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I. INTRODUCTION

1.1 Prologue

Near-harmonic monolithic integrated oscillators basgd on con-
ventional RC oscillator designs have inherently poor frequency
consténcyl. The oscillation frequency in such circuits has a large
sensitivity to temperature which typically éauses a frequency de-
viation of greater than 10% over the temperature range 0°c to 65°C.
The major contribution to‘this temperature sensitivity of oscillatibn
frequency is the large temperature coefficient of the diffused resis-
tors used in the frequency détermining feedback network.

In a monolithic integrated oscillator,'all the circuit components
are realized on a single epitaxial chip as either diffused structures
or MOS devices. Microcircuit integrated oscillators can also be
realized in‘hybrid form. In this case, the complete oscillator is
formed by aﬂ overlay of thin film and other components on a single
or multiple silicon chips that contain active devices and non-critical
resistors. However, the monolithic oscillator is attractive because
of size, reliability and cost.

The disadvantage of the monolithic oscillator is its inferior

frequency constancy. The subject of this thesis is the analysis of



the monolithic oscillator temperature sensitivity problem and the

development of compensation techniques to correct this deficiency.

1.2 History

The specific constraints of monolithic active RC oscillators
were first considered by Hachtel2,3,%,5, He devised a method for
the realization of integrated osciilators from integrable bistable
circuits. However, he made no attempt in his designs to céntrol
temperature sensitivity. Therefore, all of the oscillators he re-
alized had large frequency variation with temperature. Howard gen-
eralized Hachtel's monolithic oscillator synthesis method to include
all two device RC imbedded oscillators®. Since Howard's oscillators
were used as voltage controlled oscillators in a phase-locked loop,
there were no requirements on the temperature seﬁsitivity in this
application that were violated by the inherent sensitivity of the
monolithic realization.

To date, in applications where the sensitivity of oscillators
realized in monolithic form is unacceptable, microcircuit oscillators
have been realized in hybrid form. One example i$ the RC twin-T os-
cillator of Berry, et al, that used low temperature coefficient thin
film resistors in the frequency determining network to achieve a..1%
; frequé;cy duration over a 75 °C range? An altérnative solution is
given by the oscillators described here. A fully monolithic tempera-

ture compensated integrated oscillator is realized that has a frequency
performance comparable to the thin film hybrid version over a tempera-

ture range.
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1.3 Temperature Sensitivity Considerations

The Wien-type oscillator shéwn in Fig. 1.1 is typical of the
RC oscillators considered. This osciilator will, as will all RC
oscillators, produce an output frequency which is temperature sen-
sitive because of (i) changes in the frequency &etermining feedback
elements Rl’

nonlinearity; and (iii) changes in the gain level in the internal

R,, Cl,'Cz; (ii) changes in the nature of the amplifier

amplifier with temperature.
Thevﬂonlinear contributions (ii and iii aﬁove) are studied by
a computer-aided analysis of the generalized form of Lienard's

equation®:
X(EE)X + g(x) =0 a.1)

For this equation, a form of g(x) is found for a given £(x) such

that the oscillation frequency sensitivity to gain changes can be

set equal to zero. In monolithic oscillator realizations, negative
feedback is used in the amplifier to make the gain depend to a first
order on the ratio of resistors with the §ame temperature coefficient.
In this case, the nonlinear contributions to temperature sensitivity
are negligible compared to the sensitivity caused by the frequency
determiniﬁg feedback elements in (i) above.

The temperature coefficient of MOS capacitors in the monolithic

_realization is very small. Therefore, the major problem is to com-

- pensate for the large temperature coefficient of the diffused feedback
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resistors R1 and R2 of Fig. l.i. Two basic compensation techniques

are possible..'lﬂ one, the shaping,of the root locus of the linearized
system can be used. In this metﬁod, a controlled gain sensitivity com-
pensates for changés in the open-loop poles and zeros due to temperature
changes of resistance values. .The disadvantage is the increase in the
non-linear contributions to temperature sensifivity.

In the second method, the individual RC products are made invar-
iant using Miller-effect multipliers to provide compensating tempera-
ture sensitivity'for the diffused resistors. In this case, the gain
requiremént for the monolithic realizations can be made to be almost
independent of temperature. This is the method used to achieve the

final compensated design.
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Fig. 1.1 Basic Current Amplifier, Wien-type
q ' Oscillator



II. OSCILLATOR CONFIGURATIONS

2.1 Introduction

Near-harmonic oscillators can be realized by using
passive RC imbedding of either single or multiport active de-
vices. In the case of the single-port realization, the active
device must have an input‘impedance for small signal excursions
about an operating point that is both inductive and ‘has a -

" negative real part at the oscillation frequency. Examples
of such single poft oscillators are the tunnel diode oscil-

lator of D. K. Lynn, et al, and the unijunction transistor



oscillator of Hachtel?,10,

Oscillato:s based on negative immittance inverters (NII) or
negative immittaﬁce converters (NIC) are.not_included in the class
of single port realizations. An ideal NII is a two port network
that has an input impedance that is equal to the negative reciprocal
of the terminating load impedance. An ideal NIC has an input im-
pedance that is the negative of the terminating load impedance. A
potential oscillator configuration which is based on an NIC realiza-
tion is shown in Fig. 2.1. Pederson and Pepper have shown that this
is totally equivalent to the Wien-type configurationsll, cf. Fig. 1.1.

The oscillators considered here do not depend on the inductive
effect of any single port device and thérefore are based necessarily
on multiport active devices. This is beca&se in the frequency range
of interést, there is no direct integrable analog to the inductor. In
addition, the active devices considered are three terminal devices
which are assumed to have no appreciable charge storage effects.
Under these constraints, an RC system which.has passive RC imbedding
of the idealized active tﬁree terminal devices and no closed feedback
paths has only negative real natural frequencies. An oscillator is
formed by using a closed feedback path. This is the form of the RC
feedback oscillators considered in this thesis. |

For convenience, the single loop RC feédback oscillators con-
sidered are arbitrarily classified as positive or negative feedback
oscillators depending on the angle condition used to specify the

" root locus. Definitions of possible signal paths and'feedbackiloops



are necessary before the class of an oscillator can be determined.

-

2.2 §i§na1 Path Classification

In an actual oscillator design, there may be several discern-
able feedback loops and multiple signal paths between two circuit
nodes. The classification of the oscillator as a positive or nega-
tive feedback type is based on the angle condition that specifies the -
root locus. For the purpose of discussion and definition of oscillator
types, the following definitions of feedback loops and signal paths
are given. |

1. Multiple signal path. A multiple signal path provides

several signal transmission routes that are not in the form

of closed loops between two points in the circuit. A single

branch of a multiple signal path may be broken without open-

ing any closed feedback loop or breaking the continuity of
any overall transmission path.

An‘example §f a multiple signal’path.is the bridged-T network
in Fig., 2.2. Forward transmission is not eliminated by opening
either path, e.g., Rl'

For the classification of feedbéck loops, a distinction is made
between loops that depend on nonlinear behavior to achieve a circuit
function and those that do not. 1In the latter case, the loop is
characterized as linear even though nonlinear effects may occur. As
an example of this distinqtion is the simple Wien-type oscillator of

Fig. 1.1 which is based on a feedback loop that is considered linear,

even though the amplifier nonlinearity limits oscillation amplitude.
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On the other hand, certain compensation techniques require feedback
loops that are inherently nonlinear and would be classified as a

nonlinear feedback loop. The definition of nonlinear feedback loop

is given by:

2. Nonlinear feedback loop. A nonlinear feedback loop
has a circuit function that cannot be characterized by
a linear circuit model.

For the linear feedback loops, another distinction can be made.
The oscillator circuit may contain gain blocks that contribute no
dominant natural frequencies to the system (i.e., no significant

charge storage effects). These gain blocks may contain feedback

. loops to control gain levels. If they do, it is convenient to

classify such feedback loops so as to distinguish them from loops

that have dominant open-loop poles. Therefore, one may define:

3. Gain control feedback. Gain control feedback is used
only to control gain levels and contributes no dominant
natural frequencies to the system.

The voitége amplifier of a Wien-type oscillator is typically
realized as the two transistor series-shunt feedback pair shown in
Fig. 2.3. The overall negative feedback loop in the amplifier is

classified as gain control feedback.

Feedback loops that are not stated as being gain control or

" nonlinear in the subsequent work are assumed to be of the remaining
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It may appear that there is an anomoly for certain non-minimum
phase oscillators. This problem occurs for configurations that pro-
duce an odd nﬁmber of open-loop zeros on the positive real axis. For
this case, the dc feedback polarity is the reverse of a minimum phase
configuration. If the minimum phase configuration has a positive dc
feedback polarity, the non-minimum phase configuration with one zero
on the positive real axis has a negative dc feedback polarity. How-
ever, it is natural to expect the class of an oscillator not to be
changed by this modification of the positions of open-loop zeros. In-
deed, under the definition given, the class of an oscillator does not
change by moving an odd number of zeros to the right half plane.

As an example, the root locus for the Wien-type oscillator shown
in Fig. 1.1 is shown in Fig. 2.6. For this locus, the complex root
positions always move on a circle with a center at the zero. This is
expressed by the positive feedback angle relation:

281 - (180-6,) =0 - (2.6)

2)

where 81 and 82

a circle with center at the zero as shown on the figure. This locus

are indicated on Fig. 2.6. This is the equation for

is a circle regardless of the position of the zero.

This example extends to the three jw axis phase plots for a
left half plane, origin, and right half plane open-loop zero shown
in Fig. 2.7 respectively. As is seen, the definition classifies the
" oscillator as a positive feedback type in each case since the root

locus is still determined by the same angle condition.
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To avoid possible confusion, it is noted that this classifica-
tion as positive or negative feedback depends on the absolute value
of the return difference phase, not its relative value with respect

to its base-band value.

2.4 Minimum or Basic Oscillator Realization

In order to determine some of the characteristic properties of
the oscillator classes, it is desirable to consider some fundamental
configurations of each class. The configurations considered are fun-
damental in the sense that they are minimum complexity realizations.
The fundamental oscillator configurations are called basic oscillators,
the definition of which is given by: .

1. Basic oscillator. A basic oscillator contains no
multiple signal paths, pmultiple feedback loops, or nonlinear
feedback loops. It is realized with the minimum number

of dominant open-loop poles.

With this definition, the basic oscillator of each class can be
considered. It is impossible to achieve a near-harmonic oscillator
with a system that has a single natural frequency. A system with two
open-loop poles and an open-loop zero to the right of these poles can
be made to oscillate with the application of positive feedback. A
typical root locus is shown in Fig. 2.6. An oscillator system repre-

sented by this root locus is a positive-feedback oscillator. A

‘ possible realization in basic form is the Wien-type oscillator of Fig.

1.1.
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!
It also is possible to construct an oscillator that contains only

two opén-loop poles and obeys the rules of negative feedback. An
example of such a two pole, negative feedback configuration has two
finite open-loop transmission zeros and the root locus shown in Fig.
2.8(a). The open-loop poles and zeros of the root locus are deter-
mined by the circuit element values of the possible corresponding con-
figuration shown in Fig. 2.8(b) where the block A is a differential
amplifier with both an inverting and non-inverting output. The nor-
malized circuit values are only used to indicate the possibility of
the example. However, by the Fialkow;Gerst relation, this system can-
not be obtained by any unbalahced configurationlz. This is contrary
to the condition of the basic oscillator definition and consequently
this root locus does not characterize a basic negative feedback os-
cillator. To achieve a basic negative feedback oscillator, a mini-
mum of three open-loop poles are required.

The basic oscillator definition implies a ladder form of RC
driving point imbedding of the gain blocks, so that all the open-loop
poles and zeros lie on the negative real axis. This leads to a re-
striction on the open-loop.transmission zeros. In order to produce
an oscillation with the application of negative feedback, eithef all
the open-loop zeros must lie to the left of all the open-loop poles,
or they must all 1ie to the right of the open-loop poles. A typical
ladder-type realization of the former case js shown in Fig. 2.9 with
its accompanying root locus.

In the more generai case where the restriction to a-basic.oscil-

lator is removed, the condition pointed out Howard exist!3, The

1€}
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positive feedback oscillator requires an odd mumber of poles and
zeros to the right of the pair producing harmonic oscillation

and the negati#e feedback oscillator requires an even number of
poles and zeros to the right of the pair producing harmonic os-
cillation. In monolithic realizations where dc blocking capacitors
are not permitted, Howard points out that designs should be selected
that do not have positive feedback at dc to prevent possible result-
ant bias instability. This condition implies either negative feed-

back at dc or an open-loop transmission zero at the origin.

2.5 Basic Positive Feedback Oscillators

In general, a linear, time-invariant model of a feedback os-

" cillator can be represented by the block diagram shown in Fig. 2.10.
The blocks are assumed to be unilateral, have no interaction, and
have transfer functions which are rational functions in s. If thé
input variable is xin'and the output variable is x, the closed-loop

transfer function is

%6 e

T(s) = %2 T T+ H(S)G(5)

(2.7)

where H(s)G(s) = N(s) and N(s) is given by Eq. 2.3; If H(é) and G(s)

are given by

Hy(s)

H(S) = %-(—ST
, G, (s) | (2.8)
6s) =

GD(s) )
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where the subscripted terms are polynomials in s,

N(s)

HN(s)GD(s) (2.9a)

D(s)

Hy ()6 (s) + Hy (5)Gy (s) ' (2.9b)

_ The closed-loop poles are given by the zeros of D(s). The closed-

loop root locus for positive feedback is specified by
Arg [H(s)G(s)] = 2nm n=12,... (2.10)

The closed-loop pole positions on the root locus are. determined by

the loop gain and satisfy the relation
|H(s)G(s)| = 1 ' (2.11)

For analysis of the basic positive feedback oscillator system,
the simple Wien-type configuration is considered. The final form of
the transfer function is independent of whether the current amplifier
or voltage amplifier configuration of Fig. 2.11 is considered. For
the basié system, the open-loop zero occurs at the origin due to the
series capacitor in the feedback loop. For both configurations; the
idealized linear closed-loop system equation, which is given general

form by Eq. 2.7, about the quiescent operating point is

L{)

(L X
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o . ’ A
T = . (2.12)
S 2 1 1 1 1
1 - [s° + ( + = + )s + ]
R1C2 Rlcl RZCZ R1C2 R1R2C1C2
For oscillation, the starting condition requires
A_>_1+§'1"f—?- (2.13)

2 1

,

When the equality is satisfied, the oscillation is harmonic and the

frequency of oscillation is given by

[}
[

R1R2C1C2

o

W = e (2.14)

Because of the nature of charge-control devices, a positive
feedback oscillator without transformers cannot be realized with a
single device. Moreover, the configurations discussed here are based
on npn bipolar transistors (BJT). Configurations.requiring complimen-
tary ﬁﬂpitransistors are not considered because of the difficulty in
realizing complimentary structures in monolithic cﬁrcuits.

Howard obtained all possible two transistor positive feedback

oscillators with RC one-port imbedding!*., He mentions a difference

- between driving point and transfer function imbedding. This distinc-

tion was necessary for his derivation which was based on driving point
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realization of the imbedding. The form of the imbedding required
lepends on the zero location of the transfer function. Driving-
point imbedding can be used when the zeros of transmission of the
transfer function lie on the negative real axis.

Howard's configurations are bésed on the controlled resistance
model of bistable circuits by Hill, Pederson, and Pepperls. Howard's
method of obtaining the possible RC oscillator configurations is
based on an ac model and does not directly jnclude biasing considera-
tions of monolithi; realizations. An alternate approach is used in
this thesis to obtain positive feedbéck oscillator gonfigurations and
is based on the basic oscillator. The oscillator is realized as
either an interacting pole configuration or a non-interacting pole
configuration.

When each of the open-loop poles of a feedback system is pro-
duced by an independent RC product, the poles are said to be non-
jnteracting. This must be true irrespective of where. the 1dop is
opened. Interacting poles occur when a resistance or capacitance
value appears in more than one RC product. As an example, the Wien-
type oscillators considered to this point have interacting poles.

