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V

ON SECOND-ORDER NECESSARY CONDITIONS OF OPTIMALITY

I. INTRODUCTION

In the past few years, it has been shown [1,2] that most of the

problems of nonlinear programming, the calculus of variations and

optimal control can be treated in a unified manner by transcribing

these problems into a simple canonical form. Necessary conditions of

optimality for this canonical form may then be obtained, and related

to the original problems through the structure of each particular

problem.

For finite dimensional problems, this canonical form is given as

follows.

(l) Basic Problem: Let f : En -»E , r -• En -»Em be continuously

differentiable functions, and let Q be a subset of En. Find a vector

xini? such that (i) x e a, r(x) = 0, and (ii) for every x in ft with

r(x) = 0, f(x) < f(x).

Following the convention of nonlinear programming, an x satisfying

(i) will be called feasible, while an x satisfying both (i) and (ii)

will be called an optimal solution to the Basic Problem (l).

A similar problem, common in mathematical programming, is perhaps

better known.
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(2) Nonlinear Programming Problem: Let f : ET -> E , r : E -*ET and

g : E -»E be given functions. Find x such that r(x) =0, g(x) < 0

and f(x) = min (f(x)|r(x) = 0, g(x) < 0}.

This problem may be put in Basic Problem form by identifying 0, as

(x|g(x) < 0).

As a more interesting example, consider the following discrete

optimal control problem: Let f : E -> E , f : En x E -»En

i = 0, 1, . . ., k - 1, g :E -*- E be given functions and U. a

given set in E for i = 0, 1, • • -, k - 1. Find a control sequence

k"1 0(un, * • *, u, ,) which minimizes E f. (u.) subject to:
U k-1 i=0 x i

(i) yk+l *y = fi^yl'ui) i= 0, 1, •• ., k -1

(ii) yQ =yQ, g(yk) « 0, u±e. V± i= 0, 1, •• •, k-1

To see that this problem may be case in Basic Problem form, let
k-t- k-1 Q

x in E be given by x = (un, • • •, u, ,), f(x) = Z f. (u.), r(x) =
K_1 i=0 x x

g(yR(x), where yk is given by solving (i) with yQ = yQ, and, finally,

a = un x u, x • • • x u,
0 1 k-l

The demonstrated generality of the Basic Problem (l) makes it a

convenient vehicle for the introduction of second-order conditions of

optimality. By a second-order condition of optimality, we mean a

condition which augments or replaces the usual first-order conditions,

and generally, involves a second derivative of one or more of the cost

or constraint functions.

First- and second-order conditions are not independent in that a

second-order condition, usually, is only meaningful when a first-order
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condition is degenerate in some way. To clarify these ideas, we shall

state a fundamental first-order necessary condition for the Basic

Problem (l). This requires a tractable local representation of

the set ft.

(3) Definition [l]. A convex cone C(x,ft) will be called a conical

approximation to the constraint set ft at the point x if for any collec

tion (&x_, • • •, 6x,) of linearly independent vectors in C(x,ft) there

exists an e > 0 (possibly depending on x, 6x , • • •, ox ) and a con

tinuous map £(•) from the convex hull of {0, 6x_, • • •, 5x3 into

ft - X, of the form:

W £(5x) = eox + o(€5x)

where ||o(ox)H/||ox|| -* 0 as ||ox|| -* 0.

If the map £(•) is given by £(Sx) = eox, then C(x,ft) will be

called a simple conical approximation.

(5) Fundamental Theorem [l]. If x is an optimal solution to the Basic

Problem (l), and C(x,ft) is a conical approximation to ft at x, then

there is a nonzero vector ty - (ty , • • •, ijr ) in E , with \|r < 0, such

that:

(6) (*°Vf(x) + E tVfxl^x) <0
i=l

for all Sx in C(x,ft), the closure in E11 of C(x,ft).

There are several circumstances under which a condition like (6)

may be considered to be degenerate. The first is when the multiplier
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o
ty must be chosen to be zero, and hence no information about the cost

function f(«) enters into the necessary condition (6). This occurs

most often when there is only one x in ft satisfying r(x) = 0 and may

be avoided by introducing a regularity condition, usually called a

constraint qualification [3], on r(») and ft. We shall not be concerned

with this case.

The second instance for which (6) may be degenerate is when the

vectors Vf(x), Vr (x), • ♦ •, Vrm(x) are linearly dependent, since one

can then always choose at^O which satisfies ^f(x) + E \|^1Vr:L(x) = 0,
i=l

and hence (6), without reference to the optimality of x. This type of

degeneracy does not usually lead to a second-order condition unless it

arises from the fact that one or more of the gradients Vf(x), Vr1(x),

• • •, Vr (x) are the zero vector. We shall call this the zero gradient

case.

There is another situation when a second-order condition is

meaningful, even though the condition (6) may not be degenerate in the

above senses. This occurs when for every 5x contained in C(x,ft), we

have <Vf(x), 5x> =0 and (Vr^x), 5x> » 0 for i =1, • • •, m. Thus, it

is possible to satisfy (6) irrespective of the choice of the vector t.

Such vectors 5x are, in a sense, critical (see (25)) and second-order

conditions for this case correspond to examining second-order effects

along curves tangent to 5x at x. Of course, any combination of the

above three effects may occur simultaneously.

In Section II of this paper, we survey briefly some of the known

second-order conditions, corresponding to zero gradient and critical

-4-



direction type of degeneracies.

The major contributions of this paper are given in Section Ill-

theorem (26) for the critical directions case and theorem (27) for the

zero gradient case. Both of these theorems are expressed in terms of

local approximations to the set ft, since, in well-formulated optimization

problems, ft has an interior, which ensures the existence of such approxi

mations. Several ways by which such approximations may be constructed

are also given. It is also shown that most second-order necessary con

ditions are special cases of theorem (26) or theorem (27).

In Section IV, proofs for theorems (26) and (27) are given. These

proofs display the fact that some of the techniques useful in first-

order theory, in particular the use of fixed-point theorems, can be

applied to second-order theory.

II. A BRIEF SURVEY OF SOME SECOND-ORDER CONDITIONS

Since our interest is in the Basic Problem (l), or the closely

related Nonlinear Programming Problem (2), we shall not cover any

special results from the calculus of variations [4,5] or optimal con

trol. [6,7J. Nor shall we be concerned with sufficiency conditions

either, because in many cases the required strengthening of the neces

sary conditions may be obvious, or because our local

approximation to the set ft may not be sufficiently rich to describe

-5-



completely the nature of ft in the vicinity of x.

