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I. INTRODUCTION

1.1 Prologue

Near-harmonic monolithic integrated oscillators based on con

ventional RC oscillator designs have inherently poor frequency

constancy1. The oscillation frequency in such circuits has a large

sensitivity to temperature which typically causes a frequency de

viation of greater than 10% over the temperature range 0 C to 65 C.

The major contribution to this temperature sensitivity of oscillation

frequency is the large temperature coefficient of the diffused resis

tors used in the frequency determining feedback network.

In a monolithic integrated oscillator, all the circuit components

are realized on a single epitaxial chip as either diffused structures

or MOS devices. Microcircuit integrated oscillators can also be

realized in hybrid form. In this case, the complete oscillator is

formed by an overlay of thin film and other components on a single

or multiple silicon chips that contain active devices and non-critical

resistors. However, the monolithic oscillator is attractive because

of size, reliability and cost.

The disadvantage of the monolithic oscillator is its inferior

frequency constancy. The subject of this thesis is the analysis of



the monolithic oscillator temperature sensitivity problem and the

development of compensation techniques to correct this deficiency.

1.2 History

The specific constraints of monolithic active RC oscillators

were first considered by Hachtel2*3*1**5. He devised a method for

the realization of integrated oscillators from integrable bistable

circuits. However, he made no attempt in his designs to control

temperature sensitivity. Therefore, all of the oscillators he re

alized had large frequency variation with temperature. Howard gen

eralized Hachtel's monolithic oscillator synthesis method to include

all two device RC imbedded oscillators6. Since Howard's oscillators

were used as voltage controlled oscillators in a phase-locked loop,

there were no requirements on the temperature sensitivity in this

application that were violated by the inherent sensitivity of the

monolithic realization.

To date, in applications where the sensitivity of oscillators

realized in monolithic form is unacceptable, microcircuit oscillators

have been realized in hybrid form. One example is the RC twin-T os

cillator of Berry, et al, that used low temperature coefficient thin

film resistors in the frequency determining network to achieve a..1%

frequency duration over a 75 C range? An alternative solution is

given by the oscillators described here. A fully monolithic tempera

ture compensated integrated oscillator is realized that has a frequency

performance comparable to the thin film hybrid version over a tempera

ture range.



1.3 Temperature Sensitivity Considerations

The Wien-type oscillator shown in Fig. 1.1 is typical of the

RC oscillators considered. This oscillator will, as will all RC

oscillators, produce an output frequency which is temperature sen

sitive because of (i) changes in the frequency determining feedback

elements R-, R2, C-, C' (ii) changes in the nature of the amplifier

nonlinearity; and (iii) changes in the gain level in the internal

amplifier with temperature.

The nonlinear contributions (ii and iii above) are studied by

a computer-aided analysis of the generalized form of Lienard's

equation8:

x(f(x)x + g(x) = 0 (1.1)

For this equation, a form of g(x) is found for a given f(x) such

that the oscillation frequency sensitivity to gain changes can be

set equal to zero. In monolithic oscillator realizations, negative

feedback is used in the amplifier to make the gain depend to a first

order on the ratio of resistors with the same temperature coefficient.

In this case, the nonlinear contributions to temperature sensitivity

are negligible compared to the sensitivity caused by the frequency

determining feedback elements in (i) above.

The temperature coefficient of MOS capacitors in the monolithic

realization is very small. Therefore, the major problem is to com

pensate for the large temperature coefficient of the diffused feedback



resistors R. and R2 of Fig. 1.1. Two basic compensation techniques

are possible. In one, the shaping of the root locus of the linearized

system can be used. In this method, a controlled gain sensitivity com

pensates for changes in the open-loop poles and zeros due to temperature

changes of resistance values. The disadvantage is the increase in the

non-linear contributions to temperature sensitivity.

In the second method, the individual RC products are made invar

iant using Miller-effect multipliers to provide compensating tempera

ture sensitivity for the diffused resistors. In this case, the gain

requirement for the monolithic realizations can be made to be almost

independent of temperature. This is the method used to achieve the

final compensated design.
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Fig. 1.1 Basic Current Amplifier, Wien-type
* Oscillator



II. OSCILLATOR CONFIGURATIONS

2,1 Introduction

Near-harmonic oscillators can be realized by using

passive RC imbedding of either single or multiport active de

vices. In the case of the single-port realization, the active

device must have an input impedance for small signal excursions

about an operating point that is both inductive and has a

negative real part at the oscillation frequency. Examples

of such single port oscillators are the tunnel diode oscil

lator of D. K. Lynn, et al, and the unijunction transistor



oscillator of Hachtel9*10.

Oscillators based on negative immittance inverters (Nil) or

negative immittance converters (NIC) are not included in the class

of single port realizations. An ideal Nil is a two. port network

that has an input impedance that is equal to the negative reciprocal

of the terminating load impedance. An ideal NIC has an input im

pedance that is the negative of the terminating load impedance. A

potential oscillator configuration which is based on an NIC realiza

tion is shown in Fig. 2.1. Pederson and Pepper have shown that this

is totally equivalent to the Wien-type configurations11, cf. Fig. 1.1.

The oscillators considered here do not depend on the inductive

effect of any single port device and therefore are based necessarily

on multiport active devices. This is because in the frequency range

of interest, there is no direct integrable analog to the inductor. In

addition, the active devices considered are three terminal devices

which are assumed to have no appreciable charge storage effects.

Under these constraints, an RC system which has passive RC imbedding

of the idealized active three terminal devices and no closed feedback

paths has only negative real natural frequencies. An oscillator is

formed by using a closed feedback path. This is the form of the RC

feedback oscillators considered in this thesis.

For convenience, the single loop RC feedback oscillators con

sidered are arbitrarily classified as positive or negative feedback

oscillators depending on the angle condition used to specify the

root locus. Definitions of possible signal paths and feedback loops



are necessary before the class of an oscillator can be determined.

2.2 Signal Path Classification

In an actual oscillator design, there may be several discern-

able feedback loops and multiple signal paths between two circuit

nodes. The classification of the oscillator as a positive or nega

tive feedback type is based on the angle condition that specifies the

root locus. For the purpose of discussion and definition of oscillator

types, the following definitions of feedback loops and signal paths

are given.

1. Multiple signal path. A multiple signal path provides
several signal transmission routes that are not in the form
of closed loops between two points in the circuit. A single
branch of a multiple signal path may be broken without open
ing any closed feedback loop or breaking the continuity of
any overall transmission path.

An example of a multiple signal path is the bridged-T network

in Fig. 2.2. Forward transmission is not eliminated by opening

either path, e.g., R..

For the classification of feedback loops, a distinction is made

between loops that depend on nonlinear behavior to achieve a circuit

function and those that do not. In the latter case, the loop is

characterized as linear even though nonlinear effects may occur. As

an example of this distinction is the simple Wien-type oscillator of

Fig. 1.1 which is based on a feedback loop that is considered linear,

even though the amplifier nonlinearity limits oscillation amplitude.



On the other hand, certain compensation techniques require feedback

loops that are inherently nonlinear and would be classified as a

nonlinear feedback loop. The definition of nonlinear feedback loop

is given by:

2. Nonlinear feedback loop. A nonlinear feedback loop
has a circuit function that cannot be characterized by
a linear circuit model.

For the linear feedback loops, another distinction can be made,

The oscillator circuit may contain gain blocks that contribute no

dominant natural frequencies to the system (i.e., no significant

charge storage effects). These gain blocks may contain feedback

loops to control gain levels. If they do, it is convenient to

classify such feedback loops so as to distinguish them from loops

that have dominant open-loop poles. Therefore, one may define:

3. Gain control feedback. Gain control feedback is used

only to control gain levels and contributes no dominant
natural frequencies to the system.

The voltage amplifier of a Wien-type oscillator is typically

realized as the two transistor series-shunt feedback pair shown in

Fig. 2.3. The overall negative feedback loop in the amplifier is

classified as gain control feedback.

Feedback loops that are not stated as being gain control or

nonlinear in the subsequent work are assumed to be of the remaining
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It may appear that there is an anomoly for certain non-minimum

phase oscillators. This problem occurs for configurations that pro

duce an odd number of open-loop zeros on the positive real axis. For

this case, the dc feedback polarity is the reverse of a minimum phase

configuration. If the minimum phase configuration has a positive dc

feedback polarity, the non-minimum phase configuration with one zero

on the positive real axis has a negative dc feedback polarity. How

ever, it is natural to expect the class of an oscillator not to be

changed by this modification of the positions of open-loop zeros. In

deed, under the definition given, the class of an oscillator does not

change by moving an odd number of zeros to the right half plane.

As an example, the root locus for the Wien-type oscillator shown

in Fig. 1.1 is shown in Fig. 2.6. For this locus, the complex root

positions always move on a circle with a center at the zero. This is

expressed by the positive feedback angle relation:

26 l - (180-62) = 0 (2.6)

where 9- and 6? are indicated on Fig. 2.6. This is the equation for

a circle with center at the zero as shown on the figure. This locus

is a circle regardless of the position of the zero.

This example extends to the three jio axis phase plots for a

left half plane, origin, and right half plane open-loop zero shown

in Fig. 2.7 respectively. As is seen, the definition classifies the

oscillator as a positive feedback type in each case since the root

locus is still determined by the same angle condition.
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To avoid possible confusion, it is noted that this classifica

tion as positive or negative feedback depends on the absolute value

of the return difference phase, not its relative value with respect

to its base-band value.