For the basic positive feedback oscillator, minimum total gain to
produce harmonic oscillation is achieved for non-interacting poles.
This requires that the RC elements producing each of the poles be
separated by unilateral gain blocks. This requirement is the basis
for obtaining two transistor, non-interacting pole, basic positive

feedback oscillator configurations.

fa
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For the basic oscillator, a series caﬁacitor is'contaiﬁed in
the positive feedback 1oop to produce a transmission zero at the
origin and prevent poSitive feedback at dc. If a single resistance
and capacitance produce each pole, sixteen configurations are possi-
ble. Six exémplés are shown in Fig. 2.12. Approximate voltage gain,
current gain, éransimpedance, and transadmittance circuits are shown
in Fig. 2.13. The voltage and current gain circuits have a gain

that is approximately the ratio of a load resistance and a feedback

resistance. The transimpedance and transadmittance circuits have

a tran#fer value that depends apfroximately on a single feedback
resistance value. These circuits are used to complete the realiza-
tion of the two transistor oscillator configurations.

It is ;lso possible to obtain non-interacting ﬁole oscillator
realizations with a resistor and capaéitor in the emitter lead of a
transistor. These realizations are not consideredibecause the
appearance of transistor parameters in the RC product determining
the open-loop pole position is deamed undesirable.

In the other case, fhe system has interacting open-loop poles

and_isolation‘of RC pairs prodﬁcing the pbles is not permitted.

Thus, the system with inter-acting open-loop poles contains a single

gain block. In the'single gain block, gain Contrql feedback usually

is used to make the gain function independent of transistor parameters.

For the two transistor gain blocks considered here, the gain control

feedback can be applied individually to each transistor or as an

" overall feedback loop.)'For example, in the current amplifier gain



20

block which is realized as a shunt-series pair, the feedback may be
local as shqwn in Fig. 2.l4a or it may be overall as shown in Fig.
2.14b.

The basic oscillator configurations are obtained by placing
the single active gain glock with negligible charge storage effects
in RC imbedding as shown in Fig. 2.15. With these configurations,
the RC transfer function still should have a zero of transmission at
the origin to prevent positive DC feedback. Again, the gain block
can have one of four forms. If the gain block is a voltage or cur-
rent amplifier, the RC transfer funcfion for the positive feedback

oscillator is of the form

T = (2.15)

If the gain block is a transconductance or transresistance, the form
of the denominator remains the same. The numerator still has a zero
at the origin, but is dimensionally modified so the overall open-loop
transfer function is dimensionless. For example, if the gain block is
transconductance, the proper form of the RC transfer function is a
transimpédance. '

The topology of the network dependsAon the type of RC transfer
function being realized, and is fixed as either a T, w, or L configura-

tion. In each case, two physical realizations of the transfer function
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are possible. If the network is the L configuration used with
the voltage or current amplifier, the two physical réalizations
are identical'except for the trivial reversal of the physical
locations of resistor and capacitor in the series feedback pair.
If a transimpedance is being realized, a m topology is required
and the two possible physical realizations are shown in Fig. 2.16.

A typical final circuit based on the current amplifier with
overall gain control feedback and the L topology for the RC net-
‘work is shown in Fig. 2.17. This circuit is realizable in mono-
lithic form and is the basic circuit for two of the oscillators
actually realized in Chapter V.

Another positive feedback oscillator design that has inter-
acting poles and has not been mentioned contains one of the
dominant poles in the gain block. For the current amplifier,
Wien-type oscillator of the above example, the modified oscillator
is constructed by removing the shunt feedback capacitance C, and
placing it in the gain control feedback loop as shown in Fig. 2.4.
However, the internal feedback loop can no longer be calssified as
a gain control feedback loop. Even though this oscillator is a
multiloop configuration and no longer of basic form by the defini-
tion, it is a natural extension of this development and is included
here as a fundamental form.

That this form is not a fundamental departure from basic forms
cén be seen from physical reasoning. To a first order, the shunt

. capacitor in the negative feedback loop can be placed from the base



to the collector of the input transistor without modifying the
circuit performance. Since the input stage has voltage gain, this
circuit is eqﬁivalent to a capacitor shunting the input transistor
base to ground with a value multiplied by the voltage gain of the
input tfansistor. In this equivalent form, the oscillator would
classify as a basic oscillaior.

If a hybrid = model of the intrinsic base region of the
transistor is used in the analysis and the admittance in the
positive and negative feedback loops of the oscillator are not
specified as to configuration, the oscillator circuit model shown
in Fig. 2.18 can be considered. The node equations may be used to
analyze the circuit of Fig. 2.18. In terms of this equation, the
closed-loop transfer function between the input node and the out-

put node is of the form:

\'j A
_ o _ 12
21T, "1 (2.16)
i
where A is the determinant of the nodal admittance matrix and A12

is the cofactor of the matrix element in the first row and second:
column. The natural frequencies of the systém are given by the
zeros of A,

For the circuit of Fig. 2.18, the determinant has been calcu-
lated in complete form to avoid possible errors caused by initial
. cancellation of apparently nondominant terms. The determinant has

a dominant term that is at least an order of magnitude larger than

22
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any other term. After appropriate cancellation, the dominant term

A(S) = g8, ORYE - ¥, Yp) + ... - (2.17)

where the admittances are those shown in Fig. 2.18. All subsequent
terms are of order 1/8° or 1/83 of this term and contribute only a
few percent to the dominant term”. Harmonic oscillation is achieved
when this term ﬁas a paif of pure imaginary zeros. The admittance
YR is chosen to contain a series capacitor to prevent positive feed-
back at dc. In order to obtain the imaginary pair of natural fre-
quencies, YL or YF must contain a parallel RC pair. These two cases
are those previously shown in Figs. 2.4 and 2.17. The circuit in
Fig. 2.17 has been realized in monolithic form. The experimental

description of this realization is contained in Chapter 5.

2.6 Negative Feedback Oscillator

The basic negative feedback oscillator can be represented by
the same block diagram and closed-loop transfer function as the
positive feedback oscillator. This represenéation is shown in Fig.-
2.10 and;expressed by Eq. 2.7 of the previous section. The negative
feedback oscillaior is‘different from the positive feedback oscil-

lator in the angle condition that specifies the root locus. For

The result of Eq. 2.17 is confirmed by a first order analysis of
the positive feedback loop for this circuit which has an open-loop
transfer of Y,Y /YLY . Thus, the denominator of the closed 1loop

transfer function 1is YLYF,' YRYE"ﬂ :
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the negative feedback oscillator, the root locus is given by equa-

tion
Arg [H(s)G(s)] = (2n+l)m n=1,2,... (2.18)

which differs from positive feedback by the angle w. The closed-
loop pole position on the root locus still satisfies the magnitude

condition
[H(s)G(s)| = 1 (2.19)

In contrast to the positive feedback oscillator, the basic
negative feedback oscillator can be realized with a single transis-
tor. An arbitrary numericallexample to show this is the ladder
configuration shown in Fig. 2.19. The open-loop transfer function

for this configuration is

2
\' G
TtV T 33 2 im ) 3 (2.20)
in C’S” + 4.2C°GS” + 3.61G"CS + .21G
The starting condition is satisfied for g, = 14.952 mhos and the
harmonic frequency of oscillation is
_ 3.61G
W, = =% (2.21)

3

. A possible circuit for G = 10~ mhos and By = 150 is shown in Fig.

2.20.
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The ladder-type realization with all of the zeros at infinity
has a minimum overall starting gain of 8 when the three poles are
eqﬁal. This can only be accomplished for the case of non-interacting
poles which require a realization of the form of Fig. 2.21. The

overall gain requirement for equal R's and C's is
AT =A A, A =8 (2.22)

With additional gain elements allowed for isolation of poles,
the total number of configurations péssible is greatly increased.
These are not enumerated here but can be developed by the same
techniques used for positive feedback oscillators. It is noted

that any given root locus may have several realizations.

2.7 Nondominant Effects

In addition to the intended natural frequencies of the system,
there are natural frequencies produced by parasitics and active de-
vice charge storage. Models of both field effect and bipolar transis-
tors that include charge storage effects of the intrinsic transistor
region and extrinsic effects such as junction capacitances are
adequately described in the literaturel®,17,

| Integrated transistors made in our laboratory have another
cﬁnsideration not normally needed in thé usual transistor models.
. Because of the lack of buried layer technology, the transistors

realized have considerable collector series resistancel8. It is
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usually on the order of 500 ohms. The integrated transistor also

has on the order of 5 pF collector to substrate capacitance at

Vrev = 5 volts. These effects reduce the current at which satura-
tion occurs and lowers the cutoff frequency respectively. A modified
transistor model to include these effects is shown in Fig. 2.22.

In this model, Yo Y »and g are the usual hybrid = parameters

i
modeling the intrinsic base region of the transistor. The series
base resistance is T, and the series collector resistance is ré. Co
is the collector to subdiode capacitance.

The effects of base-width modulation also can be of signifi-
cant importance in a circuit design. A large base width modulation
causes a small transistor output resisténce Ty If the transistor
has a large collector load impedance, base width modulation effects
can cause a significant reduction in gain. Experience in our lab-
oratory has shown that shallow transistor structures show a marked
decrease in base width modulation over deep structures for equivalent
short-circuit current gains and, éhus, that.this effect can be mini-
mized.

Resistors are typically realized with p-type base diffusions
into the n-type epitaxial layer. These resistors are actually RC
transmission lines. However, for the dimensions of resistors and
frequencies considered here, these distributed effects are not sig-
nificant and the resistors behave as lumped elements. A further
discussion of this point is provided by Hodges!®.

The effects of the nondominant poles depend upon the circuit

use and configuration. The problem often encountered is a modifica-

w
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tion of the root locus that produces outband peaking. These non-
dominant natural frequencies may cause the oscillator to break into
parasitic oscillation. A Wien-type oscillator may exhibit
parasitic oscillation due to nondominant natural frequencies as
shown in Fig. 2.23. This root locus is determined by a computer-
aided analysis of the linearized system model that included charge
storage effects. If the nondominant natural frequencies are removed
by more than an order of magnitude from the dominant natural fre-
quencies, their effect on the dominant portion of the root locus is
proportionally small. Therefore, an analysis based on the dominant
portion of the root locus alone may be completely adequate. The
experimental results of Chapter 5 indicate that this is the case for
the oscillators considered here. However, if a higher frequency of
oscillation is considered, these nondominant effects may not remain
insignificant. In this case, their effect must be included in the

design.

2.8 Allowable Elements and Tolerances

Because of the physical limitations of a monolithic realization,
there are definite restrictions on allowable elements. These restric-
tions are of two types. First, the various devices in a monolithic
realization must be compatible. There must be no conflicting pro-
cessing requirements for the circuit elements to be realized. For
example, at the present time in our laboratory, it is difficult to

obtain good bipolar transistors and junction field ecffect transistors
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in the same circuit20,

The other restriction has to do with the total available
area for‘the circuit realization. The total circuit resistance,
capacitance, and circuit complexity are limited by the area re-
quired per unit resistance and capacitance as well as the total
number of active devices required. The circuit area required for
a given design depends on the amount of resistance and capacitance
that can be obtained per unit area and the area required to re-
alize an active device. These limitations usually are imposed by
the facilities available.

The effective usage of circuit area on the monolithic chip
depends to some degree on the initial ruby-lith mask accuracy,
the resolution maintained to the final mask and the'final mask
alingment accuracy. The Motorola text contains a discussion of
the fabrication requirements2?!. This laboratory can yield satis-
factory results with 1/2 mil (10—3 in) line widths and 1 mil spac-
ing. MOS capacitance per unit area depends on oxide thickness, as
does the yield. Good results have not been obtained for thicknesses
less than 1500 X.

An approximate empirical formula for the total area required
by a realization in this laboratory is given by

Atotal = SCT + 4RT + 100NBJT + A

I
~ where AI is the area used by isolation in square mils and is de-

pendent on circuit design and layout. C; is given as total capacitance
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in picofarads, RT is total resistance in kilohms, and NBJT is the
number of bipolar transistors required. For example, if a circuit
for a Wien oscillator requires 2 bipolar transistors, 400 pF of
capacitance, 15kQ of resistance, and 100 square mils of isolation,
at least 2360 square mils of area are required.

A point of interest is the minimum frequency of oscillation
that can be obtained for the realization of a given configuration
with a specific circuit area”. For example, the minimum frequency
of oscillation for a Wien-type basic oscillator occurs for equal R's
and equal C's for fixed total resistance and capacitance?3. In this

case the frequency is given by '

1
fo ~ 2w RC
The use of chip area for realizing resistance and capacitance to give
the minimum frequency of oscillation under this constraint is ob-

tained by setting the total differential of'frequency equal to zero:

This gives the ratio of capacitance to resistance to achieve minimum
oscillation frequency. For a typical 70 by 70 mil circuit area,

Atotal equals 4900 square mils, If the realization requires 10 kQ

Pinch-effcct resistors are not considered??.
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bias circuit resistance and two bipolar transistor, the minimum
frequency by the above derivation is approximately 2.4 kHz. In
actual circuit designs,where there may be additional complexity

and additional oxide thickness is used to raise capacitor yields,

a reasonable design frequency is of the order of 100 kHz. This
frequency is low enough to avoid the effects of parasitic natural
frequencies which occur at a few megahertz for circuits realized in

this laboratory.

2.9 Operating Point Considerations

It is often desirable to design circuits that do not depend
critically on operating point.' This is usually accomplished by
designing transfer functions that depend on the values of ratios
of resistors. However, circuits can be successfully designed that
depend on the operating point. One such circuit is the compensated
selective amplifier Ey Gaash that depends on a transistor trans-
conductance gmz“.

One circuit of potential interest in subsequent chapters re-
quires accurate bias control. It provides a voltage transfer func-
tion with a controlled nonlinearity. For the example cited below,
the operating point must be controlled so that the collector voltage
of the transistdr is exactly 1/2 the supply voltage and is tempera-
ture insensitive. The biasing circuit to accomplish this is a
direct adaptation of Widlar's scheme?3., Wildar's circuit to control

the operating point accurately is shown in Fig. 2.24a with values
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chosen so that VCE is one half of VCC' This produces an approxi-

mately symmetric nonlinearity in the transfer function as also shown
in4Fig. 2.24(b). This nonlinearity can be modified by the inclusion
of the diode network shown in Fig. 2.25 to achieve the symmetrically
shaped nonlinear gain characteristic shown in Fig. 2.26. The appli-
cation of this circuit to the nonlinear compensation of transfer os-

cillators is discussed in Chapter 3.
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Fig. 2.1 Negative Impedance Converter Oscillator

Fig. 2.2 Bridged-T Network
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Fig. 2.3 Voltage Amplifier for Wien-type Oscillator
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Fig. 2.4 Modifier Wien-type Oscillator
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(a) Root Locus (b) Circuit Configuration

'Fig. 2.8 Two Pole, Negative Feedback Oscillator
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Fig. 2.9 Basic Negative Feedback Oscillator
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III. OSCILLATOR SENSITIVITY

3.1 Introduction

Chapter 2 defines two types of basic oscillators and the
feedback loops that they may contain. Some of the design con-
straints imposed by a foially integrated monolithic oscillator are
considered and the resultant possible confiéurations for positive
and negative feedback oscillators are developed.

In this present chapter, the sensitivity problem is considered
specifiéally.. Fier;'thé temferature sensitivity of circuit elements
comprisiﬁg an oscillator realization are studied. Then a temperature
sensitivity formulation is derived for a linear model of the Qscil-
lator system. Finally, coﬁsideration is turned to the nonlinear
effects and their contribution to the temperéture sensitivity of the

_ oscillator.
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A generalized form of the Groszkowski-Shohat result is derived,
indicating possible frequency variations due to distortion of a
harmonic outpﬁt. Sinﬁe explicit forms are required for semsitivity
due to nonlinear effects, both digital and analog computer re-
sults of nonlinear second and third order oscillators are pre-
sented. These results combined with the.results of the linear

analysis lead to a complete formulation of the sensitivity problem.