In the following, it is understood that any derivatives used are

df A,assumed to exist, with (Vf(x),6x) or ^ (x)(Sx) representing the first

\2 « ^'-.o
differential of f(-) at x, | (ox, —| (x)5x) or t> —<? ^^6x^ rePre"

dx dx
Ytt + T

senting the second differential of f(.) at x, etc. Vectors in IT

will be understood to have components numbered from 0, 1, • • •, m.

Perhaps the simplest second-order condition arises when the gradi

ent of the cost f(') at the optimal solution is zero and we do not

choose to isolate the equality constraints for special attention.

(7) Definition 16]. Let ft be an arbitrary set. The sequential tangent

cone STC(x,ft) of ft at x ^--ft is the set of all 5x such that there is a

sequence {x.)" in ft, and a sequence (d.J. , of positive scalars, such

that

(i) xi -*x ,

(ii) (x± - x)/d -* 5x .

(3) Theorem [6]. If x is an optimal solution to the Basic Problem (l)

f

2

^2 ^
and Vf(x) = 0, then (ox, —\ (x)6x) > 0 for all ox in STC(x,ft'), where

ft1 = (x|r(x) =0, x C ft).

This is seen to be a simple but general result for one of the

degenerate cases mentioned, however its application depends on our

having a characterization for STC(x,ft'). In some cases, we may repre

sent STC(x,ft') as the intersection of STC(x,ft) and STC(x,(x|r(x) = 0}),

and this facilitates matters. However, this is not true in general.

For the critical vector case, we are able to obtain second-order
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conditions without requiring the gradient of the cost to be zero.

(9) Theorem: Let x be an optimal solution to the Basic Problem (l),

and let x : E -*ET be any twice continuously differentiable function

such that x(0) = x and x(e) is feasible for all 0€1 [0,9], with ? > 0.

If df(x(0))/d9 = 0, then d2f(x(O))/d02 > 0.

In general, without making additional assumptions about r(0 and

ft, the conditions of theorems (8) and (9) cannot be decomposed into more

structured forms.

One approach to a more structured condition is that followed by

Dubovickii and Miljutin [8,9]• Essentially, for a fixed ox satisfying

<Vf(x),6x> =0 and (Vr^x^ox) =0 for i= 1, • • •, m (i.e., ox is

critical) they consider the following sets.

(10) CQ(ox) =[6x| there exists an €Q. > 0 and a function o:[0,€Q] -»E ,

with lim "°Ne)N » 0, such that r(x + €6x + o(e2)) =0for all
e-» 0 €

eC[0,€0]}.

(11) C (ox) = {6x| there exists an e ' > 0 such that

x + e&x + e ox er. ft for all e £ [0*6 •]} .

(12) C2(5x) =[5x| there exists an ej > 0 such that

f(x +e5x +€25x) <f(x) for all eQ (O, '̂]}.

(13) Theorem [9]: If x is an optimal solution to the Basic Problem (l),

then CQ(5x) 0C^Sx) nC2(6x) =4>.f

t °
The interior of a set C is denoted by C.
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Whenever CQ(ox) is a linear manifold, and C.(ox), C2(&x) are

convex cones (possibly translated) with nonempty interiors, the condi

tion C0(5x)H C.(8x) HCp(5x) = <t> guarantees the existence of affine

functionals, cQ(•),c1(*),Cp(•), not all zero, with cQ(») vanishing on

CQ(5x) and c (•) nonnegative on C.(5x) for i = 1, 2, such that

cQ(x) + cx(x) + c2(x) = 0 for all x in E11 [8]. When specialized to the
Nonlinear Programming Problem (2) with rather restrictive assumptions,

this gives a result similar to theorem (15) below.

Finally, McCormick [10] has observed that in some cases the first-

order necessary conditions for the Nonlinear Programming Problem (2)

display a multiplier vector which can also be used in a second-order

condition.

(lij") Definition [10]: Consider the Nonlinear Programming Problem (2).

The second-order constraint qualification is said to be satisfied at x

if for each ox such that (Vr (x),6x) = 0 for i = 1, • • •, m, and

(Vg^xJjBx) = 0 for i £l(x) = Ulg^x) = 0}, there is a twice contin

uously differentiable function x:E -+ET and a 6 > 0 such that:

(i) x(0) = x, dx(0)/d8 = 6x ;

(ii) for all 6 £ [0,"e], x(0) is feasible, and moreover, g (x(9)) = 0

for i €11(x).

(15) Theorem [10]: If x is an optimal solution to the Nonlinear

Programming Problem (2), and the first-order ClO] and second-order

f
The first-order constraint qualification is a statement of the

Kuhn-Tucker constraint qualification [ll] for a constraint set defined

by both equalities and inequalities.
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constraint qualifications are satisfied, then there exists multipliers

y1, * ' ', ym and u1, • • ', uk with u1 < for i = 1, • • •, k such that:
m . k . .

(i) -Vf(£) + E vWfx) + E uVg^x) = 0 ;
i=l * i=l

(ii) <u,g(x)> = 0 ,

and

(iii) for every ox such that (Vr^x), ox) = 0 for i = 1, 2, • • •, m,

and (VqHx^ox) = 0 for i€: l(x) ;
*2f m d2ri k b2£

(&(._(£)+) ^-^-(4)+) xl1 —*- &)) **) <0 .
\ hx ^ dxd gx dx J

Conditions (i) and (ii) above represent the first-order necessary

conditions for the Nonlinear Programming Problem (2), with the first-

order constraint qualification ensuring a nonzero cost multiplier, -1,

in (i). Choosing ox such that (Vr^x^ox) = 0 for i = 1, • • -, mand

<Vq1(x),6x) = 0 for i ^ l(x), we see that (i) and (ii) imply

<Vf(x),5x> = 0, i.e., ox is critical. The second-order constraint

qualification then leads to the third condition.