2.4 Minimum or Basic Oscillator Realization

In order to determine some of the characteristic properties of

the oscillator classes, it is desirable to consider some fundamental

configurations of each class. The configurations considered are fun

damental in the sense that they are minimum complexity realizations.

The fundamental oscillator configurations are called basic oscillators,

the definition of which is given by:

1. Basic oscillator. A basic oscillator contains no

multiple signal paths, multiple feedback loops, or nonlinear
feedback loops. It is realized with the minimum number
of dominant open-loop poles.

With this definition, the basic oscillator of each class can be

considered. It is impossible to achieve a near-harmonic oscillator

with a system that has a single natural frequency. A system with two

open-loop poles and an open-loop zero to the right of these poles can

be made to oscillate with the application of positive feedback. A

typical root locus is shown in Fig. 2.6. An oscillator system repre

sented by this root locus is a positive-feedback oscillator. A

possible realization in basic form is the Wien-type oscillator of Fig.

1.1.
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It also is possible to construct an oscillator that contains only

two open-loop poles and obeys the rules of negative feedback. An

example of such a two pole, negative feedback configuration has two

finite open-loop transmission zeros and the root locus shown in Fig.

2.8(a). The open-loop poles and zeros of the root locus are deter

mined by the circuit element values of the possible corresponding con

figuration shown in Fig. 2.8(b) where the block A is a differential

amplifier with both an inverting and non-inverting output. The nor

malized circuit values are only used to indicate the possibility of

the example. However, by the Fialkow-Gerst relation, this system can

not be obtained by any unbalanced configuration12. This is contrary

to the condition of the basic oscillator definition and consequently

this root locus does not characterize a basic negative feedback os

cillator. To achieve a basic negative feedback oscillator, a mini

mum of three open-loop poles are required.

The basic oscillator definition implies a ladder form of RC

driving point imbedding of the gain blocks, so that all the open-loop

poles and zeros lie on the negative real axis. This leads to are

striction on the open-loop transmission zeros. In order to produce

an oscillation with the application of negative feedback, either all

the open-loop zeros must lie to the left of all the open-loop poles,

or they must all lie to the right of the open-loop poles. A typical

ladder-type realization of the former case is shown in Fig. 2.9 with

its accompanying root locus.

In the more general case where the restriction to a basic oscil

lator is removed, the condition pointed out Howard exist13. The
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positive feedback oscillator requires an odd number of poles and

zeros to the right of the pair producing harmonic oscillation

and the negative feedback oscillator requires an even number of

poles and zeros to the right of the pair producing harmonic os

cillation. In monolithic realizations where dc blocking capacitors

are not permitted, Howard points out that designs should be selected

that do not have positive feedback at dc to prevent possible result

ant bias instability. This condition implies either negative feed

back at dc or an open-loop transmission zero at the origin.

2.5 Basic Positive Feedback Oscillators

In general, a linear, time-invariant model of a feedback os

cillator can be represented by the block diagram shown in Fig. 2.10.

The blocks are assumed to be unilateral, have no interaction, and

have transfer functions which are rational functions in s. If the

input variable is x. and the output variable is x , the closed-loop

transfer function is

™ =̂ s) =1+H(s)G(s) (2'7)

where H(s)G(s) = N(s) and N(s) is given by Eq. 2.3. If H(s) and G(s)

are given by

tUs)

GN(s) .C2.0
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where the subscripted terms are polynomials in s,

N(s) = HN(s)GD(s) (2.9a)

DCs) = HD(s)GD(s) + HN(s)GN(s) (2.9b)

The closed-loop poles are given by the zeros of D(s). The closed-

loop root locus for positive feedback is specified by

Arg [H(s)G(s)] = 2nir n = 1,2,... (2.10)

The closed-loop pole positions on the root locus are. determined by

the loop gain and satisfy the relation

|H(s)G(s)| = 1 (2.11)

For analysis of the basic positive feedback oscillator system,

the simple Wien-type configuration is considered. The final form of

the transfer function is independent of whether the current amplifier

or voltage amplifier configuration of Fig. 2.11 is considered. For

the basic system, the open-loop zero occurs at the origin due to the

series capacitor in the feedback loop. For both configurations, the

idealized linear closed-loop system equation, which is given general

form by Eq. 2.7, about the quiescent operating point is
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T = : (2.12)

1 ♦ n4"+ n4~)S +
R1C2 / R1C1 R2C2 R1C2 R1R2C1C2

For oscillation, the starting condition requires

Rl C2
A > 1 + ~+ ~ (2.13)

R2 Cl

When the equality is satisfied, the oscillation is harmonic and the

frequency of oscillation is given by

u° • wis . C2-14)

Because of the nature of charge-control devices, a positive

feedback oscillator without transformers cannot be realized with a

single device. Moreover, the configurations discussed here are based

on npn bipolar transistors (BJT). Configurations requiring complimen

tary pnp transistors are not considered because of the difficulty in

realizing complimentary structures in monolithic circuits.

Howard obtained all possible two transistor positive feedback

oscillators with RC one-port imbedding1**. He mentions a difference

between driving point and transfer function imbedding. This distinc

tion was necessary for his derivation which was based on driving point
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realization of the imbedding. The form of the imbedding required

lepends on the zero location of the transfer function. Driving-

point imbedding can be used when the zeros of transmission of the

transfer function lie on the negative real axis.

Howard's configurations are based on the controlled resistance

model of bistable circuits by Hill, Pederson, and Pepper15. Howard's

method of obtaining the possible RC oscillator configurations is

based on an ac model and does not directly include biasing considera

tions of monolithic realizations. An alternate approach is used in

this thesis to obtain positive feedback oscillator configurations and

is based on the basic oscillator. The oscillator is realized as

either an interacting pole configuration or a non-interacting pole

configuration.

When each of the open-loop poles of a feedback system is pro

duced by an independent RC product, the poles are said to be non-

interacting. This must be true irrespective of where the loop is

opened. Interacting poles occur when aresistance or capacitance

value appears in more than one RC product. As an example, the Wien-

type oscillators considered to this point have interacting poles.

For the basic positive feedback oscillator, minimum total gain to

produce harmonic oscillation is achieved for non-interacting poles.

This requires that the RC elements producing each of the poles be

separated by unilateral gain blocks. This requirement is the basis
for obtaining two transistor, non-interacting pole, basic positive

feedback oscillator configurations.
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For the basic oscillator, a series capacitor is contained in

the positive feedback loop to produce a transmission zero at the

origin and prevent positive feedback at dc. If a single resistance

and capacitance produce each pole, sixteen configurations are possi

ble. Six examples are shown in Fig. 2.12. Approximate voltage gain,

current gain, transimpedance, and transadmittance circuits are shown

in Fig. 2.13. The voltage and current gain circuits have a gain

that is approximately the ratio of a load resistance and a feedback

resistance. The transimpedance and transadmittance circuits have

a transfer value that depends approximately on a single feedback

resistance value. These circuits are used to complete the realiza

tion of the two transistor oscillator configurations.

It is also possible to obtain non-interacting pole oscillator

realizations with a resistor and capacitor in the emitter lead of a

transistor. These realizations are not considered because the

appearance of transistor parameters in the RC product determining

the open-loop pole position is deamed undesirable.

In the other case, the system has interacting open-loop poles

and isolation of RC pairs producing the poles is not permitted.

Thus, the system with inter-acting open-loop poles contains a single

gain block. In the single gain block, gain control feedback usually

is used to make the gain function independent of transistor parameters

For the two transistor gain blocks considered here, the gain control

feedback can be applied individually to each transistor or as an

*overall feedback loop. For example, in the current amplifier gain
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block which is realized as a shunt-series pair, the feedback may be

local as shown in Fig. 2.14a or it may be overall as shown in Fig.

2.14b.

The basic oscillator configurations are obtained by placing

the single active gain glock with negligible charge storage effects

in RC imbedding as shown in Fig. 2.15. With these configurations,

the RC transfer function still should have a zero of transmission at

the origin to prevent positive DC feedback. Again, the gain block

can have one of four forms. If the gain block is a voltage or cur

rent amplifier, the RC transfer function for the positive feedback

oscillator is of the form

R C

T = Li (2.15)

s2 +[^k+^k+^k)s +vfe

If the gain block is a transconductance or transresistance, the form

of the denominator remains the same. The numerator still has a zero

at the origin, but is dimensionally modified so the overall open-loop

transfer function is dimensionless. For example, if the gain block is

transconductance, the proper form of the RC transfer function is a

transimpedance.

The topology of the network depends on the type of RC transfer

function being realized, and is fixed as either a T, tt, or L configura

tion. In each case, two physical realizations of the transfer function
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are possible. If the network is the L configuration used with

the voltage or current amplifier, the two physical realizations

are identical except for the trivial reversal of the physical

locations of resistor and capacitor in the series feedback pair.

If a transimpedance is being realized, a tt topology is required

and the two possible physical realizations are shown in Fig. 2.16.

A typical final circuit based on the current amplifier with

overall gain control feedback and the L topology for the RC net

work is shown in Fig. 2.17. This circuit is realizable in mono

lithic form and is the basic circuit for two of the oscillators

actually realized in Chapter V.

