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ABSTRACT

Numerical orbit calculations indicate very efficient trapping of

injected particles by an r. f. field with a frequency corresponding to the

cyclotron frequency within a magnetic mirror. For an initially isotropic

velocity distribution the orbit theory indicates that the trapping process

is non-adiabatic and consequently that the particles will remain trapped

for very long periods of time and be stochastically heated to high energies.

The orbit theory also predicts a transition to adiabatic behavior for large

initial velocity anisotropics, in agreement with results from Hamiltonian

perturbation theory, explaining the inability to heat highly anisotropic

plasmas in this manner. A statistical theory has been developed to

calculate both the degree of heating and the trapping times. The predicted
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distribution function is Gaussian in energy rather than Maxwellian.

Experiments on r.f. cyclotron resonance capture and heating have

been performed. Previously reported work has been extended and

considerably higher temperatures (- lOOkeV at peak compression of

45kG) have been found. A clear transition between the Gaussian and

Maxwellian energy distribution is found, as predicted by the theory.

The absolute magnitude of the stochastic heating (« 8keV at the end of

the heating pulse at cyclotron resonance of 3.7 keV) is in reasonable

agreement with the theoretical prediction. The number of trapped

12
particles is found to be greater than 10

I. INTRODUCTION

For static magnetic-mirror confining fields, for which the

1 2
magnetic moment jjl= r-mv /B is a constant of the motion, a particle

c* X

entering a mirror field (within the loss cone) will leave it after a

single transit. This short containment time is not useful, and conse

quently various schemes have been proposed for introducing a per

turbation in the magnetic field which results in variations of the magnetic

moment. For example, a small oscillation of the magnetic field of the

form B = B (1 + h sin kz ) can introduce large perturbations in the

magnetic moment for particles with a resonant parallel velocity v = go /k,
eBQ " °

where go = is the cyclotron frequency in the absence of the pertur-
c m

bation. This system has been investigated by Sinelnikov et al (i960),

and by Laing and Robson (1961) , by Dreicer et al (1962) , and by
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Dunnet et al (1965). Such a perturbation will lead to resonant loss of

contained particles, but not severly on the first reflection because the
2 2interchange of energy between v and v initially shifts the particle

from resonance. If the perturbation is helical, rather than azimuthally

symmetric, the initial rate of trapping versus loss is more favorable,

since particles traveling in the reverse direction are not in resonance.

The helical perturbation was proposed by Wingerson (1961), analyzed

theoretically by Wingers on, Dupree and Rose (1964), and experimentally

by Demirkhanov et al (1964). The experimental results agree qualitively

with the theoretical predictions, but are generally less optimistic.

Demerkhanov et al (1964) found that a helical perturbing field B ~ 0.25

Gauss in an approximately 100 Gauss guide field could, on the average,

convert 40 percent of the longitudinal energy to transverse energy.

Measurements of the trapping time showed that approximately 45 percent

of the particles were trapped in a long-lived component of about N=50

longitudinal transits, which is in reasonable agreement with N= 100

calculated from the theory. Liouville's theorem predicts that for a mirror

magnetic field the maximum ratio of trapping time to the transit time is

equal to the ratio of the total momentum space available to the particles,

to the momentum space of the loss cone. A more efficient trapping

mechanism leads to more rapid charge buildup, but eventually to a more

rapid loss. This situation has been treated statistically by Robson and

Taylor (1965), and found to agree with the results of the numerical
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calculations and experiments.

