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1. INTRODUCTION

In this paper we consider Gaussian random fields which are:

(a) homogeneous with respect to the motions of an n-dimensional space

of constant curvature, and (b) Markovian in the sense of Levy [1]. The

principal result of this paper is the characterization of such random fields

in terms of their covariance functions. We recall that in one dimension

a similar question has the very simple answer that the covariance function

of a stationary Gauss-Markov process must be an exponential. The

answer in the n-dimensional case is nearly as simple, and will be given

in this paper.

Let (Q, (_£ , P ) be a fixed probability space, and let

{x(w, z), <x> e Q, ze V } be a family of Gaussian random variables with

an n-dimensional parameter space V . We shall only consider three
n

cases: (a) Vn =Rn, Euclidean space, (b) V =Sn, sphere, (c) V =H*,

hyperbolic space. Let G(V ) be the full group of motions in V which
n n

preserve distances. Suppose that for any finite set A = {z.}C V ,
i n

{x(.,z ), z €A} and {x( .,g z.), z. e A}
1 i 11

have the same distribution whenever g € G(V ). Then we say

{x( ♦, z), z € V } is a homogeneous random field.

Markovian property in higher dimensions was introduced by

Levy [1] in connection with Brownian motion. Let 8D be a smooth closed
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surface of dimension n - 1 in V , separating V into a bounded part
n n r

D , and a possibly unbounded part D . A random field (x(z), z € V } is
n

said to be Markovian of degree ^ p + 1, if for any such 3D every approxi

mation x(z) to x(z) in a neighborhood of 3D which satisfies

|x(z) - x(z) | =o (6P) 6 =distance (z, 8D)

also has the property that given x( %) , x(z) and x(z') are independent

whenever z e D~ and z' € D .

A random field is Markovian of degree p, if it is Markovian of

degree ^ p, but not ^ p - 1. In this paper we are primarily concerned

with Markovian fields of degree 1. For this special case it is more

convenient to define the Markovian property by: Given/x(z), z c 3D^\

x(z),z € D and x(z), z € D are independent. If x(z) has continuous

sample functions, this definition clearly reduces to that of Levy. This

latter definition is more convenient when we have occasion later to

consider the possibility of defining Markovian property for generalized

random fields.

Since Gaussian distributions are uniquely determined by second

order properties, whether a Gaussian random field is Markovian or not

is completely determined by its covariance function. While it would be

nice to give a necessary and sufficient condition on the covariance

function for a Gaussian random field to be Markovian, we are able to do this

only when the random field is homogeneous.
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2. SECOND-ORDER PROPERTIES

There is no essential loss of generality in assuming that V
n

has curvature 0, 1, and -1 corresponding to R , S , H respectively.

With the assumption we can adopt a coordinate system (<p_, . ., <p ., r),

<p = (<p.t . . ., <p .) € S , r € [ 0, co) for R , H , and re [ 0,<rr) for S .

We express the Riemannian metric in the form of the differential arc

length ds

(1)

n-1 /

ds = dr + g (r) )

i=l V

2 \ a 2
TT sm ^k d*i

k=i+l ' x

where g(r) = r, sin r, sinh r for R , S and H respectively. The length

of a sectionally smooth (piecewise differentiable in terms of coordinates)

curve is found by integrating ds along the curve. The distance d(z , z )

between two points Z-, z e V is the infimum of the lengths of all

sectionally smooth curves connecting z and z . It can be shown that

for the three cases being considered, we have

PL 2 ~ " "—l
Vr +r! -2rr'cos Q{<pt<pt)

(2) d((<p, r), ((pxt r'))=\ cos [cosr cos r'+sinr sinr' cos 0(^, ^')]

-1

\.

cosh [coshr cosh r'-sinh r sinhr1 cos Q(<p, <px)]

for R , S and H respectively, where 9(<jp, <pl) is the spherical distanc<

n 1

between <p and <px on S .
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Consider the full group G of one-to-one differentiable mappings

of V onto itself which preserve distances. G acts transitively on V ,

i. e., taking any point into any other point. Hence, if we let K be the

maximal subgroup leaving ( •, 0) invariant, then V can be identified
n

with the homogeneous coset space G/K. For a homogeneous Gaussian

random field {x( •, z), z e V }, we have
n

E x( * , z) = E x( • , gz)

for all g e G. Hence, E x(» , z) = constant which we. shall assume to be

zero. Similarly, whenever g e G

E x( •, z)x( ., zq) = E x( ♦, gz)x(., gz )