Another positive feedback oscillator design that has inter

acting poles and has not been mentioned contains one of the

dominant poles in the gain block. For the current amplifier,

Wien-type oscillator of the above example, the modified oscillator

is constructed by removing the shunt feedback capacitance C2 and

placing it in the gain control feedback loop as shown in Fig. 2.4.

However, the internal feedback loop can no longer be calssified as

a gain control feedback loop. Even though this oscillator is a

multiloop configuration and no longer of basic form by the defini

tion, it is a natural extension of this development and is included

here as a fundamental form.

That this form is not a fundamental departure from basic forms

can be seen from physical reasoning. To a first order, the shunt

capacitor in the negative feedback loop can be placed from the base
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to the collector of the input transistor without modifying the

circuit performance. Since the input stage has voltage gain, this

circuit is equivalent to a capacitor shunting the input transistor

base to ground with a value multiplied by the voltage gain of the

input transistor. In this equivalent form, the oscillator would

classify as a basic oscillator.

If a hybrid tt model of the intrinsic base region of the

transistor is used in the analysis and the admittance in the

positive and negative feedback loops of the oscillator are not

specified as to configuration, the oscillator circuit model shown

in Fig. 2.18 can be considered. The node equations may be used to

analyze the circuit of Fig. 2.18. In terms of this equation, the

closed-loop transfer function between the input node and the out

put node is of the form:

z2i = :r =-r p-16J
1

where A is the determinant of the nodal admittance matrix and A-2

is the cofactor of the matrix element in the first row and second

column. The natural frequencies of the system are given by the

zeros of A.

For the circuit of Fig. 2.18, the determinant has been calcu

lated in complete form to avoid possible errors caused by initial

cancellation of apparently nondominant terms. The determinant has

a dominant term that is at least an order of magnitude larger than



any other term. After appropriate cancellation, the dominant term

is
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A^ •.SmlViCWE " W + "• (2'17)

where the admittances are those shown in Fig. 2.18. All subsequent

2
terms are of order 1/3 or 1/3 of this term and contribute only a

oo

few percent to the dominant term*. Harmonic oscillation is achieved

when this term has a pair of pure imaginary zeros. The admittance

YD is chosen to contain a series capacitor to prevent positive feed-

back at dc. In order to obtain the imaginary pair of natural fre

quencies, Y. or Yp must contain a parallel RC pair. These two cases

are those previously shown in Figs. 2.4 and 2.17. The circuit in

Fig. 2.17 has been realized in monolithic form. The experimental

description of this realization is contained in Chapter 5. •

2.6 Negative Feedback Oscillator

The basic negative feedback oscillator can be represented by

the same block diagram and closed-loop transfer function as the

positive feedback oscillator. This representation is shown in Fig.-

2.10 and expressed by Eq. 2.7 of the previous section. The negative

feedback oscillator is different from the positive feedback oscil

lator in the angle condition that specifies the root locus. For

The result of Eq. 2.17 is confirmed by a first order analysis of
the positive feedback loop for this circuit which has an open-loop
transfer of Ydvc/vtvf» Thus, the denominator of the closed loop
transfer function is Y.Yp - YRY£.
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the negative feedback oscillator, the root locus is given by equa

tion

Arg [H(s)G(s)] = (2n+l)Tr .n - 1,2,... (2.18)

which differs from positive feedback by the angle tt. The closed-

loop pole position on the root locus still satisfies the magnitude

condition

|H(s)G(s)| = 1 (2.19)

In contrast to the positive feedback oscillator, the basic

negative feedback oscillator can be realized with a single transis

tor. An arbitrary numerical example to show this is the ladder

configuration shown in Fig. 2.19. The open-loop transfer function

for this configuration is

T -«?• »-£-= s-5 = =• (2.20)
r Vin C3S3 + 4.2C2GS2 + 3.61G2CS + .21G3

The starting condition is satisfied for g^ = 14.952 mhos and the

harmonic frequency of oscillation is

o c

A possible circuit for G = 10 mhos and 3Q = 150 is shown in Fig.

2.20.
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The ladder-type realization with all of the zeros at infinity

has a minimum overall starting gain of 8 when the three poles are

equal. This can only be accomplished for the case of non-interacting

poles which require a realization of the form of Fig. 2.21. The

overall gain requirement for equal R's and C's is

A^, = A A A =8 (2.22)"T y v2 v3

With additional gain elements allowed for isolation of poles,

the total number of configurations possible is greatly increased.

These are not enumerated here but can be developed by the same

techniques used for positive feedback oscillators. It is noted

that any given root locus may have several realizations.

2.7 Nondominant Effects

In addition to the intended natural frequencies of the system,

there are natural frequencies produced by parasitics and active de

vice charge storage. Models of both field effect and bipolar transis

tors that include charge storage effects of the intrinsic transistor

region and extrinsic effects such as junction capacitances are

adequately described in the literature16*17.

Integrated transistors made in our laboratory have another

consideration not normally needed in the usual transistor models.

Because of the lack of buried layer technology, the transistors

realized have considerable collector series resistance18. It is
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usually on the order of 500 ohms. The integrated transistor also

has on the order of 5 pF collector to substrate capacitance at

V =5 volts. These effects reduce the current at which satura-
rev

tion occurs and lowers the cutoff frequency respectively. A modified

transistor model to include these effects is shown in Fig. 2.22.

In this model, y , y ,and g_ are the usual hybrid it parameters

modeling the intrinsic base region of the transistor. The series

base resistance is r and the series collector resistance is r'. C
x CO

is the collector to subdiode capacitance.

The effects of base-width modulation also can be of signifi

cant importance in a circuit design. A large base width modulation

causes a small transistor output resistance r . If the transistor

has a large collector load impedance, base width modulation effects

can cause a significant reduction in gain. Experience in our lab

oratory has shown that shallow transistor structures show a marked

decrease in base width modulation over deep structures for equivalent

short-circuit current gains and, thus, that this effect can be mini

mi zed.

Resistors are typically realized with p-type base diffusions

into the n-type epitaxial layer. These resistors are actually RC

transmission lines. However, for the dimensions of resistors and

frequencies considered here, these distributed effects are not sig

nificant and the resistors behave as lumped elements. A further

discussion of this point is provided by Hodges19.

The effects of the nondominant poles depend upon the circuit

use and configuration. The problem often encountered is a modifica-
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tion of the root locus that produces outband peaking. These non-

dominant natural frequencies may cause the oscillator to break into

parasitic oscillation. A Wien-type oscillator may exhibit

parasitic oscillation due to nondominant natural frequencies as

shown in Fig. 2.23. This root locus is determined by a computer-

aided analysis of the linearized system model that included charge

storage effects. If the nondominant natural frequencies are removed

by more than an order of magnitude from the dominant natural fre

quencies, their effect on the dominant portion of the root locus is

proportionally small. Therefore, an analysis based on the dominant

portion of the root locus alone may be completely adequate. The

experimental results of Chapter 5 indicate that this is the case for

the oscillators considered here. However, if a higher frequency of

oscillation is considered, these nondominant effects may not remain

insignificant. In this case, their effect must be included in the

design.

2.8 Allowable Elements and Tolerances

Because of the physical limitations of a monolithic realization,

there are definite restrictions on allowable elements. These restric

tions are of two types. First, the various devices in a monolithic

realization must be compatible. There must be no conflicting pro

cessing requirements for the circuit elements to be realized. For

example, at the present time in our laboratory, it is difficult to

obtain good bipolar transistors and junction field effect transistors
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in the same circuit20.

The other restriction has to do with the total available

area for the circuit realization. The total circuit resistance,

capacitance, and circuit complexity are limited by the area re

quired per unit resistance and capacitance as well as the total

number of active devices required. The circuit area required for

a given design depends on the amount of resistance and capacitance

that can be obtained per unit area and the area required to re

alize an active device. These limitations usually are imposed by

the facilities available.

The effective usage of circuit area on the monolithic chip

depends to some degree on the initial ruby-lith mask accuracy,

the resolution maintained to the final mask and the final mask

alingment accuracy. The Motorola text contains a discussion of

the fabrication requirements21. This laboratory can yield satis-

-3factory results with 1/2 mil (10 in) line widths and 1 mil spac

ing. MOS capacitance per unit area depends on oxide thickness, as

does the yield. Good results have not been obtained for thicknesses
o

less than 1500 A.

An approximate empirical formula for the total area required

by a realization in this laboratory is given by

\otal = 5CT + 4RT + 100NBJT + AI

where AT is the area used by isolation in square mils and is de

pendent on circuit design and layout. Gp is given as total capacitance
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in picofarads, RT is total resistance in kilohms, and NgJT is the

number of bipolar transistors required. For example, if a circuit

for a Wien oscillator requires 2 bipolar transistors, 400 pF of

capacitance, 15kft of resistance, and 100 square mils of isolation,

at least 2360 square mils of area are required.

A point of interest is the minimum frequency of oscillation

that can be obtained for the realization of a given configuration

with a specific circuit area*. For example, the minimum frequency

of oscillation for a Wien-type basic oscillator occurs for equal R's

and equal C's for fixed total resistance and capacitance23. In this

case the frequency is given by

f = X
"o 2tt RC

The use of chip area for realizing resistance and capacitance to give

the minimum frequency of oscillation under this constraint is ob

tained by setting the total differential of frequency equal to zero:

3f , 3f ,
df = W d + Jc dc

This gives the ratio of capacitance to resistance to achieve minimum

oscillation frequency. For a typical 70 by 70 mil circuit area,

A n equals 4900 square mils. If the realization requires 10 kft
total n n

Pinch-effect resistors are not considered22.
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bias circuit resistance and two bipolar transistor, the minimum

frequency by the above derivation is approximately 2.4 kHz. In

actual circuit designs,where there may be additional complexity

and additional oxide thickness is used to raise capacitor yields,

a reasonable design frequency is of the order of 100 kHz. This

frequency is low enough to avoid the effects of parasitic natural

frequencies which occur at a few megahertz for circuits realized in

this laboratory.

