and

(b) for each i-0,1,... ,j-l, tQ+jh < t* £ tQ+(j+l)h ,
corresponding to any xi+1 e Ax (ti+1) and y± e A (t±)

° o
there exists a vector z e En such that

*

Lxi+l(th):=) \ (th} + Z holds.

Proof:
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The proof follows from Theorem 4-2 as follows:

Suppose Condition 4-3 is satisfied. Then, by the property

At-6 and At-5 (convexity), it is easy to see that exists

xi+l e Ax (*i+l) » i^O,!,... ,j-l, such that

Ax*+i(t*)3Ayi(t*)

Since Ayi(t*)3 Ay^(t*) for any yi+1 eAyi(t.+1),
we have Ax*+^(t*) Z) Ayi+1(tJ) for any yi+1 eAy (ti+1) .
Hence, Condition 4-2 (b) is satisfied.

If the dynamics of both players are linear and time-invariant,

attainability sets satisfy the following property.

At-7 For any t and t' , tQ < t <£ t+t'< co , for any t*,

t£ t* < oo, and for any x(t) c Ax (t) and x(t+t) c Ax (t+t*),.
o o

there exists a vector z e En such that

Ax(t)(t*> " Ax(t+tD(t*+t<)+z

The same property holds for Evader's attainability sets.



Hence, the following Corollary follows from Theorem 4-3.

Corollary: (Linear, time-invariant systems)

For each e > 0 and T*, 0 < T* < co , an (e, T*) sufficient

pursuit strategy exists for each h, 0 < h ^ h*, if there

exists t£, tQ < t* £ tQ+T*, which satisfies Condition 4-3' .

Condition 4-3' :

(a) Ax (t£) Z) A (t*) and
00 *

(b) for each i, i«0,l,... ,j-l, trt+jh < t. < t +(j+l)h ,
v no *

there exists a vector z e En such that

Ax <*% ~ (i+Dh)Z)Av (t* - ih)+z
xo n yo h

Proof:

Directly follows from Theorem 4-3, using At-7.

Example 4-3:

We shall apply above Corollary to Example 4-2. Taking e=l

and T*=2, we get h*=0.25.

Let us take t£=2, h=0.25, and t =0 as before. Then j=7.

o

(Zh - in; = f y : j|y-|'2
o

Taking Zs=[0] for any i=0,l,... ,6, we see that

Ax (t* - (i+l)h) ={x : ||x|| ^ 2(t£ - (i+l)h)}
o

a (t*-ih) - {y =||y- [g] II <: <t*-ih)}

Ax (t*- (i+l)h)DA (t* - ih) + [*]
o Jo

for any i=0,1,... ,6.

Ill
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Hence, the (1, 2)=(e, T*) sufficient pursuit strategy exists.

Now, from the point of view, of applications,

"continuous" observation of the Evader's state, i.e., h—*-0,

is practically undesirable.

However, it is interesting to investigate conditions under

which, corresponding to any e > 0, no matter how small, and

for a given T*, 0 < T* < oo , there exists h* such that for

each h, 0 < h £ h* , an (c, T*) sufficient pursuit strategy

exists. Since if they are satisfied, for any e > 0 no matter

how small, Pursuer can find his strategy (h, Uh(•,•,•)), h>0,

which guarantees himself e-capture no later than time tQ+T

This conditions coincide with "capture conditions for the

differential game" in the existing literatures. This will

be explained by examples in the next section.

It should be noted, that the greater the "accuracy"

of capture (c—0) desired, the finer the sampling interval

required (h-*0), except for special cases such as in Example

4-1. Practically, Pursuer should find some compromising

values of e > 0 and h > 0.

The following theorem is of use to establish capture conditions.

