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1. Introduction. This note supplements an earlier paper [1], where
the distribution for the interval between two successive zeros was found

for & zero-mean Gaussian process with the following covariance function:
(1) o(x) = Bx(e)x(s + 1) = 3o 1IAB (1 L ABIEIY

This earlier work was based on a time change for the process after which
a formula of McKean [2] was used to derive the desired result. A second
look at McKean's paper has revealed that the distribution of the interval
between any two zeros (not only successive ones) can be found in & simi-
lar way. However, except for the case of two successive zeros, I have
not been able to carry out a final integration to reduce the distribution
to a closed-form expression.

2. An extension to McKean's gggnggq. Iet (W(t), t 2 O} be a stand-
ard Brownian motion (Gaussian, EW(tW(s) = min(t, s)). All stochastic
processes considered in this paper are assumed to be separable. Define

zero-crossing times cn(no) as follows:
(2) o, =0
t
0 41(Ng) = min 4t > o (ng)s gt +\/;W(s) as = O} s Mg 20
The magnitudes of the slopes at the crossings are given by
(3) b (ng) = (-1)ny +W(o,)]

since slopes at successive crossings must have opposite signs.
let f(t, a) be the density for the distribution of cl(l) and hl(l),

i.e.,



() Prob {al(l) ¢ dt, hl(l) € da) = £(t, a) dt da .

McKean derived the formule

(5)
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and upon inverting the Laplace transform, obtained

2y plaft -38/2
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For a standerd Brownian motion W(t), CW(t/Ca) is again a standard Brown-
ian motion. From this scaling property we can show that (dn(no), hn(no))
have the same probability law as (nozan(l), nohn(l)). Therefore, if we

denote the joint density function of (Gn(no), hn(no)) by ﬂn(t, nlno), we

find
(7)
-9 dn ot N
T 20 2> n
o 0 Mg
where f is given by (6).
t
For a more general n, the fact that not + ]‘ W(s) ds and its
Y0

derivative are Jointly Markovian leads to the recursive-relationship

t po
8 xning) = [ [T xe - s, nlednGs, clng) as ag
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Denoting

a 0t
(9) Falo nlng) = [ (e, ning) ab

we can transform (8) into
A w ~ ~
(10) (@ ning) = [ 2, (@ nleX (e, elng) &

The function il(a, nlz) can be found from (7) and (5) as follows:

0
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From the ILebedev transform pair [3, vol. 2, p. 173]

00
gly) = f f‘(x)Kix(y)2n'2 x sinh nx dx
0
(12)

0
£(x) =j; &(y) K, (v ay

we conclude that



0
(13) ot xotmn o [ kg v ey = 6o x)

Hence, by using (11) repeatedly in (10), we get

@) A alny = 2 [ Faytf o)y, €8 0)
n' "’ 0 N9 vo [2 cosh (KY/3)]n

40 = 212y sinh ny

which is a surprisingly simple formala.

3. Computation of Pm(t). Let x(t) be a zero-mean Gaussian process
with ’i\:bs covariance m;:tmiven by (1). Then, it is easy to verify by
direct computation that x(t) can be represented in terms of a standard

Brownian motion W(t) as

(15) x(t) = W(s) as .

exp(2A/3)t
et [

0
It follows that whenever t 2 to, we can write

i'~/§("=.'to)[;|_ + %S(t } to)]

A3(t-¢ ‘ (t-t,)
+V3e o’ . [%x (t)e(t ~ tg) +/: %" w(s) 65]

x(t) = x(to)e
(16)

where W(s) is again a standard Brownian motion (but not the same one as in

(15)), and g(t) is given by

(17) g(t) = exp (2A3) -1 .



Now, let T. denote the first zero of x(t) for t = 0, and let 1:'\., denote

0]

the vth zero after T,- Because of the stationarity of x(t), the distri-

bution of ‘tm+l - 1.'0 is the same as the distribution of the interval

between any pair of zeros with m zeros in between. We shall denote the
distribution Prob ('cm 1 - TS t) by Fm(t), and denote the density i‘m(t)
by Pm(t). The principal concern of this paper is the computation of Pm(t).

We note that Fm(t) can be written as

(t) fco (' )f"o ((t).dnl .dt)
F(t)=1- Prob (t.edt Prob (x € T, €

" o o0 \Tg € %o | 2o X\ % 0o 0
(18)

+ Prob (‘rm+1> t + tolto = t, :’c(to) =n,) .