2.9 Operating Point Considerations

It is often desirable to design circuits that do not depend

critically on operating point. This is usually accomplished by

designing transfer functions that depend on the values of ratios

of resistors. However, circuits can be successfully designed that

depend on the operating point. One such circuit is the compensated

selective amplifier by Gaash that depends on a transistor trans-

conductance g 2tf.
m

One circuit of potential interest in subsequent chapters re

quires accurate bias control. It provides a voltage transfer func

tion with a controlled honlinearity. For the example cited below,

the operating point must be controlled so that the collector voltage

of the transistor is exactly 1/2 the supply voltage and is tempera

ture insensitive. The biasing circuit to accomplish this is a

direct adaptation of Widlar's scheme25. Wildar's circuit to control

the operating point accurately is shown in Fig. 2.24a with values
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chosen so that VCE is one half of Vc(,. This produces an approxi

mately symmetric nonlinearity in the transfer function as also shown

in Fig. 2.24(b). This nonlinearity can be modified by the inclusion

of the diode network shown in Fig. 2.25 to achieve the symmetrically

shaped nonlinear gain characteristic shown in Fig. 2.26. The appli

cation of this circuit to the nonlinear compensation of transfer os

cillators is discussed in Chapter 3.
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Fig. 2.5 Oscillator Classification Test

Fig. 2.6 Current Amplifier, Wien-type Oscillator
Root Locus
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(a) Root Locus (b) Return Difference Phase

Fig. 2.7 Wien-type Oscillators for Different Open-loop Transmission
Zeros
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Fig. 2.25 Amplifier for Modified Transfer Characteristic
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Fig. 2.26 Modified Transfer Characteristic
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III. OSCILLATOR SENSITIVITY

3.1 Introduction

Chapter 2 defines two types of basic oscillators and the

feedback loops that they may contain. Some of the design con

straints imposed by a totally integrated monolithic oscillator are

considered and the resultant possible configurations for positive

and negative feedback oscillators are developed.

In this present chapter, the sensitivity problem is considered

specifically. First/ the temperature sensitivity of circuit elements

comprising an oscillator realization are studied. Then a temperature

sensitivity formulation is derived for a linear model of the oscil

lator system. Finally, consideration is turned to the nonlinear

effects and their contribution to the temperature sensitivity of the

oscillator.
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A generalized form of the Groszkowski-Shohat result is derived,

indicating possible frequency variations due to distortion of a

harmonic output. Since explicit forms are required for sensitivity

due to nonlinear effects, both digital and analog computer re

sults of nonlinear second and third order oscillators are pre

sented. These results combined with the results of the linear

analysis lead to a complete formulation of the sensitivity problem.

3.2 Sensitivity Coefficient

Several sensitivity coefficients may be defined. In this

study, two particular sensitivity coefficients are used. The first

is the classical sensitivity coefficient which is given by Bode .

The classical sensitivity coefficient for a variable x that depends

on a parameter G is defined by

cx G dx d(ln x) r- n
SG " x dG " d(ln G) L,5,lj

This is the sensitivity definition used when the parameter G is

not temperature. When the parameter of interest is temperature,

it is convenient to define another sensitivity coefficient to in

dicate the fractional change of the dependent variable on tempera

ture. This sensitivity coefficient is defined by

x 1^ dx d(ln x) r, 2.
.YT = x dT = d(T) l J



It is to be noted that if x is the product of several sensitive

components x., the total classical or temperature sensitivity of

x is the sum of the sensitivities of each of the components. For

example, the total temperature sensitivity of x is given by:

49

, - d ln(x1x«...xKT) d In x, d In x0x d In x M 2 Ny 1 2 r- -*
yt * 3t"~ 3t : ar 5t ••* l o;

The temperature sensitivity is expressed in parts per million per

°C (ppm/°C).

3.3 Element Sensitivity

The temperature sensitivity values of the different circuit

elements used in the final design are based on experimental results.

Previous theoretical results used a temperature sensitivity expres

sion for the common emitter current gain (B ) of a bipolar transistor

of the form

Y* =| (3.4)

where T is the temperature in degrees Kelvin27. Experimental results

in this laboratory have shown this expression to be accurate for

deep structure transistors with nondegenerately doped emitters.

However, additional experimental investigation has shown that there

is some dependence on processing. For the case of the shallow trans

istor with a degenerately doped emitter, an approximate empirical •



expression based on experimental results obtained in this labora

tory is given by
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v* = £52. (3.5)
YT Jl

This expression gives both a smaller sensitivity at room temperature

and a smaller derivative of sensitivity. The experimental sensitivi

ties obtained for both types of bipolar transistors are shown in Fig.

3.1. Included in the figure is a graph of Eq. 3.4.

Resistance sensitivities often are assumed to be constant with

temperature. In the case of higher resistivities, the is not too

bad an approximation. However, as with transistor current gain BQ,

the resistance sensitivities are processing dependent. The lower

resistivity realizations show a larger sensitivity dependence on

temperature. Experimental results obtained in this laboratory for

two resistivities are shown in Fig. 3.2. Resistor sensitivities are

also somewhat dependent on geometry. Experiments show variations

of 5 to 10% for different geometries. Hess, et al, have done a more

extensive experimental investigation of diffused resistor tempera

ture coefficient28. Their work includes the temperature coefficient

dependence on surface impurity concentration, background concentra

tion, and junction depth.

MOS capacitors are usually assumed to have zero temperature

sensitivity. To a first order, the assumption is well satisfied

for the MOS capacitors realized over an n region. A typical
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experimental MOS capacitor sensitivity is shown in Fig. 3.3

3.4 Total Oscillator Sensitivity

The oscillators considered in this thesis are all of such a

nature that they can be represented by a single nonlinear differ

ential equation and have a single unstable singularity. All the

nonlinearities of the nonlinear equation are assumed to depend on

the same single variable. A linearized model for the oscillator

system.can then be obtained by Taylor series expansion about the

singularity29, as discussed below.

For an initial example, the current amplifier Wien-type os

cillator which has been discussed in Chapter 2 and experimentally

realized as described in Chapter 5 is considered. The circuit

for this particular oscillator is repeated in Fig. 3.4. For clarity

in the discussion, the following definitions are made. Aj indi

cates a circuit block that performs as an ideal current amplifier,

F(i) is the input-output relation of the gain block:

i0 = F(i)

where i is the input current, and A is the linearized gain given

by:

A=i-FCi)
i=0



The open-loop transfer function for the first-order model is

given by
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TI = 2,t1 t 1 , 1 ]p , 1 C3'6)
R1C1 R2C2 R1C2 R1R2C1C2

where p is the differential operator, p = d/dt, and F(i) is the

idealized current transfer function of the transistor amplifier

which is assumed to contain the system nonlinearity. For proper

choice of biasing elements, the transistors are biased to a single,

stable, operating point with both transistors in the active mode

and the open-loop transfer function can be linearized about the

operating point to give:

R1C1 •
TCP) ="2 J ix —J (3.7)

R1C1 R2C2 R1C2 R1R2C1C2

The gain A of the closed-loop system can be adjusted so the single

singularity becomes unstable and periodic oscillations result.

For this oscillator the closed-loop system equation is

p2 +t( rtt +rr +rr )p +rrcc I1 _rtt p FCi) =° (3-8:)K1L1 K2L2 K1L2 R1R2L1L2 12
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where it is noted that the quiescent input current is zero due to

the series capacitor. For R, = R2 = R, C, = C~ = C, and f(i) =

d/di (i-F(i)), this can be normalized with respect to time to give

x + f(x)x + x = 0 (3.9)

where x = 1/RC di/dt. Eq. 3.9 is recognized as Lienard's equation.

For this system, the linear contributions to sensitivity are

caused by temperature changes in R and C which track closely with

temperature variations. This represents changing the time normali

zation of Eq. 3.9 and therefore adds directly to period changes

caused by the modification of f(x) with changing temperature. The

temperature sensitivity of the generalized form of Lienardfs equa

tion is considered in detail in a later section.

In the general case, there may be resistive and capacitive

values that do not track closely in temperature and contribute

non-negligible terms to the system equation. The elements of the

hybrid tt model of the bipolar transistor might be significant and

yet not track the passive elements closely with temperature change.

However, if all the nonlinearities appear as single valued coef

ficients of a single variable in the differential equation, the

total temperature sensitivity can still be written as the sum of a

linear contribution and a nonlinear contribution.

For example, consider a general third order nonlinear equation

of the form
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a,(x) ^ +a2« 4 +»lW &+•„«*"° (3-10)
dt dt

If the coefficients are suitably well behaved, each may be expressed

*

as a Taylor series expansion :

VX) =30l +a02X +a03x3+ •••

•7

ax(x) =an +a12x +a^x + ... (3.11)

a2(x) = a21 + a22x + ...

a3(x) = a31 + a32x + ..