3.2 Sensitivity Coefficient

Several sensitivity coéfficients may be defined. In this
study, two particular sensitivity.coefficients are used. The first
is the classical sensitivity coefficient which is given by Bode2S.
The classical sensitivity coefficient for a variable X that depends

on a parameter G is defined by

x _G dx _ d(ln x) :
"% &~ I ~ (3.1)

This is the sensitivity definition used when the parameter G is
not temperafure. When the parameter of interest is temperature,
it is cbnvenient to define another sensitivity coefficient to in-
dicatevthe fractional change of the dependent variéble on tempera-

ture. This sensitivity coefficient is defined by

x _ 1 dx _d(lnx)

Y TX dar T T am

(3.2)



49

It is to be noted that if x is the product of several sensitive
components X, the total classical or temperature sensitivity of
x is the sum of the sensitivities of each of the components. For

example, the total temperature sensitivity of x is given by:

x ; dlinx _ d ln(xlfgf"xN) _ d In Xy . d In X, . 5.3
Yp = /3T aT et Tar e (3.3)

The temperature sensitivity is expressed in parts per million per

°¢ (pp/°0).

3.3 Element Sensitivity

- The temperature sensitivity values of the different circuit
elements used in the final design are based on experimental results.
Previous theoretical results used a temperature sensitivity expres-
sion fof-the common emitter current gain (Bo) of a bipolar transistor -

of the form

vz - : (3.4)
vhere T is the temperature in degrees Kelvin2’. Experimental results
in this laboratory have shown this expression to be accurate for

deep structure transistors with nondegenerately doped emitters.
However, additional experimental investigation has shown that there
is some dependence on processing. For the case of the shallow trans-

istor with a degenerately doped'émitter; an apprdximate empirical
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expression based on experimental results obtained in this labora-

tory is given by

= == (3.5)

This expression gives both a smaller sensitivity at room temperature
and a smaller derivative of sensitivity. The experimental sensitivi-
ties obtained for both types.of bipolar transistors are shown in Fig.
3.1. Included in the figure is a graph of Eq. 3.4.

Resistance sensitivities often ;re assumed to be constant with
temperature. In the case of higher resistivities, the is not too
bad an approximation. However, as with transistor current gain Bo?
the resistance sensitivities are processing dependent. The lower
resistivity realizations show a larger sensitivity dependence on
temperature. Experimental results obtained in this laboratory for
two resistivities are shown in Fig. 3.2. Resistor sensitivities are
also somewhat dependent on geometry. Experiments show variations
of 5 to 10% for_different geometries. Hess, et al, have done a more
extensive experimental investigation of diffused resistor tempera-
ture coefficient28, Their work includes the temperature coefficient
dependence on surface impurity concentration, background concentra-
tion, and junction depth.

MOS capacitors are usually assumed to have zero temperature
sensitivity. To a first order, the assumption is well satisfied

for the MOS capacitors realized over an n region. A typical
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experimental MOS capacitor sensitivity is shown in Fig. 3.3

3.4 Total Oscillator Sensitivity

The oscillators considered in this thesis are all of such a
nature that theylcan be represénted by a sihgle nonlinear differ-
ential equation and have a single unstable singularity. All the
nonlineari;ies.of the nonlinear eqﬁation are assumed to depend on
the same single variable. A‘lineariied model for the oscillator
system.can then be obtained by'Taylor series expansion about the
singularity2®, as discussed below.

For an initial example, the current amplifier Wien-type os-
cillator which has been discussed in Chapter 2 and experimentally
realized as described in Chapter 5 is considered. The circuit
for this particular oscillator is repeated in Fig. 3.4. For clarity
in the discusgion, the following definitions are made. AI indi-

cates a circuit block that performs as an ideal current amplifier,

F(i) is the input-output relation of the gain block:
i, = F(1)

where i is the input current, and A is the linearized gain given

by:

_d A
A= FQ)
i i=0
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The open-loop transfer function for the first-order model is

given by
1 .
( rc-P) F)
- 172 : 3.6)
Tp = AN WS S WV G.
| RiCy Ry,  RyC, R;RC,Cy

where p‘is the differential operator, p = d/dt, and F(ii is the
idealized current transfer function of the transistor amplifier
which is assumed to contain the system nonlinearity;“For proper
choice of biasing elements, the tran;istors are biased to a single,

stable, operating point with both transistors in the active mode

and the open-loop transfer function can be linearized about the

operating point to give: w
1
A RC, P
TP = = (1 T . 7 E (3.7)
p + + + P+ )
R]_C1 RZCZ R1C2 RIRZCICZ

The gain A of the closed-loop system can be adjusted so the single
- singularity becomes unstable and periodic oscillations result.

For this oscillafai.the closed-loop system equation is

2 1 1 1 S | ) 1 .
P~ +[( + + )p + 1i - pF(@E) =0 (3.8)
RC; " RT, " RE, RRCC, R C,
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where it is noted that the quiescent input current is zero due to

the series capacitor. For R, =R, =R, C, =C, =C, and f(i) =

1 2 1 2
d/di (i-F(i)), this can be normalized with respect to time to give

i

x+ f£X)X +x =0 ' ts.s)

where x = 1/RC di/dt. Eq. 3.9 is recognized as Lienard's equation.

.For.this system, the linear contributions to sensitivity are
caused by temperature changes in R and C which track closely with
temperature variations. This represents changing thé time normali-
zation of Eq. 3.9 and therefore adds directly to period changes
caused by the modification of f£(x) with changihg tempeiature. The
temperature sensitivity of the generalized form of Lienard's equa-
tion is considered in detail in a later section.

In the general case, there may be resistive and capacitive

‘values that do not track closely in temperature and contribute

non-negligible terms to the system equation. The elements of the
hybrid = model of the bipolar transistor might be significant and
yet not track the passive elements closely with temperature change.
However, if all the noﬁlinearities appear as single valued coef-’
ficients of a single variable in the differential equation, the
total temperature sensitivity can still be written as the sum of a
linear contribution and a nonlinear contribution. |
For example, consider a general third order nonlinear equation

of the form
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2A
d pd '
(x) — + a,(x) ———-+ 2, x) +a x)x = (3.10)
> 2 at? %

If the coefficients are suitably well behaved, each may be expressed

- . *
as a Taylor series expansion :

_ 3
_ao(x) =3 ) ta Xt 3 zX * ...
a,(x) =a,, +a . Xx+a x3 + (3.11)
1 11 12 13 tre :
az(x) =3, tagXx ...
as(x) = a5 A Xt ...

If a time scaling is performed so that t = t/K, Eq. 3.10 becomes :

as(x) ﬂiﬁ . az(x) dzx al(x) dx
K3 d13 K* drt

A" ‘a?-+ ao(x)x =0 (3.12)

However, if the coefficient aij of Eq. 3.11 are scaled simultaneously

with the time scale so that

=Kk a,., - (3.13)

This Taylor series expansion is not necessary for thls discussion
but is convenient for clarity. ‘
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Eq. 3.10 becomes

3 2

a3(x) §:§-+ az(x) §;§-+ al(x) g% + ao(x)x =0 (3.14}

1f Eq. 3.10 has a periodic solution x(t), Eq. 3.14 has a periodic
solution x(t).and x(t) = x(t). Therefore the scaling of the coef-
ficients of Eq. 3.10 according to Eq. 3.13 is equivalent to time
scaling. |

Any variation of the coefficients caused by a temperature change
may cause the period of x(t) to change. That portioﬁ of the coef-
ficient variation that satisfies the scaling relation of Eq. 3.13
is considered to be the linear contribution to temperatureAsensitivity

£
of oscillation frequency. It is expressed by YT{ in the relation

f .
= , O
Afo(linear contribution) ~ £ Yy, AT - (3.15)

From Eq. 3.13, it can be seen that the scaling K is related to
f :
o

YrL AT by -

K = 1 (3.16)

fo
1+ YrL AT

Any coefficient variation with temperature that violates Eq.

3.13 is considered a nonlinear contribution to sensitivity. For
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example, if a particular coefficient 333 has a temperature induced

variation
& _ i
aij = (X) aij + 8 _ (3.17)

the term 8 causes the nonlinear contribution. The nonlinear contri-
f
bution is expressed by YT;L in the relation

f
o

Afo(nonlinear) = fo YTNL AT : (3.18)
Since the linear contribution effects only the time normalized
system, it can be seen that the two sensitivities add directly to

give the total temperature sensitivity of oscillation frequency as

fo fo fo

A subclass of oscillators that is of particular interest is

one that has the following properties:

a) All the coefficients aij of Eq. 3.11 have a temperature

depéndence as expressed by Eq. 3.16.

b) K depends to a first order only on passive elements

temperature sensitivities.
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c) All the elements of a given type (eg., resistance, capaci-
tance) track closely with temperature (i.e., the tempera-

ture coefficient of all resistors is the same).

The temperature sensitivity of oscillation frequency for oscillators
in this subclass is primarily due to the linear contribution of the
passive elements. The Wien-type oscillators discussed above is in

this subelass and exhibits this property.

3.5 Linear Contribution to Basic Oscillator Sensitivity

For a basic positive or negétive feedback oscillator which pro-
duces a harmonic output, the frequency of oscillation is inversely
proportional to an RC product. For a typical Wien-type configura-
tion such as shown in Fig. 3.4, this product contains, to a first-
order, only terms involving the passive elements in the frequency
selective feedback network. For this case and for many harmonic
positive feedback oscillators, the frequency of oscillation is given
by L.

£ = 1 | (3.20)

0
2m #RIRZCIC2

If this expression is accurate for the particular positive feedback
oscillator under consideration, its temperature sensitivity is given

by
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fo 1% 11 ™ 11 % 11 11 % 591
Y7L £ dT 2R 3T ~ 2R, 8T 2C 8T 2T, 3T (3.21)

If the oscillator operates in a near-harmonic mode over the tempera-
ture range considered, this expression can give a fairly accurate
prediction of temperature sensitivity for a positive feedback mono-
lithic 6scillator as is shown in fig. 3.5. This figure is obtained
from the actual experimental realization of the basic Wien-type
positive feedback oscillator of Fig. 3.4. In Fig. 3.5, the tempera-
ture sensitivity predicted by Eq. 3.21 uSing measured values of
resistor and capacitor sensitivities is compared with the experimen-
tal measured sensitivity. It is seen the difference is less than 5%
in the temperature range considered. The details of this realization
and these results are described in Chapter 5.

In spite of the good match mentioned above, this linear descrip-
tion is not complete. If the approximation that the oscillator
operates in a harmonic mode is poor, or if the resistors and capaci-
tors have a very low temperature sensitivity, this first-order approxi-
mation may be completely inadequate.

A more accurate but equally straightforward expression for the
linear sensitivity can be obtained based on the particular properties
of monolithic integrated circuits. The capacitors realized as MOS
devices have a very small temperature sensitivity. Because of the
fact that the diffused resistors are realized in the same fabrication

processing step and the very close temperature coupling within the
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actual circuit chip, there is a close tracking of resistor values
with temperature variations. This is to say that the MOS capacitors
have essentially a zero temperature coefficient and the resistors
have almost exactly equal temperature sensitivities over the tempera-

ture range. This can be expressed by

n

r%**

1 .
—~7 = 0 i=1,2,... (3.22)

i 3R,
7 3% J=L2... (3.23)
J .

Q

3R
3T

1
Yt ° R

To determine the effect a temperature change has on the system
root locus under the conditions of Eqs. 3.22 and 3.23, a brief di-
gression is needed to.discuss the concept of root locus and the nature
of impedance and frequency scaling.

The concept of root locus is based on a’'linearized system model.
The root locus of an oscillator, which is inherently nonlinear, is
obtained from the linearized model of the oscillator about the
quiescent operating point. |

Iﬁpedance scaling is done by multiplying every impedance in the
circuit by a common factor KI.. For the elements liable to be en-
countered in a monolithic circuit, the normalized values of the

elements are

=
n

~

=
-
n

jI I J' 1’2’000

o
[}
(@)
[N
~
=
-
=
I

i1 = 1,2,'... (3.24)

ng =

|
3
~
-
-
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where Ei;’;;gscript I indicates the impedance scaled value. Since
this scaling does not modify open-loop pole position, the root locus
is unchanged.. If this scaling does not change the open-loop gain
level, the closed-loop poles are not modified either. However, if
thé gain level is changed, the magnitude condition must be used to
determine the new closed-loop pole positions on the root locus.

Time scaling corresponds to modifying real time by some factor
Kf. The scaled system operates on a time base 1 = Kft. The scaling
of the actual system is obtained by modifying the component values
by Ke for those elements that contain a time derivative in their
model. In the usual monolithic circuit, this means changing capa-

citor values by Kf

C. i=1,2,3,... (3.25)
Time scaling is eé;ivalént to frequency scaling of the linearized
model which produces a radial shift in the root locus of the system
but does not change its form. Thus, the closed-loop poles are only
modified in their radial distance from the origin. Their angular
position doés not change under frequency scaling.

Attention is now returned to the effect of temperature change
on open-loop and. closed-loop root locus pole posifions of the
monolithic circuit under the constraint of Eqs. 3.22 and 3.23. For
a given temperature change AT =T, - Tl’ the value of MOS capacitors
is unchanged and the diffused resistors all undergo an equal per-

centage change. If y? is independent of temperaturé, this is
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expressed by

ACi 0 (3.26a)
AR, = R... - R.. = R.. Y& AT (3.26b)
j JT2 JT1 JT1 T
In other words, none of the capacitors change in value and the
ith resistor has a value at the new temperature T, of
R.. =R.. (1++RaT) (3.27)
iTz iT T ‘
1
Thi§ is equivalent to an impedance scaling
K, = (1 + 1} aT) (3.28)
I T . *

However, if the whole system is impedance scaled, frequency scaling
must be used also since the capacitors do not change with temperature.
For zero change in capacitor value, the appropriate frequency scale

is equal to the impedance scale.
. Ko =K ' " (3.29)
Therefore, the temperature change is equivalent to a simultaneous

frequency and impedance scaling of the passive elements. It is

" noted that this is true even if y¥ is not independent of temperature



62

so long as Eqs. 3.22 and 3.23 are satisfied over the temperature
Tange.

1f in an actual monolithic realization the open-loop pole
positions are determined by RC products involving only passive
resistors and capacitor elements, the above conditions are met
and the temperature change can be represented as a simultaneous
frequency and impedance scale. This s;aling results in a radial
shift of the root locus.

The assumption that the RC products contain only passive
element valuesvis usually valid for the dominant open-loop poles of
'typical oscillator realizations. Thehnondominant poles from active
device charge storage effects are typically far enough removed so
they do not invalidate the radial movement of the dominant portion
of the root locus. This is pointed out in the example discussed
in Section 2.7 of Chapter 2. If the open-loop gaih level is in-
dependent of temperature, thé closed-loop poles are also shifted
radially with respect to the origin with temperature changes. When
the closed-loop poles can be written as a product (s-so)(s-sl)(s-sz)...
and So is the natural frequency of interest, its senmsitivity to tem-
perature is then expressed by

so 1 aso so R

Yr °© |so| =T Isol YT (3.30)

s
This is shown in Appendix A. Of course, if So is complex, YTO will

be complex.
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The example of the Wien-type oscillator.in Fig. 3.4 is continued
to demonstrate this more detailed formulation. The small-éignal,
closed-loop,-iinear system behavior is analyzed on the basis of
the equation obtained from the open-loop transfer function given by
Eq. 3.6. The second-order, linear differential equation of the

system is

2. 1 " 1 1-A | . 1
pi+( + + i+ 5w T
RlC1 RZCZ RICZ RlRZClCZ

0 (3.31)

where A is the linearized gain of the amplifier given by
A = d/di F(i) 420 and p = d/dt. The natural frequencies of the

system are given in terms of the complex variable s by the roots

of
2+ L (3-A)st =5 =0 . (3.32)
RC 2.2 :
R°C
if R1 = R2 = R and C1 = C2 = C, These roots are

,‘51,‘2 = (gg) [0 &7 5-6A_+A> ] (3.33)

The roots are complex for 1 < A < 5 where harmonic oscillation occurs

for A = 3. For the case where A = 3.1,

. 1 . :
s, = oxg ©.1+] /3.99) (3.34)
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If the gain A° is independent of temperature, the root sensitivity

to temperature is given by

Ys1= 1 as1 ) 1 351 R _ _R as1 YR (5.35)
T lsll oT Isll oR 3T |51| 3R 'T
In terms of Eq. 3.5, this becomes
[ .
1_-0.1 - j v¥3.79 R
Y = 7.0 YT (3.36)

This result and Eq. 3.35 are exactly those predicted by the general
form of Eq. 3.30. The graphic representation of this solution is
shown in Fig. 3.6. |

The sensitivity parameter of Eq. 3.30 dépends upon an open-loop
gain level that is temperatufe invariant and open-loop pole positions
that are determined primarily by RC products of passive elements that
satisfy Eqs. 3.22 and 3.23. If the gain level is not invariant, the
assumption of radial displacement of the root locus with temperature
still holds. Therefore, the new closed-loop pole positions can be
determined Sy first considering the root locus displacement with
temperature by application of Eq. 3.30 and then by solving the new

gain condition

|[H(s)G(s)] = 1 (3.37)

. where H(s) and G(s) are defined by Eq. 2.2. If, on the other hand,
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the passive resistors have widely varying geometries or are realized
in separate fabrication diffusion processes so that Eq. 3.23 does

not hold, or if active element paramefers of significant magnitude
appéar in the open-loop pole products, there is no simple way to
determine closed-loop pole sensitivity to temperature. In this case,
a more general sensitivity functiqn is needed. An example of such

a function for a single feedback loop system with a linear dependence
in gain is one that is provided by Gaash3?, The closed-loop pole
position is given in terms of the ga;n level and the open-loop poles

and zeros by

i dp z dz

_ ¢ _[H(s)6(s)] -1 dx _ Pe e .- k n
%0 = s )s=s° [%- 1 (s,*P.) ~ Pg * 1{ (so*2 ) % ]
(3.38)

x is the dimensionless open-loop linear gain'level, Pe is the eth open-
loop pole, and 2y is the kth open-loop zero. If the temperature sen-
sitivity of the gain and each of the open-loop poles and zeros can be
determined,.the temperature sensitivity of So is given by Eq. 3.38.
However, this situation does not arise for the oscillator configura-

tions considered.

