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1. Introduction. This note supplements an earlier paper [l], where

the distribution fo* the interval between two successive zeros was found

for a zero-mean Gaussian process with the following covariance function:

(1) „(T>-Ix(.t)x(t+T) -1.-^1^3(1.|,-<^)lTl) .

This earlier work was based on a time change for the process after which

a formula of McKean [2] was used to derive the desired result. A second

look at McKean's paper has revealed that the distribution of the interval

between any two zeros (not only successive ones) can be found in a simi

lar way. However, except for the case of two successive zeros, I have

not been able to carry out a final integration to reduce the distribution

to a closed-form expression.

2. An extension to McKeanfs formula. Let (W(t), t 1 0} be a stand

ard Brownian motion (Gaussian, EW(t)W(s) = min(t, s)). All stochastic

processes considered in this paper are assumed to be separable. Define

zero-crossing times cr (nn) as follows:

(2) cr0 =0

crn+l(n0) »"to {* >W; V +J w(g) ds =°J > no ~° •

The magnitudes of the slopes at the crossings are given by

(3) VV ° (-iAn0 +w(<»n)]

since slopes at successive crossings must have opposite signs.

Let f(t, a) be the density for the distribution of 0^(1) and h^l),

i.e.,



(k) Prob {0*^1) € dt, h^l) 6 da) = f(t, a) dt da

McKean derived the formula

/>co poo K. (^)K, (-/8a a)(5) / f(t, a)e- « ./ 1 cosh &,3) -

K = modified Bessel function

dO = 2* y sinh Jty

and upon inverting the Laplace transform, obtained

(6) «t.a).-a4.-*<^y*a££a9 .

For a standard Brownian motion W(t), CW(t/c ) is again a standard Brown

ian motion. From this scaling property we can show that (of (nQ), h (n0))

have the same probability law as (n <* (l), nQh (l)). Therefore, if we

denote the joint density function of (o* (nQ), h (n0)) by * (t, nh0), we

find

it^t, nh0) dt dn =Prob (^(tIq) edt, \{r\0) dn)
(7)

where f is given by (6).

For a more general n, the fact that nt+ / W(s) ds and its
J 0

derivative are jointly Markovian leads to the recursive relationship

,t r»oo

(8) Vkl^* n'r,o^ 7 J V* "s> nlc)*n(s, cln0) ds d£



Denoting

(9) J.n(o, nln0) =f e"0* «n(t, nln0) dt

we can transform (8) into

The function ^(a, nk) can be found from (7) and (5) as follows

^(a, nh0) -J e"0* ^(t, nln0) dt

(n)

e dt

2.

Jo % \ V

__1_ nooKiY(^ n0)KlY(N/& ri)
" n0 J0 2 cosh (rty/3) dO

From the Lebedev transform pair [3> vol. 2, p. 1733

r00 2g(y) * / f(x)K. (y)2it x sinh *x dx
- 0

(12)

*(*) =f g(y) ^(ybf1 dy ,

we conclude that



too

(13) 2*-1 x sinh *xj Kix(y)Kix/(y)y"1 <*y = <*(x -x')

Hence, by using (ll) repeatedly in (10), we get

(HO *(a, nln0) -~ / -^ ° iY n do
n ° n0 -0 [2 cosh (tcy/3)]11

-2
dO = 2it y sinh ny

which is a surprisingly simple formula.

3. Computation of Pm(t). Let x(t) be a zero-mean Gaussian process

with its covariance function given by (l). Then, it is easy to verify by

direct computation that x(t) can be represented in terms of a standard

Brownian motion W(t) as

jz^ rexp(2/>/3)t
(15) x(t) »>/3 eW3fc / W(s) ds .

It follows that whenever t £ tQ, we can write

V3(t-tn)r o .Ix(t) =x(tQ)e ° 1+|g(t -t^J
(16)

- W3(t-t ) r Pg(t-t ) *]*Jh ° •|fx (tQ)g(t -tQ) +Jo ° W(s) dsj

where W(s) is again a standard Brownian motion (but not the same one as in

(15)), and g(t) is given by

(17) g(t) = exp (2//3)t - 1 .



Wow, let x denote the first zero of x(t) for t £ 0, and let x denote

the vth zero after xQ. Because of the stationerity of x(t), the distri

bution of Tffi - xQ is the same as the distribution of the interval

between any pair of zeros with m zeros in between. We shall denote the

distribution Prob (x " To - *) by F (*)> and denote the density F (t)

by P (t). The principal concern of this paper is the computation of P (t).