Since G acts transitively on V , there always exists g taking z into

{•, 0) and z into (0, d(z, z )). Thus,

(3) Ex(.,z)x(*,zo) =R(d(z,ZQ))

Analogous to Bochner's theorem in one dimension, the class of continuous

covariance functions of the form of (3) can be put into a one-to-one

correspondence with the class of all bounded non-deereasing functions

defined on [0,co) in the case of R and H*1, and the class of all non-

negative functions defined on the integers in the case of Sn. This is

done via a spectral representation for R(«)« Now, let A denote the

Laplace-Beltrami operator,

-4-



(4) A (VJ =n; n-1 . 3r
g (r)

A(sn-X-

n-1 9
g (r) -^ 1 A^"1)

g2(r)

where LA(S ) can be recursively generated

(5) A/Sn> =(S )
• n**l/ v d<Psin (<p ) OYn

n

• n-X/ x 9SUl (tf ) —
n b<p

+

n-
. 2

sin <p
n

Afs"-1)

It is well known that LA commutes with any g in G, and every differential

operator commuting with G is a polynomial in A with constant
2. Tl —1

coefficients. Let L (S " ) denote the set of all square-integrable

functions on S (with respect to the uniform measure). Under the actions

of the group G(S ), L (S ) breaks up into a direct sum of orthogonal

invariant subspaces H © H 0 H © with

1 = dim (HQ) < dim (H )<

Each H can be provided with an orthonormal basis {h }, JL <dim (H )
m w mjp «—»'m

so that

(6) \ h l<p) h {<p) dO = 6 6
J mlvr' pkxir/ mp
?n-l

mp kj?

dO = uniform distribution \

dO = 1

n-1

The functions h are the spherical harmonics which satisfy
mj?
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<7> A(Sn"1)h =-n(m+n-2)h
mi 'mi

L,6t ^m be the set of *" values for which

(8) A ^(^r) = - \i|j (\,r)
m'm m

A
m n-1 dr

g (r)

n-1 d

g (r)d7
m(m+n-2)

g2(r)

has abounded solution. The eigen function ^(K, r) is unique up to

normalization. Then, h^M^K. p) satisfy A«|, =- ^ . Hence, so do
finite or suitably convergent sums (over mH ) of such products. Indeed,

{hmi ^Hm(X' r)' m" °' *~dim <Hm)> sPans the space of solutions of
Ai|, =- \ ij, . Now, ho(?) =1, therefore A+(Xf r) =- \ i|, (*, r). Sinc<

A

(9)

o

commutes with G, we also have for any fixed z»

A^(\, d(z, z'))=- \ i|j (Kf d(z, z'))

Indeed, with ijj (\, 0) = 1 and a suitable normalization for d, (\ r)

m ^ 1, we have

oo

(10) VX,d(z,z.))=^ ^ hmi<*)hmi('')+m^r)+m^r,>
m=0 4<dim(H )

m'

It is obvious that^o(\t d(z, z«)) is non-negative definite. Hence, positive

sums of the form ^F. ^(X., d(z, z«)) are non-negative definite, and so are
\.€A

1 o
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limits of convergent sequences of such sums. Conversely, any continuous

covariance function can be approximated by a sequence of such sums.

Putting these ideas together yields the spectral representation theorem.

Theorem 1 ([2, 3])

R(d(z, z1)) is a continuous covariance function if and only if it

can be represented in the form

(11) R(d(z, z')) =j i|,o(\, d(z, z')) F(d\)
A

o

where F(») is a bounded non-decreasing function defined on A .
o

3. HOMOGENEOUS GAUSS-MARKOV FIELDS

Equations (10) and (11) show that a homogeneous Gaussian field

{x(* , <p, r), (<pt r) € V } has a representation
n

oo

(12) x(Sf,r)=^ Yt hm|(*)Xm|(''r)
m=0 4<dim(H )

m

where (xmj?( •> *)} are independent Gaussian one-dimensional processes,

and

(13) Exmi(.fp)xpk(.fr») =5mp6|kjV,r)y '̂)F(dM
A

m

Lemma Let x( • , r,«p) be a homogeneous Gauss-Markov random field.