If a time scaling is performed so that t = t/K, Eq. 3.10 becomes:

a,(x) ,3 a^(x) ,2 a1 (x) ,JLL i*+J^i* +J> ^+ao(x)x =0 (3.12)
K3 dx3 K2 dx2 K dT °

However, if the coefficient a., of Eq. 3.11 are scaled simultaneously

with the time scale so that

a.-^a.. (3.13)

This Taylor series expansion is not necessary for this discussion
but is convenient for clarity.
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Eq. 3.10 becomes

3 2

a3(x) ^r+ a2w ^4+ ai(x) ar+ aoCx)x s ° <3-14)

If Eq. 3.10 has a periodic solution x(t), Eq. 3.14 has a periodic

solution x(t) and x(t) = x(t). Therefore the scaling of the coef

ficients of Eq. 3.10 according to Eq. 3.13 is equivalent to time

scaling.

Any variation of the coefficients caused by a temperature change

may cause the period of x(t) to change. That portion of the coef

ficient variation that satisfies the scaling relation of Eq. 3.13

is considered to be the linear contribution to temperature sensitivity
f0

of oscillation frequency. It is expressed by y^ in the relation

f0
Afo(linear contribution) =£o YTL AT (3,15)

From Eq. 3.13, it can be seen that the scaling K is related to
fG
YT£ATby

K = i- (3.16)
f

1+Vl AT

Any coefficient variation with temperature that violates Eq.

3.13 is considered a nonlinear contribution to sensitivity. For
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example, if a particular coefficient a.. has a temperature induced

variation

a.. = (K)1 a.. + 6 (3.17)

the term 6 causes the nonlinear contribution. The nonlinear contri-
f
o

TNL

f

bution is expressed by y^y in the relation

f

Af , .. . = f y° AT (3.18)
o(nonlinear) o 'TNL

Since the linear contribution effects only the time normalized

system, it can be seen that the two sensitivities add directly to

give the total temperature sensitivity of oscillation frequency as

f f f

YT° -YTl +Y^l <3-19)

A subclass of oscillators that is of particular interest is

one that has the following properties:

a) All the coefficients a.. of Eq. 3.11 have a temperature

dependence as expressed by Eq. 3.16.

b) K depends to a first order only on passive elements

temperature sensitivities.
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c) All the elements of a given type (eg., resistance, capaci

tance) track closely with temperature (i.e., the tempera

ture coefficient of all resistors is the same).

The temperature sensitivity of oscillation frequency for oscillators

in this subclass is primarily due to the linear contribution of the

passive elements. The Wien-type oscillators discussed above is in

this subclass and exhibits this property.

3.5 Linear Contribution to Basic Oscillator Sensitivity

For a basic positive or negative feedback oscillator which pro

duces a harmonic output, the frequency of oscillation is inversely

proportional to an RC product. For a typical Wien-type configura

tion such as shown in Fig. 3.4, this product contains, to a first-

order, only terms involving the passive elements in the frequency

selective feedback network. For this case and for many harmonic

positive feedback oscillators, the frequency of oscillation is given

by

f = l (3.20)
0 2* /R^C^

If this expression is accurate for the particular positive feedback

oscillator under consideration, its temperature sensitivity is given

by
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fo i dfo ii!i ii!2 ii!i ii^i f32n
YTL =f" dT~ ="2Rx 3T '2R2 3T "2Cj 9T 2C2 3T L#

If the oscillator operates in a near-harmonic mode over the tempera

ture range considered, this expression can give a fairly accurate

prediction of temperature sensitivity for a positive feedback mono

lithic oscillator as is shown in Fig. 3.5. This figure is obtained

from the actual experimental realization of the basic Wien-type

positive feedback oscillator of Fig. 3.4. In Fig. 3.5, the tempera

ture sensitivity predicted by Eq. 3.21 using measured values of

resistor and capacitor sensitivities is compared with the experimen

tal measured sensitivity. It is seen the difference is less than 5%

in the temperature range considered. The details of this realization

and these results are described in Chapter 5.

In spite of the good match mentioned above, this linear descrip

tion is not complete. If the approximation that the oscillator

operates in a harmonic mode is poor, or if the resistors and capaci

tors have a very low temperature sensitivity, this first-order approxi

mation may be completely inadequate.

A more accurate but equally straightforward expression for the

linear sensitivity can be obtained based on the particular properties

of monolithic integrated circuits. The capacitors realized as MOS

devices have a very small temperature sensitivity. Because of the

fact that the diffused resistors are realized in the same fabrication

processing step and the very close temperature coupling within the



59

actual circuit chip, there is a close tracking of resistor values

with temperature variations. This is to say that the MOS capacitors

have essentially a zero temperature coefficient and the resistors

have almost exactly equal temperature sensitivities over the tempera

ture range. This can be expressed by

c
3C.

i- —i - 0C7 3T ~ u

R
YT =

••nn i oR.
1 3R _ 1 3
R 3T " R7 3T

i = 1,2,... (3.22)

j = 1,2,... (3.23)

To determine the effect a temperature change has on the system

root locus under the conditions of Eqs. 3.22 and 3.23, a brief di

gression is needed to discuss the concept of root locus and .the nature

of impedance and frequency scaling.

The concept of root locus is based on a linearized system model.

The root locus of an oscillator, which is inherently nonlinear, is

obtained from the linearized model of the oscillator about the

quiescent operating point.

Impedance scaling is done by multiplying every impedance in the

circuit by a common factor Kj. For the elements liable to be en

countered in a monolithic circuit, the normalized values of the

elements are

R,j = Kj R. j = 1,2,...

Cil =Ci/KI i= l>2>"' (3.24)

gmj = gm/Kj
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where the subscript I indicates the impedance scaled value. Since

this scaling does not modify open-loop pole position, the root locus

is unchanged. If this scaling does not change the open-loop gain

level, the closed-loop poles are not modified either. However, if

the gain level is changed, the magnitude condition must be used to

determine the new closed-loop pole positions on the root locus.

Time scaling corresponds to modifying real time by some factor

K-. The scaled system operates on a time base t = Kft. The scaling

of the actual system is obtained by modifying the component values

by Kf for those elements that contain a time derivative in their

model. In the usual monolithic circuit, this means changing capa

citor values by K-.

Cif e Kf Ci i= 1'2>3>-*- (3-25)

Time scaling is equivalent to frequency scaling of the linearized

model which produces a radial shift in the root locus of the system

but does not change its form. Thus, the closed-loop poles are only

modified in their radial distance from the origin. Their angular

position does not change under frequency scaling.

Attention is now returned to the effect of temperature change

on open-loop and closed-loop root locus pole positions of the

monolithic circuit under the constraint of Eqs. 3.22 and 3.23. For

a given temperature change AT =T2 -T^ the value of MOS capacitors

is unchanged and the diffused resistors all undergo an equal per

centage change. If yT is independent of temperature, this is
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AC. = 0 (3.26a)
i

AR. = R,T - R.T = R.T Y~ AT (3.26b)
3 3*2 J1! J 1

In other words, none of the capacitors change in value and the

ith resistor has a value at the new temperature T2 of

R.T =R._ (1 +yR AT) (3.27)
U2 Hj

This is equivalent to an impedance scaling

Kj =(1 +y* AT) (3.28)

However, if the whole system is impedance scaled, frequency scaling

must be used also since the capacitors do not change with temperature.

For zero change in capacitor value, the appropriate frequency scale

is equal to the impedance scale.

. Kf = Kj (3.29)

Therefore, the temperature change is equivalent to a simultaneous

frequency and impedance scaling of the passive elements. It is

noted that this is true even if yt is not independent of temperature
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so long as Eqs. 3.22 and 3.23 are satisfied over the temperature

range.

If in an actual monolithic realization the open-loop pole

positions are determined by RC products involving only passive

resistors and capacitor elements, the above conditions are met

and the temperature change can be represented as a simultaneous

frequency and impedance scale. This scaling results in a radial

shift of the root locus.

The assumption that the RC products contain only passive

element values is usually valid for the dominant open-loop poles of

typical oscillator realizations. The nondominant poles from active

device charge storage effects are typically far enough removed so

they do not invalidate the radial movement of the dominant portion

of the root locus. This is pointed out in the example discussed

in Section 2.7 of Chapter 2. If the open-loop gain level is in

dependent of temperature, the closed-loop poles are also shifted

radially with respect to the origin with temperature changes. When

the closed-loop poles can be written as a product (s-sq)(s-s^ (s-s2)...

and s is the natural frequency of interest, its sensitivity to tem-
o

perature is then expressed by

s T 3s sQ R

V^lliJ -TT=-Tinr YT (3.30)

so .„
This is shown in Appendix A. Of course, if sq is complex, yt will

be complex.
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The example of the Wien-type oscillator in Fig. 3.4 is continued

to demonstrate this more detailed formulation. The small-signal,

closed-loop, linear system behavior is analyzed on the basis of

the equation obtained from the open-loop transfer function given by

Eq. 3.6. The second-order, linear differential equation of the

system is

R1C1 R2C2 R1C2 R1R2L1L2

where A is the linearized gain of the amplifier given by

A=d/di F(i)|._0 and p=d/dt. The natural frequencies of the

system are given in terms of the complex variable s by the roots

of

s2 +̂ (3-A)s* "^2=0 (3'32)

if R. - R2 « R and Cj = C2 =C These roots are

Sl,2 =(IfiC }['(3"A) -^5"6Ao+Ao ] (3-33)

The roots are complex for 1 <_ A <_ 5 where harmonic oscillation occurs

for A - 3. For the case where A = 3.1,

Sl = 2RC (0"1 +j^^^ C3'34)
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If the gain A is independent of temperature, the root sensitivity

to temperature is given by

Sl 1 9S1 1 !fi9R__J_ !fl R (3 35)YT =Ts~jT IT " .s1| 3R 3T " |S]L| 3R TT

In terms of Eq. 3.5, this becomes

Sl -0.1 -j/3?79 R (3b36)
YT 4.0 TT v

This result and Eq. 3.35 are exactly those predicted by the general

form of Eq. 3.30. The graphic representation of this solution is

shown in Fig. 3.6.