It is also clear, however, that (Vf(x),5x) = 0 also follows from

the optimality of x and (1*0, since if (Vf(x),5x) ± 0, then either

(Vf(x),5x,> < 0 or (Vf(x),-5x> < 0, and (ik) leads to a contradiction

of optimality. Thus, it is apparent that the first-order constraint

qualification may be removed to obtain a slightly weaker theorem. In

addition, one would expect to have a condition in terms of curves x(0)

that are feasible for 0 €. [0,?], rather than in terms of feasible curves

which satisfy the rather demanding condition: g (x(e)) = 0 for

i C I(x).
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Our task in the next section will be to obtain optimality condi

tions without explicit assumptions relating r(») and ft i.e., without

constraint qualifications.

III. SECOND-ORDER NECESSARY CONDITIONS

We have seen that the Fundamental Theorem (5),which gives first-

order necessary conditions of optimality, relies on a local approxima

tion to the set ft. While this approximation can also be used for some

second-order conditions, it is convenient to introduce a new local

approximation.

(l£) Definition: A pair (c(x,5x,ft), dx*) will be called a ox-directed

conical approximation to ft at x if C(x,5x,ft) is a convex cone, and for

any collection {ox , • • •, ox ) of vectors in C(x, 5x,ft), any k - 1 of

which are linearly independent, there is an eQ > 0 and a continuous map

£ ^('>')> (possibly depending on x, 6x, 5x*, ox., • • •, ox, ) from
5x

[0,e ] x co{ox_, • • •, 5*l } into ft - x, of the form:

2 p
(17) £ (€,5x) » €6x +§- (5x* + ox) + 0(6 (ox* + ox)), where

ox d

||oCCoc*)||/1|8oc*II ^Oas ||ox'|| -> 0.

We shall refer to (C(at, ox, ft), 6x*} simply as a directed conical

approximation when 6k is clear from the context. The special cases

which arise when C(x, ox, ft) =» [0}, or ox* » 0, or even 5x = 0, (or

any combination of these) are not excluded from consideration.

There may, of course, be many directed conical approximations for
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a single ox, as well as useful relations between the conical approxima

tion defined in (3)> and the directed conical approximations defined

above. Thus, if (C(x, ox, ft), 6x*} is a directed conical approximation,

the ray {ox|Sx = Xbx, X > 0} may be regarded as a trivial conical
... .2

approximation with map £(5x) =£(Xox) =eXe~ +|__ x2(bx* +ox) +
2 2

o(c X (5x* + 6x)), where 6x is anyvector in c(x, ox, ft) and o(-) is given

by (17). Conversely, we may often obtain directed conical approxima

tions from conical approximations, the most important case being the

following one.

(18) lemma: If C(x,ft) is a simple conical approximation to ft at x

and ox is any vector in C(x,ft), then [RC(6x,C(x,ft)),0) is a ox-directed

conical approximation, (where for any set S and x e S, we define

RC(x,S) = (5x| there exists a X > 0 such that x + X6x € S for 0 < X <

I)).

Note that if ox £.C(x,ft), then C(x,ft) CLRC(6x,C(x,ft)), with strict

inclusion whenever -5xc C(x,ft).

We digress to indicate several important cases for which simple

conical approximations may be constructed. (For ft = (x|gi(x) < 0,

i = 1,• • •, k) and x £ ft, the index set l(x) = (i|i £ {1,• • •, k) and

gi(x) = 0}.)

(19) femma: Suppose ft = {x|g (x) < 0 for i = 1, • . ., k) and x^ft.

If the set

(20) K(x,ft) £ [oxKVg^x^ox) < 0, iei(x)}

is not empty, then it is a simple conical approximation to ft at x.
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(21) Lemma: If x is contained in ft and ft* is any set containing x

such that ft H ft* is convex, then RC(x, ft H ft*) is a simple conical

approximation to ft at x.

(22) Lemma: If C(x,ft) is a conical approximation with nonempty

interior C(x,ft), then C(x,ft) is a simple conical approximation to ft

at x.

Whenever ft has the description given in lemma (l9)> it is consis

tent with our idea of a we11-formulated problem that ft will have an

interior, and hence IC(x,ft) (20) will be nonempty. Now, let ox be an

arbitrary vector contained in IC(x,ft), and let the index set l(x,5x)

be defined by:

(23) l(x,ox) = (iezKx^KVg^ox) = 0) .

(2*0 Lemma: Suppose ft = [x|gi(x) < 0, i = 1,• • •, k} and x belongs

to ft. If IC(x,ft) ^ <l>, then for any 5x contained in IC(x,ft), there
n2 i i * "

exists a Sx* in En such that <5x, 2-fi- (x)ox) + (Vg (x),5x*) < 0 for

all i€:i(x,ox), and the pair ((5x| (Vg^x^ox) < 0, i £ l(x,5x) },5x*}

is a ox-directed conical approximation, (if l(x,5x) = <t>, then the pair

{En,ox*} is a ox-directed conical approximation for any ox* in E .)

To illustrate the usefulness of lemma (2*0, and to see that there

are situations when 5x* must be nonzero if one wishes to obtain a

directed conical approximation, let x = (y,z), ft = (x|g(x) =

\ I(y - l)2 +z2 - 1) <0}, and let x =(0,0). With ox =(0,l) there
is no cone C such that (C,(0, 0)}is a 6x-directed conical approximation,
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however (IC(x,ft),(l,0)} is a (0,l)-directed conical approximation.

We now isolate those vectors 6x for which, in the context of the

Basic Problem (l), a 5x-directed conical approximation will lead to a

very general second-order necessary condition of optimality.

(25) Definition: A vector ox is said to be a critical direction for

the Basic Problem (l) if (Vf(x),6x) < 0 and (Vr^x^ox) = 0 for

i = 1, • • •, m.

(26) Theorem: Suppose x is an optimal solution to the Basic Problem

(l) and ox is a critical direction. If {C(x,ox,ft),ox*) is a ox-directed

conical approximation, then there exists a nonzero vector

t = (i|r°, f1, • • .,^m) in Em+1 with 4r° < 0 such that:

(i) (*(W(x) + E fW^x^ox) < 0 for all ox in C(x,5x,ft)
m

E
i=l

0 b2f& ~(ii) fU((5x, g— 5x> + <Vf(x),5x"))
d x

+ E ^(<5x, —^- (x)5x) +(Vr^x^Sx*)) <0
i=l bxd

and t° = 0 if (Vf(x),5x> < 0.