We note that F (t) can be written as
m

poo poo
Fm(t) =1 - / Prob (TQ€dt0) / Prob (x(t0)€dn0|x0 e dtQ)

(18)

* *** (Vl >* +^O =V *(V " n0) •

A comparison of (l6) and (2) shows that

**<*> (Vi> * +*o|to " V *(V =V

(19) / /*V>\ \
-*** (Vi (j) >6(t); •

Furthermore (see W for a clarification of "horizontal window"),

Prob (x(tQ) ednQ|x0 edtQ) =Prob (&(tQ) €dn0lx(t0) =0 in the

horizontal window sense)
(20) 2

=||n0le-^0 dn0

Hence, (l8) becomes (after integrating out t0)



(2.1) F(t) - 1- \ ^ Inje 2n° Prob (W^ >S(t)) dp,
,_co " v •.-,-. • '0

Although Prob (tf (n) > t) was computed only for n ^ 0 in §2, it is obvious

that we must have the symmetry Prob (a (n) > t) = Prob (o* (-n.) > t).

Hence (21) becomes

Fm(t) »1-Jo n0e Prob ^m+1 ^; >g(t)) dnQ
1 2 2

(22) =1 - / n0e ° Prob [-£- o (l) > g(t) ) dr,Q
Jo

poo "^o2 r00 r00

The density P (t) can be expressed as

i 2
>oo r»oo , -2TI

23) Pjt) =Ug(t) f f i e 2° Vl(Ug(t)/n02' n|l) dn0 dn •
m Jo J0 0

The Laplace transform (ik) can now be inverted to yield

2,.. 2
•iv\ t /-|(i+n ) poo k '^-)

Using (2U) in (23) yields

2

in2 -l!|0 ,1+n2-pcx) poo poo n -jn -j- -^ (i+n2)

(25) ^nn 2
KivUt7 / d dn d0

, JtYWl 0
2 cosh -=*- j



P 21 pOO pOO pCO -|n0 (1-HT1 +g(t))
=2 g(t) / / / n0e

Now, if we use the formula

(26) K. (a) = f e"a COSh Ucos Yu du
^•Y J c\

*oo

^iY(nn02)
-H—^-—^ dn0 dn do .

(2 cosh SPT

in (25), we get a fourfold integral with variables of integration, n ,

n, y> u» Integrating first with respect to nQ, then u, we find

^« -1 w_P.(t).|«t)/o do^ dn^-J^

*sin (y cosh"1 X+̂ S(t)^
(27) ' (sinh«YW[l +n2 +g(t)]2 - lff|2

dO s -| y sinh *Y

1 ./ n T00 r°° .• y sin YXs =• &(t) / dY / dx T —
J° oosh-Vl^r) ^inh2 x - g(t)(2 cosh nY/3)^1

The expression (27) can be integrated once more with respect to y to yield



(ss) pM(t)-i«t)y
cosh"V]>i(tj ^/sinh^ x - g(t)

(-1) i f (x) dx
dx m

where f (x) is given by

(29)

(

1

cosh ~ x

fi<x> =If *3sinh •£ x

f'-i
m m [ftY *('-;*f| f 0(x), m £ 2 .

m-2

I have not been able to carry out the integration in (28), except for

m = 0. In reference 1, P0(t) was obtained in terms of complete elliptic

integrals. [1, (25)1

K. Computation of P (0). From (17), we have g(0) » 0 and g(0) » 2/^3.
m

Therefore, for t = 0, (27) becomes

(30)

Y sin yx
_ pOO pOO

PjO) -.-Jf- / dY / dx BH-1
sinh x(2 cosh JtY/3)

a r ^. i\ y dY
sh J0 Ne^Y +1/ (2 cosh *ynT3 «y/3>

m+1

,2 pop / 3A®/ C^3 Zi) ^l 1^1
_i_ Ay f" r - ^ xmin

"a/3 W Jn V +i/(x2 +i(xa + D
m+l

dx

dx
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which can be evaluated by contour integration to yield

2
where the summation is taken over the residues at the five poles z « e ,

3* jti 5fti

e2 ,e*1, e3 ,e3 . The expression (31) can be further elaborated to

give

(32)

with

(33)

m r10 + i d m

P(o) =JL J_Li£
m aft U. Pm+]a/3 \-2m+1 27 ",! dZmL(z +i)m+1

m r

it ml . m
dz

m

H(z)

m+1
L(z - i)

H(z)

72

H(z) - <% " ^ in z
(z3 + 1)

1 - In z/2iti

Jti/2
z=e '

J3*i/z=e '

I have not been able to reduce (32) further.

For a stationary zero-mean Gaussian process with covariance function

of the form

(3W »(x) =1 - V +«M3 +°(W3) *

it is not hard to show that P (0) is proportional to o. Longuet-Higgins
m

[5] has obtained bounds for i P (0) for m up to 7. For m * 0, 1, 2, these
or ***

bounds read



11

1.1556 < i PQ(0) < 1.158

(35) 0.1971 < i; P.^0) < O.198

0.0^91< i P2(o) < O.0556

Now, the covariance function (l) under consideration in this paper has the

form of (3k) with a = -— . Hence, the true values for - P (0) can be
3^3 a m

evaluated and compared against the bounds in (35). For m = 0, 1, 2, (32)

can be evaluated to yield

(36)

•.w-i©iM

which are in agreement with (35).
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