3.6 Nonlinear Contributions to Basic Oscillator Senmsitivity

The linear contribution to oscillator temperature sensitivity
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is a complete description of osciliator pe:férmance only if the

gain condition is satisfied such that all natural frequencies move
radially with reépect to the origin with temperature changes. Even
in circuit§ designed to satisfy thié assumption, second order effects
fvmay cause it not to be true} In the remainder of this chapter, the
sensitivity of oscillation frequency caused by gain variations with
temperature chaqges is considered. This is basically a nonlinear
~problem, and for this reason both analytical and compﬁtational
techniques are used to oBtain'the results.

Nonlinear analysis pf thektranéistor oscillator has been
studied by several people31,32,33 1In particular, Wilson derived
an analytical techniqué~to determine the amplitude and frequenéy
of oscillation for a second-order near-harmonic oscillator having
a single nonlinearity3%. His results are based on an analysis of
Lienard's equation for a single analytic nonlinearity. In his
analysis, he made the aséumption of near-harmonic Sscillation. This
work on the second-order nonlineér systemlié extendéd to cover the
generalized form of Lienard's equation. in addition, conditions
where the nonlinéarity is piecewise linear or where oscillation is
not negf—hafmoinc are studied, Computer-aided analysis is used to
obtain the necessary values for the nonlinear sensitivity analysis
of typical oscillator.

In contrast to the positive feedback oscillator, the basic
negative feedback oscillator is at least a third-order system.

' Federlcks has studled a thlrd order vacuum tube RLC oscillator

and obtalned the condltlons for the ex1stence of a perlodlc
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solution35, D. X. Lynn considered particular forms of specific
third-order oscillators and used a perturbation analysis technique
to obtain the period of oscillation of the system3€, Diliberto

has provided a perturbation analysis to determine the changes in
the period of oscillation due to perturbations of the parameters
of an n'th order system3’. 1In this thesis, computer-aided analysis
is used to obtain specific results for third-order n&nlinear models
of negative feedback RC oscillators. If excess phase is included
in the basic second-order system as another natural frequency, the
second-order system becomes a third-order system. Thus, the third-
order formulation is used to analyze the effect of excess phase on

the nonlinear results obtained for the éecond-order oscillator.

3.7 Nonlinear Analysis of the Basic Positive Feedback Oscillator

The basic positi&e feedback oscillator can be adequately re-
presented by a second-order differential equation. - The form of the
equation is derived for the basic positive feedback oscillator in

Section 3.4 and is Lienard's equation

X + £(X)x + x -0 (3.39)

where x = dx/dt and a zero average value for x has been assumed.

For studies here, this is generalized to

X + £(x)x + g(x) = 0 _ " (3.40)
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Second-order nonlinear systems have received extensive con-
sideration by many authors and are covered well in standard texts38-%0,
In particular, the van der Pol case where g(x) = x and £(x) = e(xz-l)
has been studied for all values of e“l. However, for situations of
interest in this study, f£(x) is typically not of the van der Pol
form. Moreover, interesting cases occur for nonsymmetric f(x) and
f(x) piecewise linear. Therefore, these results are expanded by
éomputer-aided analysis.

The major interest here is the sensitivity of the period of
oscillation to changes in the parameters of the normalized nonlinear
equation representing the oscillators considered. Intuitive insight
to the period of oscillation as related to harmonic content or dis-
_tortion of the variable x is given by Groszkowski and Shohat%2,%3,
Their results are implicit expressions that do not explicitly give
the period for given nonlinearities. Moreover, their results do
not include the possibility of an example provided by Stoker**. He
considered a conservative system (f(x) = 0 for all x) with a hard
restoring force for which the frequency increased as amplitude and
distortion increased. A generalized result is derived here that
includes the Stoker example and points to possible nonlinear com-

pensation techniques.

3.8 Generalized Relation of Period to Harmonic Content

Groszkowski and Shohat considered systems restricted to the

form of Lienard's equation (Eq. 3.39). The theorem stated here
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is not restricted to this equation and is stated for the generalized

Lienard's equation.

Theorem 1. If g(x) and f(x) of the generalized form of Lienard's

equation

X+ £()x + g(x) =0 (3.41)
satisfy the conditions:

i. f(x) and g(x) continuous over the range of x

f(X), g(x) € C(-°°,?°))
ii. df(x)/dx exists
jii. £(x) and df(x)/dx are bounded

iv. f(o) < 0 and a periodic solution x(t) of period

T exists

where x(t) can be represented by

©o

A
x(t) = —%1-+ ) A cos (nut + V) (3.42)

n=1

where An is the amplitude of the n'th harmonic term and

wn is the phase of the n'th harmonic term;
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then a),
T
[ gdt =0 (3.43)
: i
and b),
T T,
[ xgx)dt = [ x"de (3.44)
(o] (o]

This theorem is proved in Appendii B. It is noted that for the
case where g(x) is odd, the average value Ao of x(t) is zero by
Eq. 3.43 of the theorem. Eq. 3.44 of the theorem is the general re-
sult relating period of oscillation to harmonic content. It is dif-
ficult to obtain a result that more explicitly indicates the relation
‘of harmonic content to period than this e#pression without first
making some assumptions on the nature of g(x). In the case that g(x)

is an odd polynomial, g(x) can be expressed

M
2m-1
gx) = Ja x (3.45)
m
Eq. 3.44 becomes
T T
[ Tax™at=] %%at (3.46)
o m o

From Parsevals equation“} this gives
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. 2m 22,2
J Ta A" = § nwA | (3.47)
s amn q n

where a is the mth coefficient of the polynomial and An is the

amplitude of the nth harmonic. If the sums have finite number of

terms, this can be rewritten
N M
2m 2.2 2 :
E[XamAn-Ann m]=0 (3.48)

If g(x) = x, Eq. 3.48 becomes

I A2 (1-n o?) = 0 (3.49)
n

which is the result obtained by Shohat. Eq. 3.49 cannot be satisfied
unless v < 1. The equal sign only occurs if A = 0 for n > 1, which
'js the case of harmonic oscillation. Thus, if a temperature increase
causes the harmonic oscillation to develop distortion due to increas-
ing gain, the funéamental frequency is sure to decrease. This result
is also implied by the calculations of Groszkowski who never directly
proves the theorem.

| In contrast to this result, the general result of Eq. 3.48
allows for an increase in frequency for increasing distortion. To
show this, consider a particular case where the coefficients in

g(x) are given by 3, = 1, a, # 0, and a = 0 for n > 2. Then Eq.
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3.48 becomes

) AZ (l-n2 w?
m
n .

2
+ A2 An) =0 (3.50)

The a. term makes a frequency increasé with increasing distortion

2
possible. This result, although not based directly on a physical
system, suggests that it may be possible to obtain a physically
realizable g(x) that will compensate the system. These details

are discussed in the next sectioms.

3.9 Computer Analysis of the Basic Positive Feedback Oscillator

The second-order nonlinear oscillator equation for the basic
positive feedback oscillator is presented in Eq. 3.29 where it is
assumed that the active transfer function nonlinearity appears in
the first-order differential term of the equation as f(x). For
the current amplifier, Wien-type oscillator of Fig. 3.4, this ﬁon—
linear term £(x) is obtained in reference to Eq. 3.8 from the cur-

rent transfer function of the amplifier io = F(i) by

£G) = 3 - S F(D)

I (3.51)

The output current io’ and the input current i are incremental N
values around the dc quiescent values. If, for example, F(i) =

3.31-i3 as suggested by Fig. 3.7, then f(x) = -0.3+2x2. The gain
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A is defined as the value of the transfer fuﬁction derivative at
the quiescent operating point which for this case is dF(i)/di at
i=0or 3.3.'

There are two steps involved in determining the nonlinear con-
tribution to temperature sensitivity for a given oscillator. The
first step involves determining the nonlinearity f£(x) as a function
of temperature for the particular oscillator being considered. The
second step involves finding the relation between the period of os-
cillation and the nonlinearity f£(x). This is accomplished by using
the results of the computer study discussed below.

The computer study of the periodic solutions of the second-
order nonlinear differential equation is done for forms of £(x)
that are representative of typical physically realized gain func-
tions. At the end of this section, after these computer results are
determined, an example is given showing the application of these
results to a Wien-type oscillator to find the nonlinear contribution
to temperature sensitivity.

Computer results for the relation of period to gain are ob-
tained for several different gain curves. The variations in gain
curves éonsidered involve both symmetry and the overall shape.
These results enable both the sensitivity to be calculated for a
given gain curve~ahd the importance of the shape of the gain curve
to be considered.

The symmetric gain curves considered are shown in Fig. 3.8.

" The dependence of period on gain for each of the curves is obtéined.
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The curves considered vary from piecewise linear to a van der Pol
approximation for the active region. The computer results for the
van der Pol approximation are compared to a perturbation analysis
based on the Krylov-Bogoliobov method at the end of the section*®.
On the basis of the results obtained for the symmetric gain curves,
the decision is made to study symmetry variations for piecewise
linear curves.

For analysis of the effect of sharpness of cutoff of the gain
curve on period of oscillation, four symmetric amplifier curves are
studied. These are shown in Fig. 3.7. For each curve, the same
relative maximum amplifier output current is assumed and each is
symmetric with respect to the bias poini. The gain for each is
defined as the slbpe at x = 0, Curve one is the van der Pol form
up to the amplifier inactive region. The inactive region is re-
presented by a linear segment. Curves two and three consist of
linear segments connected by fillets that are circular arcs. Curve
two assumes the derivative is zero for X gréater than one irrespéc-
tive of the gain. Curve three assumes a constant radius fillet.
Curve four is piecewise linear. The computer program and a des-
criptioh are contained iﬂ Appendix C.

The computer results for the last three gain curves are shown
in Fig. 3.8. The difference in period between the three solutions
occured in the fifth place. This leads to the conclusion that the
sharpness of cutoff is not critical when the amplifier gain curve

contains a large linear region.
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A more noticeable relation between amplitude and frequency
Sensitivity to gain changes occurs between the pieéewisevlinear
and the van der Pol approximation. To suéplement the computer
study, a pertu;bation analysis is made for the van der Pol approxi-

mation,
. . 2 ) )
£(x) = e(ux"-1) (3.52)
and for the case
. .
£(x) = e(ux -1) (3.53)

The details of the perturbation analysis are presented in Appendix

F. The dependence of amplitude and fundamental frequency on e and

p are given in Table 3.1 along with an empirical form for the fre-
quency dependence of .the symmetric piecewise linear form of f(x) on

e. In this latter case, € is defined ¢ = f(oj. This € corresponds

to the other e's. It is also interesting to compare the computer
result for the van der Pol approximation to the perturbation analysis.
This comparison,is provided by Fig. 3.9.

An example of the application of these results is the determina-
tion of the nonlinear contribution to temperature sensitivity of the
current-amplifier, Wien-type oscillator of Fig. 3.4. If the ampli-
fier of this circuit can be modeled as shown in Fig. 3.10, the small-

" signal current gain is given by
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i 8182 Ce*C) + 8y G 8c *+ .-
€n18m2 Of * Enp (Vi8¢ * G@8c) *+ gy Y G * oo

A (3.54)

where only the terms that contribute more than one percent to the
dominant terms 8n1 &m2 (GE+gC) and 2.1 Em2 Gf for typical circuit
values are expressed. The amplifier is also assumed to have a low
input impedance Zin and a high oﬁtput impedance Z,- Z° is usually
on the order of the output transistor output resistance T, which is
typically greater than SOK. Zin is of the order of 50Q at base band
frequencies for actual circuit values. To'a first-order, the current

gain is the ratio of resistors given by the dominant term of Eq.

3.42
G + G
A=t L (3.55)
f .
Amplitude Frequency

f(x) a w

2 T _ 2
e(ux"-1) 2/Yu w=uw(l-.0625 ¢c7)

1/4

€
1

e (ux -1 &) wo(i - 145 €%

Piecewise
Linear

€
!

- 2
wo(l - 1.25 €7)

Table 3.1 Frequency Sensitivity to Gain
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- If GE and GF track closely with temperature change, it is the
second-drder terms that cause the gain to be tempefature sensi-
tive. If only terms making a significant contributioﬁ to the
" gain sensitivity ire included, the gain sensitivity is
Seinz L 8y 8 (3.56)
o 3 :
where it is assumed that the Bo of the two transistors are the
same and the gain condition for oscillation is satisfied for A = 3.
For the values of the actual realization considered in Chapter
5, the gain sensitivity has a value of approximately 200 ppm/oK at
300 °K. If it is assumed that.the amplifier can be reasonably re-
présented by a syﬁmetric, piecewise linear gain curve, the computer
results show the nonlinear contribution to temperature sensitivity

as

o

Youp, ¥ 5O ppn/°C (3.57)

or less than a 0.5% variation in period over 75°K of temperature
change. In comparison to the linear contribution to temperature
sensitivity,

yTi ¥ 2000 ppm/°C | (3.58)
the nonlinear contribution is negligible. This is born.out by

the results obtained in Chapter 5.
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3.10 Symmetry Variation

Because of the limited control of element values in the actual
realization of an integrated oscillator, a symmetric gain curve
wéuld be difficult to obtain. Therefore, the effects of symmetry
on sensitivity are of interest. Two results are presented. Firstly,
the change in period for changes in Symmetry for constant gain is
found. Sécondly, the change in feriod for variations in gain at
constant offset is found and compared with the symmetricalvcase,

The computer program for these caggs_was written in modified Fortran
I1 for the IBM 1800 computer as.is contained in Appendix D.

In Fig. 3.11 the change in beriod with change in offset is
shown. It is seen that for gain levels that produce almost har-
monic oscillation, changes in symmetry have a marked effect on
period. Fig. 3.12 shows changes in period for changes in gain for
a given nonsymmetric gain curve. These results lead fo the conclu-
sion that the period.of oscillation is increasingly sensitive to gain
variations at low gain levels as the dissymmetry in the gain curve
is increased. However, as the gain level increases, the excursions
into the cutoff regions increases and the dissymﬁetry has less effect.
With sufficient excess gain, the gain sensitivity for the symmetric

and nonsymmetric curves is about the same.

3.11 Additional Computer Results

Three additional computer results for the positive feedback '

oscillator are obtained. First,‘the effect of having onlyvparfial
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cutoff for a piecewise linear gain curve on period sensitivity to
gain is studied. Second, the effect of excess phase in the gain
function on the sensitivity is considered. Finally, the possibility
of compensation as suggested by the frequency relation of Section
3.8 for the generalized Lienard's equation is investigated.

