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1. Introduction. We consider games in which there are two players I

and II whose respective states x(t)cR , y(t)eR at time t obey the

differential equations (1) and (2) respectively.

(1) x(t) = f(x(t),u(t),t)

(2) y(t) = g(y(t),v(t),t)

The control functions u and v are constrained by u(t)cU v(t)€V where

U C RP, V C Rq are fixed compact subsets. The game starts at time

t = 0 in some specified initial states x(0) = x , y(0) = y and ends at a

specified time T, at which instant I receives from II a certain amount —

the payoff. We consider two kinds of payoff. The payoff of the first kind

is the value of a functional l*(x,y) where x and y are the trajectories of

the two players. The payoff of the second kind is the smallest time t for

which the triple (x(t),y(t), t) belongs to a specified closed subset
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FCRnX Rm X R where it is assumed that R XR X{T}CF

and T < co. At each time t player I selects a control u(t)€U based

upon his observations of the trajectory of II up to time t in such a way

as to maximize the payoff; conversely at each time t player II selects

a control v(t)eV based upon his observations of x(t), 0 < t < t, in such

a way as to minimize the payoff. Games with payoff of the first kind

have been called games of prescribed duration [ 1] , while games with

payoff of the second kind have been called pursuit-evasion games {player

I is the evader, II is the pursuer). Now it is difficult to make precise

the notion of a strategy for the players which takes into account the

information available to them at each instant of time. In this paper we

shall propose a precise definition of a strategy (which agrees with our

intuition) and we justify it by demonstrating the existence of a saddle

point. Our definition is an extension of that given in [2] in a direction

suggested by Roxin [ 3] .

Whereas the technique that we use to prove the saddle-point

theorems (Theorems 7, 8, 9) is borrowed to a large extend from Fleming [4 ] ,

the spirit of this paper is closer to the approach of Ryll-Nardzewski [5].

In the next section we state standard assumptions on the systems (1) and

(2) which guarantee compactness of the space of trajectories of the two

players. In Section 3 we define classes of strategies with differing

information patterns and prove an important (although easy) result which

allows us to compare these different classes of strategies. In Section 4
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we use this result to give a very simple proof of Fleming's theorem for

a payoff of the first kind, namely we show that the optimal payoff for

the majorant and minorant games (see [4]) converge to the same limit

V as the discrepancy in the information patterns vanishes. In Section 5

we propose our definition of the game and show existence of saddle -points

for a payoff of the first kind (Theorem 7). The value of the game agrees

with that of Fleming. As a corollary to this result in Section we

obtain existence of saddle-point for payoffs of the second kind. In Section

7 we give one example which seems to show that our definition cannot

be made more attractive.

2. Conditions on the differential systems. We make the following as -

sumptions on the differential systems (1). Corresponding assumptions

are made (but not stated) regarding (2).

(i) For each fixed t, f is continuous in (x, u) for all (x, u)eR X U

(ii) There is a measurable function k, integrable on finite intervals,

such that for every ueU and x, x in R ,

|f(x,u,t) -f(x,u,t)| < k(t)|x-x|

(Here and throughout | | denotes Euclidean norm in R or R )

(iii) There are positive numbers M and N, and a measurable function

i , integrable on finite intervals such that for every x in R , and u in

U,
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|f(x,u,t)| < i(t)(M +N)

and finally

(iv) Convexity condition: For every x in R , t in R, the set

f(x,U,t) = {f(x,u,t)|ueU}

is convex.

A measurable function u(v) is said to be an admissible control

if u(t)€U(v(t)eV) for all t. A solution x of (1) (y of (2)) is said to be

an admissible trajectory if it arises from an admissible control.

Definition: Let X (x ) denote the set of all admissible trajectories x of

(1) which are defined on [0,T] and which start at x at time 0 i. e. ,

x(0) = x . Similarly we define YT(y0)»

We consider X (x ) as a subset of the Banach spaces CT -- the

space of all continuous functions from [ 0, T] into R under the max norm.