It is also possible to trap particles in a time varying magnetic

field. If the magnetic field increases with time, v increases faster

than v . Thus some particles will be stably trapped in a rising field
ii

if they initially enter the field at the edge of the loss cone. However,

if the adiabatic condition is well satisfied, the change in v during one

longitudinal transit is small, and consequently the percentage of trapped

particles is also small. Since the process of injection into an increasing

magnetic field is necessarily a transient one it is difficult to trap large

particle densities. If the initial trapping field is small enough, or the

rate of increase of the field large enough, there is additional trapping

arising from the non-conservation of magnetic moment. Trapping in

this transition region is the mainstay of injection into mirror compression

experiments. If, for example, we take (l/a>cB)(dB/dt) =1/10 to be the

criterion for the onset of non-adiabatic effects, we can calculate the

value of dB/dt at a given B, or alternatively the value of B at a given

dB/dt, which satisfies the criterion, and compare with the results of

trapping in various experiments. If we take for hot electron experiments

(Post, 1958), a characteristic dB/dt = 200 Gauss/usee, then we find the

adiabatic condition is not satisfied at B = 10 Gauss. At significantly

higher fields (say a factor of 10) one finds that trapping efficiency does,

indeed, fall off. For the low magnetic field, required for efficient trap

ping, energetic ions are not magnetically confined, which limits the
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final values of ion energies obtainable by magnetic compression.

From the discussion above, one arrives at the conclusion that

efficient trapping and long containment time are mutually exclusive with

a time independent static field perturbation. A time varying field, on

the other hand, is not sufficiently flexible to obtain all of the desired

injection characteristics. The results suggest, however, that a per

turbation that can be turned on until a steady state density is reached

and then turned off, can achieve simultaneously efficient trapping and

long containment. A perturbation which changes the particle energy,

and thus enlarges the available phase space, may also achieve both ef

ficient trapping and long containment. In this latter case the contain

ment is not necessarily independent of the trapping mechanism.

One perturbation with both of these trapping features is a pulse

of r.f. energy at the cyclotron frequency. For injection at low energy

with high r.f. power almost all phases of the r.f. field with respect to

the particle lead to trapping. The r. f. can then be turned off after the

injection process is complete. An additional advantage in using r.f.

energy is the resultant particle heating. Besides the obviously beneficial

effect of producing a hotter plasma, the heating also increases the con

tainment time by enlarging the phase space available to the particles.

In order to effectively trap and heat particles the r.f. pulse must pro

duce either continuous or random acceleration. A time oscillating

acceleration, characteristic of an r.f. interaction off resonance, will
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rapidly return particles to the loss cone. For magnetic mirror con

fined particles with small longitudinal transits Seidl (1965) has shown

from perturbation theory, that a new adiabatic invariant exists which

defines a unique relation between energy and the average phase of the

particle with respect to the r.f. wave. The existence of the invariant

leads to energy oscillations about an average value; in this case there

is no continuous heating of the particles, and they also return to the

loss cone within one energy oscillation. Numerical solution of the exact

equations of motion by Tuma and Lichtenberg (1967) confirmed the

existence of this invariant, but also showed that for large longitudinal

excursions the energy changes at resonance appeared random. Their

interpretation was that either the energy no longer oscillated or that the

oscillation period was sufficiently long that it was not observable. In

either case there would be effective trapping and heating of the plasma.

In the next section we demonstrate numerically a transition from an

ordered phase energy relation to a random one, allowing for both trapping

and heating.

If the phase between the particle and the wave is random at each

resonance crossing then the particles will be stochastically heated. The

theory of stochastic heating has been developed, to treat the acceleration

of particles by a turbulent wave spectrum. Stix (1964) considered the

fields to be coherent for a given length of time and then to experience a

random phase change. This approach led naturally to the development
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in terms of a random walk, in which the step length was determined

directly from the coherence time. A different approach was used by

Sturrock (1965), who assumed that the distribution function was des

cribed by the Fokker-Planck equation (Wang and Uhlenbeck, 1945), in

which the coefficients are determined in terms of the second-order

correlation functions of the spectrum. In either approach a major

difficulty is in determining the appropriate spectrum of the turbulent

fields. Using an approach similar to that of Sturrock, Puri (1966) con

sidered the simpler problem of determining the acceleration of particles

in an applied stochastic field with a known spectrum. In the situation

treated here, the random accerating step is reasonably well known, and

thus the direct method, similar to that used by Stix, is applicable. In

Section II B we develop the statistical theory which is compared with

the experiemntal results in Section III. In addition to predicting efficient

heating, the statistical theory also indicates that particles will be con

tained for very long periods of time, as would be expected from the

previous qualitative discussion.
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II. THEORY