As determined in this section, the period sensitivity to gain
is a minimum for the van der Pol appioximation to the gain curve,
with the piecewise linea: gain curve producing the maximum sensi-
tivity. This suggests that the piecewise linear curve, which would
be closely realized in an amplifier ﬁith a large amount of feedback,
such as the Wien-type discussed in Chapter 2, may not be the optimum
design. However, accurate gain control is usually obtained by the
use of large amounts of feedback. The dilemma can be solved by
using a piecewise linear curve that has reduced gain or only partial
cutoff in the sections such as on of those shown in Fig. 3.13. The
realization of such a modified gain curve is discussed in Section
2.8 of Chapter 2.

Computer results were obtéined for two degrees of partial cut-
off as‘showp in Fig. 3.13. These computer results are given in
Fig. 3.14 along with full cutoff piecewise linear results. As can
be seen in Fig. 3.14, the modified nonlinearity does reduce the
gain sensitivity which would in turn reduce the nonlinear contribu-
tion to temperature sensitivity of the overall oscillator.

The analysis up to this point of the positive feedback oscil-

lator has been based on a second-order model of the system.
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‘Attention is turned now to a third-order system that is capable of
modeling the positive feedback oscillator which has a single non-
dominant pole‘in its amplifier to model excess phase effects; ‘If
the positive feedback oscillator is of the Wien-type, the amplifier
might contain a nondominant pole-of the form (ep + 1) where o > 0

as shown in Fig. 3.15. The original second-order system would become

api + (1 + 3a)p> i+ (3 +a)pi - p F(i) +1 =0 | (3.59)

Computer analysis of period'sensitivity to gain was made on this
system for a piecewise linear curve. The program is contained in
Appendix E. Results were obtained for several values of a. The
result for o = .02, which corresponds to about 1.2° excess phase in
the low frequency slope, shows a slightly greatef sensitivity to gain
than the model without excess phase. For a 0.3% change in gain, the
former shows a .83% éhange in period and the latter shows a .73% change
in period.

The possibility of nonlinear compensation is indicated by the
result of Section 3.8. This requires the systém’to be of the

form

X+ f(x)x + g(x) =0 (3.60)

The computer study again in this case is made for piecewise linear

curves. The curves used for f(x) and g(x) are shown in Fig. 3.16.
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It is noted that the discontinuity occurs for the same‘value of
x in both curves. A ﬁossible fealization for these curves is
discussed in Chapter 4. The computer,resuits are shown in Fig.
3.17. The particular point of interest is the fact that the
period sensitivity to gain has the opposite sign for the g(x)
chosen than all the previous cases studied. This is the possi-
bility that is predicted by Eq. 3.44 and Eq. 3.50. From this

result it is seen that nonlinear compensation is possible.

3.12 Nonlinear Analysis of Basic Negative Feedback Oscillator

Two systems are studied as representative of the nonlinear
considerations in the negative'oscillator. The first is the case
of a system with non-interacting poles where the third-order equa-
tion of the closed-loop system for equal open-loop poles at s = -a

is
PR .. '2. 3
X + 3aX + 30 x + (1-Aa™)x =0 (3.61)

For the computer study,a‘is set equal to 1 and the amplifier
gain curve is assumed piecewise linear.
Because of programming considerations, only a piecewise linear
system is considered. If the piecewise linear system is modeled
to represent total amplifier ;utoff, the computer results indicate
‘ nonsymmetric output waveforms are obtained.for a symmetric amplifier

characteristic. These results are not considered representative of
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'an actual physical system. The.digital compﬁter results for such
a negative feedback oscillator with a third-order model occur be-
cause of the nature of the computer model of the mathematical system.
This is not necessarily an erroneous result“’. It can be attributed
to the fact that the computér progfam appears as a delay differential
operator rather than a continuous nonlinear operator“e. Therefore,
digital computer results are only obtained for partial cutoff. ‘These
results are shown in Fig. 3.18. As with the second order system
with a single nonlinearity, the third order system with a single
nonlinearity shows decreasing frequeﬁcy with increasing gain.

For an amplifier that exhibited complete cutoff, a system
continuing interacting poles is considefed. The system in this case

is described by
"X +.6% + 10x + (3+A)x = 0 - (3.62)

An analog computér setup that is ﬁsed to obfain the results is shown
in Fig. 3.19. The nonliqearity realization is based on a model
provided by Johnson“®. The results, for which the period is mea-
sured to thfee places, in&icate a constant period of 2.22 sgconds
for gains from 60 to 85. In fact, modifying the cpefficient to
either X or x does not change the period as long as the starting
condition is satisfied. These results suggest that further analysis
of the third-order system is in order. |

The realizations in this thesis are based on second-order systems.
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It has beeﬁ shown in previous sections that a realization of such
a system is possible where the nonlinear contribution to sensitivity
is negligible. Therefore, there would be no advantage to a third-
order realization and the questions posed by the above results need

not be purused further for the purpose of this thesis.
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Fig. 3.7

Amplifier Gain Curves for Computer Study
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IV. TEMPERATURE COMPENSATION OF

INTEGRATED OSCILLATORS

4.1 Introduction

The total sensitivity of the basic oscillator is the sum of

the linear and nonlinear contributions to the sensitivity as ex-

pressed by
fo £ £
Yro T YLt Y (4.1)

Temperature compensation involves reducing the magnitude of the
£ _
total oscillator sensitivity YTO that is inherent in the basic

oscillator over a specified temperature range. Compensation tech-
£ )
niques that modify the linear term YT% of the basic oscillator are

called linear compensation techniques and those that modify the non-

linear term YT:L are called nonlinear compensation techniques. The
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final compensated oscillator may employ both techniques.

For the oscillators considered in this study, designs are
' f
possible that cause the nonlinear contribution YT%L to be negli-
f
gible compared to the linear contribution YTz.in the monolithic

realization of the basic oscillator. Therefore, the compensation

techniques that are of major interest for these realizations are

. f
the linear techniques that minimize the magnitude of YT:' It is
f
true that YT%L could be used to compensate the oscillator by off-

f f
setting YTE’ but for the magnitude of YTz encountered in monolithic

realizations, this would cause considerable output waveform distor-
tion for oscillators designed to operate over any sizable temperature
range. However, situations occur, such as with thin film circuits,
where the linear and nonlinear contributions to temperature sensi-
tivity may be of comparable magnitude. In thi$ situation, nonlinear
compensation techniques are of interest and so are described briefly
in the following section. In the remainder of the chapter, detailed

attention is given to linear compensation.

4.2 Nonlinear Compensation

The basic positive feedback oscillators can be modeled ade-

quately by the second-order nonlinear equation
X+ £X)x +x=0 : (4.2)

As is shown in Chapter 3, the sensitivity of the oscillation period
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to temperature caused changes in £(0) depends on the form of f(x).
For near-harmonic oscillators, the period of oscillation is less
sensitive for a van der Pol épproximation for the amplifier gain
F(x) that determines f(x) than a piecewise linear form of F(x).
However, a large amount of negative feedback is usually employed
in typical designs to minimize the sensitivity of f(o) to tempera-
ture as discussed in Chapter 2. This feedback causes f(x) to have
an approximate piecewise linegr form in the basic oscillator as
shown in Fig. 4.1(a).

The advantages of gain control by negative feedback can be
combined with the lower gain sensitivity of the van der Pol approxi-
mation by including a diode-resistor network in the amplifier to
produce the modified £(x) as shown in Fig. 4.1(b). This modified
nonlinearity is shown to have a reduced gain sensitivity in Chapter
3. The required gain curve might be obtained by the use of a cir-
cuit such as shown in Fig. 2.23 of Chapter 2.

As is proved in Chapter 3, a zero nonlinear contribution to
sensitivity due to temperature caused gain changes cannot be ob-
tained for Lienard's equation as given by Eq. 4.2. Imn order to
achieve a zero of the nonlinear contribution, the second-order non-

linear equation must be of the form
¥+ fx)x + g(x) =0 (4.3)

The computer results of Chapter 3 show that it is possible to

f
select a g(x) such that YT§L is zero. A possible circuit that
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would include the reduced gain sensitivity for partial cutoff in
f(x) and a compensating g(x) is shown in Fig. 4.2. This circuit
depends on the offset voltage of the diode ' as shown in Fig. 4.3.
The approximate forms of f(x) and g(x) for this circuit are shown
in Fig. 4.4, From Chapter 3, it is seen that this form of g(x)

can offset the gain sensitivity that would be due to f(x) alone.
The numerical details of such a realization would depend on the
actual circuit. However, this does demonstrate that in principle
it is possible to compensate the nonlinear contribution to tempera-

ture sensitivity.

4.3 Linear Compensation

Linear compensation reduces the total temperature sensitivity
of the oscillator by altering the linear contribution YT:’ .Since
it is possible to design a monolithic circuit so that the nonlinear
contribution to temperature sensitivity is negligible compared to
-the inherent linear contribution, the linear compensation techniques
of interest reduce the magnitude of Y:z of the basic oscillator.
Of course, this compensation should be accomplished so that it does
not increase the magnitude of YigL'

The basis of linear compensation is to modify the small-signal
model of the syséem to reduce the temperature sensitivity of the
dominant natural frequencies of this model. In this respect, linear

compensation techniques are applicable to both oscillators and

band-pass amplifiers. However, the final formulation may be quite
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different for the two since the oscillator inherently contains
nonlinear considerations. A temperature sensitive Q in the band-
pass amplifier usually is undesirable. However, the same is not
true of the oscillator”. The negative Q of the oscillator is the
ratio of the negative real part to the imaginary part of the lin-
earized model natural frequency and represents the degree by which
the starting condition has been satisfied. The temperature sensi-
tivity of the negative Q for the oscillator then appears in the
nonlinear term, YiﬁL’ of the temperature sensitivity. This contri-
bution is then in the nonlinear considerations of the design rather
than the linear considerations. Therefore, the optimum circuit-in
the two cases for any given criterion may be quite different.

Linear compensation techniques for the oscillator are divided
into two categories. The first of these is based upon a foot locus
that is shaped so that temperature-controlled gain variations can
be used to offset the closed-loop pole temperature sensitivity.
This method is based on the work of Gaash30,

The other method is based on making each -of the open-loop poles
individually insensitive and then combining the net result in an
overall feedback loop that has a desensitized loop gain. The closed-
loop system forms the desensitized oscillator. This scheme is
called Miller-type compensation Because the individual desensitized
poles which may appear in minor feedback loops always can be con-

sidered as Miller-effect circuits.

Q has the dimensions of energy stored over energy dissapated per
cycle and is used as a measure of selectivity in bandpass networks.
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4.4 Root Locus Shaping Compensation

The definition of the basic oscillator assures that all the
open-loop poles and zeros lie on the negative real axis. With such
open-loop pole and zero locations, it is impossible to produce a
root locus that has a portion near the imaginary axis in the right-
half-plane that lies on a radial from the origin. However, this
condition is exactly that requlred to achieve linear compensatlon.

A possible design is to provide additional signal paths to
remove the above restriction on open-loop pole and zero position. '
With such a design it may be possible to obtain the required shap-
ing of the root locus. In particular, redundant siénal flow paths
permit the realization of compiex open-loop transmission zeros. As
js shown in the example below, these geros can be used to obtain
the desired root locus. For this root locus, témperature-controlled
gain can be used to achieve insénsitivity.

A single-loop lédder realization of the basic negative feed-
back oscillator is shown in Fig. 4.5. This circuit has the root
locus shown by the solid line in Fig. 4.6. The open-loop gain has
been adjusted to give the closed-loop pole position shown. From
the results for the linear model in Chapter 3, a temperature in-
crease would cause the root locus and closed-loop poles to shift
to the dotted line shown in Fig. 4.6. It can be seen that the
6pen-loop gain, which now controls the position of closed-loop
poles on the dotted root locus, cannot be adjusted to return the

closed-loop poles to their original position. - To make it possible

e
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to return the closed-loop poles to their original position by gain
adjustment, th¢ root locus at the higher temperature must still go
through the original closed-loop pole positions. Such a root locus
is one that has a portion in right-half-plane that lies on a radial
from the origin since temperature changes cause the root locus to
shift radially.

A possible realization that has the required root locus is the
modified negative feedback oscillator shown in Fig. 4.7. 1In this
circuit, the multiple signal path of the bridged-T network permits
the realization of complex transmission zeros. This circuit can be
adjusted to obtain the root locus and closed-loop poles shown in
Fig. 4.8. An increase in temperature shifts the root locus radially
inward as shown by the dotted line. If the gain were temperature

invariant, the new closed-loop pole position would be

AT (4.4)

where AT is the temperature increase, So is the original closed-
S, Tl

‘loop pole, and Yr is the temperature sensitivity of So due to

passive resistor temperature sensitivity, as is discussed in Chapter

3. By Eq. 3.30 of Chapter 3, this becomes
S =S - T1 AT (4.5)

Since the shifted root locus still goes through So_ 2 it is possible
T1
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to add a temperature controlled gain shift to make s =s_ .
°r2  °m
With the required temperature controlled gain term included, Eq.

4.5 becomes

s
s = s - [ ———11—- sy 0 26

|S | YG ﬁ- ] AT (4.6)

where G is the open-loop gain level. The required gain sensitivity
is obtained by setting‘the bracketted term in Eq. 4.6 equal to zero.

The requirement of root locus shaping is made clear in the

s
example by Eq. 4.6. YTO of Eq. 4.4 is a complex number for the
system natural frequencies that produce oscillation. The only

s.
parameter in the gain term of Eq. 4.6 that can be complex is yco.

Therefore, in order to set the coefficients of AT equal to zero,
the argument of Y;o is a function of both the gain level G which
determines the closediloop pole So and the shape of the root locus.
The root locus of a basic oscillator cannot satisfy this argument
equality condition and thus root locus shaping by the use of a non-
basic configuration such as demonstrated in the above example is
required.

This form of compensation could also be achieved by the use

of a twin-T network. However, a more complicated form than the

simple 3-pole twin-T would have to be used.

4.5 Miller Effect Compensation

In the previous section, the closed-loop poles are made tempera-

ture insensitive by shaping the root locus and.utilizing temperature-

w
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controlled gain variations. No attempt was made to desensitize the
open-loop poles. Controlling the open-loop pole sensitivities,
however, doesArepresent another alternative to achieve temperature
compensation. It is this alternative that is discussed in this
section.

If it is possible to make the open-loop poles and the open-
loop gaiﬁ level temperature insensitive, the closed-loop system has
temperature-insensitive natural frequencies. It is possible to make
each of the open-loop poles temperature insensitive by the tempera-
ture compensation.method applied in the last section. Each pole is
realized individually in a minor feedback 100? that has a temperature
controlled gain to make the insensitive. The insensitive natural
frequency of the closed minor loop then becomes an open-loop pole
of the major loop of the overall system. In a single-pole feedback
loop, no root locus shaping is necessary over the basic root locus
to achieve gain control compensation since both the temperature-
induced resistance changes and the controlled gain changes move the
pole along the real axis.

The design requifement for temperature compensation of the minor-
loop, closea-loop pole is to control the magnitude and sign of the
~gain temperature sensitivity to offset the inherent pole sensitivity.
For the particular overall open-loop pole in question, say Pe> the

minor loop requirement for insensitivity of Pe is

= (4.7)
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where P is the open-loop pole of the major loop, YTe is the tem-

perature sensitivity of P due.to the temperature sensitivity of
the passive resistor, and Gm is the minor-loop, open-loop gain.
This is the zero sensitivity requirement of Eq. 4.6. Now, however,
Yze and Yze are both real rather than complex since both can be re-
presented as shifts in position on the real axis for a temperatufe
jncrement. Therefore, no special root locus shaping is required.
The reason that éhis form of temperature compensation is
called Miller-effect compensation is that all the typical minor
loop realizations for a single pole éah be considered as Miller-
effect circuits. In fact, it is convenient to base the design on
Miller-effect circuits. An example in point is the circuit of Fig.
4.9a which might be used to achieve a single, negative-real, tem-
- perature insensitive pole. This circuit can be redrawn as shown in
Fig. 4.9b where it is recognized as a Miller multiﬁlier of the con-
ductance G,.