Similarly Y (y ) is a subset of C . The next result is well-known (see

for example [6] or [7]); the first part is a consequence of the assumption

that the sets f(x, U,t) and g(y,V,t) are convex whereas the second part

follows from the assumption that f, g are Lipschitz.

Theorem 1. (i) If X C Rn and Y C R are compact then

U XT<xo)CCT and U YT(y0)CCT
Vxo VYo
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are compact.

(ii) X (•), Y (•) are continuous functions of their arguments. (Here

continuity is with respect to the Hansdorff metric.)

Let X , Y be compact sets and define X = \^J X (x ),

0 0

YT= \J YT(y0)» Let u €U and v eV be fixed. Let 6>0. Suppose
yo€Yo X

that xeX is obtained from an admissible control u. Let IIc(x)€X_
•«• o T

be the solution of (1) corresponding to the control u where ue(t) = urt
6 6 0

0 < t < 6 and u (t) = u(t - 6), 6 < t < T, and the initial condition x(0) at

y
0. Similarly define the function n :Y — Y . Note that if xeX (x )

then n6(x)€XT(x0) andIf Y^TiYQ) then nj(y) €YT(y0) . The proof of
the next result requires arguments which are standard in the theory of

differential equations. Hence the proof is omitted.

Theorem 2. Let 6(6) = Sup{ ||x -fl*x || x«Xm}

+ Sup{||y-nYy|| y«YT}

Then lim fc(6) = 0. (Here and throughout || || denotes norm in the
6+0

Banach spaces C , C ).

3. Strategies. Let x ,y be specified initial states. Throughout this

paper the symbol 6 (with or without subscripts) represents a number

which is equal to 1/2 for some integer n > 0. We now define three

classes of strategies ^-^^Yq) ={«6>. A(xQ,Y0) ={«}» and A6(x0,y0)
= {a^} for player I and three classes of strategies B (x ,y ) = {p }f
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B(x0,y0) ={|3}, and B (xQ, yQ) ={(3 } for player II.

Definition, (i) A (xQ, yQ) is the set of all functions o^ : YT(yQ) - XT(XQ)

such that if y, y are in YT(y0) with y(T) =y(-r) for 0 < t < i6T then
1a y(T) = a y(-r) for 0 < t < (i+l)6T; i = 0, 1, . . . , -g - 1.

(ii) A6(x ,y ) is the set of all functions a : YT(yQ) —XT(XQ) such that
if y, y are in Y (y ) with y(-r) = y(T) for 0 < t < i6T then a y(-r) = a y(T)

1
for 0 < t < i6T; i = 0,1,... , -.

(iii) A(x ,y ) is the set of all functions a: YT(yQ)^ XT<XQ) such that if

y,y are in Y_(y ) with y(T) = y(T) for 0 < t < t then ^(t) = ay(T) for

0 < t < t; 0 < t < T .

The sets of strategies B6(xQ,y0), B(xQ,y0) and B (xQ, yQ) are defined

in the same way.

It is convenient to regard the strategies for I as subsets of

F(Y (y ),X (x )) -- the space of all functions from YT(yQ) into XT(xQ)

with the topology of pointwise convergence. Similarly we regard B , B,

B6 as subsets of the topological space F(XT(xQ), YT(y0)). By the Tychonoff
theorem F(XT(xQ), YT(yQ)), F(YT(y0), XT(xQ)) are compact.

The first part of the next result is a direct consequence of the

definition while the proof of the second part is a duplication of the argu

ments in Lemma 4.1 of [2],

Theorem 3. If 6X < 62 then
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6* 62(i) Ac C Ac C ACA XCa
62 61

and

61 62b5Cb5CbCb Cb

6 '(ii) The sets A , A, A are closed and hence compact subsets of
e

F(Y (y ), X (x )). Similarly the sets B , B, B are closed and hence

compact subsets of F(X (x ),Y (y )).