Remark: Note that inequality (6) of theorem (5) may also be obtained

from theorem (26). In fact, if C(x,ft) is a conical approximation with

map £(ox) b eox + o(eox), then, setting ox = 0, C(x,0,ft)= C (x,£2), 6x = 0, and
2 2

£0(e,5x) = p- ox + o( ^- 6x), we find that part (i) of theorem (26)

yields the.same result as theorem (5)> but part (ii) carries no informa

tion. However, the inequality (26(i)) will often hold for cones
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C(x,5x,ft)which are much larger than any conical approximation to ft at

x.

It is appropriate at this stage to comment on the crucial differ

ences between theorem (13) by Dubovickii and Miljutin [8,9] and theorem

(26) of this section. Note that theorem (13) is essentially a dis-

jointness condition in the domain space of the map F(«) = (f(*)>

r (•), • • •, r (•))» (i.e., in a) while theorem (26) represents

TJ1 + 1

separation conditions in the range space of F(») (i.e., in "Er ),

which requires simpler assumptions. Thus, to obtain from theorem (13)

inequalities of the form (26(i)), (26(ii)) it is necessary to make

fairly strong assumptions on each of the sets CQ(ox), C..(ox) and C2(5x),

(see (10), (ll), (12)). On the other hand, any time C (6x) is of the

form C,(6x) = 6x* + C(6x), where C(6 x) is a convex cone, we find that

(C(6x),5x*) is a ox-directed conical approximation to ft at x, and we

obtain (26(i)), (26(ii)) immediately.

Before further discussion of theorem (26), we consider the zero

gradient case. It is assumed that at most one gradient corresponding
•m+T

to an equality constraint is zero. We define the ray R in E by

R = (y|y < 0 and y = 0 for 1 = 1, • • •, m}.

(27) Theorem: Suppose that x is an optimal solution to the Basic

Problem (l) and thatC(x,ft) is a conical approximation to ft at x with
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nonempty interior 8(x,ft).

(i) If Vf(x) = 0, then the ray R has no points in the interior

of the set

(28) ^ =[y|y° =<5x, — (£)6x>, y1 -(Vr^x^Sx), i=1,
ox2

o

ox CC(x,ft)}.

(ii) If Vr (x) =0, then the ray R has no points in the interior

of the set

aV-
(29) L. -Cy|y° -<Vf(2),6x>, y1 =<6x, —£ («8x>, y1 =(Vr^xXSx),

bx

i = 2, • • •, m, ox CC(x,ft)}.

(iii) If Vf(x) =Vr1(x) = 0, then the ray Rhas no points in the

interior of the set

*2~ *2 1
n ° f n r(30) L - {y|yU - (ox, —p (x)6x>, y1 =(ox, -— (2)ox>,

dx bx

y1 «(Vr^xMx), i= 2, •• ♦, m, 6xCC(x,ft)}.

Remark: The above theorem remains true even when C(x,ft) is replaced by

the relative interior of C(x,ft). Also, if only the case Vf(x) = 0 is

considered, it can be shown that the following is true.

(31) Theorem [12]: Suppose that x is an optimal solution to the

Basic Problem (l) and that C(x,ft) is a conical approximation to ft at

x. If Vf (x) = 0, then the ray R has no points in the interior of the

set
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o

(32) L^ ={y|y° =(6x, ^ (£)5x>, y1 =(Vr^Sx) for i =1, . . .,
bx

m, 5x €LC(x,ft)}.

It can be shown that theorems similar to (31) cannot be obtained

for all situations covered by theorem (27), i.e., C(x,ft) cannot be

replaced by C(x,ft). In fact, consideration of example (33), with

rt = l(y,z)|(y - l)2 +(z - l)2 - 2 <0}, x =(0,0), and C(x,ft) =

Uy>z)|y + z > 0}, will confirm this.

Theorems (26) and (27) represent two different approaches to

second-order conditions. Theorem (26) is well structured and neatly

supplements the first-order conditions in theorem (5). Theorem (27),

on the other hand, is in rather awkward form, since the sets L , L , 1^

are in general neither convex nor even conical. However, in spite of

this, theorem (27) answers some questions which theorem (26) does not,

and in some cases leads to alternate expressions. We now demonstrate

this.

Examination of theorem (26) indicates that the multiplier vector

^ depends on the critical direction ox. However, it is clear from

lemma (l8) that we may be able to find a pair {C,6x*} which is a

directed conical approximation for more than one critical direction

ox. The natural question to ask, then, is whether there is a multiplier

vector t which will satisfy the conditions of theorem (26) for all

these critical vectors 6x and the given pair {C,5x*}. Unfortunately,

as will be seen from the following example, this is not always true.

(33) Example: Let x = (y,z) and consider the Basic Problem (l) with
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f(x) =-(y - z) , r(x) =y - z2 and ft ={x|y >0, z >0). Clearly,

the point x = (0,0) is an optimal solution since the only feasible

points are defined by the intersection of the line y - z = 0 and the

positive quadrant. Since Vf (x) = Vr(x) = 0, each ox in ft is a critical

direction and we may take C(x,5x,ft) = ft, ox* « (0,0). Now, since each

gradient is zero, if there is a single multiplier vector t which

satisfies theorem (26) for all ox in ft, it must satisfy

*°<ox, ^ (£)5x> +^(ox, ^ (J)5x> <0 for all ox €C ft, with *° <0.
bx2 bx2 " o 1 o"

This is equivalent to requiring that the cone V = {v = (v ,v ) |v =
d2f a 1 b2(ox, —5 (x)ox, v = (ox, —| (x)6x), with oxC ft} be separated from
ox2 bx2

the ray R. It is trivial to verify that V is the set {(0,0)>U

{v,|v <0, v +v >0} U{v|v <0, v - v1 > 0}, which cannot be

separated from the ray R.

We see that in the above example the set ft also serves as a

simple conical approximation to ft at (0,0). Since ft has an interior,

and both Vf(x) and Vr(x) = 0, theorem (27) can be applied to answer

the question as to when there is a single multiplier vector satisfying
_ ^2— 1 p^2

* (ox, 2-§ (x)6x> + ♦ -(6x, 2-1. (£)5x) < 0 for all 6x£fi. In particu-
bx2 bx2

lar, it yields the following modification of theorem (26).