A comparison of (16) and (2) shows that

Prob (‘tm+l> t + tol’ro =tgs *(’GO) = Tlo)

= Prob <Gm+l (—?) > g(t)) .

Furthermore (see [4] for a clarification’ of "horizontal window"),

(19)

Prob (%(t,) € anglx(ty) = 0 in the

Prob (;‘c(to) ¢ dnol'to € dto)

horizontal window sense)
(20) ,
slngle™no  an,

Hence, (18) becomes (after integrating out tg)
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(21) Fm(t) =1 2 |n0|e Prob \Gm+l‘.\2,/' > g(t)/ dny -

Although Prob (Gn(n)>>t) was computed only for n 2 O in §2, it is obvious
that we must have the symmetry Prob (cn(n) > t) = Prob (Gn(-n) > t).

Hence (21) becomes
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The density Pm(t) can be expressed as

2
0 ) «%no o
(23)  rg(t) = (o) [ J x o (bg(&)/n 2, nl1) ang an |

The laplace transform (14) can now be inverted to yield

-=(1+") \
1 1Y\ t
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(2h) Ty (6s 0l1) = e .\/; (2 cosh _\D}mﬂ
Using (2i4) in (23) yields
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Now, if we use the formula

©
(26) Kiy(a‘) = f e 8 Co8h U 05 vy au
0

in (25), we get a fourfold integral with variables of integretion, Mg

n, Y, . Integrating first with respect to Ngs then u, we find

P (t) =3 &(t) fow i fow an (2 cosi %)m

2
x sin (y cosh™t XX "2n+ 3(tl)

(27) (sinh sy W1 + n2 + g(t)2 - Un2

1 Yy sin YX
= &(t) dy
" f cosh 1~}1+g(1-,) \’sinh2 x - g(t)(2 cosh ny/3)""

The expression (27) cen be integrated once more with respect to Y to yleld



(28) P (t) = = &(t) L (-1) & £ (x) ax
B ‘/;osh “NTrg(z) Vsinb® x - g(t) & m

where fm(x) is given by

3 1
£,(x) = § —==—
ox Kcosh%x

(29)
£.(x) = g% X
1 sinh-‘%x

: 2 2
=1 /3 m -
fp =3 [<2n + < 5 > ] fm-2(x)’ m 2 2
I have not been able to carry out the integration in (28), except for

m = 0., In reference 1, Po(t) was obtained in terms of complete elliptic

| integrals. [1, (25)]

4. Computation of Pm(o). From (17), we have g(0) = 0 and &(0) = 2/~f3.

~ PP AP PSS AN

Therefore, for t = 0, (27) betomes

P (0 --3— a ax Y sinyx
( ) Y f sinh x(2 cosh :ty/3)m+l

f (enY ) (2 cos:x ::/3)
2 3
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(30)
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which can be eveluated by contour integration to yield

2 3 m
A . (z° - 1)z 1n z(1 - 1n z/oni)
(31) Pm(O) 2 (,t) (2ni) E Residue { (z3 T 1)m"l

ni
where the summation is taken over the residues at the five poles z = e 2 ’
3n 1o 5md
e 2 s em’, e3 s © 3 . The expression (31) can be further elaborated to
give
m m m
p(0) = 2 {2k - 2w w [ a1 H(z)]
n al3 3.2 *az" L(z + 1) pea™1/2
(32)
m m
+%£_’d [ zm+1H( )]\ ?}
dz L(z - 1) z=e3 i/
with
§z3 - 12
(33) H(z) = 3 1n z[l - In z/oni|
(2 +1)

T have not been able to reduce (32) further.
For a stationary zero-mean Gaussian process with covariance function

of the form
12 3 3
(34) o(x) =1 -5 +alt]3 + ol]?)

it is not hard to show that Pm( 0) is proportional to «. Longuet-Higgins
{5] has obtained boundy for aJ:Pm(O) for mup to 7. For m = 0, 1, 2, these:

bounds read
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1

1.1556 < = PO(O)< 1.158

(35) 0.1971 < % P,(0) < 0.198
0.0491 < % P,(0) < 0.0556

Now, the covariance function (1) under consideration in this paper has the

form of (34) with a = 2 . Hence, the true values for% Pm(o) can be

3
eveluated and compared against the bounds in (35). For m = 0, 1, 2, (32)

can be evaluated to yield

2 (37 .
P,(0) = 3[3 % A (l 15625>

(36) JORP- @E 108) & ;%@.1979

81 27 ; 2
P_(0) = -2 121 _ - = R @,051&1>
2 a3\ 32w 02/ 43

which are in agreement with (35).
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