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ABSTRACT

The stability of a single-input, single-output, single-loop, linear,

tinne-invariant system is related to the properties of its open-loop gain.

The impulse response of the open-loop system may be of the form

co

g(t) = r + g (t) + / g. 6(t-t.) where r is a nonnegative constant, g

i=0 co

integrable on [0, co) and / |g. | < co. If the Nyquist diagram of theis

i=0

open-loop gain does not go through nor encircle the critical point then

the closed-loop system is input-output stable, in the several meanings

explained in the paper.

The research reported herein was supported by the National Aeronautics

and Space Administration under Grant NsG-354, suppl. 4.



(a) It is of the form

co

a
> <P. 6(t- t.) fo

Li i i
» (t) + > <p. 6(t- t.) for t> 0

*<t) =\ i=0 (i)
0 for t < 0

where <p (•) is a locally integrable real-valued function and q> 's are
a i

constant real numbers,

and

° = T0< Tl < T2 < "• (2)

CO

£ |^| € X<co (3)
i=0

fco

\<p^(t)\€"<r dt < co . (4)

When a real valued function such as <p is locally integrable and satisfies
a

(4) we write <p €L (<r). Similarly, <p €L°°((r) means that sup|̂ (t)|e_(rt< co.
t>0

(b) The elements of the algebra Qljo-) are added together and multi

plied by scalars in the standard manner; thus, if <p, ^ €ULf0") and

X. is a scalar, then <p + i|j€ Vj^(o-) and X.^>€ vJl^o-).

-3-



(c) The "multiplication" in vi(o-) is the convolution product. If

<P> ^€ UlfoO* then the convolution of <p with i|i is also in CA.(o-). In

informal notation, the convolution of <p with \\i is

\ <P{t -t)i|j (T)dT for t>
'0

(<p *40(t) = \ (5)

for t < 0 .

In performing this operation we recall that, for t > 0 and t > 0,

6(t-Tl)* 6{t-r2) = 6[t-(Tl+ t2)]

(d) Any element <p in VjL(or) has a finite norm which is defined by

co

11*11,= J l^a(t)l€'°'tdt+ £ k.h i<co (6)
i=0

It is a standard exercise [7] to show that

ll* ++ll, < 11*11,+ 11+II, (?)

and

11***11,1 11*11,11*11, (8)

C. With these preliminaries, we may state our assumptions on G :

the input-output relation of the block G (shown in Fig. 1) is
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with

(g * i) (t) for t > 0

Tl(t) = ^ (9)

0 for t < 0

r +g^ (t) for t > 0

gW = < (10)
0 for t < 0

where r is anon-negative constant, g e\J[(cr) and g €L°°((r). In terms
* a

of the "error" e, the equation of the single-loop system is

u(t) - z(t) - k(e * g) (t) for t > 0

eW = < (11)
0 for t < 0

The output g is given by y = u -e, hence

z(t) + k[ (u - y) * g] (t) for t > 0

y(t) = { (12)

0 for t < 0

in. MAIN RESULTS

In this section we state our main results in the form of theorems

and corollaries. The application of the theorems is illustrated in an

example given in Section IV. All proofs are to be found in the appendix.
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Theorem 1.

Let the closed-loop system shown in Fig. 1 be described by (11)

and (12). Assume that g^ €0.(0) and gaeL°°(0). Let k> 0. Let g(s)
be the Laplace transform of g. Under these conditions, if

inf | l + k|(s)| > 0 (13)
Re s > 0

then the closed-loop impulse response h (i.e., the response y for z=0

and u(t) = 6(t)) is in (jL(0).

Corollary 1.

In Theorem 1, if, in addition, g(t) = r + g (t) with g € L (O)flL (0)
a a

and g (t) -*• 0 as t -*• co, then the closed-loop impulse response h is also
a

in Ll(0)nL°°(0) and h(t) -> 0 as t -co .

Theorem 2.