A. Single Particle Calculation

The simplest case of synchronous acceleration is the

resonance between a circularly polarized electromagnetic wave with

angular frequency co and a particle orbiting in a constant magnetic

field with the cyclotron frequency w = co . With the initial conditions

v = 0 and v = v at t= 0, the secular solution for non-relativistic
x y 11

motion is

eEov = t sin(wt + cjj) + v sin cat
x m ±i

eE
0

v = t COS(a)t + <[>) + v cos wt W
y m xi

2 2 2
v = V + V

x x y

where the electric field is given by

E = u Ert sin(cot + <j>) + u* En cos(cot + <j>)
— -x 0 -y 0

The transverse kinetic energy of the particle is, after squaring and

adding velocity components,

2

• =i-^v2 =Tmv2+Tm(-^) Kt) +m -^ v o> t cos 4>x2 x2 J.J 2 \ B / c -dxiC

The second and third terms give the secular energy change. The third
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term dominates initially leading to either an increase or a decrease in

energy, depending on the phase of the particle with respect to the wave.

At later times the second term dominates leading to an ultimate increase

in energy. For a mirror confined particle t is replaced by a time T

such that go T/2tt is the effective number of cyclotron orbits spent in
c

the resonance region. For our experiment (kTe)injected * 30 eV,

E « l05V/m, and from the numerical calculation (see Fig. 2) w T » 100,
0

giving for the 2nd and 3rd terms in Eq. (2), after the initial pass through

resonance, W = 2200eV and W= 230 cos * eV respectively. We see
x

that for the first resonance the 2nd tern dominates and the energy always

increases. For subsequent resonant passes the initial transverse

velocity is much larger and the third term will usually dominate, the

two terms being equal (order of magnitude) when v =E0coQT/2B, or,

numerically W = 500eV. We shall compare these values with numerical
x

calculations and experiments in the subsequent sections.

In a previous paper (Tuma and Lichtenberg, 1967) we numerically

solved the exact relativistic equations of motion for an electron in a

magnetic mirror with the field on the axis given by

B.-V1-
(Rm'l\ 2uz
\K^) cos ~.

where R is the mirror ratio. We found that for particles which do
m

not penetrate deeply towards the magnetic mirrors, the energy oscillated
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in time, as predicted by the Hamiltonian perturbation theory of Seidl (1965).

This implies the existence of an invariant of motion averaged over many

longitudinal periods. The existence of this invariant will lead to an ordered

relationship between the particle energy and its phase with respect to the

electric field, at a fixed longitudinal position. We therefore have numer

ically calculated, v /c, the normalized velocity perpendicular to B, versus
x

the phase difference between the particle and the r.f. electric field, at

successive resonance crossings. Results for a case of little penetration

and for a case of deep penetration into the mirror field, in Fig. la and lb,

respectively, show the difference between an ordered and a random

energy-phase relation. We conclude that, provided the longitudinal parti

cle motion penetrates deeply enough into the mirror field, (a situation

which exists in the experiments described in Section HI) a random phase

assumption can be used to statistically calculate the trapping and energy

change of particles. It should be pointed out, however, that if heating is

attempted late in an adiabatic compression cycle, or on particles that

have been injected at the mirror midplane with primarily transverse energy,

(i. e. , cases of small excursions from the midplane), the invariant exists,

and only those few particles with almost all transverse energy can continu

ally gain energy (Seidl, 1965).