X Y
Recall the definition of the maps n , II and the function £(6)

in Theorem 2.

C E E £

Theorem 4. (Approximation Theorem). (i) If a e A , P e B then

(nf o a6) and (ab ©nj) belong to A , (n ©|3 ) and (|3 * nf) belong
o o o o o

to B_.
o

(ii) ||<*6(x) - (II* « a6)(x)|| <£(6), for a6€A5, x€XT(x0) and
|||35(x) -(nj O(36)(y)|| <£(6), for (36eB6, y^Y^).

Proof, (i) is a consequence of the definition while (ii) follows from

Theorem 2.

4. Payoff of the first kind; Fleming's Theorem. Let XQ C Rn, YQ C R

be fixed compact sets. Let X = \J XT(x ), YT = VJ YT^y0 '̂ The

Vxo VYo
payoff is a continuous real-valued function u defined on the compact space

X X Y . Let x €X , yn€Y be specified initial states. Following

Fleming [4], for each 6 we define a majorant game G (x0»yQ) and a
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minorant game G_(x.,y.) as follows: In the majorant game, player II
6 0 0

picks a strategy P5 eB5(x0> yQ) and then Player I Picks a strategy

a €A (x ,y ) . The outcome of these choices is a unique pair of tra

jectories xeX (x ), yeYT(yQ) such that a (y) =x and P&(x) =y. We
C E

shall denote these trajectories by x = x(<* , |3 ), y = y{a> , Pg) • The

payoff is u(x, y). In the minorant game, player I selects first a strategy

ac eAc(xn,yJ and then II picks a (3 *B (x ,y ) . Again the outcome is
6 6 0 0 u u

a unique pair x€XT(x0), y€YT(yQ) such that a^y) =x, (3 (x) =y. We

shall denote these trajectories by x =x(a<6,|3 ), y =y(<*6,P )• The payoff

is u (x,y). Since I tries to maximize and II tries to minimize the payoff

we define

V6(x ,y ) = Min MUlx u{x{a> , P6), y(a , P&))

V.(xn,yn) = Max Min ^(x(a ,p ),y(* ,P ))
6 ° ° VWV fiB\V

From Theorem 3(i) it follows that

61 62
V6 <Vy0)-V61(W-V (Vy0'-V (W

whenever 6 < 6n . It follows that the two limits V(x ,y ) = limV (x ,y )
1-2 w u 6^0

and V(x ,y ) = lim V (x ,y ) exist. From the definition of the strategies
"" ° ° 6-^0 6

it should be clear that an alternate definition of V , V& is the following
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characterization which is closer to that of Fleming [4]

V6 (x ,y ) = Min Max Min Max
y^Y^x^X^) y2€Y2(y1(6T)) x** X^x^T))

(3)

Min Max H-(x.y)

y1/6iY1/6(y1'6-1((.4,T,)X1/8iX1/6(X,/6-1((l-6)T))

V_(x_,y_) = Max Min ...
6 0 0. -I

x eXjIx^ y ^YjCYq)

(4)
Max Min M-(x, y)

where, X1 (x ) (Y (y )) is the set of all admissible trajectories x (y )

of (1) ((2)) defined on the interval [ 0, 6T] and starting at xQ(y0); and

inductively if x^y1) has been chosen X (x1(i6T)) (Y^y^iST))) is the
i+1 4 _i_i \ _

set of all admissible trajectories x (y defined on [i6T, (i+l)6T]

and starting at time i6T in the state xX(i6T) (y1(i6T)) . The outcome

(x,y) is defined by x(t) =x(t) (y(t) =yX(t)), (i-l)6T < t < i6T, i =l,2,...,

—. Since the various sets of trajectories X., Y. are compact and vary
6 •* i i

continuously with initial conditions (by Theorem 1), and since M- is a

continuous function it follows that V , V are well-defined and vary con

tinuously with their arguments (x ,y )€XQ X YQ .