The sensitivity parameter of Eq. 3.30 depends upon an open-loop

gain level that is temperature invariant and open-loop pole positions

that are determined primarily by RC products of passive elements that

satisfy Eqs. 3.22 and 3.23. If the gain level is not invariant, the

assumption of radial displacement of the root locus with temperature

still holds. Therefore, the new closed-loop pole positions can be

determined by first considering the root locus displacement with

temperature by application of Eq. 3.30 and then by solving the new

gain condition

|H(s)G(s)| = 1 (3.37)

where H(s) and G(s) are defined by Eq. 2.2. If, on the other hand,
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the passive resistors have widely varying geometries or are realized

in separate fabrication diffusion processes so that Eq. 3.23 does

not hold, or if active element parameters of significant magnitude

appear in the open-loop pole products, there is no simple way to

determine closed-loop pole sensitivity to temperature. In this case,

a more general sensitivity function is needed. An example of such

a function for a single feedback loop system with a linear dependence

in gain is one that is provided by Gaash30. The closed-loop pole

position is given in terms of the gain level and the open-loop poles

and zeros by

v dp z, dzds -r tH(s)G(s)1 -1 { dx _ r Pe ^e .y lc _n }

(3.38)

x is the dimensionless open-loop linear gain level, pe is the eth open-

loop pole, and z. is the kth open-loop zero. If the temperature sen

sitivity of the gain and each of the open-loop poles and zeros can be

determined, the temperature sensitivity of sq is given by Eq. 3.38.

However, this situation does not arise for the oscillator configura

tions considered.

3.6 Nonlinear Contributions to Basic Oscillator Sensitivity

The linear contribution to oscillator temperature sensitivity
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is a complete description of oscillator performance only if the

gain condition is satisfied such that all natural frequencies move

radially with respect to the origin with temperature changes. Even

in circuits designed to satisfy this assumption, second order effects

may cause it not to be true. In the remainder of this chapter, the

sensitivity of oscillation frequency caused by gain variations with

temperature changes is considered. This is basically a nonlinear

problem, and for this reason both analytical and computational

techniques are used to obtain the results.

Nonlinear analysis of the transistor oscillator has been

studied by several people31,32*33. In particular, Wilson derived

an analytical technique to determine the amplitude and frequency

of oscillation for a second-order near-harmonic oscillator having

a single nonlinearity3**. His results are based on an analysis of

Lienard's equation for a single analytic nonlinearity. In his

analysis, he made the assumption of near-harmonic oscillation. This

work on the second-order nonlinear system is extended to cover the

generalized form of Lienard's equation. In addition, conditions

where the nonlinearity is piecewise linear or where oscillation is

not near-harmoinc are studied. Computer-aided analysis is used to

obtain the necessary values for the nonlinear sensitivity analysis

of typical oscillator.

In contrast to the positive feedback oscillator, the basic

negative feedback oscillator is at least a third-order system.

Federicks has studied a third-order vacuum tube RLC oscillator

and obtained the conditions for the existence of a periodic
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solution35. D. K. Lynn considered particular forms of specific

third-order oscillators and used a perturbation analysis technique

to obtain the period of oscillation of the system36. Diliberto

has provided a perturbation analysis to determine the changes in

the period of oscillation due to perturbations of the parameters

of an n'th order system37. In this thesis, computer-aided analysis

is used to obtain specific results for third-order nonlinear models

of negative feedback RC oscillators. If excess phase is included

in the basic second-order system as another natural frequency, the

second-order system becomes a third-order system. Thus, the third-

order formulation is used to analyze the effect of excess phase on

the nonlinear results obtained.for the second-order oscillator.

3.7 Nonlinear Analysis of the Basic Positive Feedback Oscillator

The basic positive feedback oscillator can be adequately re

presented by a second-order differential equation. The form of the

equation is derived for the basic positive feedback oscillator in

Section 3.4 and is Lienard's equation

x + f(x)x + x = 0 (3.39)

where x = dx/dt and a zero average value for x has been assumed.

For studies here, this is generalized to

x + f(x)x + g(x) =0 (3.40)
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Second-order nonlinear systems have received extensive con

sideration by many authors and are covered well in standard texts38"1*0.
2

In particular, the van der Pol case where g(x) = x and f(x) = e(x -1)

has been studied for all values of e1*1. However, for situations of

interest in this study, f(x) is typically not of the van der Pol

form. Moreover, interesting cases occur for nonsymmetric f(x) and

f(x) piecewise linear. Therefore, these results are expanded by

computer-aided analysis.

The major interest here is the sensitivity of the period of

oscillation to changes in the parameters of the normalized nonlinear

equation representing the oscillators considered. Intuitive insight

to the period of oscillation as related to harmonic content or dis

tortion of the variable x is given by Groszkowski and Shohat1*2*1*3.

Their results are implicit expressions that do not explicitly give

the period for given nonlinearities. Moreover, their results do

not include the possibility of an example provided by Stoker1*1*. He

considered a conservative system (f(x) = 0 for all x) with a hard

restoring force for which the frequency increased as amplitude and

distortion increased. A generalized result is derived here that

includes the Stoker example and points to possible nonlinear com

pensation techniques.

3.8 Generalized Relation of Period to Harmonic Content

Groszkowski and Shohat considered systems restricted to the

form of Lienard's equation (Eq. 3.39). The theorem stated here
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is not restricted to this equation and is stated for the generalized

Lienard's equation.

Theorem 1. If g(x) and f(x) of the generalized form of Lienard's

equation

x + f(x)x + g(x) = 0 (3.41)

satisfy the conditions:

i. f(x) and g(x) continuous over the range of x

f(x), g(x) e C(-»,«>))

ii. df(x)/dx exists

iii. f(x) and df(x)/dx are bounded

iv. f(o) < 0 and a periodic solution x(t) of period

T exists

where x(t) can be represented by

A

X(t) =-y- + I An cos (ncot + i(>n) (3.42)
n=l

where A is the amplitude of the n'th harmonic term and
n

ty is the phase of the n'th harmonic term;
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T

/ g(x)dt = 0 (3.43)

T T

/ xg(x)dt = / x dt (3.44)

This theorem is proved in Appendix B. It is noted that for the

case where g(x) is odd, the average value A of x(t) is zero by

Eq. 3.43 of the theorem. Eq. 3.44 of the theorem is the general re

sult relating period of oscillation to harmonic content. It is dif

ficult to obtain a result that more explicitly indicates the relation

of harmonic content to period than this expression without first

making some assumptions on the nature of g(x). In the case that g(x)

is an odd polynomial, g(x) can be expressed

Eq. 3.44 becomes

M 9m ig(x) « I am x**'1 (3.45)
m

T T

/ l ax2"1 dt =/ x2 dt (3.46)
o m o

From Parsevals equation1*J this gives
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I I * A? - InVA (3.47)
i* l> m n *• n
m n n

where a is the mth coefficient of the polynomial and An is the

amplitude of the nth harmonic. If the suras have finite number of

terms, this can be rewritten

lflaA2,.Ajn2»21.0 (3.48)
*» I *• m n n |
n <- m J

If g(x) * x, Eq. 3.48 becomes

I A2 (1-n2 a)2) -0 (3.49)

n

which is the result obtained by Shohat. Eq. 3.49 cannot be satisfied

unless (0 < 1. The equal sign only occurs if An =0 for n > 1, which

is the case of harmonic oscillation. Thus, if a temperature increase

causes the harmonic oscillation to develop distortion due to increas

ing gain, the fundamental frequency is sure to decrease. This result

is also implied by the calculations of Groszkowski who never directly

proves the theorem.

In contrast to this result, the general result of Eq. 3.48

allows for an increase in frequency for increasing distortion. To

show this, consider a particular case where the coefficients in

g(x) are given by ^ =1, a2 /0, and an =0for n>2. Then Eq.
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3.48 becomes

IA2 (1-n2 u)2 +A9 A2) =0 (3.50)
*• m 2 nm
n

The a9 term makes a frequency increase with increasing distortion

possible. This result, although not based directly on a physical

system, suggests that it may be possible to obtain a physically

realizable g(x) that will compensate the system. These details

are discussed in the next sections.

3.9 Computer Analysis of the Basic Positive Feedback Oscillator

The second-order nonlinear oscillator equation for the basic

positive feedback oscillator is presented in Eq. 3.29 where it is

assumed that the active transfer function nonlinearity appears in

the first-order differential term of the equation as f(x). For

the current amplifier, Wien-type oscillator of Fig. 3.4, this non

linear term f(x) is obtained in reference to Eq. 3.8 from the cur

rent transfer function of the amplifier i = F(i) by

f(i) =3-L- F(i) (3.51)
v J di ^—

The output current i , and the input current i are incremental \

values around the dc quiescent values. If, for example, F(i) =

2
3.3i-i3 as suggested by Fig. 3.7, then f(x) = -0.3+2x . The gam
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A is defined as the value of the transfer function derivative at

the quiescent operating point which for this case is dF(i)/di at

i s 0 or 3.3.