Let the closed-loop system shown in Fig. 1 be described by (11)

and (12). Let z= 0 and k> 0. Let gn €(X(0) and g €L°°(0). Under
* a

these conditions

(a) If (13) holds and u€L°°(0), then y€L°°(0); i.e., if (13) holds, the

closed-loop response with zero initial condition to a bounded input is

bounded. Equivalently, the closed-loop transfer function is strictly

stable (In the sense of [ 2], p. 414);
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(b) If (13) holds and u€LP(0), with 1<p < co, then yeLP(0);

(c) If (13) holds and ucQfO), then y€ (\(0) ;

(d) If (13) holds and u(t) = l(t), then, provided r > 0, y(t) = jd(t) •* 1 as

t — co;

(e) If (13) holds and u is continuous on [ 0, co) with u(0) = 0,

then y is continuous;

(f) If (13) holds and u€L°°(0) and u(t) —0 as t -* co, then y€L°°(0) and

y(t) -* 0 as t -*• co ;

(g) If (13) holds and ueL (0) and u(t) —u as t —co, then yeL (0)

and y(t) -*- u as t -*- co .
co

Corollary 2.

Let the closed-loop system shown in Fig. 1 be described by (11)

and (12). Let u=0 and k> 0. Let gn €Q(0) and g €L°°(0). Under
a a

these conditions,

(a) If (13) holds and z€L°°(0), then y€L°°(0) ;

(b) If (13) holds and z€LP(0), with 1 < p < co, then y€LP(0);

(c) If (13) holds and zeQjO), then y€ Q(0) ;

(d) If (13) holds and zeL (0) and if furthermore g(t) = r+ g (t) with
a
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1 m
g € L(0)OL (0), then y(t) -* 0 as t -* co .

a

Corollary 3 •

Let the closed-loop system of Fig. 1 be described by (11) and (12).

Let g, €(a(0 and g €L°°(0). Let k> 0. Under these conditions,
*• a

(a) If (13) holds and u, z€L°°(0), then y€L°°(0) ;

(b) If (13) holds and u, zeLP(0), with 1 < p < co, then y€LP(0);

(c) If (13) holds and u, zeQ(O), then ycG^O).

Let us now make use of the exponential weighting factor € " .

In doing so we have to set r = 0, thus, in the following g(s) does not have

a pole at s = 0 .

Theorem 3:

Let the closed-loop system of Fig. 1 be described by (11) and (1 2).

Let z s 0. Assume that r = 0 and g e (\((r) and g eL°°(o-), where cr
S. a

is a constant parameter. Let k > 0 and let g (s) be the Laplace transform

of g . Let the following condition

inf |l + kg(s)| > 0
Re s > o-

be satisfied. Under these conditions,
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(a) If u(t) = 6(t), then heQfo-) ;

(b) If u€L°°(or), then y€L°°(o-) ;

(c) If ueLP(<r), with 1< p < co, then y€LP(cr);

(d) IfueCXfor), then y€ (\(<r)

To visualize the meaning of these conclusions, suppose <r= -1,

then u€L (-1) means that u(t) e is bounded on [ 0, co) and, provided

the condition of the theorem is satisfied with o-= -1, y(t)€ will also be

bounded on [ 0, co).

IV. EXAMPLE

The purpose of this example is to show that the condition (13) of

Theorems 1 and 2 can be checked graphically k la Nyquist. For simpli

city, suppose that the transfer function of the forward block G is given

by

^ =s(s+lHs +2) +0'036"31'4S

Observe that g(s) is analytic in the closed right half plane except at s = 0

where it has a simple pole with residue 2. Condition (13) is equivalent

to the requirement that the map of the closed right-half s -plane into the

g-plane is bounded away from the critical point -1/k. This can be checked
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in the usual manner by plotting the Nyquist diagram of g. In the pre