Theorem 4-4: (Linear systems)

For each e > 0 and T*, 0 < T* < co , if there exists t*,

*o < ** •£ to+T*> which satisfies Condition 4-4, then there

exists h** such that for each h, 0 < h£ h**, an (e, T*)

sufficient pursuit strategy exists.
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Condition 4-4:

(a) Ax (t*)Z)A (t*) ,
xo yQ

(b) corresponding to any x(t) e Ax (t) and y(t) e A (t),
° °tQ £ * <[ t*-h , there exists a vector z c En such that

8x(t)(t*)DAy(t)(t*) +z

where h* is given by (4.3)'and Ax^.\(t*) represents the

interior of Ax/t\(t*) , and

(c) there exists a positive number h^ > 0, independent of t,

and corresponding to each t, tQ <£ t^ t*-h*-h^ , there exists

a vector z' e En such that

Proof:

Taking h**=min(h*, hr ), the above follows directly from

Theorem 4-3.

Corollary: (Linear time-invariant systems)

If the systems dynamics is time-invariant, Condition 4-4 is

replaced by Condition 4-4*.

Condition 4-4' :

(a) Ax (t*)Z)A (t*)
o Jo

(b) for any t, tQ+h* ^ t^ t*, there exists a vector z e En

such that

Ax (t) Z) A <t) + z
o yo

(c) there exists a positive number br > 0, independent of t,



and corresponding to each t, tQ+h*+h# j£ t£ t*, there exists
a vector z* e En such that
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Ax (t - h#) Z) A (t) + z'
o yo

D. SOME EXAMPLES

We shall apply the results obtained in Section C

to some specific problems. Since, the evaluation of attaina

bility sets is, in general, not too easy, one must exert

one's ingenuity in applying our results to individual cases.

1. Lower dimensional capture

In I-D-l, the e-capture time t was defined by

||x(t) - y(t)|| £ c and

l|x(t) - y(t)ll > c for all t, t„ < t < t

However, in actual problems, we often encounter the cases

where the above definition is too restrictive. A weaker

version of the e-capture time t will be defined by

||x<*>(t*) -y(i)(t*)|| <;e and

||x<i)(t) - y(i>(t)|| >c for all t, tQ <; t<t*
(4.10)

where x^^(t) and y^Ct) represent the i— ,1^ i£ n,
components of Pursuer's and Evader's states x(t) and y(t),



respectively, at time t, tQ £ t < oo.

Example 4-4: (see Ref. [Pi] )

Pursuer's dynamics is given by

x(t) + ax(t) - cu(t) |u(t)| <: 1
a,c > 0

Evader's dynamics is given by

y(t) + by(t) = dv(t) |v(t)| £ 1
b,c > 0

Equivalently,

Pursuer's dynamics:

-X(l)(t)!

Lx(2)(t)

0 1

(4.11)

(4.12)

d

•at

rx(1)(t)

x<2>(t)J

o-

c-

bl

u(t) (4.13)

Evader's dynamics:

d_
dt

^(l)(t>

<2>(t)

0 -ai
« •

0 It

0 -b

Let us assume for simplicity

•<»<«•
(2)

rO

(t)J Id
v(t) (4.14)

U<2>(t )J loJ ly<2>(t^)J U J
^ 0
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Now, let us suppose we are interested in capture of the first

component of the state. Namely, the e-capture time t* is

defined by



I*<l>(x*) - y<D(«*)|| <;e and
llx(1)(t) -y(D(t)|| >c for all t, t0 £t<t*

(4.15)

Then, the projections of the fixed-time cross sections of

attainability sets A (t) and Alr (t) on the first coordinate.
° ^o

denoted by A*1* and A*3-) , respectively, are
o yo
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A^>(t) ={x<D(t) :|X(D(t)| ^J* -S_ (l-e-a(t-s))ds)
(4.16)

Ag)(t) ={y(D(t) :lytDct)-^ A* -Ld-e-Mt-s)) dl
o v o jtQ b J

(4.17)

From (4.16) and (4.17), we can easily derive a sufficient

condition for Condition 4-4' .

For example, it is easily verified that if

c^d and _£_>_£_ hold, (4.18)

_c_
a

(1 -e"^-3)) >_jl_ (i -e-bCt-s)) (4a9)

holds for any t-s > 0 .