Then {x (., r)} defined by
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(14) Xml<,,r,:=J V):tl',,,,r)d0

is a set of independent Gauss-Markov processes in one dimension, and

there exist functions f (r),g (r) such that
m °m

<15) EXmi ^ml <**> =J+m^ ^m^ r*>F<dX>
A

m

=fm(max(r, r'))gm(min(r, r'))

Proof: "We need only to prove that x „(r) are Markov, i.e., that' *• m^ » »

whenever r > r1 > r , x (r) and x (r ) are independent given

x fl(r'). Since for different m and S. , x It) are independent processes.
m£ m£

we need only to prove that x (r) and x (r ) are independent given

x ,(*') for all p, k. But given x ,(r') for all p, k is the same as given

n 1

x{<p\ r1) for all <py € S " . Thus, what needs to be proved is the

independence of x (r) and x (r ) given {x(^*, r1), <p* e S }. But

from the definition of a Markovian random field, whenever r > r' > r ,
o

n 1

x(«p, r) and x.{<p , r ) are independent given {x(<p', r1), <p* € S "" }. The

proof of the Markovian nature of x (r) is completed by noting (14).

Finally, the form given by (15) is the required form for the covariance

function of a one-dimensional Gauss-Markov process [4].

We are now in a position to state a necessary and sufficient

condition on the covariance function for a homogeneous Gaussian random

field to be Markovian.
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Theorem 2 Let {*(., z), z «Vn> be ahomogeneous Gaussian random

field with acontinuous covariance function. Then, for x( •, z) to be

Markovian, it is necessary and sufficient that

(16)

Proof: Necessity . From (15) we have

(17) J VX' r^o{X> r')F(dM =fQ(r)go(r'), r>r'

Ex(.,z)x(.,z') =Ci|i (\ ,d(z,z«)), C> 0, \ € A
u ° o o

A
o

s a
For afbced r>r' it is easy to show that j\ ^(X, r)^, r»)F(d\) i

A
convergent integral. Whence °

go<r,) ^ofo(r) =JX *0^.*)*0(Kr'md\)=fo(r) A' g(r«)
whenever r > r'.

A
o

This means that

(19) —i-rr A g (r») - lo sol ' f (r

or

(20) A f (r) =constant f (r),
r > 0

The only bounded solution of (20) is proportional to g, (v , r). Since

(21) Ex( ., z)x( ♦ ,z») =J^k, d{2, ».),F(dM =go(0)fo(d(z, z'))
A

o
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(16) follows and the proof for necessity is complete.

Sufficiency is rather trivial, because for a Gaussian random field

with covariance function of the form (16) is degenerate in the following

sense: Given smooth closed surface 3D,

(22) x(-,z)=E {x(»,z) x(«,z'),z» € 8D}

with probability 1 for all z € V . Hence, x( • , z) is Markovian, but only

in a trivial sense.

4. GENERALIZED MARKOVIAN FIELDS

In this section we shall show that it is possible to define the

Markovian property for certain generalized random fields, and give a

necessary and sufficient condition for a homogeneous Gaussian generalized

random field on R to be Markovian. This generalizes theorem 2 for R .

Non-degenerate examples of homogeneous generalized Gauss-Markov fields

do exist, and represent natural generalizations of the Ornstein-Uhlenbeck

process in one dimension.

Let ^) (R ) denote the Schwartz space of real-valued C functions

of rapid descent. That is, ^ contains all real-valued functions f on R

for which there exist finite constants C , such that
mk

(23) Sup |z|m|Dkf(z)| <Cmk
zeRl1 ki+. ..+lc

k d ^z =(Z]L, z2, . . ., zj , k =(1^, . . ., kj, D =

-10-
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Convergence in S of a sequence {f } means

(a) f e k for each v
v

(b) Sup |z|m|D f (z) | ^ C , independent of v
•^n

Z€ R

(c) For each k {D f } converges uniformly on every compact set

in R .