"If the circuit of Fig. 4.9 is jdealized as shown in Fig. 4.10,

the input resistance is of the form

Rin = R(1+Av) : : (4.8)

where-Av is the gain of an ideal unilateral voltage amplifier and
is assumed real. Further, it is assumed that Rin = o, and Ro = 0.

The temperature sensitivity of L is:

i
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Rin_ 1 Rin _ or, (A 4.9)
Yr "R_ ot Yt 't :
in
If A, is realized so that
(1+A)
v/ R
Yo * - Yy (4.10)
then Rin has a temperature coefficient equal to zero.
This procedure can be represented schematically as shown in
Fig. 4.11 to realize a single pole of Zin at -1/RC. If Yg = 0 and

R
the diffused resistor has a temperature coefficient YTD, the Miller

resistance RM’ which is R.ln of Eq. 4.8, should be such that

aflf ('RD + Ry =0 (4.11)

or

B H
S E——

Ry
Rp *+ Ry Rp *

-
BE R T

0 (4.12)

This description is the basis of Miller effect compensation

which is discussed in more detail in the next section.

4.6 Miller Sensitivity Formulation

In this section, the relations that must be satisfied to

. realize an insensitive positive feedback oscillator based on Miller
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compensation of the basic oscillator are derived. Two configura-
tions that do not change the gain insensitivity requirement of the
basic oscillator are developed in detail. The deri§ations are based
on a linear model of the oscillator system.

The parameter of concern is the total differential of frequency
" with respect to temperature. If there are n temperature sensitive

parameters X, this total differential is given by

ak X

) b d
_ oW 1 . 3w 2 W n
dw = ( ~ 3T T - 3F * 't W 3T ) dt (4.13)
1 2 n
The frequency sensitivity is given by
1
chg - 75'4‘91’7 (4.14)

As derived in Chapter 2, the basic positive feedback oscillator

with no distortion has a frequency of oscillation given by

2 1

W T e
o RIRZCICZ

(4.15)

The compensated oscillator can be realized by making this product
jinvariant with temperature. This can be aqcomplished by compensation
of the capaeitances or resistances. Capacitor compensation produces
realization problems in the actual final design due to bias con-
siderations to avoid positive feedback at dc. Therefore, resistance

compensation techniques are used. A linear sensitivity formulation
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based on a harmonic oscillator model is valid for the very low
distortion near-harmonic oscillators realized. The distortion is
less than 2.5% over the temperature range considered for the actual
oscillators.

Both series and shunt resistance compensation are possible.
The series resistance compensation technique of Fig. 4.12 is con-
Sidered first. If the model shown in Fig. 4.13 of the transistor

~is valid, the total input resistance is given by

R =R +Rb

st B (4.16)

For the case of equal total R's and C's, the frequency of oscillation

is given by

1 8 )
Y R * (BR, + R.)C (4.17)

The sensitive parameters are B, Ra’ and Rb. Therefore, the
quantities of interest are 9w/38, 3w/aRa, and am/aRb. These are

given by

"

3

'a% = 5 (4.18)
(BR, + Ry)“C

- £ (4.19)

- 2
a (BR, + R)C
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In this case, the total input resistance is given by

RaRb

R = 22 (4.24)
BR2*Ry

The derivatives of frequency with respect to the sensitive parameters

are then

Q

W

=1 :
35 = ﬁgﬁ | (4.25)
3w 1
. (4.26)
8Ra R2C
a
’ dw ' -
w (4.27)
clie
This giveé a frequency sensitivity of
W o_ 1. B R . |
YT T TR 7B YT T M7 (4.28)
The derivative of sensitivty is given by
oy . BYB /8R 3 R
I 1 T, % ez M 4.29)
8T.” T#R /BR_ . oT (LR, /6R Z ‘T 3T
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which may have a zero. This means that Y¥ may have more tﬁan one
zero in.thé temperature range for the shunt case. However, as it
turns out for the actﬁal design numbers as shown in Chapter 5, the
series case given a smaller total derivation over the temperature
range of 0° C to 65° C and is, by this measure, a more nearly
optimum design.

The transistor model shown in Fig. 4.13 which is used in the
jmmediately preceding derivation yields results that are straight-
forward to interpret in relation to an insensitive design, but it
overlooks many potentially important parameters of a transistor
and therefore does not indicate any criterion for optimum transistor
realization in the monolithic circuit. If the transistor model of
Chapter 2 is introduced to the circuit of Fig. 4.12, the Miller
effect circuit that results is shown in Fig. 4.15. In this circuit,
the series base resistance is included in Gf. The emitter-to-collector
input impedance of the more complete transistor model of the Miller

effect circuit is found to be

8, (G *Y, (Gerg ) + v (Gpg +y, (Gere,) + 8,(Ggte.))

+ Yugo(Gf+gc) + Geg 8,

EC (4.30)
Y (8.48,*y, )+ ¥, (Grg e,) + gy, * Gp(g.*g,)
The model applied to the sensitivity derivation just done assumes

that only the first term of numerator and denominator of Eq. 4.30

'is significant which gives the input impedance Y, = Bon as stated
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in Eqs. 4.16 and 4.24. -In typical designs,'Gf is on the order of
10'4 mhos and Bo R 70. For a well designed transistor that has low

basewidth modulation effects, and high collector series resistance

|

<

1/g., Eq. 4.30 may be approximated by5!

" 8,8 Ge*y,)

Y el UL
EC Y o8c*EnYy

(4.31)

If the oscillation frequency w, is less than wg of the transistor,

Eq. 4.31 may be written:

v g8 Cg*8)

Y (4.32)
EC 2.8.%8,
Since Enly is equal to 2.8, and g, = go/Bo, Eq. 4.32 becomes
n 88, (Gerg /8)
P Yo = — ; (f — 5 (4.33)
, 7'8c 8o

For the circuits realized in this laboratory, gy < ZXIO-S mhos and

g > 2><10-3 mhos. Therefore Eq. 4.33 is well approximated by

N

Yo~ = BG

EC f

for Gf < 10-5 mhos which is just the assumption required to get Eq.

4.16.
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fox Fx)
X " X
(a) Piecewise Linear Gain (b) Modified Gain

Fig. 4.1 Second-Order Lienard's Equation Nonlinearity f(x)

.1|-

Fig. 4.2 Compensated Oscillator
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'P. .

. ‘ 0.7 v

: Fig. 4.3 'Idealized Diode Characteristic.

£x)

Fig. 4}4 Nonlinear Terms f(x) and g(i) for Compensated
+Oscillator '
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Fig. 4.5 Ladder-type‘Negative Feedback Oscillator
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Fig. 4.6 Root Locus of Basic Negative Feedback Oscillator, Temperature
Variations
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Fig. 4.7 Multipath Negative Feedback Oscillator
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‘f Fig. 4.8 Root Locus for Non-basic Negative Feedback Oscillator
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(@) : (b)

Fig. 4.9 Compensated Pole Realization Circuit

Fig.'4.10 Idealized Miller Realization
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Fig. 4.11 Compensated Pole

- PFig. 4.12 ‘Series Miller-type Compensation .
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Fig. 4.13 Simple Current Transistor
‘Model

©

. Fig. 4.14 Shunt Miiler-type Compensation
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Fig. 4.15 Total Miller-type Compensation Model
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V. INTEGkATED OSCILLATOR REALIZATIONS

5.1 Introduction

This chapter describes the actual integrated momnolithic
realization of both compensated and uncompensated oscillators.
The results of experimental measurements on these o;cillators are
used to justify the assumptions and verify the conclusions of the
theoretical results of the preceding chapters. Thfee different
oscillators are realized, two of which are uncompénsated and one
of which is compensated. All three are positive feedback config-
urations. The first oscillator is the basic Wien-type uncompensated
oscillator described and analyzed in Chapter 3. The second oscillator
is a non-basic, uncompensated oscillator based on a modification of
the first oscillator. The third 6scillator is a compensated version
of the first oscillator. Before a detailed description of the ex-

perimental investigation of these oscillators is given, a description

of some of the laboratory considerations and techniques is provided.



\

125

5.2 Laboratory Considerations

There are two distinct considerations in the laboratory re-
alizations of these integrated circuits. The first is physically
designing the circuit elements of the realization so that they
have acceptable circuit performance. This acceptable circuit per-
formance implies the realized device is well approximated by an
acceptable modei. The other consideration is in obtaining ade-
quate yields. In general, as the circuit area goes up, the yield
goes down. The oscillators realized here have an area of 80x80 sq.
mils which is large and gives low yields. Therefore, processing
steps involving multiple masks and other special techniques described
below are required to obtain non-zero yields for these circuits.
Laboratory considerations concerning both yields and adequate cir-

cuit element performance are described in the following two sectionms.

5.3 Layout and Processing for Circuit Element Design

The circuit elements used in the monolithic realizations are
bipolar transistors, diffused resistors and MOS capacitors. Some
of the considergtions of the#e circuit elements as monolithic com-
ponenté are discussed in Section 2.6 of Chapter 2, where it is
poipted out there that the diffused resistors appéar as lumped
elements at the frequencies of interest. The elements that are

most likely to have unsatisfactory performance are the bipolar

* transistors and the MOS capacitors as discussed below.
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The model proposed for the monolithic bipolar transistors in
Chapter 2 is repeated in Fig. 5.1. Tbe pfocessing affected para-
meters that are of interest are the collector series resistance
1/gc and the basewidth modulation factor which determines Yy and
g, of Fig. 5.1. The most desirable transistor is one with very
little basewidth modulation and a low series collector resistance’3.

The collector series resistance is high in the transistors
realized in this laborgtory (300-10002) because of the lack of a
buried layer capability5*. A possible method to reduce the col-
lector series resistance might be to decrease the collector material
resistivity. As the n-type collector material decreases in re-
sistivity, the collector series resistance decreases, but so does
" the basewidth modulation factor and the collector breakdown vol-
tage. Therefore, this is not a desirable way to minimize the col-
lector series resistapce. The collector region bulk resistivity
is usually chosen as a compromise between a minimum collector series
resistance and a reasonable base resistivity profile that exhibits
negligible basewidth modulation (r_ > 20kQ) . Another method to re-
duce collector series resistance that might be tried is using a
thicker expitaxial-layer.' This has the disadvantage that it increases
thevcoilector to substrate parasitic capacitance Cj by increasing
the isolation wall area. '

There are steps that can be taken to decrease the collector
geries resistance without having some of the drawbacks mentioned

. N N . - 4+
. above. One is to surround the base diffusion region with an n
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diffusion as shown in Fig. 5.2. Another is to decrease the physical
dimensions of the transistor. A decrease in the surface area of the
transistor base regibn with a close spacing of the n* ring decreases
the bulk series resistance. The amount of this reduction is limited
by the fabrication facilitieé,.such as camera resolution in the mask
éroducing setup and mask alingment control. The actual dimensions
used are indicated in Fig. 5.2.

The vertical dimension of the transistor can be reduced by
modifying the predeposit and diffusion processing. The more shallow
structure has a lower collector seriés resistance since the thickness
of the region under the base region is greater. This modification
is equivalent to a thicker expitaxial iayer, except that it .does not
change the collector to substrate parasitic capacitance Co'

Transistors realized in this laboratory in a 12y epitaxial
layer with a 3.5p collector junction depth and a single collector
stripe have had a collector series resistance on the order of 1kQ.
Transistors made with the geometry of Fig;‘5.2 according to the
schedule in Table 5.1 have a collector junction of 2.5-3.0p and a
collector sgries resistance of 300Q.

The other circuit eiement of importance is the MOS capacitor.
This capacitor is formed by an aluminum coating over an oxide
layer covering the silicon expitaxial layer as shown in Fig. 5.3.
The ciréuit area that is to be capacitive is exposed in the emitter
predeposit step so that the expitaxial layer in this area is an n’

on n region. This minimizes the parasitic series resistance asso-
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ciated with the capacitor due to the bulk resistance of the epi-
taxial layer that forms the bottom plate. |

In order to obtain the capacitance values desired, a six mask
process is adopted. In this way, a very thin oxide is creased in
the capacitive areas which' increases the capacitance realized from
.06 pF/mii2 to,.é4 pF/milz. The value of capacitance for 1500 R of
oxide is .24 pF/mil2 and this is about the minimum oxide thickness

possible for good yields.

5.4 Processing for Yield Improvement

Circuit failures are found to be due mainly to pinholes appear-
ing in the oxide at some point in the processing. These pinholes
can cause circuit failure by shorting p-type regions in the circuit
to the substrate by p-type pipes. These pipes are formed through
the pinholes during the isolation processing steps. Shorting of the
aluminum interconnection pattern through a pinholes to the circuit
can also occur. The former is the major cause of transistor and
resistor failure and the latter is the major cause of MOS capacitor
failure.

The ?inholes causing these problems are not so much due to
faults occuring during oxide growth as to photo-resist processing
failures. These photo-resist failures occur in two ways: one is
unintended dark spots in the final mask due to a faulty emulsion or
dirt. The other problem is the appearance of flaws in the photo-

resist coating due to dirt or mechanical damage.

"
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To avoid the p-type pipes formed accidently in the isolation
process, a dual mask system is used for the isolation predeposit
photo-resist éxposure. After the initial oxide is grown on the
wafer, an isolation pattern is exposed and partially etched. The
wafer is then returned to the furnace for further oxide growth.

After the wafer is re-coated with photo-resist, the second isola-

tion pattern is exposed twice through different masks with the

jdentical pattern. Alignment is achieved by using the isolation
pattern already partially etched into the oxide. In this way, as
long as the flaws in the two masks do not coincidé, mask failures
do not occur.

Faults in the phots-resist are controlled by careful filtering
of the photo-resist solution. frecautions are taken to avoid possible
sources of dirt to keep the mask and wafer dirt free. In addition,
a significant yield improvement for MOS capacitors can be obtained
by coating the capacitor areas with additional photo-resist after
the initial photo-resist layer has been exposed and developed but
before etching the oxide.

A typical composite processing schedule is contained in Table

5.1.

5.5 Uncompensated Oscillator Realizations

The uncompensated oscillators are based on two of the positive

feedback oscillator configurations introduced in Chapter 2. One.
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of these configurations is a basic form and is a current amplifier,
Wien-type oscillator. The other is a non-baSic modification of this
configuration. The Wien-type oscillator is discussed first.

The basic Wien-type oscillator shown in Fig. 5.4 is considered
first. The open-loop transfer function is Eq. 2.15 of Chapter 2.

This equation is

A s/R.C
Ty = — 12 (5.1)
s” + (1/R1C1 + 1/R2C2 + 1/R1C2)s + 1/R1R2C1C2
The starting condition is

R c

1 2
A>1 + 5 + o (5.2)

R, G

If the equality sign holds, harmonic oscillation occurs at a frequency

2 1
w

o R1R2C1C2

(5.3)

For a very low distortion, near;harmonic mode of oscillation, Eq.
5.3 gives a very close approximation to oscillation frequency. In
Chapter 3, it is shown from the expression for the current gain of
the linearized amplifier (Eq. 3.42) that the nonlinear contribution
to temperature sensitivity is on the order of 50 pﬁm/oC. This is

more than an order of magnitude less than the linear contribution
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and therefore the temperature sensitivity can be‘approximated by
linear contribution derived from Eq. 5.2. The MOS capacitors have
a temperature sensitivity less than 50 ppm/°C oveéAthe entire
temperature range as shown in Fig. 3.3 of Chapter 3. Since this is
a negligible contribution, the temperature sensitivity is found

directly from Eq. 3.10 which is derived from Eq. 5.3. It is

fo R ,
ML (5-4)
The actual monolithic realization had the circuit values shown

in Fig. 5.4 which were determined by computer-aided analysis of a

.complete circuit model for near-harmonic oscillation. The actual

oscillator was realized by removing the compensation elements from
a compensated oscillator. The monolithic realization, which is
shown in Fig. 5.5, had an oscillation frequency of 140kHz at 27°C.
The design value of the diffused resistors was 5% greater than the
actual values shown in Fig. 5.3. With VCC = 12,0V, ;dc = 6 ma and
the dc input power to the circuit was approximately 90 (mw). The
amplitude of the output ét the collector of T2 wés 3 volts peak.
The oscillation frequency dependence on temperature that was
experimentally measured and that predicted by Eq. 5.5 from measured
resistor sensitivity data are both shown in Fig. 5.6. The total

frequency deviation of the oscillator is 11.5% over the temperature

_ range 0°C to 65°C. The experimental and predicted results shown in
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Fig. 5.6 corresponds well and indicate that the assumptions used to
obtain Eq. 5.4 are reasonable.