In order to compare theory and experiment the orbits of a number

of particles at various initial phases were calculated for the mirror field

of Eq. 3, with the parameters corresponding to the experiment. The
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results are shown in Fig. 2. We see as predicted from Eq. (2), after an

initial number of cyclotron periods in which the particle either gains or

loses energy (corresponding to the third term in Eq. (2)) the energy

always increases to a value of the order of W = 2000eV. For succeeding

resonance crossings there are large changes in energy with the amount

and sign of the change depending on the effective phase. Off resonance

the energy oscillates with an angular frequency given approximately by

[w (z) - oj], as expected from theory. Because AW » kTg after the

initial resonance, particles are very effectively trapped. In fact, trap

ping is effected until WResonance (^^ "M $ ^e,,*resonance
•*• \ resonance /

We demonstrate this situation for a single injection phase in Fig. 3. Here

v /c and the normalized cyclotron frequency are also shown. The elec-
x

tron just escapes from the mirror but is captured by a second mirror,

which is provided for in the computer program.

B. Stochastic Treatment

We consider that the following heirarchy of energies applies

1/2
W « W « (W <W >) ' « <W > (3)

j.LC 0 0 x x

where W is the maximum perpendicular energy to a particle that will
xLC

1 2lie in the loss cone, W = - m(EQ a>c T/B) is the energy gained in the
1/2first transit after injection (2nd term in Eq. 2), (WQ<W >) is the
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average energy gained on succeeding transits (average of 3rd term in

Eq. 2), and <W > is the average particle energy. We shall define
x

these terms more exactly, below. The first and second inequalities

follow from the numerical studies of the previous section. The third

inequality embodies the usual statistical assumption that the evolution

of the distribution function has taken place over a large number of random

energy changes.

We assume that the electrons return to the resonance region

with a random phase with respect to the electric field and, using the

second inequality with a perpendicular velocity large enough such that

the resonant change in energy depends only on the phase dependent term

in Eq. (2). For this situation we have

1/2
En /2W \

AW = W - W = m --^ — w T cos $ (4)
x j.n+1 j.n B \ m / c

where both W the perpendicular energy upon entering the resonance
J-n

region, and (j> are independent random variables. The number of effective

orbits within the resonance region, u T, is considered constant, as

suggested by the numerical calculations. Equation (4) represents a

Markovian process, as the successive values of W depend only on the

previous values. In this situation it can be shown (Wang and Uhlenbeck,

1945) that, in the limit of small changes in energy for each transit

(AW « W ), the probability distribution f (W ) is governed by the
xx x
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Fokker -Planck equation

8n"f<\> _£-[A(W)f(W )] +I J_[B(W)f(W)]aw x x 2 8Wz ± ± (5)

where A(W ) and B(W ) are the first and second moments of the change
x J.

in energy

A(W )= f<AW >xf(W )dW , B(W ) = f<(AW )2>.f(W )dW
x J x 9 x x xJ x 9 J- J- (6)

and < >, is an average over phase <j>. We assume that f(W ) is a
<J> x

Gaussian

where

f(W )
x IT

1/2
1

exp

- W

X

2<1Vw
X J

<W2> = \ W2 f(W )dW
x W J x x x

With this assumption the first and second moments of the change in

energy are given, for AW « W by,

and

<W > _<W> = <AW >W±n+1 4>,W Wxn +,W ^Wx *,W±
x x

-13-

(7)

(8)



and

^n+A.W "<*>♦,* =<(AWJ2>+,W
X

Since W and <j> are independent random variables <W > = <W >

and thus

<W cos <|>>, ... = <W >_._ <cos <|>>
± <j>, W x W 9

X X

Averaging over all values of <j> we find that the change in the average

value is zero, while the change in the second moment is given approxi

mately by

<(W ^)\ w - <W2 >" =m(-~ u> T ) <W > (9)x xn+l' <j>,W xntf>,W V B c7 xnW
X X » ' -L

2 1
where we substituted for AW from (4) and used < (cos <(>) > = — .