For any e > 0, following (4.3)', we take h* > 0 such that

tf+h*
c2 2[+ -4- (1 -e~a(t*h*-s))dsjtt a

« 2-SL- (h* - * (1 - e~ah*))
a a

It is interesting to note that for any e > 0 there exists
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such h* > 0 and c— 0 implies h*—~ 0.

We shall examine Condition 4-4': Let (4.18) be satisfied.

(a) It is easily verified that there exists t*, tQ < t* < oo ,

such that

AxD(t*) ZD A<1}(t*)
o yo

(b) Taking z =-y^1^ , (4.19) implies

Xp-^t) Z3 A(1>(t) +z for any t, tQ+h* £ t£ t*
o vo

(c) Since,

f (t) = t* -^- (1 - e-a(t""s))ds and (4.20)
1 JtQ a

f2(t) =J* J*L (1 -e-b(t-s>)ds (4.21)

are strictly increasing and f,(t) > fo(*) (by (4.19)) for

any t > t , it is easily verified that there exists h^ > 0

such that

fx(t - h#) > f2(t) (4.21)'

for any t, tQ+h*+h# ^ t £ t* .

Therefore, by Corollary (p. 113), we see that the e-capture

occurs no later than some finite time t .

But, the above discussions hold for any e > 0, no matter how

small. Therefore, (4.18) is a sufficient condition for

1-dimensional capture.

We can generalize conditions for 1-dimensional capture to

the following case [H2] .

Let the Pursuer's dynamics be given by



dx(t)
- A x(t) + b u(t) x(trt) - x^ (4.22)

dt P P ~^o' ~o

&&1 -Aey(t) +bev(t) y(tQ) «yQ (4.23)

where A and Ae are n x n matrices and bp and be are n vectors,

and x(t) e En , y(t) e En , and |u(t)|^ 1, |v(t)|^ 1, as before.

Let us suppose, for simplicity, all the eigenvalues of A

and Ae are negative. Similar to (4.19), we can verify that

Condition 4-4' is satisfied if

Ix£1}<t, t0)bp| > |x<X>(t, tQ)be| (4.24)
for any t, t0< t < oo

2. Energy constraint capture

In this thesis, we assume that the admissible

controls u(») and v(») are constrained by

u(t) e U for a.e. te[tQ, oo)

v(t) e V for a.e. te[tQ, oo)
(4.25)

where U and V are given compact subsets of En . This assump

tion is not vital in our discussions and most of the results

obtained remain valid even if we replace it by some other

constraints. Let us consider the cases where admissible

controls u(«) are constrained in the following form:

m _* i

P £ K (4.26)
"* P

H-)Bp-[f;5* |u<i>(t)ipdt]
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where k and p are given positive numbers, 1 £ p < co , and

u'*'(t), 1 .£ i <£ m, represents the illl component of u(t).

We consider the analogous constraint for v(«).

For convenience, if p=oo ,

r

llu<*>llco - max ess sup |u(1)(t)| <k (4.27)

which is equivalent to

|u(*)(t)| £ k for any i=l,2,... ,m
p and t, t^t^t*

This is the "amplitude" constraint.

It should be noted that bounded controls can always be

brought into this form by appropriate transformation.

Taking p=2, we obtain the "energy" constraint, and taking

p=l, we obtain the "area" constraint.

. Now, we shall apply the results obtained in the preceding

section to games with these constraints.

Example 4-5: (see Refs. [H3] and [K8J )

Dynamics for Pursuer and Evader are given by (4.8) and (4.9).

Since the purpose of this example is to demonstrate the

applicability of the results previouly obtained, for simplicity,

we shall assume that u(t) and v(t) are scalars, both dynamics

,, aye asymptotically stable and totally controllable.