The next lemma gives two other alternate expressions lor V ,

V

-9-



Lemma 1.

(i) V6(x ,y ) = Max Min fx(x, y) (5)
flr6cA6(x0,y0) P6«B6(x0,y0)

Vc(xrt,yJ = Min Max u (x,y) (6)
6 0 0 -. j.

P «B (x0,y0) VA5(x0,y0)

(ii) V (x ,y ) = Min Sup u (x, P (x)) (7)

WW x£Xt<V

V (x ,y ) = Max Inf u(<*(y),y) (8)
VWV y,YT(y0)

Sketch of Proof: We shall prove (5) and (7). A proof of (5) can be ob

tained by noting that for any sets W, Z and any real-valued function

y on W X Z, the following equality holds:

Inf Sup v(z,w) = Sup Inf v(s(z),z)
zeZ w€W s cS zeZ

where S is the set of all functions s from Z into W. This equality

together with the representation (3) of V and the definitions of a ,

(3C can then be used to give (5) .
6

c

Evidently V (x , y ) is at least as large as the right-hand side of

(7). On the other hand if a €A (x0,yQ), P5€ B6(x0» ¥()) and if

x = x(a ,Pc)> y = y{<x »Pfi) is tne outcome then

(x,y) = (x,(36(x))
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and so the right-hand-side of (7) is bigger than V .

Following Fleming we propose the following definition:

Definition: The game has a value V_(x ,y ) provided that the two

limits V(xQ,y0) = lim V (xQ,y0) and V(xQ,y0) = lim V6(xQ,y0) are
6~*"0 6~*"0

equal. In that case we define the (Fleming) value of the game:

Lemma 2. Let n > 0. Then there is a 6* such that for all 6 < 6*

and all (x„,yj€X X Y .
0 y 0 0 0

OiV(x0,y0)-V6(x0,yo)

Proof. Since u is continuous on the compact space X_ X Y_ there

is £ * > 0 such that

|u(x,y) - Mx,y)| < n (9)

whenever ||x-x|| < £*, ||y-y|| < £*; x,x«X ; y, yeY . Let

6* > 0 be such that for all 6 < 6*, £(6) < £* where £ (6) is the function

defined in Theorem 4 (ii). Now let 6 < 6*, (x ,y )cX X Y be fixed.

Let a eA (x.,yrt) be such that
opt x 0 J0

V5(-0.y0) £Ĥ (%pt.P6). yCjpfPfi)) tor all P6£B6(x0,y0) (10)

The existence Of a ^ follows from (5). Let a e = II r • a . Then
opt —6 6 opt

6 6
a_ €A (x , y ) by Theorem 4 (i). Let |3 e B (x , y ) be arbitrary and
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suppose that x€XT(xQ), y€YT(yQ) are such that

£.6(y) =x, P (x) =y

Let x=a* t(y), and let g.6 =P ° n6 ' Then x=H6 (x) and 2-6 tB6
and furthermore,

«08pt(y) =«. £.8(*) =y

It follows from (10) that

V5(x0,y0) < u(x,y)

But ||x-x|| = |K(x) -x|| < £(6) < £*, so that by (9)

V *xo,yo* - ^x,y^ + ^

Since a c eA. and since |3 €B is arbitrary it follows that
— 6 6

V6(x,y)<r|+ Max Min u(x(<*6, (3 ),y^, P ))
<v<=Ac (36<=B6

6 6

= ^H-V^x^y^ •

The Lemma is proved.

Theorem 5. (Fleming). Under the assumptions (of Section 2) on the

differential equations (1) and (2),

v<vV = ¥<W (U)
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Furthermore V ( , ) is continuous on X X Y .

Proof. The equality (11) is a corollary of the preceding lemma whilst

the continuity of V follows from the fact that V is continuous and

the fact that V converges uniformly to V.