(3*0 Theorem: Suppose that the Basic Problem (l) ha6 only one equality

constraint, i.e., r:En-*E If x is an optimal solution to the

Basic Problem (l), with Vf(x) « Vr(x) = 0, and if C(x,ft) is a conical

approximation to ft at x such that the set Lp (30) is convex, then

there exist scalars ^ , ^ not both zero with V < 0 such that:

-17-



-2 2

t°(5x, -f (£)ox> +^(ox, ^ (£)5x> .< 0for all ox in C^ftl .
bx* ' b2ix

Proof: Since there is only a single equality constraint and both

Vf(x) and Vr(x) = 0, the set 1^ is conical, and by assumption also

convex. •Suppose Lg is not separated from R. It follows that Rhas

points in the interior of the set Lg, which contradicts theorem (27),

Thus, Rand L^ must be separated, which proves the theorem.

When r(») s 0, we have a somewhat simpler situation and theorem
(31) leads to the following result.

(35) Theorem: Suppose that in the Basic Problem (l),r(.) =0, and

x is an optimal solution with Vf(£) = 0. If {C (x,ft)| a €IA}, where

A is an index set, is any collection of conical approximations to ft

at x, then

a2f(6x, —p- (£)dx) > 0 for all 6x in U C(x,ft) .
ox a €. A

Proof: Let a be arbitrary in A, and let C (x,ft) be the corresponding

conical approximation. Applying theorem (31), we see that the set LQ'

is one dimensional and hence the statement of the theorem is that

b2r
<5x, -~ (x)8x) > 0 for all ox in C (x,ft) .

ox2 ~ a

Thus,
P

(5x, SL| (£)5x) > 0 for all 5x in U <2L(x,Q)
bx2 a £ A a

and by continuity this is also true for the closure, which completes

the proof.
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For the case r(-) s 0, if we assume that there is a family of

conical approximations, fC (x,Q)|a 6 A}, such that (J C(x, ft) = STC(x, ft), f
/ v <*£A

then we have obtained theorem (8) of Section II.

When r(. )S0, we can also obtain a corollary of theorem (26),

similar to theorem (35).

(36) Theorem: Suppose that in the Basic Problem (l), r(. ) = 0. If

x is optimal and A is a set such that for each a£ A there is a critical

direction ox and corresponding directed conical approximation

{C(x,oxa,ft),5x*}, then

(i) (Vf(x),5x> > 0 for all ox inU C(x,5x ,ft)

and

^2
(ii) (ox. -~ (x)oxj + (Vf(x),5x*> > 0 for all a £ A.u ^ a a -

Proof: Let a € A be arbitrary and let (C(x,ox,ft),5x*} be the corres

ponding 62^-directed conical approximation. From theorem (26), since

f = (^ ) is nonzero, and satisfies t < 0, we may take ty = -1. Thus,

(Vf(x),5x> >0for all ox €Ca(x,5xQ,ft) and (oSL, ^-§ (x)oxa> +
A ^x

(Vf(x),5x*) > 0. Since a was arbitrary, the theorem is true.

Theorem (9) of Section II is obtained as a special case of (36).
1 n

Thus, suppose x:E - E is a twice differentiable function such that x(6)

is contained in ft1 for 9 in[0,9], 0 > 0, that x(0) is optimal, and that

~[q (x(0)) =0. Taking the critical direction 6x = ^ and the corre

sponding directed conical approximation {C(x,6x,Q'),6x*3 ={{0],d X^0) }»
2 d0

we obtain from the second term of (36) that /-^ii} iLJ_/~xMil \
x de ' zKX) de /

+ <Vf(x), ^^)\ > 0, which
de^

t
The sequential tangent cone is always closed.
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,2
corresponds to the condition ^-_- (x(0)) > 0 of theorem (9).

d0

Theorem (26) will now be applied to the Nonlinear Programming

Problem (2) to obtain a generalization of Theorem (15). We note that

as long as the total number of equality and inequality constraints is

less than n, (where x € E11) and ft has an interior, critical directions

with nontrivial directed conical approximations will exist.

(37) Theorem: If x is an optimal solution to the Nonlinear Programming Problem

(2) and IC(x,ft) is not empty, then for each critical direction ox €

IC(x,ft) there exists a vector 5x* in En, multipliers i|/\ i|i\. . . ,^ not
all zero, with ty < 0, and multipliers u < 0 satisfying u = 0 if

i^I(x,6x), such that:

-.2 i .
(i) (ox, 2-|- (£)e5c) + <Vg(x),6x*) < 0 for i<El(x\6x)

bx *

(ii) At(x) + Z fvr(£) + Z uVg^) = 0
i=l i=l

p

" (iii) *°(<ox, ^ (S)8x> +<Vf(£),Sx*>)
bx

+ Z /(<6x, ^ (£)6x> +frrHx),***)) <0
1=1 bxd =

and t° = 0 if <Vf(x),6x> < 0.

Proof: Let 6x€ IC(x,ft). By lemma (?h), there in a ?ac* whir:b B&tlKft*e

(i), and moreover (ox ((vg1 (x),6x) < 0, i € 1(£,ox)}, 6x*} ie a ox-

directed conical approximation. Thus, by theorem (26), there is a

nonzero multiplier ^, with t < 0, such that:
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(/W(x) + Z *JVr1(x),8x> <0for all 6x6 (5x \(v£($), bx) <0for
i=l

i £ I(x,5x)i, and, in addition, this multiplier satisfies condition

(iii). Applying Farka's lemma [13] to the inequality above, there

are scalars - u > 0 for i€ l(x, ox) such that

m

tVx) + Z tWtf) = £. ^V(i) •
1=1 i^2(x,5x)

Defying u = 0 for i dl(x,bx) completes the proof.

(38) Corollary 1. If in the statement of theorem (37), ox* satisfies

b2 ±(^).(6x, S f< ox) +(Vg (x),ox*> =0for i£l(x,6x), then condition
dx

(iii) may be replaced by:

(iii-) (8S,(t°2-|(» + E^-fffl+E u1^- (»)£> <o.
ox i=l bx i=l ox

Proof: Let u be the scalars given in the statement of the theorem.

Then S u1(<6x, —^ jX' 6x> +<7g1(x), 6x*>) =0, and therefore this
i=l ox

term may- be added to (iii) without changing the sign of the inequality.