The second oscillator considered is the uncompensated non-basic
configuration shown in Fig. 5.7. This non-basic oscillator is
analyzed in Chapter 2 and has the closed-loop transfer function of
Eq. 3.10 which is repeated here.

Z = .-g. = _12.. (5.5)

ot

where A is the determinant of the nodal equations and found to be

Gl+Cls-

A(S) = gmlgmz [ —IC']'.E GE - GL (GZ+G25) ] (5.6)
The circuit elements indicated in Eq. 5.7 are shown in Fig. 5.7. As
discussed in Chapter 2, Eq. 5.6 is the dominant term of the determin-
ant A by an order of magnitude. The natural frequencies of the system
are found by setting A = 0. The real part is set equal to zero to

obtain harmonic oscillation and this requires for Gy = G2 = G, and

C,=C

1

2 = C ‘that GE = ZGC. The frequency of oscillation is then

€
n
ale

(5.7)

Again, if the resistors track closely with temperature and the oscil-

* lation is near-harmonic, Eq. 5.7 is a good approximation and the linear
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contribution to temperature sensitivity is an adequate description

of the oscillator performance. This is given by Eq. 5.4 which is

fo R
Yo = - Yp : (5.8)

The final circuit v. lues are chosen by computer-aided analysis
of a complete circuit model to achieve near-harmonic oscillation.
The circuit model of the transistors used in the analysis was the
intrincis hybrid = model with an added collector to substrate (ground)
capacitance of 10 pF and seriés base resistance T, of 50Q. The cir-
cuit was designed to operate at 6 ma of input current at VCC = 10V.
The design oscillation frequency was 320 kHz with the elements of
the RC frequency selective network having the values C = 100 pF
and R = 5k@. The MOS capacitor area was chosen on the basis of an
assumed 06 pF/milz. For the oxide thickness of 1500 & used, the
capacitance per unif area was .24 PF/milz. This is equivalent to
an 80 kHz frequency of oscillation if R = 5 kQ. The actual values
of feedback R achieved were 5.8 k@, 15% higher than the design value.
This corresponds closely to the actual oscillation frequency of 65.5
kHz.

The actual circuit values are shown in Fig. 5.7 and the mono-
lithic circuit is shown in Fig. 5.8. The circuit has an oscillation

frequency of 65.5 kHz at 27°C. The total frequency deviation over

the temperature range of 0°C to 65°C is 13.5%. A comparison of actual
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measured oscillation frequency dependence on temperature and that
%redicted from measured resistor sensitivity is shown in Fig. 5.9.
Again, it is seen that the two compare well and the approximation to
obtain Eq; 5.8 is reasonable.

The oscillation frequency'depéndence on temperature for fo =
200 kHz_was also measured by replacing the MOS capacitors with
external, zero temperature coefficient capacitors. Again the rela-
tion of Eq. 5.8 held to within 10%.

The transfer characteristic of the amplifier was measured to
determine the 3 db point with the poéitive feedback loop and MOS
capacitors removed. The amplifier was driven by 4 k@ current source
and the ﬁoltage output on the collectoriof T2 was measured. (The
input impedance of the amplifier measured as 502 at 200 kHz.) The

3 db point was found to be 2.2 MHz.

5.6 Selection of éompensation Technique

As is discussed in Chapter 4, linear compensation is more de-
sirable than nonlinear compensation for the oscillator considered
here. Moreover, the linear compensation technique selected should
ndt increase the nonlinear contribution to temperature sensitivity.
For root locus shaping, the/closed-loop poles would have moved on
the root locus to compensate for the 12% radial shift of the locus
over the temperature range. It is difficult to find a straightforward

circuit that can provide this radial closed-loop pole movement on
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the locus and therefore this compensation method is not used. The
Miller compensated realization is selected as best satisfying the
requirement for no increase in the nonlinear contribution with a
minimum complexity realization. If for the positive feedback oscil-
lator the frequency determining resistors are both realized by iden-
tical Miller-type desensitizing schemes, their ratio remains invari-
ant. For a realization of the oscillator as a voltage or current
transfer type, the gain requirement is thus independent of temperature.
As is pointed out in Chapter 3, amplifiers which have an insensitive
gain are straightforward to realize.

Miller compensation of the capacitors is not used because of
the requirement of zero open-loop transmission at dc to avoid possi-
ble bias instability. Therefore, Miller compensation of the resistors,
which has been analyzed in the last chapter, is the basis of the

design selected.

5.7 Design and Performance of the Compensafed Monolithic Oscillator

The series of the Miller compensated resistance is selected
over the shunt form because, for the element sensitivities encountered,
it is possible to have a smaller total deviation of frequency'over
the temperature range considered for the series form. The linear

contribution to temperature sensitivity for the series form shown in

Fig. 5.10 is, by Eq. 4.21 of Chapter 4,
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fo Rb Bo R

Yr *wa Yt Y (5.9)
T BR,+Ry T T

The design values of temperature sensitivities at 30°C are yg = 6000
~ppm/°C and Y$ = 1800 ppm/OC which are based on experience. Setting
f

YT°= 0 gives
R
1+ BR /R = y,‘fP/yT = 3.34 (5.10)

Eq. 5.10 gives the value Rb = 30Ra for Bo & 70. The resistance ratio
is determined well by geometry control.

The circuit was designed to have an operating point of 2.0 ma
in T1, 0.5 ma in T2 and T4, and 1.0 ma in T3. The design values
for Ra and Rb were Ra = 2 kQ and Rb = 60 kQ. Taps were provided
on Ra and Rb to provide adjustment so that the R.a would be set
equal to 2.5 k@ and R = 50 kQ.

The realization had Bo = 55 and Rb = 78 kQ@. To make a zero
of sensitivity near room temperature, the tap on Ra was chosen so
that Ra = 3.3 k@ (2.5 k@ design). The final circuit values of the
actual integrated realization are shown in Fig. 5.9. The monolithic
circuit is shown in Fig. 5.11. With V.. = 15.0V, I

cC d
supply was approximately 3 ma. This corresponds to a power input of

c of the power

45 mw. The oscillation frequency is 130 kHz with an output amplitude
of 2.0v p-p. The temperature sensitivity and measured distortion

- over the temperature range 0°C to 65°C is shown in Fig. 5.12. The

“
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the temperature range 0°c to 65°C.
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distortion was measured witﬂ an H.P. distortion meter that filtered
out the fundamental and measured remaining RM7 voltage. The total
frequency deviation is 2.4%. This is seen that the Miller compensa-
tion produces a zero of temperature sensitivity when the linear and
nonlinear contribution cancel over the mid-temperature range. There

is a reduction by a factor of 5 of the total frequency deviation over

!
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No. Step - Atm, Temp. °c Time - min. Comment
1 Initial oxide | Steam 1175 20 -
2 Initial Iso. - - - Isolation
Pattern Exp. Pattern
+ Etch
3 Isolation Steam 1175 20
oxide .
4 Double Exp. - - - -
Iso. Patrn.
+ Etch
5 Iso Predep. N2+B252 985_. 60
6 Iso. Drive- 0, 1175 5
in o
N2 1175 15 hrs.
Steam 1175 10
) N2 1175 3
7 Single Exp. - - - -
' + Etch.Base
Resistors
8 P Predep.- N2+BZH6 950 20 60-70Q/0
9 HF rinse
(12%)
10 Drive-in Steam .1150 10
p-regions
N2 1150 90 ~160Q/0

Table continued on next page
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No. Step Atm. Temp. °c Time - min. Comment
11 Single Exp. - - -
Etch emitter,
n* regions
12 n* predep. N, 950 40 ~79/0 -
| *Pslg
13 HF Rinse
(12 1/2%)
14 | MOS oxide Wet 0, | 1050 15 3700 R
15 Single Exp. - - - Etch in oxide
MOS pattern etch using
+ etch color to de-
termine oxide
thickness
16 | Drying N, 1050 5
17 Double Expo. - - - Extra PR coat
Etch windows
18 Emitter trim N2 1100 S As needed
19 Metalization - - - -
20 Sinter N, 525 30 -
Table 5.1 Typical Processing Schedule
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'~ Fig. 5.1 Monolithic Bipolar Transistor Model
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Monolithic Realization of Wien-type Oscillator
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Fig. 5.11 Monolithic Realization of the Compen-,
' sated Oscillator
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Fig. 5.12 Compensated Oscillator Temperature Sensitivity
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VI. CONCLUSIONS AND RECOMMENDATIONS

The total sensitivity of an oscillator has been shown to
be the sum of a term due to linear effects in the circuit and a
term due to nonlinear effects. Circuit configurations were found
such that the nonlinear term was negligible compared to the linear
term in a monolithic'realization, For these circuits, a compensa-
tion technique was found that produced a specified zero of sensitivity
at a particular tempefature and a reduced sensitivity over ; given
temperature range. . At the sensitivity zero, the linear and nonlinear
contribution to temperature sensitivity just cancel. |

The oscillators realized experimentally had an oscillation fre-
quency that is processing dependent.' Better processing control than
is available would give closer tolerances than the +15% seen in the
results of Chapter 5. Final tuning could be accomplished by etching
the aluminum of fhe MOS capacitors to remove excess capacitance and

achieve the desired frequency.
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For the compensated circuits, the temperature at which
the zero of sensitivity occur depends on the circuit element
sensitivities and fhe Bo realized for the transistors. A 10%
error in Bo would cause about a 10°C shift in the senmsitivity
zero. Again, better process control can yield a more predict-
able value of the zero.

Even though a reduction in overall sensitivity of the oscil-
lator is obtained, tﬁe frequency does show considerable variation.
with temperature. This is due to the large deviation of the tem-
perature sensitivity of the compensated oscillator from zero at the
temperature ext;émes. The major cause for this is the large dif-
ference in temperaturé sensitivity between the diffused resistors
and the compensating transistors. A different processing schedule
might make these sensitivity values more closely matched. As in
pointed out in Chapter 3, the shallower transistor structures have
a Bo with a lower temperature coefficient. In addition, the higher
the emitter doping of the transistors, the lower the Bo temperature
sensitivity is. Resistors also have temperature coefficients that
are dependent on processing.

As the final point, the major concern in the monolithic realiza-
tion of the oscillators considered is the linear contribution.to
temperature sensitivity. For oscillators that employ thin film de-
vices in the frequency selection feedback network, the nonlinear term
may become significant and nonlinear compensation resulting from ex-

tension of the results of Chapter 3 may become of interest.
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. APPENDIX A
The purpose of this appendix is to determine the effect of

a frequency scale K on the closed-loop system poles. A frequency

_scale by K implies the closed-loop poles s, becomes
S, : :
MV = — =1
S X _ | (A-1)
As is pointed out by Eq. 3.19, the frequency scale K is
R
K=1+yy AT (A-2)

Applying this to Eq. A-l gives

st'-s

._O____O_ = - s! R -
AT So T (A-3)
In the limit as AT - dT, Eq. A-3 becomes
ds
o _ R _
ar ~ "% 't (A-4)

This is "the result needed to show

[
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APPENDIX B

Consider a second-order system described by the generalized

form of Lienard's equation
x + £(x)x + g(x) = 0
The functions £(x) and g(i) are assumed to have the properties:

i. f(ic).,g(x) € C('“,m)
ii.  df(x)/dx exists
iii. £(x) and df(x)/dx bounded

iv. f(o) < 0 and a period solution exists

The periodic solution of (B-1) can be expressed

-]

A
x(t) =’7;-+ ) A cos (nut + v)
n=1

Since Eq. B-1 equals zero,

T . :
Jx + £(x)x + g(x))dx = 0
(o]

151

(B-1)

(B-2)

(B-3)
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Considering Eq. B-3 term by term, one obtains

T T
[xdt =x| =0 (B-4)
o o
and
T . : :
[ £x)x dt = PF(x)dx = 0 ‘ (B-5)
5 | : :
where the integral of the last line is taken over x from x(o)
to x(T). Thus
T - _
[egx)dt=0 | . (B-6)
o

Multiplying Eq. B-1 by x and integrating the result over the period

giﬁes
T . [ ) :
[ (X + x£(x)x + g(x)x)dt = 0 (B-7)
o o
On a term by term basis, integration by parts gives .
T T .2
[ xX dt = [ x° dt (B-8)
o o

and

({J]
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T .. A .
[ x£(x)x dt = G xf(x) dx = 0
o b

Substituting Eqs. B-8 and B-9 in Eq. B-7 gives

T . T,
[ xg(x) dt = [ x“ dt
) o

Eq. B-10 is the generalized relation between frequency and

harmonic content.
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(B-9)

(B-10)
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APPENDIX C
The nonlinear equation considered is
X+ fX)Xx+x=0 (C-1)

A computer program for the periodic solution is written in
Fortran IV for the IBM 7094. For this solution, Eq. C-1 is lin-
earized about a point ko on the limit cycle by putting Eq. C-1

into the form
X+20x+x=0 (C-2)

where 20 = f(ko) = 3 - dF(x)/dx F(x) is the amplifier gain

x=x_'
characteristic. The linearized equ:tion is solved for a small
increment of time. A new a is calculated from the new value of X,
and time again incremented. This process continues until a well
converged limit cycle is found. Summing the time increments to
traverse the final limit cycle once gives the period.

The actual solution is cairied out. on a state-space basis.
If y = dx/dt, the state of the system is given by (x,y). For given

jnitial conditions, o is calculated from f(xl). The form of the

solution is chosen on the basis of whether the roots of

-
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s2 + 20s + 1 = 0 are real or imaginary. The new set of initial
conditions on the solution curve are found by incrementing time

by At and solving

s, At s, At
Ae + Be

. (C-3)

s. At
X, = S, Ae + s.Be

szAt

where A and B are determined from (xl;yl).
The time increment is chosen to limit the error in the linearized
model to some predetermined maximum. This error limit is based on
the predicted deviation of f(xz) from f(xl) for a given time incre-
ment. Define h(x) as h(x) = df(x)/dx. 1In the linear portions of
the curve, h(x).= 0. If Xy is in the linear portion of the curve,
t is chosen such that h(xz) #0. If h(xl) # 0, At is chosen by

an approximation, which for x < 0 is represented by

§

S AR YeR)

where § is given by 6§ = |f(x2) - f(xl)l. This represents the ac-
curacy of the solution. Low accuracy and rapid convergence occur
for §&large, which is used to determine the approximate limit cycle.

~ § is then varied to its smallest value which is chosen so that the
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limit cycle is independent of & to five places. The program is as -

follows:

C OSCILLATOR WAVEFORM SOLUTION

1

1604

614
2500
616
617
2233

2234

619

3001
500
501
502

521

DIMENSION X(500), Y(500), T(401), W(400), DT(1), SL(9),

F (400)

1,D(27),G (400) ,JR(402)

DATA SL/3.02,3.04,3.06,3.08,3.10,3.12,3,14,3.16,3.18/, (X(N),
N=441, 1449)/0.7700,0.8500,0.9300,0.9900,1.0400,0.3125,0.8930,
1.1750,31.2250/,(D(N),N=1,9)/§*0.01/

Y(405)=3.0

DEL=.025

Y(406)=0.2

DO 1771 K=6,7

M=2

N=1

T(1)=0.0

X (1)=X (K+440)

Y(1)=0.0

IF (K-6) 500,500,9500

X(K+410)=9.0/(2.0*SL(X))

Y(K+470)=4.0*SL(K)**3/81.0

RB=Y (K+470)

X (K+470) =X (K+410)



3002,

9500
9501
9502

9521

970
580
81
3081
3044
3181
84
93
370

1370

1090
2091
300
1091
2090
-400
401

1092

GO TO 6

X(K+410)=1$./(4.0*SL(K-1))

Y (K+470)=SL(K-1)/ (5.0*X (K+410) **4)
RB=Y (K+470)

X (K+470) =X (K+410)

DO 17 I=1,250

JR(I)=0

IF (ABS(X(I))-X(K+410)) 81,81,93
IF(K-6) 3181,3181,3081
F(1)=0.5%(3.0-SL(K-1)+5.0*RB*X (1) **4)
GO TO 370
F(1)=0.5*(3.0-SL(K)+3.0(RB(X(I)**2)
GO TO 370

F(I)=1.5

P=F(I)

IF (F(I)-1.0) 8,300,400
W(I)=SQRT(L.0-F (I)**2)

L=1

GO TO 1200

W(D)=1.0

L=2

GO TO 1200

W(L)=-F (I)+SWRT(F (I)**2-1.0)

F (1)=-F (1)~SQRT (F () **2-1.0)

L=3
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50
51
40
n

18
19

1671

20

21

150

44

161

CONTINUE
PRINT 51,K

FORMAT (1H1,I2)

PRINT 41

FORMAT (SH TIME, 10X, 7HX VALUE 7X, 7HY VALUE, 7X, SHDECAY, 7X,
14HFREQ, 7X, 4HTEST) ‘ |

PRINT 19, (T(J),X(J),Y(J),FtJ);W(J);JR(J), J=1,250)

FORMAT (E13.5,2X,E12.5,2X,E12.5,2X,E12.5,2X,E12,5, 2X, 12)
CONTINUE |

PRINT 21, (X(M+410),X(M+470),f(Mfﬂ?O), M=6,7)

FORMAT (3(2X,E12.5))

STOP |

END



APPENDIX D

Piecewise linear computer program to determine periodic solution

of X + £(x)x + x = 0 written for the IBM 1800.