Remarks: The class of systems considered by Fleming is more gen

eral than the class treated here since his systems are of the form

x = f(x,u,v) i.e. , both players control the same object. However the

conditions under which he can prove the existence of V are more

restrictive. Also the class of payoff functions is more restrictive.

(This generalization is important in view of the manner in which we

consider pursuit-evasion problems). Incidentally this theorem proves

a conjecture of Fleming (p. 207, [8]), (at least for the class of systems

considered here) namely the function V(x, T) defined in [8] is the same

as V(x, T) defined in [ 4].

5. The Fair Game: Existence of Saddle-points for payoffs of the first kind.

In this section we propose a direct definition of a game. Our

definition is in some sense a limit of the games G , G_ as 6 goes to

zero. However our formulation is much closer to that of Ryll-Nardzewski [ 5].

As before let x ,y be specified initial states. Player I choose a

strategy a«A(x ,y ), player II chooses a strategy (3cB(x ,y ). It would

be natural to define the outcome of such choice to be any pair x€X (x ),

y€YT(yo) such that
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<*(y) = x, (3(y) = x

Unfortunately, the above pair of equations may have either no solution

or it may have more than one solution. The existence of a solution (but

not uniqueness) can be guaranteed if or, (3 are required to be continuous

functions; but then as we shall show in Section 7 we cannot guarantee

existence of optimal strategies. We therefore propose the following

definition:

Definition: Let or€A(x,y) and (3cB(x , y ). A pair xcXT(x ),

yeY (y ) is said to be an outcome of (a, (3) if there is a sequence

x eX (xj, y €Y (y ) n= 1,2,3, ... such that
n i U n l U

lim x = lim ar(y ) = x ; lim y = lim (3(x ) = y.
n n n n

n-*co n-»-oo n-^oo n-^oo

(Evidently if a and (3 are continuous at y, x respectively then ar(y) = x,

P(x) = y).

Let 0(0-, (3) = {(x, y)|(x, y) is an outcome of (or, P)}.

Theorem 6. For each oreA, (3c B, 0(or, (3) is a non-empty closed subset

of XT(xQ)X YT(y0).

Proof. The closed-ness of 0(a, (3) follows from standard diagonal argu

ments. We now show that 0(ar, |3) is non-empty. Let 6, , k= 1,2, ... be

a sequence decreasing to zero and let a - (n • <x) eA . Let (xt»yt)
k k k

be the pair such that
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"6, <yk> =V P(xk> =yk
k

Since X (x ), YT(yn) are compact we can assume (taking subsequences

if necessary) that there is xeX (x ), yeY (y ) such that

lim x = lim a (y ) = x; lim y = lim P(x ) = y.
k-*-co k-*oo k k->-oo k-*-oo

But |[o-6 (yk) - *<yk) || =||(n* oa) (y^) - a{y^)\\ <6.(6^
k k

by Theorem 4 (ii) . Since lim £ (6 ) = 0 , the assertion follows.
k-^oo

Definition: For each |3eB(x ,y ), let u (|3) = Sup Max M-(x,y)
«€A(x0,y0) (x,y)€0(a,P)

and for each a€A(x ,y ) let fJ. {a) = Inf Min ^(x,y) .
p€B(x0,y0) (x,y)€0(<*,(3)

Now let V+(x ,y ) = Min u+(p)
peB(x0>y0)

V (xQ,y0) = Max |x (<*)
or,A(x0,y0)

In order to show that the Min and Max in the definition of V ,

V actually exist the following result will be helpful.

Lemma 3. u+(|3) = Sup u(x, (3(x)) (12)
x€XT(xQ)

and u (or) = Inf u (o(y),y)

y«*T(y0>
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Proof, We prove the first equality. Clearly u ((3) is at least as big

as the right-hand-side of (12). Now let aeA and let x, x be in X (x );
n

Tv Ql

y} y in Y (y ) for n = 1, 2, . ., such that

Then,

lim x = lim aly ) = x ; lim y = lim 6(x ) = y .
n wn 'n n J

n-^-co n-*-co n-^co n-^co

lim (xn,P(xn)) = (x,y)
n-*"00

It follows that u (P) < Sup (x, p(x)) .
X€XT(X())

Lemma 4. u (p) is a lower semicontinuous function of (3eB(x , y )

\x_{&) is an upper semicontinuous function of o-eA(x ,y ).