However, from condition (ii)
m k

we have *°<Vf(x),6x*> + Z *i(Vri(x),ox»> + Z uVg^x), 5x*) =0,
i=l 1=1

which gives condition (iii1) above. This completes the proof.

A sufficient condition which ensures that IC(5c, ft) is not empty and

that a 5x* satisfying the hypothesis of (38) exists is that the vectors

vg (x), i6 l(x), are linearly independent. However, while this assump

tion simplifies theorem (37), we are again faced with the question of
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determining when the multiplier vector i|j does not depend on the critical

direction ox. The following, a generalization of (lk), will be shown

to be a sufficient condition for a single multiplier vector to satisfy

theorem (37) for a class of critical directions.

(39) Assumption: Let ox be a given critical direction in IC(x,ft) with

index set l(x,ox), and let K(6x) be the set {6x|ox is a critical direc

tion in IC(x,ft) and l(x, 5x)cl(x, 6x)). We assume that for every bx in

K(5x) there is a function x: E1- En and a 0 >0 such that x(0) =x,

,j '= 6x, x(8) is feasible for 0€ [0,6], and , in addition, g1(x(6)) =0
do

for i € I (x, 6 x) .

(kO) Corollary 2. Suppose that x is an optimal solution to the

Nonlinear Programming Problem (2), and that for the critical direction

TWbx in IC(x,fl), assumption (39) holds. Then there exists multipliers

^ , ^ , . . . » ^ not all zero, with i|i < 0, and multipliers u < 0

satisfying u = 0 if ifel(x,6.x), such that:

(i) Af(x) + Z 1rW(x) + Z urVg (£) = 0
i=l 1=1

(ii) <6x, (*° H (£) + Z t1 ^f-(x) + L. u1 ^- (x))bx) <0
bxd i=l bx i=l bx*

for all bx belonging to K(ox),

and ip = 0 if <Vf(x),6x> < 0.

Proof: Assumption (39) is a sufficient condition for the existence of

a ox* satisfying the requirements of corollary (38) for the critical

direction ox, thus (i) and (ii) above are satisfied for ox, and some

multiplier (^,u). Now, let ox be an arbitrary vector in K(ox), with
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corresponding function x(. ), and let (i[i, u) be as given above for 6x .

Consider the function 1(e) defined by:

1(9) »*°f(x(0)) + Z ^±r±(x(e)) + Z uV(x(0)) .
1=1 i=l

By assumption (39), for 9 in [0,9] we have 1(e) =\|r°f(x(0)). If ty° =0,
p

then d*l\0' =0; thus, from (37(H)), ve obtain
d0

dfMoi mto(^ tt (J)8x) + I ^ t£ (J)te>
d0 ox i=l bx1

+ Z u^ox, 2L£- (£)&x> =0 ,
1-1 ox2

which satisfies (ii) above. If f = -1, then we have 1(e) = -f(x(0))

and, since by (37(iD), ^f^ - 0, we require S^Sl =-^| (x(e))
dy d0 d0d

< 0. (cf. theorem (9)«) Again, from (37(ii)), tne inequality (ii)

above is obtained. This completes the proof.

A sufficient condition for the cone IC(x,ft) to be nonempty and

for assumption (39) to hold is that the vectors Vr (x), 1 = 1, * • *,

and Vgi(x), i€ l(x), are linearly independent. From (37(ii)) *n<i the

fact that t is nonzero, this is also sufficient to guarantee that t

in (37(ii)) must be nonzero.

To illustrate how theorem (37) augments the first-order theory

for the Nonlinear Programming Problem (2), suppose that x is a

candidate optimal solution, 6x is a critical direction, and either I(x) = 0,

or 6x€ IC(x, Q). Then, since I(x, 6x) = 0, (37 (ii)) requires that

iH7f(x) + Z iTVr1^) =0. If vf(x),Vr (x),. . . ,Vrm(x) are linearly inde-
i=l

pendent, we conclude, since ^ i 0, that x cannot be optimal. Similarly,
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if <Vf(x), 6x> < 0 and Vr (x), . . . , Vr (x) are linearly independent we

conclude that x cannot be optimal. However, if (37(ii)) is satisfied,

then (37(iii)) would have to be examined, and this is an easy task when

ever the multipliers are unique.

As a further illustration of theorem (26), consider the quadratic

programming problem, minimize — <x, Qx> + <d,x> subject to Ax= b,

where Q is an n X n symmetric matrix and A is an m X n matrix with

m < n. Assume that x is optimal and that the rows, a. i = 1,. . . ,m,

of A are linearly independent. Then, choosing a vector 6x such that

A6x" = 0, we may set {C(x, 6x,E*1), 6x*} = {En,0} . Thus, from (26(i)),
0.^ - .. . _ .1 ^ , , , ,o«4j (Qx + d) + S ^ a. = 0, and clearly + must be strictly less than 0 .

i=l X
From (26(H)) we obtain <6x,Q 6 x> > 0, and since <6x,Qx + d>=0,

then < d, 6x> = 0 if Q6x = 0. In other words, we have the necessary

conditions: (i) <6x,Q6x> > 0 for every 6x such that A6x = 0, and

(ii) <d, 6x> = 0 for every 6x such that A6x = 0 and Q 6x = 0 . Note that

these conditions do not involve x. In fact, it can be shown that the exis

tence of one feasible solution, together with conditions (i) and (ii), are

sufficient conditions for the existence of an optimal solution to the

quadratic programming problem above.

Remark: In view of theorems (26) and (27), one may be inclined to think

that more information about a candidate optimal solution x could be obtained,

and verification of the necessary conditions simplified, by transcrib

ing the original problem into an equivalent form with simple structure

-24-



or many critical directions. Thus, for any problem of the form (l),

an equivalent problem with a single equality constraint, r : E11 ->E',
m

can always be defined by letting r(x) = Z (r(x)) . Since Vr(x) =
? i a i * i=1

2 L r (x)Vr (x) = 0, we can now always apply either theorem (27) or
i=l

theorem (26) with the set of critical directions being

.J^L^L?li.?^_»0^. ^fortunately, theorems (26) and (27) can be

satisfied trivially for this new problem and so it is seen that the

transcription does not increase the amount of information available

about the optimal solutions of the original problem. (Since
m

(ox, —| (x) 6x> =2 Z (Vr^xXox)2 >0 for all ox, in theorem (26)
bx Q i«i

we may take t = 0,\|r « -l, while in theorem (27), again by the above

inequality, the ray R will have no points in the interior of L or L .)