Let *U be a Hilbert space of real Gaussian random variables with

zero mean. We shall define a real zero-mean Gaussian generalized

random field X to be a continuous linear map of O into j/ . An isometry

g: R -*• R induces a map T : o ~*o ^y

(T f) (z) =ffg^z)

The generalized random field X is said to be homogeneous if for all

g€G(Rn) and f^ f2 €£

(24) E X(TgfL) X(T f2) =EX(fx)X(f2)

= B(fr f2)

We shall call B the covariance bilinear functional of X. A bilinear

functional B on ^ X^is the covariance functional of a homogeneous

Gaussian generalized random field X, if and only if

(25) B(fl,f2)= y~pj>>fi2><MF(dM
0 m, SL

where F is a non-decreasing function of slow growth on [0, oo), and
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(26) WM =I d° I dr i{<P> r) hml{*)rn~l V^' r)
gn-l 0

m = 0,1, . . .

I ^ dim H
m

The monotone function F will be called the spectral distribution of X

[5]. In terms off (\) we can write
ml

<27) X(f)=I J°WK>W^>
m, I 0

where/x> is a family of independent ^/-valued Borel measures on

[ 0, oo) with

(28) Ex „(A)x (A') = 6 6,F(AflA»)
ml pq ' mp j0q x '

We note that the sequence/X(f )) converges whenever / f /converges

in L (dFdO) norm. Here, f is given by

(29) ^^JgMgfi
m, a

Therefore, if we define X by X(f) = X(f), then X can be extended to a

continuous linear map of L (dFdO) into^. In particular, if F is bounded,

the corresponding ordinary random field can be recovered by setting

(30) x(„o.ro)=X(6 )
o o

t,n r (?.M=) h (<P )h J<p)i\> (\, r)<Pn> * Z_j mi,ro' mjT Ymx o'
o o

m, i
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Let 3D be a smooth n-1 closed surface in R and let dcr be the

2
differential surface area. For f e L (3D, dor) define

(31) L (M =Jf(t) *m(X' r(t)) hm£(^t))dtr
3D

t = (t , . . ., t ) coordinates for 3D,
1 n-1

and let

(32) Mihm(W'm/W
m, I

~ 2 2
Suppose X is such that f € L (dFdO) whenever f € L (3D, dcr), then we

can define

x8D(f) =X(f)
(33) r-, ~co

=1 f fm^>WdK)
m, I

r, {x8D(f)» feL2(aD,do-)|Clearly, *\ X (f), f e L (3D, dcr) > serves to represent the surface data

on 3D. Once surface data is defined, Markovian property can again

be defined.

Let X be a homogeneous Gaussian generalized random field

with spectral distribution F. Suppose that whenever 3D is a smooth closed

n-1 surface in Rn and f €L (3D, dcr) then 7e L (dFdO). Let J( (3D)C 7{

denotes the closed linear manifold generated by sX (f), f € L (3D, d(r)j- .

We say X is Markovian if for any increasing sequence of nested surfaces

-13-



dDy 3D, 3D2>

^(3D2) - P8D^(9D2> is orthogonal to ^/(bD^)

where p9D/[ (9D2) denotes the image of yV(9D )under the projection

P3D °n M(9D)* In other words, X is Markovian, if given the surface

data on 3D inside and outside are independent since with Gaussian law ortho-

gonality and independence are equivalent. The following result generalizes

theorem 2 for R

Theorem 3: Let be a homogeneous Gaussian generalized
n . .

random filed on R with spectral distribution F. A necessary and sufficient

condition for X to be Markovian is that
Joo '

i|iQ(\., r) F(d\) =R(r), r > 0
0

defines a twice-differentiable function on (0, oo) which satisfies

(35)
n-1 dr

where a is a constant.

n-1 dR(r)
dr

= ffR(r)

Remark: We note that R(r) need not be bounded, but when it is, the result

reduces to that of theorem 2.