sent instance, the plot has the usual shape expected from a position

servo except that (i) for co -* co, the diagram is asymptotic to the

circle centered at the origin with radius 0.03 (call it C(0, 0.03)), and

(ii) the image of the arbitrarily large circle s = R eJ (R large and

IT IT

- 7* 5. ® —T^ *s a curve inside the circle C(0, 0.03). On Fig. 2 we

show only the interesting part of the diagram. From it we conclude

that condition (13) is satisfied provided that either k < 1.38 or

1.50 < k < 1.58. Note that since this system is "Nyquist stable" its

2
L -stability cannot be predicted on the basis of passivity arguments [8],

V. CONCLUSIONS

Under very general assumptions pertaining to the open-loop

system we have shown that if the Nyquist diagram of the open-loop gain

satisfies the nonencirclement condition, then the input-output properties

of the closed-loop system satisfy all the properties expected from a

stable linear system: a bounded (continuous, tending to zero, in

L 1 < p < co, resp.) input produces a bounded (continuous, tending to

p
zero, in L 1 < p < co, resp.) output. The formulation and results of

this paper include previously known results as special cases.
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VI. APPENDIX

Basic lemma. Let f :R -** R and be of exponential order (i. e., for

some finite constants f and \, |f(t) I < £_• e for all t > 0). Let
M ' * — M —

g(t) = r + g,(t) t > 0 (14)

awhere r is a non-negative constant and g eVx(<r) for some cr > 0

Thus

co

g£ (t) =ga(t) +^ gi 6(t "V *- ° (15)
i=0

where

0 = t0<tl<t2 <•••
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00pCO -o-t.
J |ga(t)h"°'tdt< co and ^ |gth *< CO .

~1 •

i=0

'a- ((r) (l-e- gkM _ -aIn addition, let g^cL (<r) (i.e., g^ = sup |g (t) | e < oo). Let k > 0
t>0

and let e(») satisfy

f(t) - k(g *e)(t) for t > 0

e(t) = < (16)

0 for t < 0

Under these conditions, if 1 + kg ^ 0, then e is of exponential order

and consequently its Laplace transform e(s) is well defined in some

half plane of the form Re s > <r .
0

Proof of the basic lemma : Multiply (16) by €~°'t and use €~°"t =e"<r<t"T)e "°"T

to obtain

e»(t) = f»(t) -k(g'*e')(t) t> 0 (17)

where e'(t) = e(t) €" and similar formulas for f and g' . Using (14)

and (1 5), we rewrite (1 7) as

,t

'0 ^0

(l +kg())e'(t) =f'(t) -kr J e^ '̂̂ e'CTjdT -k f g'a(t -t) e'(t) dr

k V g.' e'(t-t.) t> 0 (18)
i>l
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Since cr > 0 and g'w < co, we obtain

ll+kgj |e'(t)| <|f'(t)| +k(r +gaM) J |e'(T)| dT

+k Y |g!,| |e'(t-t.)| t> 0 (19)
i>l

Define eAyr(t) as sup |e'(T)|. If we replace e' by e^ in the right

fM
0<T<t xt

hand side of (19) and if we bound |f'(t)| by f € the inequality is strength

ened, and we have

|l+kg0l le'Wl lfM€Xt+k(r+gaM) J eM(r)dT

+£ \*[\ l^-V' '-0 (20)
i>l

The right hand side of (20) is strictly monotonically increasing

with t, and (20) holds for all t > 0, therefore we may replace |e'(t) |

in the left hand side by e (t). Further since e is monotonically in

creasing e^Jt-t.) < e.,(t-t.) for all t> 0 and all i, hence
b M l — M 1 —

At cl11 +kgQ | eM(t) <fMe +k(r +g^) J eM(T) dr
0

co

+k I K1 eM(t"V *- ° (21)
i=l
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Define the non-negative numbers a, |3 and y as follows :

f™ k(r+ g' ) k ^ 1*11a * M 6 * K gaM* a i=l *
<* - - - , P = and y = (22)

U+k«0l l1 +kg0' U+kgJ

then (21) becomes

eM(t) - a*n +PJ eM(T)dT +YeM(t"V *- ° (23)

If we show that e^ is of exponential order, e1, hence e, will also be

of exponential order. Without loss of generality, we shall assume that

\ > 2(3 > 0.