* LINK RFA

61

44

COMMON XE(S),YE(S),XC(S),YC(Sj,T,;,w,31,sz,Acr,nEc,x1,xz
READ(1,1) X1,X2,DEC,ACT,YK

FORMAT (5F10.5)

WRITE (2,2) X1,X2,DFC,ACT,YK

FORMAT (5F10.5)

WRITE (2,61)

FORMAT (IHL,2X,Z2HXE,10X,2HYE)

YE(1)=YK

XE (1) +X1

W=SQRT (1.0-ACT**2)

S1=-DEC-SQRT (DEC**2-1.0)

$2=-DEC+SQRT (DEC**2-1.0)

CALL LINK ‘(KLA)

END
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APPENDIX E

This appendix lists a program written in modified Fortran II
for the IBM 1800 computer with 8k of core storage. The program is
useful only for determining the period of any periodic solution to
an equation of the form

X +aXx + a

az 2

Xt ax = 0 (E-1)

where the coefficients depend on x in a piecewise linear sense. Each

coefficient a; may be given three values according to:

asy for x > X; . i=0,1,2,3 ' (E-2a)
a;, for X; < x <x, i=0,1,2,3 (E-2b)
aLS for x < x, i=0,1,2,3 (E-2¢)

1

The values of the coefficients are a part of the input data. The
program is unending in that it runs until interrupted by the operator.
The detail listing of the program is as follows.. All the links are

introduced by the same common state which is:

COMMON A(3,4),XR(3,4),X(10),Y(10),2(10),X1,X2,K,L;TI,DT,R(3,3),

15(3,3),T(3,3)U(3),V(3),IR,AQ(3) ,N,TA(10) ,JM

{3
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The main program consists of 8 links, the first of which is called

by an XEQ RKA call card.

LINK RKA (1)

READ (1,1) ((A(L,),J=1,4),1=1,3),X1,X2,Y(1),Z(1),DT,IR

WRITE(2,1) ((A(I,J),J=1,4),1=i,3),x1,x2,¥(1),2(1),DT,IR
1 FORMAT (4F10.5/4F10.5/4F10.5/5F10.5,10X,12)

X(1)=X2

TI=0.0 .

K=0

L=1

" CALL LINK (R3RD)

END

LINK R3RD (2)

DIMENSION XCOF (4),COF (4) ,RO0TR (3) ,RO0TI (3)
COMMON A(3,4),XR(3,4) '
DO 11 K=1,3)

XCOF (1)=A(K, 4)



20 ’

31

30

33

34

21

22

23

XCOF (2)=A(K, 3)
XCOF (3)=A(K, 2)

XCOF (4)=A(K, 1)

CALL POLRT (XCOF,COF,M,ROOTR,ROOTI,IER)

IF(ROOTI(1)) 1,2,1

IF (ROOTI (2)) 20,21,20
IF(ROOTI (3)) 31,30,31
PAUSE 0003

CALL EXIT

XR (K, 1) =ROOTR (3)
XR(K, 2)=ROOTR (2)
XR(K,3)=ROOTR (1)
IF(ROOTI(2)) 33,33,34
XR(K,4)=-R60TI(2)

GO TO 99
XR(K,4)=RO0OTI «(2)

GO TO 99

XR (K, 1)=ROOTR(2)

XR (K, 2) =ROOTR (1)
XR(K, 3)=ROOTR (3)
IF(ROOTI(1)) 22,22,23
XR(K,4)=-ROOTI (1)

GO TO 99
XR(K,4)=ROOTI (1)

GO TO 99



99

11
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IF(ROOTI(2)) 3,5,4

XR(K, 4) =-ROOTI (2)

GO TO 6

XR(K,4)=R00TI (2)

XR(K,1)=ROOTR(1)

XR(K, 2) +ROOTR (2)

XR(K, 3) +ROOTR (3)

A(K,1)=1.0

A(K,2)-XR(K,1)-2.0*XR(K,2)

ACK, 3)XR(K, 2) **2+XR (K, 4) **2+2.. 0%XR (K, 1) *XR (K, 2)
A(K,4)=-XR(K,1)* (XR(K,2) **2+XR (K,4) **2)
GO TO 11 |
XR(K,1)=ROOTR (1)

XR(K,2)=ROOTR(2)

XR (K, 3)=ROOTR (3)

XR(K,4)=0.0

A(K,1)=1.0
A(K,2)=-XR(K,1)-XR(K,2)-XR(K,3)
A(K,3)=-XR(K,3) * (XR (K, 1) +XR (K, 2)) -XR (K, 1) *XR (K, 2)
A(K,4)=-XR(K,1) *XR(K,2) *XR (K, 3)
CONTINUE

CALL LINK (PRTA)

END



LINK PRTA (3)

CALL SSWTCH (0,NS)
GO TO (21,20),NS
20 WRITE(2,7) ((ACL,3),J=1,4),1=1,3),X1,X2,Y(1),Z(1),DT, IR
7  FORMAT (4E12.5/4E12.5/4E12.5/5F10.5,10X,12)
WRITE (2,1) |
1 FORMAT (3HXR1,9X,3HXRZ,9X,3HXR3,0X,3HIMG)
WRITE (2,2) ((XR(I,J),J=1,4),I=1,3)
2 FORMAT (4E12.5/4E12.5/4E12.5///)
WRITE (2,3) |
3 FORMAT (IHT,11X,1HX,11X,1HY,11X,1HZ)
21 N=3
CALL LINK (CALC)

END

LINK CALL (4)

TA(1)=0.0

DO 10 M=1,3

R(M, 1)=XR(M, 3)-XR(M, 2)
S(M,1)=XR(M,2) **2-XR(M, 3) **2

T(M,1)=XR(M;2) *XR(M,3) **2-XR(M, 3) *XR (M, 2) **2

170
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R(M,2)=XR(M,1)-XR(M, 3)
'S(M,2)=XR(M,3)**2-XR(M,1) **2
T(M,z)QXR(M,3)*xnaw,1)**zaxnom,1)*XR(M,3)**2
R(M,3)=XR(M,2)-XR(M,1)
S(M,3)=XR(M,1) **2-XR(M,2) **2

10 T(M,3)=XR(M,1)*XR(M,2)**2-XR(M,2) *XR(M,1) **2
DO 11 M=1,3
UGM(=XR(M,2)-XR(M,1)

11 V(M)=XR(M,2) **2-XR(M, 1) **2-XR (M, 4) **2
N=3
K=3
JM=1
IF(XR(3,4)) 7,7,8

7  CALL LINK (SOLVR)

8 CALL LINK (SOLVC)

END

LINK SOLVC (5)

20 .QC=XR(N,1)**2+XR(N,2)**2+XR(N;4)**2-2.*XR(N,I)*XR(N,Z)
TC=DT
AC=(Z(L)-2.0*XR(N, 2) *Y (L) + (XR(N,4) **2+XR (N, 2) **2) *X (L) )/QC
BC=(-Z(L)+2.0*XR(N, 2) *Y (L)+(XR(N,1)**2-2 .0*XR(N,1) *XR(N,2)) *X (L))

1/QC



45

47
48

49

50
51

52

53

.54
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C=(U(N)*Z(L)-V(N)*Y (L)+(XR(N, 1) *XR(N,2) *U(N)-XR(N,4) **2*XR(N,1))

1*X(L))/ (XR(N,4)*QC)

EXC=EXP (XR(N, 2) *TC) *COS (XR (N, 4) *TC)

EXS=EXP (XR (N, 2) *TC) *SIN(XR (N,4) *TC)

EX1=EXP (XR(N, 1) *TC)*AC

X(L+1)=EX1+BC*EXC+C*EXS

Y (L+1)+XR(N, 1) *EXL+ (BC*XR(N, 2) +C*XR (N, 4) ) *EXC+ (-BC*XR (N, 4) +C*XR(

1N, 2) ) *EXS

Z(L+1)=XR(N, 1) **2*EX1+ (BX*XR(N,2) **2-XR(N,4) **2)+C* (2.0*XR(N,4) *

1XR(N,2))) *EXC+ (BC* (~2. *XR(N, 4) *XR (N, 2)) +C* (XR (N, 2) **2-XR (N, 4) **2

2)) *EXS

GO TO (78,47,68),N
IF(K-2) 48,48,58
IF(Y(L+1)) 50, 50, 49
K=4

N=2

GO TO 57
IF(X(L+1)-X1) 53,53,51
IF(K=2) 55,52,52
TC=TC+DT

GO TO 45

IF (K-2) 56,54,54

. TC=TC-DT

K=1

GO TO 45

"



55

56

57

58

59

60
61

62

63

64

65

66

- 67

68

70

TC=T¢—(X(L;l)-X1)/Y(L+1)+.01*DT
GO TO 45

N=1

K=1

TA(L+1)=TA(L)+TC

GO TO 10

IF(Y(L+1)) 59,60,60
K=2

N=2

GO TO 67

IF(X(L+1)-X2) 61,61,63

IF(K-4) 65,62,62

TC=TC+DT

GO TO 45
IF(K-4) 66,64,64

TC=TC-DT

K=3
GO TO 45

TC=TC+ (X2-X (L+1)) /Y (L+1)+.01*DT
GO TO 45

N=3

K=3

TA(L+1)=TA(L)+TC

GO TO 10

IF (X(L+1)-X2) 72,70,70

IF (K-2) 74,74,71
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71

72

73

74

75

78

80

81

82

83

84

85
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TC=TC+DT
GO TO 45

IF(K-2) 75,75,73
TC=TC-DT

K=2

GO TO 45
Tc=Tc-.9*((x(L+1)-xz)*Y(L+1j)/(Y(L;1)*42-x(L+1)*xz+xcL+1)**z)+.01*

1DT

" GO TO 45

TA(L+1)=TA(L)+TC

k=2

N=2

GO TO 10 .
IF(X(L+1)-X1) 80,80,82

IF(K) 84,84,81

TC=TC+DT

GO TO 45

IF(K) 85,85,83

TC=TC-DT

K=0

GO TO 45
TC=TC+.9*((X1~X(L+1))*Y(L+1))/(Y(L+1)**Z-X(L+1)*X1+X(L+1)**2)+.01*
1DT '

GO TO 45

TA(L+1)=TA(L)+TC

K=4

{4
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N=2
10 L=L+l
TC=0.0 _
IF(L-10) 12,13,13
13 CALL LINK (PANS)
12 IF(XR(N,4)) 15,15,14
14  CALL SSWTCH(2,MC)
98 GO TO (20,97),MC
97 CALL LINK (PCK)
15 CALL LINK (SOLVR)

END

LINK SOLVR (6)

Link SOLVR is the same as link SOLVC except as noted here.

Statement 20 of SOLVC is replaced by:
20 DO 11 M=1,3

11 GM)=(R(N,M)*Z(L)+S(N,M)*Y(L)+T(N,M)*X(L))/ (R(N,M)*XR(N,M) **2

1+XR(N,M) *S (N,M)+T(N,M))

f State 45 and the following 5 statements are replaced by:.
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45  EX1=EXP(XR(N,1)*TC)*G(1)
EX2=EXP (XR(N, 2) *TC) *G(2)
EX3=EXP (XR(N, 3)*TC)+G (3)

X (L+1)+EX1+EX2+EX3
Y(L+1)=EX1*XR(N, 1)+EX2*XR(N,2) +EX3*XR(N, 3)

Z(L+1)=EX1*XR(N, 1) **2+EX2*XR (N, 2) **2+4EX3*XR (N, 3) **2

State 12 of SOLVC and all subsequent statements axe replaced by:

12 IF(XR(N,4)) 14,14,15
14 GO TO 20

15 CALL LINK (SOLVC)

13 CALL LINK (PANS)

END

LINK PCK (7)

WRITE (2,1) x(L),Y(L),Z(L)
1 FORMAT (3E12.5)
. CALL LINK (SOLVC)

END



LINK PANS (8)

10

14

15

CALL SSWTCH(1,MS)

GO TO (3,4),MS

WRITE (2,1) (TAQM),XQM),Y(M),X(M),M=1,9)
FORMAT (E13.6,E12.5) |
X(L-9)=X(L)

Y(L-9)=Y(L)

Z(L-9)=Z(L)

TA(L-9)=TA(L)

L=1

IF(XR(N,4)) 14,14,15

CALL LINK (SOLVR)

CALL LINK (SOLVC)

END
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A perturbation analysis of the periodic solution of the
nonlinear system is done by the method of Krylov, Bogoliubov,

Mitropolsky3*. The system is represented by the equation

APPENDIX F

X+ wix = pfX) X

It is assumed to have the solution

X =

where u(l) is a periodic function of ¥ and a. P and a satisfy

e

.

This gives for the

= uAcl)(a) + uz A(2§ (@ ....

first approximation of the autonomous aystem:

»
n

e
il

acos P +q u(i) (a,y) + ..

o+ M@ + 283 @ ...

a cos §
H *
7 F1(@)
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(F-1)

(F-2)

(E-3)

(F-4)

(F-5)

(F-6)

Al
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¥ =0 (F-7)

and for the second approximation:

n ﬁ;(a) sin ¥

p
x=acosy += ) 5 (F-8)
n=2 . on -1
2= E () | 9
a=5 F (a) | (F-9)
b= ow+ uz Bz(a) A - (F-10)
The term of inerest is the second term in this approximation.
In the case of the van der Pol equation
.2 ) N
f(x) = e(1-px") (F-11)
This gives
. _ uxs : )
FOO:X-T (F-IZ)
or
. uaz a3 ,
F (a cos ¢) = a(l - .TT-) cos ¢ - =5 cos 3y (F-13)
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2 4 -
. 2,1 a 7a
v=ov-e(g-5 *75 )
For a = 2,
e2
0.)°=1-1—6-
For the case where
4
£f(x) = e(1- x)
F¥(x) is
* xs
F(X)=X—]J.-5—'
This leads to
4 5 5
F*(a cos P) = a(l - %%—- cos ¥ - %%— cos 3y - %ﬁ- cos Sy

Then
a = %-.ew (1 -u4

Integfating by quadratures
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(F-20)

(F-21)

(F-22)

(F-23)

(F-24)

(F-25)



gives

As t » =

For B, (a)

B,(a) = - %f"

'Forﬁ =1,

SO

182

1 .
f 7 da ) } cw 4 (F-26)
a s 7
(o} 3‘2(1 - gg_) o
ata - Suad)
log - = pot (F-27).
' a- 1 uad)a4 ‘
8 o
2-272 (F-28)
n
5 : 5 5
a 5 _ 4 1 9 a” 2,625 . a"\2
a(a-T)(l-ga)-;[g(ﬁ) + 57 (171
(F-29)
"
Bz(a) = {57 (F- 30)'
b= wr e s (E-31)

(23
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Thus

w =1- 32 28_ (F-32)

Eqs. F-21 and F-32 show the dependence of the fundamental fre-
quency of oscillation on the parameter e. These results are con-

sidered in Chapter 3.
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