2
Replacing <W > by U and determining from the definitions that

_L vv
X

2 1/Z 2 1/Z<wx>w =(-) <Wl >w (10)
X J-

then for large n Eq. (9) can be written, approximately, in differential

form

dU .2%1/Z l™0 ^2TTl/2
— = ( —) m
dn xtt GM2"'
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Solving for U we have

1/2 2 1/2
u ' = < w >,

9 l'2 / En \

Equation (11) gives the stochastic heating which we shall compare with

experiments in Section III. Since the change in the second moment in

1/2 2 1/2
Eq. (9) is itself proportional to (n) , the evolution of <WX > is

1/2
seen to be proportional to n, rather than n

2 1/2
We now show that with <W > given by (11) and f(W ) by (7)

x x

that (5) is satisfied. From (6), (8) and (9) we determine that,

A(W±) = 0 (12)

and

B(WX) =m( -^c^Tj <W±n> (13)

where we have dropped the Wj. subscript on < >w . Substituting these

results together with (10) into the Fokker-Planck equation we have

2>1/2....2rl/2f2^2 1 / *f \1
<Wj. > ' \ 2<WX>/J(I) <ri
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2 1/2
which is satisfied for <W± > as given by (11). Thus we have shown

that the assumption of a Gaussian distribution is consistent with the

particular Markovian process we are considering* i.e. , if the distri

bution function is initially Gaussian it will remain so. For arbitrary

initial conditions the Fokker-Planck equation must be used, an approach

taken by Sturrock (1966). However, the many approximations necessary

to reduce the equations to tractable form leave doubt as to the increased

accuracy of the method over the assumption of an initial Gaussian energy

distribution. In Part III the experimental distribution of energies is

found to be approximated by a Gaussian, thus indicating that the experi

mental time is sufficient for the distribution function to relax to the form

we are considering.

Since W takes on only positive values we must also assume a
x

perfectly reflecting barrier at W = 0 in order to maintain the form of

the energy distribution (Chandrasekhar, 1943). The actual barrier is

somewhat fuzzy and includes absorption, as we have shown in II A. This

mainly affects the absolute density without appreciably affecting the form

of f(W ) as a consequence of the first inequality in (3). The equation
x

that describes the decay of the particles trapped during a single transit

is

d-p.

-7"^ = -V (14)dn 'ii
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where n. is the number of contained particles remaining from the j th

injection and n . is the number of particles lost from that class per

transit. The total number of trapped particles after n transits with

continuous injection is then

n

N = S r\. = \ -n(j) dj (15)
"j J, —

j =l

where we have replaced the sum with an integral for large n. In order

to solve (14) we must obtain a relation for t^, which we can write

approximately in the form

wo
(16)"l " £ ^WJ^d\

XLC

where A(J>/2it is the fraction of the r.f. phases that take a particle from

W into the loss cone, and the limits of integration are those values of
x

W for which A<|>/2ir exists. Ignoring the second term in (2) we find
x

A<j> from the relations

E

ir 'x B x C

and

2 = v2 + -2. V (0jCOS(j) (17)
f

0 < v < v (18)
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wherevisthemaximumvinthelosscone.Findingcos<}>from

(17)atthelimitsofvin(18),andexpandingforsmallA<j>weobtain

v2W
A,LC_LCf,g»

*=v(v2-v2)1/2~w"2(W-W)^2 x0xiOx

SubstitutingEqs.(19)and(7)in(16)weobtain

w2
•W-±-7-WdW
f°*2<W2>^LCx

^=421/2.3/2<W2>1/26XW1/2(W-W)1/2 -LCAx0x
(20)

Usingtheinequalitiesof(3)»i.e.,byneglectingtermsoftheorder
WW

andcomparedtounitytheintegralcanbeevaluated.
21/2Wn

<W>0
x

Thefinalresultis,

1WiLC
t,.=^r^r£^T(2D
'''Z1'2,112<w2>1/2

andsubstituing(16)and(6)into(9)wehave

wx
±0._1LCa(22)
dn"2WQn

IntegratingEq.(22)weobtainthenumberofparticlesremaining,from

thoseinjectedduringasingletransit,afternadditionaltransitsofthe
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resonance region

-C
•H = TtQn

W

•H = TiQn (23)

^LC
where C = — and r\ is the number of particles trapped in a single

*W0
transit. For continuous injection the total number of trapped particles

is from (15)

N=-jTc"[n1"C-l] (24)