Proof: We shall only prove the first half of the assertion since the proof

for the second half is analogous. Let z be a real number and let

Bz = {p|P6B(x0,y0), u+(P) < z}

We must show that B is closed. Let (P(k)} be a net in B converging

to (3 in B, i.e., for each x £X (x ) lim p(k)x = P(x) . Let x 6X (x ) .
k

Then by definition u (x, P(k)x < z for all k. It follows from the con

tinuity of u that u(x,p(x) <z. Hence u +(p) < z.

Corollary: There is a (3*€ B(x y ), »*«A(x ,y ) such that
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(i) u+((3*) < u+([3), peB

u (a*) > u (<*), aeA

(ii) M-+(P*) =V+(x0,yQ) =VF(x0,y0) =VJx^) = uJa#) and

(iii) Min M-(x,y) = Max u (x, y)
(x, y) €0(c**, (3*) (x, y) €0(or*, |3*)

Proof, (i) follows from the preceding lemma and the fact that B(xQ,yQ)

and A(x ,y ) are compact spaces. Again from the same lemma and

the definition of V we see that

H+(|3*) = V+(x ,y ) = Min Sup u(x, |3(x))
0 (3€B(xo,y0) x€XT(x0)

< Min Sup u (x, P5(x))

VB6(Vy0j X€XT<V

=V6(x0,y0)

where the last equality is the same as Eq. (7). Similarly

,MO = V_(x0,y0) > V6(x0,y0)

so that (ii) follows from Theorem 5. To prove (iii) it is enough to note

+that by definition of u and u ,

+

u (a*) < Min u(x,y) < Max H-(x,y) < u (|3*)
(x,y)€0(c**, p*) (x,y)€0(o*,(3*)
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and then (iii) follows (ii).

We can now define the fair game and prove the existence of a

saddle point. The game G is defined as follows: Player I selects a

strategy areA(x, y) whilst II independently selects a (3cB(x, y). The

payoff is given by u(x, y) where (x, y) is an arbitrarily chosen pair from

0(ar, P). The saddle-point theorem shows that the value is independent

of the arbitrary choice of the outcome.

Theorem 7. (Saddle-Point Theorem) There exists a**A(x ,y ),

p*€B(x0,y0) such that for all aeA(xQtyQ) and all p€B(xQ,y0),

Max u(x, y) < Max u(x, y)
(x, y) € 0(o, p*) (x, y) € 0(or*. P*)

Min u(x, y) < Min u(x, y)
(x, y) € 0(<**, P*) (x, y) € 0(<**, P)

Furthermore u(x, y) = ^F{^Q>Y0) for all (x, y) e0(a*, p*).

Proof: By the definition of u , u we see that

Max H-(x,y) < u (P*), u (or*) < Min u(x, y)
(x,y)€0(a,p*) " (x,y)€0(a*,P)

The result now follows from the previous Corollary.

Definition. Given two players I and II with dynamics (1) and (2) respec*

tively, and a continuous payoff u of the first kind, the (Fleming) value
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of the game corresponding to initial conditions (x_,yn) will be denoted

by

V •*: V V

6. Payoff of the second kind: Pursuit-Evasion Games: In this section

we consider payoffs of the second kind. Before we define the game we

introduce a definition which will be helpful in relating these games

to the games considered in the last section.