Thus, we have shown that most second-order necessary conditions of

optimality are special cases of theorems (26) and (27), which we shall

now proceed to prove.

IV. DERIVATION OF THE MAJOR THEOREMS

In this section, proofs for theorems (26) and (27) are given.

Both proofs rely on the Brouwer fixed point theorem [llj-,16]. We shall

hi * if »
use here the more convenient notations —- (x) (6x), —r (x) (6x), etc. ,

ox c,

rather than the gradient and Hessian notation.

Proof of Theorem (26)

Let us assume that x is an optimal solution to the Basic Problem

(1) and that 6x is a critical direction with directed conical approxima-

tion {C(x,ex,fl),8x*). We define the map F:En - E™ by F(x) =(f(x),
— — 2

r\x) rm(x))( and the vector 6y in Em+1 by 8? =*-f (5)(8 3 +ff (*)(«**>
bx
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The convex cones K, R in E are defined by:

J^F * ~(41) K= {6y|6y =f— (x)(6x), 6x € C(x, 6x, Q)}
ox

(42) R={6y|6y < 0 and 6yl =0 for i =1,. . . ,m }

Let us first assume that — (x)(6x) = 0 . For this case, theorem
OX

(26) claims that the convex set oy + K = {oy|&y = 6y + 5y», by1 € K),

and the ray R, must be separated. We shall therefore assume the con

trary, and obtain a contradiction on the optimality of x.

Now, if oy + K and R are not separated, there must exist vectors

6x,, . . . , 6x , in C(x,6x,Q), with a corresponding e > 0 and map
1 m+1 u

Q ~ (. ,. ) defined as in (16), such that:

(14-3) £6;(€,ox) € fl - £ for all €6(0,€0] and 5x6 colox^ • • •,

8ViK

(kh) The set Z =coC&y^ •• •, 6ym+1J with

dr(x) dr br'
ty.. r- (bx) + — (ft)(fix»)-+ (x)(bx.) ,
1 $x2 ox bx i

for i = 1, • • •, m + 1, is a simplex in E01, containing the

origin in its interior.

(45) -.: f(x + 6x) - f(x) < 0 for all 8x€ ^(e^oCox^ • • •,

bx . }) and €6 (0,^ ].

A simplex in E01 is a convex polyhedron with m + 1 vertices, which

has an interior.
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hf ^ ~ 0
Now let us consider the case — (xj (6 x) < 0 •. With f = 0, the

ox

claim of theorem (26) is that the origin in E111 is not an interior

point of the set ^-| (x)(bx) +|^ (x)(8x*) +̂ (x)(C(x,ox,a)). Again,
_.,. dx _ —

if we assume the contrary, then there must exist vectors ox , • • •

. oxm+1 in C(x,ox,G) satisfying (43) and (44) above. Since ¥~(x) (6x)< 0,
(45) will also be satisfied for all e £ (0, eL], for some e' > 0,

and, therefore, there is an € > 0 for which (43), (44) and (45) will
0

be satisfied. Thus, whether — (x)(6x) = 0 or — (x) (6 x) < 0 holds,
ox ox

the contrary assumption leads to the above conditions, which we shall

now utilize to complete the contradiction.

Now, let Y be a m x m matrix whose i-th column is 5y, - 6v
J i Jm+1'

i = 1> 2, • • •, m, and let X be a n x m matrix whose i-th column is

bx± - &xm+1, i = 1, 2, • • •, m. Then Y is nonsingular since Z is a

simplex. Hence, for every 6y € Zand e € (0,€q]

vrXl$- €m+1) +'»V1«oo(klJ • • -, 6xn+1},
and

For e 6 (Q>enh we now define the map G :2 -♦E111 by:
0 e

(k6) Ge(5^) - 6^ - 2g r(£ +^(e,xT1(o7 - 5^) +Cxm+1)) .
e

Then, recalling the form of £g£(*>*) (see (l6)), we obtain:

<*T) <»,<*) -*-2_ (r(x) tf ^ &i3-H$ -^+1) ♦ f |($)(6xm+1)

ox dx p
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where ilof(e ,6y)ll/e -> 0as e-> 0, uniformly for 6y€ 2 . Hence, there

exists on e±€ (0,eQJ such that Gg (•) maps Z into Z, acid therefore, by

Brouwer*s fixed-point theorem, there is a 6y* in Z such that G (by*) =
el

oy*. But from (k6), we see that the point

*•«*•+ ^(e^xTV* -**m+1) +Bxm+1)

satisfies r(x*) = 0, and since from (43) and (45), x*€ Q~ and

f(x#) < f(x), we have a contradiction.

SI
ox

df -
(41) and (42)), must be separated, while if — (x)(6x) < 0, the set

b2 d d-^ (x)(5x) +— (x)(bx*) +— (£)(C(£,ox,a))
dx bx bx

Thus, if — (x)(6x) =0, oj +K and R (with K and R defined as in

is contained in a half-space in E , and hence the statements of

theorem (26) follow.

Proof of Theorem (27)

We shall require the following lemma.

(k&) Lemma: Let A and A. be n x n symmetric matrices and let art
0 1 0'

a,, • • •, a be vectors in EP Suppose that for i = 0, 1, 2 the
1 m

n m+1
functions H : E -»E are defined by:

(i) H0°(x) =(x^qx), and HQj(x) -(a^x) for J=1, •••, m

(ii) H1°(x) »<a0,x>, BL^x) =(x,Axx>, and E^(x) =(a ,x> for
j = 2, • • •, m
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(iii) H2 (x) =(x,Aqx), H21(x) «<x,A1x>, and HgJ(x) =(a ,x> for
j = 2, • • •, m .

Let C be a convex cone in En.

If for any i £ (0,1,2} the point y = (-1,0, • • •, 0) is an

interior point of the set H. (C), then there exists an x in C such that

i -0"

oH.

H., (x) = y , and the Jacobian matrix (x) has rank m + 1.
bx

Proof: We shall prove the lemma only for Hp( •); the proofs for the

other two cases are similar.

Thus, assume that y is an interior point of Hp(C). From this,

it follows that:

(i) there is an x € C such that H (x) = y , and

(ii) A x,a2, •• •, a are linearly independent.