Denoting B (t) and B (t) by b_(t) and bG(t) (both n-dimentional
pep «*

vectors), respectively, the solution of (4.8) and (4.9) are

x(t) -X(t, t0)x(tQ) +J* Xp(t,s)b (s)u(s)ds (4.28)



and

y(t) =Xe(t, tQ)y(to) +J* Xe(t,s)be(s)v(s)ds (4.29)

Equivalently, we have

x(t) -Xp(t, tQ)x(to) +Jt hp(t,s)u(s)ds (4.30)

y(t) «Xe(t, tQ)y(to) +J* he(t,s)v(s)ds (4.31)

where

hp(t,s) = Xp(t,s)bp(s) and

he(t,s) «Xe"(t,s)be(s)

Let us consider the case where both controls are constrained,

by "energy", namely, by the form,

P|u(s)|2ds ^ (k (t))2 and (4.32)
Jt P »

Jv(s)| ds £ (k (t))2 (4.33)

where kp(.) and ke(.) are continuous functions from [t , co)

into E1 and kp(t) >0and ke(t) >0for any t, tQ <; t<oo,
and t , tQ £ t£ t < oo, is determined such that Condition

4-4 (a) is satisfied. In this case,' it is known [K9] that

the boundary of the sets

Rp(t*, t) =Ax(t)(t*) -Xp(t*, t)x(t) (4.34)

where x(t) e A (t), and t < t < t*
xo o •*
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represents a hyperellipsoid, centered on the origin.

More precisely, the boundary of the set (4.34) is given by

<x(t*), PpX(t*, t)x(t*) >=k2(t) (4.35)

where
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t*St*

h(t*, s)h'(t*, s)ds (4.36)
t p P

<•,•> represents an inner product,

and the superscript * represents the conjugate
_ transpose.

Since we assumed that both dynamics are totally controllable,

it is known that Pp(t*, t) is positive definite, hence

Pp1^** *> exists for all t, tQ ^ t< t* .
Similarly, the boundary of the set

Re(t*, t) -Ay(t)(t*) -Xe(t*, t)y(t) (4.37)

where y(t) e Ay (t), and t £ t < t*
o

is given by

< y(t*), P;X(t*, t)y(t*) > - k2(t) (4.38)

where

!t*
he(t*, s)he(t*, s)ds (4.39)

From (4.35) and (4.38), we see that

Rp(t*, t) Z) Re(t*, t) (4.39)'



holds for all t, tQ £ t < t* if and only if

<x, k;2(t)P^x(t*, t)x >-<x, k"2(t)Pp1(t*, t)x >
> 0 (4.40)

for all x e R (t*, t) x^O
P

for all t, tQ^t<t*.

But, if k^2(t)P~1(t*, t) -kp2(t)Pp1(t*, t) is positive
definite for all t, tQ £ t < t*, then (4.40) holds.

Therefore, we can conclude that if the following condition

k?(t)Pp(t*, t) -k2(t)Pe(t*, t) is positive
definite for all t, t £ t < t* (4.41)

is satisfied, then (4.39)' holds.

Hence, by Theorem 4-4, similar to previous Example, we can

verify that (4.41) is a sufficient condition for "energy"

constraint capture.

Now, we can generalize the above results'as follows:

Suppose, both player's controls are constrained by

1/P

and

[i* |u(t)|P dt
t

£ k (t) (4.42)
P

[J* |v<t)|p,dtl W^ ke(t) (4.43)
where 1 £ p £ oo and 1 £ p*^ oo , t <£ t < t* , and t* is

some finite time which satisfies Condition 4-4 (a).