Let F G R X R X [ 0, oo) be a non-empty closed set. For

each T < co define the function u : X (x ) X Y (y ) -»• R by

u^x.y) = Min{|x(t) -x| + |y(t) -y| + |t-t| (x,y,t)€F,tc[0,T]}

It is easy to show that Urp is continuous. Evidently u_(x, y) is non-

negative and

M-T(x,y) = 0 if and only if (x(t), y(t), t) €F for some t . (13)

We now define the game: There is given a closed set F C R XR X[0,co)

and a T < oo such that (x,y, T ) e F for all (x, y) €Rn X Rm . The
max ' max' * 7'

game is played on the fixed time interval [ 0, T ] . Player I (the evader)

selects a strategy acA(x , y ) whilst II (the pursuer) independently

selects a strategy p€ B(x_,yn). The payoff given by

t(x, y)
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where (x, y) €0(<z, p) is chosen arbitrarily and t(x, y) is the smallest

capture time i. e. ,

t(x,y) = min{t|(t,x(t),y(t))€F}

Player I tries to maximize the payoff while II tries to minimize it. As

before we define

V (x ,y ) = Sup Inf Inf t(x, y)
" ° U a€A(x0,y0) p€B(x0,yQ) (x, y) €0(or, p)

V+(x ,y ) = Inf Sup Sup t(x,y)
p6B(x0,y0) a€A(x0,y0) (x,y) e0(or, p)

Theorem 8. V^(x0,yQ) =V+(x0,y0)

Proof. Evidently V (x ,y ) < V (xQ,y0). Let € > 0. Then from the

definition of V , for every strategy a there is a strategy P and a

(x, y) € (a, p) such that

t(x,y) < V_(x0,yQ) + €

i. e. , there is a t < T = V (x , y ) + e such that

(x(t),y(t),t)eF . (14)

Now define the continuous function u on the set X (x ) x YT (yQ)
€ € €

as in the beginning of this section, and consider the game defined on the

-20-



fixed time interval [ 0, T ] with the continuous payoff function |x .
€

By Theorem 7 this game has a value V (u ; x , y ). However be -
Jb 1 0 0

€

cause of (13), and the argument leading to (14) we conclude that

VF(HT ; x . y ) = 0.
€

Going back to Theorem 7, the saddle-point property implies the exist

ence of a strategy p(€) such that for every or€A(x , y ) and every

(x,y)eO(or,P(€))

uT (x,y) = 0.

From (13) we can then conclude that for every ar€A(x ty ) and every

(x,y)eO(arfP(e)),

t(x,y) <T£ = V_(X(),y0) + €

It follows that

v+«vV i v-<v"b»+ •

Since € > 0 is arbitrary the theorem is proved.

Definition: Let T* =V+(xQ, yQ) =VJxQ,y0).

Theorem 9 : There exists a strategy p*eB(x ,y ) such that

-21-



Sup Sup t(x,y) = T* < Sup Sup t(x, y)
acA(x0,y0) (x,y)€ 0(or, P*) atAfr^yJ (x,y) €0(or, p)

for all P«B(x ,y )i, e there exists an optimal pursuit strategy.

Proof: Consider the game defined on the fixed time interval [0,T*]

with the continuous payoff function H-rp^ Clearly V_(u ; x , y ) = 0

and so there exists a strategy p* such that for all areA(x ,y ) and all

(x, y)€0(<*, p*), HT;!j(x,y) = 0; this implies that t(x, y) < T*. Q.E.D.

Unfortunately, trivial examples show that in general there does

not exist a strategy <*#eA(x , y ) such that

T* = Inf Inf t(x,y) (15)
PeB(x0,y0) (x,y)£0(a*,p)

We can therefore only assert the following theorem.

Theorem 10. If there is a strategy or*cA(x ,y ) which is optimal for

player I (i.e. , satisfies (15)) then the pair (<**, p*) from a saddle point

i.e. , for all or€A(x0,y0), p€B(X(),y0),

Sup t(x,y) < Sup t(x,y) = T* = Inf t(x, y)
(x,y) € 0(<*, p*) (x, y) € 0(a*, P*) (x, y) 6 0(<**, P*)

< Inf t(x, y)
(x,y)€0(a*,P)

Various conditions can be placed on the set of trajectories and the

endzone F which guarantee existence of an optimal evasion strategy a
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One such condition is the following:

(C) As the initial states and time (xn»yn»t ) approaches F the value

T*(x0,y0»t0) approaches 0.