There are two steps involved in determining the nonlinear con

tribution to temperature sensitivity for a given oscillator. The

first step involves determining the nonlinearity f(x) as a function

of temperature for the particular oscillator being considered. The

second step involves finding the relation between the period of os

cillation and the nonlinearity f(x). This is accomplished by using

the results of the computer study discussed below.

The computer study of the periodic solutions of the second-

order nonlinear differential equation is done for forms of f(x)

that are representative of typical physically realized gain func

tions. At the end of this section, after these computer results are

determined, an example is given showing the application of these

results to a Wien-type oscillator to find the nonlinear contribution

to temperature sensitivity.

Computer results for the relation of period to gain are ob

tained for several different gain curves. The variations in gain

curves considered involve both symmetry and the overall shape.

These results enable both the sensitivity to be calculated for a

given gain curve and the importance of the shape of the gain curve

to be considered.

The symmetric gain curves considered are shown in Fig. 3.8.

*The dependence of period on gain for each of the curves is obtained.
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The curves considered vary from piecewise linear to a van der Pol

approximation for the active region. The computer results for the

van der Pol approximation are compared to a perturbation analysis

based on the Krylov-Bogoliobov method at the end of the section1*6.

On the basis of the results obtained for the symmetric gain curves,

the decision is made to study symmetry variations for piecewise

linear curves.

For analysis of the effect of sharpness of cutoff of the gain

curve on period of oscillation, four symmetric amplifier curves are

studied. These are shown in Fig. 3.7. For each curve, the same

relative maximum amplifier output current is assumed and each is

symmetric with respect to the bias point. The gain for each is

defined as the slope at x = 0. Curve one is the van der Pol form

up to the amplifier inactive region. The inactive region is re

presented by a linear segment. Curves two and three consist of

linear segments connected by fillets that are circular arcs. Curve

two assumes the derivative is zero for x greater than one irrespec

tive of the gain. Curve three assumes a constant radius fillet.

Curve four is piecewise linear. The computer program and a des

cription are contained in Appendix C.

The computer results for the last three gain curves are shown

in Fig. 3.8. The difference in period between the three solutions

occured in the fifth place. This leads to the conclusion that the

sharpness of cutoff is not critical when the amplifier gain curve

contains a large linear region.
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A more noticeable relation between amplitude and frequency

sensitivity to gain changes occurs between the piecewise linear

and the van der Pol approximation. To supplement the computer

study, a perturbation analysis is made for the van der Pol approxi

mation,

f(x)'« e(ux2-l) (3.52)

and for the case

f(x) = e(ux4-l) (3.53)

The details of the perturbation analysis are presented in Appendix

F. The dependence of amplitude and fundamental frequency on e and

u are given in Table 3.1 along with an empirical form for the fre

quency dependence of the symmetric piecewise linear form of f(x) on

e. In this latter case, e is defined e = f(o). This e corresponds

to the other e's. It is also interesting to compare the computer

result for the van der Pol approximation to the perturbation analysis.

This comparison, is provided by Fig. 3.9.

An example of the application of these results is the determina

tion of the nonlinear contribution to temperature sensitivity of the

current-amplifier, Wien-type oscillator of Fig. 3.4. If the ampli

fier of this circuit can be modeled as shown in Fig. 3.10, the small-

signal current gain is given by
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A =
8*A2<W +gm2GfgC +

h^ Gf + *m2 ^C +G#C^ +hi Y2 Gf +
(3.54)

where only the terms that contribute more than one percent to the

dominant terms gffil gm2 (GE+gc) and g^ gm2 G£ for typical circuit

values are expressed. The amplifier is also assumed to have a low

input impedance Z. and a high output impedance Z . Z is usually

on the order of the output transistor output resistance r which is

typically greater than 5OK. Z. is of the order of 50Q at base band

frequencies for actual circuit values. To a first-order, the current

gain is the ratio of resistors given by the dominant term of Eq.

3.42

A =
GE + Gf

f(x)

Amplitude

a

Frequency

(D

e(yx -1) 2/v^r to = to (1 - .0625 e2)
0

e(Ux -1)
8 1/4

v. u J
u= a) (1 - .145 e2)

ov J

Piecewise

Linear
w = to (1 - 1.25 e2)

ov J

Table 3.1 Frequency Sensitivity to Gain

(3.55)
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If Gc and Gc track closely with temperature change, it is the
E F

second-order terms that cause the gain to be temperature sensi

tive. If only terms making a significant contribution to the

gain sensitivity are included, the gain sensitivity is

YGain.__L(1+!£DY? (3.s6)
o £

where it is assumed that the $Q of the two transistors are the

same and the gain condition for oscillation is satisfied for A = 3.

For the values of the actual realization considered in Chapter

5, the gain sensitivity has avalue of approximately 200 ppm/ K at

300 °K. If it is assumed that the amplifier can be reasonably re

presented by a symmetric, piecewise linear gain curve, the computer

results show the nonlinear contribution to temperature sensitivity

as

Y^L %50 ppm/°C (3.57)

or less than a0.5% variation in period over 75°K of temperature

change. In comparison to the linear contribution to temperature

sensitivity,

y° = 2000 ppm/°C , (3.58)
1L

the nonlinear contribution is negligible. This is born.out by

the results obtained in Chapter 5.
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3.10 Symmetry Variation

Because of the limited control of element values in the actual

realization of an integrated oscillator, a symmetric gain curve

would be difficult to obtain. Therefore, the effects of symmetry

on sensitivity are of interest. Two results are presented. Firstly,

the change in period for changes in symmetry for constant gain is

found. Secondly, the change in period for variations in gain at

constant offset is found and compared with the symmetrical case.

The computer program for these cases was written in modified Fortran

II for the IBM 1800 computer as is contained in Appendix D.

In Fig. 3.11 the change in period with change in offset is

shown. It is seen that for gain levels that produce almost har

monic oscillation, changes in symmetry have a marked effect on

period. Fig. 3.12 shows changes in period for changes in gain for

a given nonsymmetric gain curve. These results lead to the conclu

sion that the period of oscillation is increasingly sensitive to gain

variations at low gain levels as the dissymmetry in the gain curve

is increased. However, as the gain level increases, the excursions

into the cutoff regions increases and the dissymmetry has less effect.

With sufficient excess gain, the gain sensitivity for the symmetric

and nonsymmetric curves is about the same.

3.11 Additional Computer Results

Three additional computer results for the positive feedback

oscillator are obtained. First, the effect of having only partial
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cutoff for a piecewise linear gain curve on period sensitivity to

gain is studied. Second, the effect of excess phase in the gain

function on the sensitivity is considered. Finally, the possibility

of compensation as suggested by the frequency relation of Section

3.8 for the generalized Lienard's equation is investigated.

As determined in this section, the period sensitivity to gain

is a minimum for the van der Pol approximation to the gain curve,

with the piecewise linear gain curve producing the maximum sensi

tivity. This suggests that the piecewise linear curve, which would

be closely realized in an amplifier with a large amount of feedback,

such as the Wien-type discussed in Chapter 2, may not be the optimum

design. However, accurate gain control is usually obtained by the

use of large amounts of feedback. The dilemma can be solved by

using a piecewise linear curve that has reduced gain or only partial

cutoff in the sections such as on of those shown in Fig. 3.13. The

realization of such a modified gain curve is discussed in Section

2.8 of Chapter 2.

Computer results were obtained for two degrees of partial cut

off as shown in Fig. 3.13. These computer results are given in

Fig. 3.14 along with full cutoff piecewise linear results. As can

be seen in Fig. 3.14, the modified nonlinearity does reduce the

gain sensitivity which would in turn reduce the nonlinear contribu

tion to temperature sensitivity of the overall oscillator.

The analysis up to this point of the positive feedback oscil

lator has been based on a second-order model of the system.
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Attention is turned now to a third-order system that is capable of

modeling the positive feedback oscillator which has a single non-

dominant pole in its amplifier to model excess phase effects. If

the positive feedback oscillator is of the Wien-type, the amplifier

might contain anondominant pole of the form (ap + 1) where a >0

as shown in Fig. 3.15. The original second-order system would become

3i + (1 + 3a)p2 i+ (3 +a)pi -p F(i) +i=0 (3.59)ap

Computer analysis of period sensitivity to gain was made on this

system for apiecewise linear curve. The program is contained in

Appendix E. Results were obtained for several values of a. The

result for a= .02, which corresponds to about 1.2° excess phase in

the low frequency slope, shows a slightly greater sensitivity to gain

than the model without excess phase. For a 0.3% change in gain, the

former shows a .83% change in period and the latter shows a .'73% change

in period.

The possibility of nonlinear compensation is indicated by the

result of Section 3.8. This requires the system to be of the

form

x + f(x)x + g(x) = 0 (3.60)

The computer study again in this case is made for piecewise linear

curves. The curves used for f(x) and g(x) are shown in Fig. 3.16.
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It is noted that the discontinuity occurs for the same value of

x in both curves. A possible realization for these curves is

discussed in Chapter 4. The computer results are shown in Fig.