To start a proof by induction we consider the case where 0 < t < t .

Since e^t-t^) =0 for t <t , (23) becomes

,t

'0

\t c^
eM(t) - ae +P J eM(T)dT ° ±* K\ (24>

By the Bellman-Gronwall inequality, we obtain

eM
t+\ <r Xt . P* P r (^-P)t , i(t) < ore +or€r ^t- [€v K/ - 1] 0 < t < t (25)

Since X. > 2(3 and since < 1, we obtain
\ -p —

Xt
eM(t) <2w for 0 < t < t (26)
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For the induction step we suppose that

eM(t) <2a(l+2Y)n"16Xt for (n-1) ^ <t <n^ (27)

and we must show that

eM(t) <2<*(l +2Y)n€X't for nt <t <(n +l)t (28)

Now, for nt < t < (n +l)t , using (27) in (23) we obtain

eM(t) <or 6Xt +2*Y (1 +2Y)n~1 €Xt +(3 j eM(r) dr

< «(l +2Y)n€Xt+ (3 ) eM(T)dr
0

r
„ , ,n \t ,, _ vn (3 (3tr (\-P)t nl

< <*(l+2y) e + or(l+2y) T-~r €r |V r/ - l]
— A.- p

<2«a +ZY)B.U f°r nt1<t<(n +l)t1

(29)

Hence the induction step is established; e. . is of exponential order. In

fact

e (t) <2a exp[ \+ ^ in(l+2v)] t for t>0 (30)

Thus if f is of exponential order, e defined by (16) is of exponential
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1
order and e (s) is well defined for Re s > X. + •—- in (1 + 2y).

1

Proof of Theorem 1:

It is not obvious a priori whether h has a Laplace transform.

To start with suppose that u(t) = l(t), then, calling the solution j4>, we

obtain from (12)

" k (g * 1) (t) - k (g *£) (t) for t > 0
*<t) = < (31)

0 for t < 0

Since ge (\(0)> g * 1 is bounded on [0,co) by the function ||g. || + rt.

(In particular, g(s) is analytic in the open right half s-plane.) Hence

by the basic lemma, *i is of exponential order and so is its integral

P(t) * \ A(T)dT.*r
-crt

Thus, for some finite o" , € p(t) is a bounded continuous function

on [ 0, co). Hence p and all its derivatives (in the distribution sense)

have a Laplace transform defined for Re s > cr ([4] Chap. 8 and

Thm. 6, p. 239; [5] Sec. 8.3). Using the rules of Laplace transforms

as they apply to distributions [4, 5, 6] we obtain from (31)

Zis) = k<?<S) • i Re s ><r (32)
- s 0

l + kg(s)
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The derivative of *d (denoted by.,!') is h: indeed *dL is the step res

ponse of a linear time-invariant system, hence A.x is equal to the

impulse response. More formally, differentiate (31): (a) use the fact

that for any two distributions in J0' \ say S and T,

(S * T)' = S' * T = S * T' .

(b) Observe that

ST1**) = «<*>

(c) Recall that for any distribution [4, pp. 170-174].

S * 6 = S

hence in an informal notation

kg(t) - k(g * 4J)(t) for t > 0

^W = \ (33)
0 for t < 0

This is precisely the equation satisfied by h, as can be seen by putting

u(t) = 6(t) in (12). We conclude that 4.' =h : this is a consequence of

uniqueness which follows from that there are no divisors of zero in fi'
+

[4,p. 173] . Consequently h(s) =si(s) and from (32) we get

<>-J+ is the space of distributions whose support are contained in

0 < t < co [4, p. 172; 5, p. 168] .
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h(s) = iilL- Re s > o- (34)
l+kg(s) °

To proceed we have to distinguish two cases:

Case 1: r =°- In this case g(s) =g (s), where by assumption g €0t(0).