If all the vectors A>x,A x,a , • • •, a are linearly independent,

we are finished. If they are not, then we shall construct a vector x

satisfying (Vf). Thus, if Ax^^ag, •••, a are linearly dependent,

then since (x,Aqx) ^ 0, we must have

_ m .

(49) Ax = Z Pa .
i=2 X

Now, we may choose x x~ in C such that H?(x ) = (-l,-?,0,0, • • -,0)

and H2(x2) = (-1,7,0,0,. . ., 0) for some 7 > 0. For u > 0 and X € [0,1],

let x(X,u) =x+u(Xxx +(l - X)x2). Observe that x(X,u) € C, and that

(ajL,x(X,u)> =0 for i =2, •• •, m. Using the symmetry of A ,and
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(h9), we find that (x(X,u),A1x(X1u) =u2(Xx1 +(1-X)xg,A (Xxx +
(1 - X)x2)>,hence there is a X* € (0,1) such that (x(X*,u),A x(X*,u))

= 0 for all u > 0. Now, let u* > 0 be chosen so that (x(X*,u*),

Agic(X*,u*)) < -2and let x =ax(X*,u*), where

a=l/[|(x(X*,u*),A0x(X*,u*)>|]l/2 >0.

Then H2(x) =(-1,0,0 « • •) and AQx, Ax, a. , - • •, a are linearly

independent, since otherwise A x + u*X*A x + u*(l - X*)A x =m ^ 1 11 12
Z £ at, for some ?1, i =2, • • •, m, i.e., from (k9), X*A x +

i=2 m __ .
(l - X*)A x = Z 0a. for some P , i = 2, • • •, m. But this implies

x * i=2 x
(x1,A1x2) < 0 and (x^A-jX.) > 0, which is impossible and hence the

lemma is proved.

Let us now consider theorem (27) and assume that x is an optimal

solution, and that f^(x)(- ) s 0, lf-^(. )=£ 0; or that ~- (x)(- ) #= 0,
1 ox ox 1 ox

-—(x)(- )s0; or that -r-*— (• ) and ——(x)(- ) = 0. Since we need not
ox ox ox

distinguish in our proof between the above cases, it is convenient to

define the indicator functions a , i= 0,1, 2,. . . ,m, as follows:

M
0 otherwise

ar1

^5°^ a I 0 otherwise
1 if ?— (x)(- ) # 0

" 1

a =1 for i = 2, • • •, m .

We define the map H : E11 ->Em+ by:

2

(51) H°(6x) . a° g (x)(6x) +\ (1 -a°) 2JL (J)(6x}
ox
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and

i 1 Sr* l * a2 iH(8k) =a1 ^-(5)(6x) +•£ (1- a1) *-y (x)(6xf
dx

for i = 1, • • • m. The claim of theorem (27) is that the ray R =

(y CET |y < 0, y = • • •= ym = 0} has no points in the interior

of the set L = {y|y = H(ox), ox £ C(x,ft)).

Let us assume the theorem is false. Then it follows from lemma

(kQ) that there is a vector ox in C(x,fl) such that H(5x) = (-1,0,0,

• • »,0) and that the Jacobian t— (ox) has rank m + 1. We may assume

b"E t ~\without loss of generality that the first m + 1 columns of g— (ox) are

linearly independent. Hence, letting ox = (oxSox1*) where 5x! =

(Sx1, •• •, oxm+1),ox,, = (6xm+2, •• •, 63?), it follows from the

implicit function theorem [15] that there are closed neighborhoods

wi+T

U, V of the origin in ET such that H(«) is a 1-1 function from

fox* + Ul x {ox'1} onto oy + V. We shall denote the continuous inverse

of this function by H~(»)»

Since we may assume that U is sufficiently small, there is a

linearly independent set of vectors 5x1, • • •, 8xm+1 in C(x,G), with

corresponding map £(•) defined as in (3)> such that {6x,+ U) x {&xtf}c

co(0,6x., • • •, 6x +_). We now define, for a € (0,1], the uniformly

continuous map G• (•) : V -»BT by:

(52) GL(8y) = 6y - T>~Hx& + 6(otf"(8y +8y))) - F(x)) + oy ,
U W Q Q

where P(x) =(f(x), rX(x), • • •, rm(x)), oyQ =(-1, 0, 0, • • ., 0),
and D = [d(<z)..] isanm+lXm+1 nonsingul.ar diagonal

o. lj

matrix such that for i*,j = 0,1, 2,. . . , m
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r,

with thea defined as in (50).

Expanding (52), we obtain:

oT a2 b2F
— (x)(H"(6y. +6y)>f
dx ° 2 bx'

+o(a,5y)i +6y0 .

, r bF a2 b2F
(53) GQ(5y) . 5y - J>" -|a -- (x)(H"(6y0+6y))f (x)(H"(6y0+ 6y))

This may be rearranged to yield:

Ga(6y) « oy0 +6y - H(H"(oy0 +oy)) - D^ofeoy) =-D^ofooy) ,

where, for i=0, ••-, m, \ZH<*,ty) {/(cxa1 +(l -a1) |- )-> 0as
a -» 0,uniformly for bye V. Thus, we may choose a* € (0,l] such that

x+£(a*H~(6vo +8y)) 6a for all oy6 V, and Ga#(oy) 6Vfor all

oy £ V. From Brouwer *s fixed point theorem, there is a 5y* € V such

that Ga#(8y*) « 5y*, and hence from (52), the point

X* » x + £(a*R~(by + &y*))

satisfies r(x*) = 0, and f(x*) < f(x). Since x* is also in ft, we

have a contradiction, of the optimality of x, which completes the proof

of the theorem.
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Conclusion

We have constructed in this paper a theory of second-order condi

tions of optimality, which is consistent with the modern approach to first-

order necessary conditions. Also, we have shown that this theory not

only results in a number of new conditions of optimality, but also yields

most, if not all, the previously known second order conditions. The

application of our results to specific nonlinear programming or optimal

control problems is reasonably straightforward and, consequently, was

not emphasized in our treatment.

In conclusion, we should like to point out that a number of the

results in this paper extend trivially to optimization problems in linear

topological spaces. These extensions are obtained by stipulating the

existence of suitable linear and bilinear functionals to replace the gradients

and Hessians used in this paper.
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