For C « 1» which is generally the case for low energy injection and

high r.f. fields, the decay of a single transit is slow and the buildup

for continuous injection rapid. The containment time of a particle can

also be calculated. If we measure the containment by the half life of

'0=2particles injected during a single transit then from (23) with n/n = r-

we obtain

,1/C
n = 2

If the time for a single transit (n =l) is t , and substituting for C, the

half life of containment is

2V\LCt = t^ 2 x (25)

For our example W /W > 10 giving t > 10 t . Thus a particle is
0 XLC '
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contained, on the average, on the order of 10 transits. From Fig. 3

we find that co t =500 and thus for 3cm r.f. waves which we are
c i

8 »>'2considering, t = 10* and t= 10" . This is longer than the decay

time of the experiment in the absence of heating and thus, if the

probabilistic solutions were valid over this long time period, we might

expect little change in lifetime due to application of continuous r.f.

heating. Actually, the energy calculated from (11) would show that

the particle would become highly relativistic, invalidating the theory.

In practice, as we shall see in Section in, only a short r.f. pulse of

the order of a microsecond duration is used, during which the decrease

in trapped particles is negligible. For subsequent times normal col-

lisional decay prevails. In the various approximations we have made,

particularly in the simplified form of (19), we have overestimated the

particle loss, and thus (23) and (24) are lower bounds on the confined

density.

in. EXPERIMENT

The experimental configuration shown schematically in

Fig. 4 is similar to the Table Top device (Post, 1958). The.plasma

is generated by a deute rated-titanium washer-stack source, which injects

plasma into a rising field having a mirror ratio of 1.5:1. The field rises to

its maximum midplane value (up to lOOkG) in 500p.sec and decays with
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a time constant of 20msec. The high field region of the vacuum chamber

(base pressure 2 X 10" Torr) is 10cm diameter and 30cm long. There

is an initial, uniform dc bias magnetic field of 20G with the same field

direction as the compression field.

The experiment is usually operated with compression from an

initial field somewhat in excess of 20G to fields between 30 and 60kG.

At 50kG the plasma electron temperature is 75keV; the density greater

than 1012/cm , the diameter about 5mm, and the plasma decays slowly

with a time constant of about 5msec. For other values of magnetic field,

the temperature and density of the electrons are as expected from the

adiabatic compression law. The plasma electron temperature is mea

sured from the energy spectrum of the x-ray Bremsstrahlung emitted

from the plasma. The size and location of the hot electron component

are determined from the photographs of a phosphor located normal to

the magnetic axis. The total number of radiating particles is obtained

either from the absolute calibration of the intensity of the synchrotron

radiation spectrum (Sesnic, 1968), or from a cavity perturbation tech

nique. The source of the r.f. power is a magnetron, nominally pro

ducing a 250kW, lOGc (3cm), 0.5|isec pulse, which is transmitted into

the midplane of the plasma chamber through a side port. The magnetron

pulse is generally initiated slightly after source injection.

From the statistical analysis we determined that, for those

particles whose excursions are large enough to be stochasticly heated,
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the energy distribution after r.f. heating pulse would be Gaussian

rather than Maxwellian, as given by Eq. (7). In Fig. 5 we plot, on

semi-log paper, the relative intensity of Bremsstrahlung x-rays versus

the square of the photon energy. The radiating electrons are injected

with a delay of 35 usee after initiating the magnetic field, corresponding

to cyclotron resonance within the mirror. For energies above <W^>

the exponential behavior dominates, and the straight line dependence

2 2
gives the predicted behavior with 2<W > = 19500(kev) or

X

= lOOkeV. In Fig. 6 the time dependence of the<w2>1/2
X B=45kG

magnetic field is plotted at the midplane and at the magnetic mirror,

indicating the range of times within which cyclotron resonance occurs

somewhere within the mirror. In Fig. 7 the equivalent plasma

2 1/2
perature (kT = <W> ) is plotted vs. delay time between the r.f.

pulse and initiation of the magnetic field. The temperature and density

fall rapidly above 38 usee delay. The increase in temperature at short

delay times is due to adiabatic compression coupled with some non-

resonant r.f. heating. We see that there is a close correspondence

between resonance and resultant trapping and heating.