The assumption (13) implies that

inf |l +kg (s)| > 0 (35)
Re s > 0

It follows from results of Hille and Phillips [7, p. 150]* that

<*^ {1/tl +kg^ (s)]} is a well defined element of the algebra Q.(0).

In the present case

Ms) = kg (s) • (36)
1+kg^fs)

thus h(.) is the convolution of kg^-) with^_1{l/[l +k£ (s)]} . Conse
quently heQjO).

Case Z' r>0. Then £(s) =- +g (s), and
S jt

k[ j +g^s)]
h(s) = (37)

l+k[- +gi(s)]

+

In the notation of Hille and Phillips, our algebra QjO) is denoted by

L(l(.)) + A(l(.)).
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Multiplying numerator and denominator by s/(s+kr) we obtain

kr ks -

C/ x - s +kr T s+kr ' gllS)h(s) _ _ (38)

1 + sTk;# g*(s)

Call n(s) and d(s) the numerator and the denominator of this expression.

Clearly, oC'l[n(s)] €0.(0). Now,

3(s) =rn?[1+k*(8,] (39)

noting that g(s) has a pole at s = 0 (with residue r > 0) we easily

show that

inf |l + kg(s)| > 0 implies that inf |d(s) | > 0
Re s > 0 Re s > 0

Hence from the results of Hille and Phillips, oC~ [l/d(s)] € 0.(0). And,

as before, we conclude from (38) that he Q (0).

The proof of Corollary 1 is given in [l] .

Proof of Theorem 2 :

(a) Since z = 0 and ueL (0), by the basic lemma, y is of

exponential order. Hence its Laplace transform is obtained from (12)

and

9(S) = kg(s) G(s) =h(s)u(s) (40)
1 + kg(s)
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Therefore the output y is the convolution of the closed loop impulse

response h with the input u, i.e. , using informal notation

J h(r)u (t - t) dT for t > 0

y(t) = (41)

for t < 0

Since ueL (0), we set u £ sup |u(t) | < ^ and since heGt(O) with
M

t>0

co

h(t) =ha (t) + \ K6(t-tt)
i=0

roo

, |h (t)|dt<co and V |h. | < co, we conclude that
^0 Li l

i=0

IvWli^Li' lha(t,|dt+ I Ihi'j < CO ,

i=0

CO
hence yeL (0) .

(42)

(b) Let L (y) denote the LP-norm of y. Then from (41) and (42)

we have

L (y) < L
P - P

co

|ha *u| +y |h.||u(t-t.»)|
i=0

(cont'd.)
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< Lo(|ha| * |u|) +
\ i=0 /

i h'ha' •Vu) +( 1 |hil)vu)
\ i=0 /

co

i=0

Lp(u)

= ||h||oLp(u) < co

because heQ(O) and ueLP(0). Hence yeLP(0).

(c) Since z = 0 and ueQ(O), by an argument similar to that

used in the proof of Theorem 1, y has a Laplace transform in the dis

tribution sense. y(s) is obtained from (12) and is given in (40). Since

heC£(0) and ueQ^O), we conclude from the closure property of the

algebra (jL(0) that yeQ(O).

(d) Note that

<!(t) = \ h(T)dT

Since he(jjk(0) and is defined by (42). Given arbitrary e > 0

there exists a T depending on e such that

-20-
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/-iCO

J |ha (t) | dt <e/2 and Y |h. | <e/2
t. e(T,co)

Consequently,

pCO
J |h(r) | dr <e Vt >T

f h(r)dTThus lim \ h(T) dT exists and the number x&. = lim A(t) is well
t->co J0 °° t-*co

defined. Next we calculate A by the final-value theorem of Laplace
co

transform and (43), (32), (38): we obtain A. = lim &{t) = lim -h(s)=l,
co , _ s

t-*co s-*0

provided that r > 0.