Proof: Necessity. Let 3D be an n-1 sphere with radius r. Since the

2
spherical functions h^ e L (3D, dcr), we can define

(36) Wr)=X3D(1W> m -°> ' "dimHm

By an argument completely analogous to that of the lemma preceding

-14-



theorem 2, we can show that jx^fr), 02= r <001 is afamily of independent
one-dimensional Gauss-Markov processes. Hence, we must have

(37) E XQl(r) Xol(rQ) =fo«(max(r, rQ)) go'(min(r, rQ))

From (33) and (31), it follows that

(38) Xol<r> =X9D<hol>

n 1 r°°=r11- j 4,o(Xt r) XQl(dM
0

Therefore, from (28) and (37)

(39) EXol(r)Xol(ro) =(r, r/"1 j ^(K, r)^, r<))F(dM

= f '(max(r, r ))g '(min(r, r ))
v O O O

or

00

) tyAK r)iM\, r )F(d\) = f (max(r, r ))g (min(r, r ))
\J \j uu O OO O

0

which is identical to (17). Hence, (19) holds once more and

(40) A f (r) = -i— -±
o o n-1 dr

= constant f (r)
o '

t df (r)
n-1 ov '

dr

Because ^(K, 0) =1, fQ(r) =R(r) and (35) follows.
r* 00

Sufficiency. Assume R(r) =\ ^(K, r)F(d\) satisfies (35). Then,

-15-



(41) A ,R(|z-zo|) =aR(|z-zo|) , z t z^

For any smooth closed n-1 surface 3D separating z and z , (41) can be

treated as an exterior Dirichlet problem with boundary data on 3D.

Let G(z, z") be the Green's function for this Dirichlet problem, then

<42> R(!z-z0|) =J H(z,z') R(|z'-zo|)dcr
3D

z e D+, z €D~U 3D

where H(z, z') =3n'G(z, z1) is the outward normal derivative of G(z, z1)

with respect to z» on 3D. Let j3Dr 3D, 3D2| be an increasing family
of nested surfaces. Then

(43) fD(zf) =J H(z, z»)f(z)dcr

9D2

2 2maps L (3D2, dcr) into L (3D, dcr), so that XaE)(fD) is well-defined whenever
2

f € L (3D2, dcr). Now, XaD(fD) is the projection of X (f) on^(3D)

because X9D(fD) €^(3D) and

(44) E[X3D2(f)"X^(^ X3D(g)

=j j R( |z-z'|)f(z)g(z')dcrd
3D2 3D

- j J R(|z-z'|)fD(z)g(z')dcrdcr»
3D 3D

=J do-j do-'f(z)g(z') R(|z-z'|)-J H(z, z")R(|z"-z'|)dcr"
9D2 3D w 3D

= 0
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Similarly, we, can show

(45) X3D <f> " X8D<fD>
— & —

X9Dl(g) =°

g € L (3D , dcr)

Therefore,

2

X3D9(f) " P3DX3D,(f) is orthogonal to X (g) for every
8D1

g € L {^Dy do-). This proves that X is Markovian. This proof for

sufficiency parallels closely the arguments of McKeari [6],

Equation (35) can be readily solved. Corresponding to a non-negative

F measure in (34), there are only two possible forms for R. These are

J l-? i<v r)n/2-1 o(a, R(r) =A ' ^
(vQr)

(b) R(r) = A
K /7 Av r)

n/2-lv o '

(vQr)

Case (a) corresponds to an F(X.) which has a single jump at \ = v , and

was already covered by theorem 2. Case (b) corresponds to an unbounded

F

(46) F(dv2) = A
n

v d v

1 + (-)
v

o

It is interesting to note that n = 1, which has been excluded from our

discussion so far, corresponds to a bounded spectral distribution. One

-17-



readily recognizes that in that case

R T = —
V

O
r
0

1
COS VT '_'

• 1 + (~ )
V

o

-~A" 2 A e

v 1t|
o' '

dv

which is the well-known covariance function for the Ornstein-Uhlenbeck

process.

Theorem 3 can be readily generalized to include S . It is

probably also true for H , although we have no proof of that.
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