Let q and q' are defined by
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1/p + 1/q - 1 (4.44)

1/p'+ 1/q'- 1 (4.45)

Then, it can be seen that [K9] if

ke(t) [j**|<w, he(t*, s) >| q' ds] 1/qt

<kp(t) |j |< w, hp(t*, s) >|q ds11/q

(4.46)
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for any vector w e En , w^o, and for all t, t < t < t*, then
o

Rp(t*, t) Z) Re(t*, t) for all t, tQ £ t < t*

(4.47)

If p=2, q=2, p'=2, and q' =2, we have

*

t
ke(t) P |< w' he(t*» s) >l 2ds

<kp(t) J* |< w> \^*y s) >| 2ds (4.
for any vector w c En , w^O, and
for all t, t •£ t < t*

48)

I |< w, he(t*, s) >| 2ds «<w, Pe(t*, t)w > and

P |< w, hp(t*, s) >| 2ds =<w, Pp(t*, t)w >

we see that (4.48) becomes



<w, k2(t)Pe(t*, t)w > < <w, k2(t)Pp(t*, t)w > (4.49)

for any w e En , w^O, and
for any t, tQ £ t < t*

which is equivalent to (4.41).

If p=oo, q=l, p'«oo, and q'=l, we have

t*
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rt*

ke(t) \ |< w, he(t*, s) >| ds
*t

rt*<kp(t) \ |< w, hp(t*, s) >| ds (4.50)

for any vector w e En, w^O, and
—- for any t, tQ ^ t < t* .

If

ke(t) |< w, he(t*, s) >| <kp(t) |< w, hp(t*, s) >| (4.51)
for any vector w e En, w^O, and
for any s, t <; t £ s < t*

then, (4.50) holds.

If we take ke(t)=kp(t)=l and consider 1-dimensional capture

as in Example 4-4, we get

I^V. s)| <|ha)(t*, s)| (4'52)
for any s, tQ £ s < t*

which coincides with (4.24).

If p=2, q=2, p* =co, and q'=l, we have

k2(t)(t*-t) <w, Pe(t*, t)w > < k2(t) <w, Pp(t*, t)w >

for any vector w e En, w^O, and
for any t, t £ t < t*

° • (4.53)

Analogous to (4.41) or (4.48), we see that if



k2(t)P (t*, t) - (t*-t)k2(t)Pe(t*, t) (4.54)

for all t, tQ £ t < t*

is positive definite, then (4.53) holds.

Henqe, (4.54) is a sufficient condition for (4.47).
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V. CONCLUSIONS

In this thesis, an important class of "closed-loop"

differential games arising from the study of pursuit-evasion

games is studied by means of discrete-time approximations.

Since we encounter profound difficulties in the precise for

mulation of games with a continuum of moves, such as the

closed-loop, pursuit-evasion game studied here, we approxi

mated them by a series of time-discrete games with sampling

time intervals h>0.

We showed in Chapter II that the values of approxi

mating discrete games converge to a limit as h tends to zero

(Theorem 2-1) and the limit coincides with the appropriately

defined value of the time-continuous game if the "minimax"

theorem holds (Theorem 2-3). Necessary and sufficient con

ditions under which the minimax relation holds are not known.

Theorem 2-2 gives a set of sufficient conditions for insuring

the validity of the minimax relation.

Now, if we try to find saddle-point "optimal" strat

egies, the verification of the minimax theorem becomes

crucial. Moreover, although it has been conjectured that

"optimal" strategies are closely related to the solution of

the modified Hamilton-Jacobi-Bellman partial differential

equation, precise relation between them is, in general, open.

Furthermore, this approach is restricted by many technical

difficulties, above all by the fact that the domains of regu-
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larity are, in general, difficult to obtain. Thirdly, it has

been pointed out in Chapter IV that continuous observation

of states, which is undesirable from the point of view of

applications, is indispensable for constructing these

"optimal" strategies.

In Chapter IV, we introduced the concept of "sufficient"

strategies, which, we hope, effectively circumvent the diffi

culties inherent in "optimal" strategies. A sufficient pur

suit strategy guarantees Pursuer capture with an "accuracy"

e>0, within a finite period of time. This requires neither

continuous observation of states nor the verification of the

"minimax"theorem. Existence theorems and constructive al

gorithms for such strategies are derived and applied to some

simple examples in Chapter IV. It is hoped that the method

developed here will provide new insight and interpretation

for problems in this field.
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