(e) Since u is continuous on [ 0, co), to prove y is continuous

on [0,co) it suffices to show that e is continuous on [0,co). Using (14)

and (1 5), we rewrite (11) for z s 0 as

t t °°
u(t) - kr ( e(T)dt - k ( g(t - t)e(t) dT - k Y g. e(t -1.) for t >

J0 J0 L, * * ~
i=0

e(t) = < (44)

V, 0 t < 0

Since u is continuous on [ 0, co) with u(0) = 0, clearly e(0) = 0 and e(»)

is continuous on [ 0, t ]. Hence for i =1, 2, ..., e(t-t.) is continuous on

[ 0, 2t ], e(«), the solution of (44) is also continuous on [ 0, 2t ] . By
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iterating this argument we conclude that e(«) is continuous on [ 0, co).

(f) Since by assumption ueL°°(0), let u =sup |u(t) | < co.
t>0

Also by assumption u(t) — 0 as t —co, therefore for any e > 0, there

exists T^(e) such that for t>T (e), |u(t) | < e. Since he 0.(0), for

any e > 0, there exists T, (e) such that for t > T, (e)
n h

I lha<T)ldT+ J, \\\
t.e[t, co)

l

Let t > T (e) + T (e), then
n u

,t

|y(t)| = ( h(t-T)U(T)dT
Jo

<J |h(t -T) ||u(T) |dT
0

.t-T

'0 ^t - T

t-T t

=J h |h(t-T)||U(T)|dT +J |h(t -T) ||U(T) |dT
h

In the first integral the argument of h varies from T to t, therefore,
n

oo
since ueL , the first integral satisfies

t-T

J h|h(t-T)||U(T)|dT <eU]

-22-



In the second integral the argument of u varies from t - T, > T to t,
h u

hence over this interval |u(t) | < e and the second integral satisfies

J |h(t-T)||u(T)|dT <c||h||0
't-Th

Thus we have shown that t > T, (e) + T (e) implies
h u

|y(*)l ie<uM+ Hhll0)

Therefore we have proved that y(t) -+• 0 as t -+ co.

(g) Set

u(t) = [u(t) -u ] +u l(t)
CO CO

The first term is bounded and goes to zero, and the second is a multiple

of the step. By linearity together with (d) and (f), conclusion (g) follows,

Proof of Corollary 2 :

Since z in the present case satisfies the same assumption as u

in Theorem 2. Hence, as before, y has a Laplace transform and y(s)

is obtained from (12)

y(s) - . Z(s) _ 2(S) -h(s)z(s) (45)
l +ki(s)
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Note that the second term on the right hand side of (45) has exactly the

same properties as those of (40). Therefore (a) (b) and (c) of this

corollary are the direct consequences of Theorem 2 and (45). The

proof of (d) is given in [ 2].

Proof of Corollary 3 :

Since the system is linear, corollary 3 is a direct consequence

Theorem 2, corollary 2 and superposition.

Proof of Theorem 3.

Since z = 0, if we multiply « to both sides of (12) we obtain

k[g' * (u'-y')](t) for t > 0
Y'(t) = \ (46)

0 for t < 0

-o-t
Where y'(t) = e y(t) and same formulas for u', g1.

By the same argument as in the proof of Theorem 1, we obtain

the Laplace transform of y',

y'(s) = — g K' u'(s) (47)
l+kg~'(s)

Observe that g'(s) = g(s + cr). Hence the assumption inf 11+ kg(s) | > 0
Re s > cr

implies that inf 11 + kg'(s) | > 0. By definition, ueQjcr) and
Re s > 0

-24-



ueL (o-) etc. imply u' €0.(0) and u,€L°°(0) etc. and similarly for g

and y. Therefore the results of this theorem follow immediately from

Theorem 1, Theorem 2 and the definition.
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LIST OF FOOTNOTES

t For a first reading the reader may assume o- = 0 in the following.

cfc) , is the space of distributions whose support are contained in

0 < t < co [4, p. 172; 5, p. 168] .

t In the notation of Hille and Phillips [7] , our algebra Q(0) is

denoted by L(l(.))+ A(l(.)).
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Fig. 1. System under consideration.
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