In this case we can show that the function

T(a) = Inf Inf t(x, y)
p€B(X(),y0) (x,y)€0(«,p)

is an upper semicontinuous function of <areA(x ,y ) and hence there

exists c** such that T(o-*) > T(or) for all a. Evidently then T(a*) = T*

and or* satisfies (15). We now sketch a proof to show that Condition (C)

above implies the upper-semicontinuity of T(ar).

Definition. Let ar€A(x ,y ). We say that a pair (x,y)€X (x ) X Y (y )

is a possible outcome if there is a sequence y , n= 1,2, .. . in Y (y )

converging to y such that t*(y ), n= 1,2, ... converges to x. Let P0(or)

be the set of all possible outcomes.

It is easy to check that

T(a) = Inf t(x,y)
(x,y)€P0(tf)

Now let z be any real number and let

Az = {Qr|or€A(x0,y0), T(or) > z}

We must show that A is a closed set. Let {or(k)} be a net in A
z * z
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converging to a and let (x,y)eP0(ar) i.e., let {y^} C YT(yQ) be a

sequence such that y converges to y and a{y ) converges to x.

Suppose that t(x, y) = z - € for some € > 0. This means that

(X(Z-C), y(z-€), Z-€)€ F

Since lim lly -yll = 0 and lim \\a(y ) -x|| = 0, given n > 0 there is
1' n n

n-*co n-*»co ..

N(n) < oo sufficiently large such that

p{(a(y )(z-€), y (z-e), z-€), F} < n
n n

whenever n > N(n). Now lim a(k) (y ) = a{y ). Hence for k sufficiently
k

large,

p{("(k)(y Hz-*), y„(x-0, z-O, F} < 2n
n n

But then by condition (C) T(a(k)) < z -e + y(n) where lim y(r\) = 0.

It follows that for all sufficiently large k, T(<*(k)) < z which is a con

tradiction. Hence A is closed and so T(a) is upper semicontinuous.
z

We can summarize our results as a theorem.

Theorem 11. Suppose that (1) and (2) satisfy the assumptions of Section

2 and also suppose that condition (C) holds. Then there exists ar*cA(x ,y ),

p*€B(xQ,y0) such that for all or€A(xQ,y0), pcB(xQ,y0)

t p{(x,y,t), F} = min{|x-2| + |y-y| + |t-t| (x,y,W>
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Sup t(x,y) < Sup t(x,y) = T*
(x, y) €0(a, p*) (x, y) € 0(<**, p*)

Inf t(x, y) < Inf t(x,y),
(x, y) € 0(<**, P*) (x, y) €0(or*, P)

7. An example. System Equations

x = u, |u| < 1

y = v, |v| < 1

x(0) = y(0) = 0, final time T=l. x, y,u, v, are real numbers ; x is the

state of player I, y is the state of player n. The payoff u is just a

function of the final states x(l), y(l) and is given by :

r |x(l)| for x(l)y(l) > 0

^(x.y) = <

I (1- |y(l)|) |x(l)| for x(l)y(l) < 0.

Consider the strategy p* for II givein by p(x) = -x for all xeX. . Then

u(x,p*(x)) < 1/4

Let a*: Y. -* X be the strategy given by

(«*y)(t) = y(t) for t < 1/2

y(l/2) + t for t > 1/2 if y(l/2) > 0

(<**y)(t) =

y(l/2) - t for t > 1/2 if y(l/2) < 0

-25-



Then for all .yeTj,

u(<**(y),y) > 1/4 .

Evidently (or*, p*) are optimal. Furthermore a* is not continuous,

although it can be approximated by continuous strategies; moreover

every continuous strategy is inferior to a*.
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