Coincident with the magnetron pulse the light eminating from

the plasma increases. We interpret this phenomena as an increase in

background ionization. The newly ionized particles can also be trapped

and heated, thus increasing the total density of contained hot plasma.

This result can be compared with earlier experimental results, shown

in Fig. 8, in which the source is fired in the normal trapping mode,
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early in time (Sesnic et al, 1968). The increase in the intensity of

synchrotron radiation is due to an increase in radiating electrons;

x-ray pulse height analysis indicates there is no significant heating,

consistent with the prediction that an anisotropic velocity distribution

remains adiabatic. Most electron cyclotron heating experiments use

the r.f. power both to create the plasma by ionization and then heat

it, e.g. Becker et al (1962), Ferrari and Kuckes (1965) and Fessenden

(1966).

Using a nominal value of <W >
x

assuming adiabatic compression, the mean energy at cyclotron reso-

2 1/2
nance of 3.7kG is<W> „„„,_ = 8 ke V . We can compare this

± B=3.7kG

value of electron energy with that expected from the calculations. A

typical average time between resonance, as found from Fig. 3, is

~ -8
t = 500/co and for 3.7kG magnetic field t = 10 sec. The effective

-7
pulse length is measured to be t =2X10 sec. resulting in an

IT

approximate number of resonance crossings of

B=45kG= 100keV' and

n = t /t = 20.
P i

5
Substituting into Eq. (11), this value of n, an electric field E = 10 V/m

(derived, approximately from the peak power) and 00 T« 100 (with

B = 3.7kG) the statistical theory predicts that <W >
x B=3.7kG=30keV-

The discrepancy of a factor of four between the measured and

calculated values may be due to a number of causes. (1) The electric
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field strength within the plasma may be overestimated due to shielding.

A calculation of the plasma frequency of the hot component at 3.7kG

obtained from the measured density at peak compression gives f =4GHz.

Additional cold plasma production can also add to the shielding, such

that co may be greater than co during part of the heating pulse. Such
P

factors as impedance mismatch, wall losses, and mode effects have

also not been considered. (2) There may be higher order correlations,

not taken into account by the Markovian assumption. Although no

energy-phase plots gave smooth curves, for the injection parameters

of the experiment, in a few calculations there did appear to be some

correlation between neighboring resonance crossings. (3) The equiva

lent time in the resonance region may decrease as the perpendicular

energy increases. This phenomenon appears physically plausible and

there is some evidence for it from the computations. However, the

numerical computations have not been performed over a sufficient

number of resonances to unambiguously confirm the effect. It is inter

esting to note that the existence of this phenomenon, while limiting

the heating, has the beneficial effect of counteracting diffusion into the

mirror loss cone.

Despite the degradation in mean energy from what might be taken

as an optimum energy transfer, the results are still very optimistic as

to the energies and densities obtainable by non-adiabatic r.f. trapping

and heating. In addition, ionization and concommitant trapping and
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heating serve to increase the final density. In Table 1 we present a

comparison of the plasma characteristics achieved with the usual

injection at low magnetic fields and the injection with the assistance

of the r.f. pulse. Both energy and density are comparable in the two

situations. However, with the trapping at the resonance field of

B = 3.7kG, it is also possible to contain hot ions within the vacuum

chamber.
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40 eV
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Fig. 1 (a). Energy-phase diagram for small mirror penetration in which
an adiabatic invariant exists.
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Fig. 1(b). Energy-phase diagram for large mirror penetration in which
an invariant does not exist. Numbers denote successive
resonance crossings.
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Fig. 2. Variation of energy with normalized time for injection with parameters
used in the experiment. Three injection phases are shown.
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Fig. 5. X-ray pulse height distribution giving <W2>1^2 = lOOkeV.
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Fig. 6. Variation of magnetic field with time at midplane and at mirror,
for B=47kG peak field, illustrating time during which there is
resonance between microwave frequency and cyclotron frequency.
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