3.17. The particular point of interest is the fact that the

period sensitivity to gain has the opposite sign for the g(x)

chosen than all the previous cases studied. This is the possi

bility that is predicted by Eq. 3.44 and Eq. 3.50. From this

result it is seen that nonlinear compensation is possible.

3.12 Nonlinear Analysis of Basic Negative Feedback Oscillator

Two systems are studied as representative of the nonlinear

considerations in the negative oscillator. The first is the case

of a system with non-interacting poles where the third-order equa

tion of the closed-loop system for equal open-loop poles at s = -a

is

*x'+ 3ax + 3a2 x+ (1-Aa3)x =0 (3.61)

For the computer study,a is set equal to 1 and the amplifier

gain curve is assumed piecewise linear.

Because of programming considerations, only a piecewise linear

system is considered. If the piecewise linear system is modeled

to represent total amplifier cutoff, the computer results indicate

nonsymmetric output waveforms are obtained for a symmetric amplifier

characteristic. These results are not considered representative of
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an actual physical system. The digital computer results for such

a negative feedback oscillator with a third-order model occur be

cause of the nature of the computer model of the mathematical system.

This is not necessarily an erroneous result1*7. It can be attributed

to the fact that the computer program appears as a delay differential

operator rather than a continuous nonlinear operator**s. Therefore,

digital computer results are only obtained for partial cutoff. These

results are shown in Fig. 3.18. As with the second order system

with a single nonlinearity, the third order system with a single

nonlinearity shows decreasing frequency with increasing gain.

For an amplifier that exhibited complete cutoff, a system

continuing interacting poles is considered. The system in this case

is described by

*x'+.6x + lOx + (3+A)x = 0 (3.62)

An analog computer setup that is used to obtain the results is shown

in Fig. 3.19. The nonlinearity realization is based on a model

provided by Johnson1*9. The results, for which the period is mea

sured to three places, indicate a constant period of 2.22 seconds

for gains from 60 to 85. In fact, modifying the coefficient to

either x or x does not change the period as long as the starting

condition is satisfied. These results suggest that further analysis

of the third-order system is in order.

The realizations in this thesis are based on second-order systems.
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It has been shown in previous sections that a realization of such

asystem is possible where the nonlinear contribution to sensitivity

is negligible. Therefore, there would be no advantage to athird-

order realization and the questions posed by the above results need

not be purused further for the purpose of this thesis.
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Fig. 3.13 Gain Curves of Computer Analysis
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Fig. 3.15 Non-dominant Pole Model for Wien-type Oscillator
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IV. TEMPERATURE COMPENSATION OF

INTEGRATED OSCILLATORS

4.1 Introduction

The total sensitivity of the basic oscillator is the sum of

the linear and nonlinear contributions to the sensitivity as ex

pressed by

99

f f f
o c

rTL YTNL
ooo (4.1)

IT »TT T »TMT V '

Temperature compensation involves reducing the magnitude of the
fQ

total oscillator sensitivity yt that is inherent in the basic

oscillator over a specified temperature range. Compensation tech-

niques that modify the linear term yt? of the basic oscillator are

called linear compensation techniques and those that modify the non-
f

linear term yt°,t are called nonlinear compensation techniques. The
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final compensated oscillator may employ both techniques.

For the oscillators considered in this study, designs are
£

possible that cause the nonlinear contribution Ytjjl to be negli

gible compared to the linear contribution ytl in tne monolithic

realization of the basic oscillator. Therefore, the compensation

techniques that are of major interest for these realizations are

the linear techniques that minimize the magnitude of Ytj/ ^t *s
fQ

true that Ytmt could be used to compensate the oscillator by off-
- TNL £

setting yt?» but for tne magnitude of y™ encountered in monolithic

realizations, this would cause considerable output waveform distor

tion for oscillators designed to operate over any sizable temperature

range. However, situations occur, such as with thin film circuits,

where the linear and nonlinear contributions to temperature sensi

tivity may be of comparable magnitude. In this situation, nonlinear

compensation techniques are of interest and so are described briefly

in the following section. In the remainder of the chapter, detailed

attention is given to linear compensation.

4.2 Nonlinear Compensation

The basic positive feedback oscillators can be modeled ade

quately by the second-order nonlinear equation

x + f(x)x + x = 0 (4.2)

As is shown in Chapter 3, the sensitivity of the oscillation period
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to temperature caused changes in f(o) depends on the form of f(x).

For near-harmonic oscillators, the period of oscillation is less

sensitive for a van der Pol approximation for the amplifier gain

F(x) that determines f(x) than a piecewise linear form of F(x).

However, a large amount of negative feedback is usually employed

in typical designs to minimize the sensitivity of f(o) to tempera

ture as discussed in Chapter 2. This feedback causes f(x) to have

an approximate piecewise linear form in the basic oscillator as

shown in Fig. 4.1 (a).

The advantages of gain control by negative feedback can be

combined with the lower gain sensitivity of the van der Pol approxi

mation by including a diode-resistor network in the amplifier to

produce the modified f(x) as shown in Fig. 4.1(b). This modified

nonlinearity is shown to have a reduced gain sensitivity in Chapter

3. The required gain curve might be obtained by the use of a cir

cuit such as shown in Fig. 2.23 of Chapter 2.

As is proved in Chapter 3, a zero nonlinear contribution to

sensitivity due to temperature caused gain changes cannot be ob

tained for Lienard's equation as given by Eq. 4.2. In order to

achieve a zero of the nonlinear contribution, the second-order non

linear equation must be of the form

x + f(x)x + g(x) =0 (4.3)

The computer results of Chapter 3 show that it is possible to
f

select a g(x) such that Y° is zero. A possible circuit that
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would include the reduced gain sensitivity for partial cutoff in

f(x) and a compensating g(x) is shown in Fig. 4.2. This circuit

depends on the offset voltage of the diode as shown in Fig. 4.3.

The approximate forms of f(x) and g(x) for this circuit are shown

in Fig. 4.4. From Chapter 3, it is seen that this form of g(x)

can offset the gain sensitivity that would be due to f(x) alone.

The numerical details of such a realization would depend on the

actual circuit. However, this does demonstrate that in principle

it is possible to compensate the nonlinear contribution to tempera

ture sensitivity.

4.3 Linear Compensation

Linear compensation reduces the total temperature sensitivity
f

of the oscillator by altering the linear contribution ytl» Since

it is possible to design a monolithic circuit so that the nonlinear

contribution to temperature sensitivity is negligible compared to

the inherent linear contribution, the linear compensation techniques

foof interest reduce the magnitude of ytl °^ tne Dasic oscillator.

Of course, this compensation should be accomplished so that it does
f

not increase the magnitude of Ytmi/

The basis of linear compensation is to modify the small-signal

model of the system to reduce the temperature sensitivity of the

dominant natural frequencies of this model. In this respect, linear

compensation techniques are applicable to both oscillators and

band-pass amplifiers. However, the final formulation may be quite
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different for the two since the oscillator inherently contains

nonlinear considerations. A temperature sensitive Q in the band

pass amplifier usually is undesirable. However, the same is not

true of the oscillator*. The negative Q of the oscillator is the

ratio of the negative real part to the imaginary part of the lin

earized model natural frequency and represents the degree by which

the starting condition has been satisfied. The temperature sensi

tivity of the negative Q for the oscillator then appears in the
f

nonlinear term, yJJt >or* tne temperature sensitivity. This contri

bution is then in the nonlinear considerations of the design rather

than the linear considerations. Therefore, the optimum circuit in

the two cases for any given criterion may be quite different.

Linear compensation techniques for the oscillator are divided

into two categories. The first of these is based upon a root locus

that is shaped so that temperature-controlled gain variations can

be used to offset the closed-loop pole temperature sensitivity.

This method is based on the work of Gaash50.

The other method is based on making each of the open-loop poles

individually insensitive and then combining the net result in an

overall feedback loop that has a desensitized loop gain. The closed-

loop system forms the desensitized oscillator. This scheme is

called Miller-type compensation because the individual desensitized

poles which may appear in minor feedback loops always can be con

sidered as Miller-effect circuits.

*

Q has the dimensions of energy stored over energy dissapated per
cycle and is used as a measure of selectivity in bandpass networks
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4.4 Root Locus Shaping Compensation

The definition of the basic oscillator assures that all the

open-loop poles and zeros lie on the negative real axis. With such

open-loop pole and zero locations, it is impossible to produce a

root locus that has a portion near the imaginary axis in the right-

half-plane that lies on a radial from the origin. However, this

condition is exactly that required to achieve linear compensation.

A possible design is to provide additional signal paths to

remove the above restriction on open-loop pole and zero position.

With such a design it may be possible to obtain the required shap

ing of the root locus. In particular, redundant signal flow paths

permit the realization of complex open-loop transmission zeros. As

is shown in the example below, these zeros can be used to obtain

the desired root locus. For this root locus, temperature-controlled

gain can be used to achieve insensitivity.

A single-loop ladder realization of the basic negative feed

back oscillator is shown in Fig. 4.5. This circuit has the root

locus shown by the solid line in Fig. 4.6. The open-loop gain has

been adjusted to give the closed-loop pole position shown. From

the results for the linear model in Chapter 3, a temperature in

crease would cause the root locus and closed-loop poles to shift

to the dotted line shown in Fig. 4.6. It can be seen that the

open-loop gain, which now controls the position of closed-loop

poles on the dotted root locus, cannot be adjusted to return the
closed-loop poles to their original position. To make it possible
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to return the closed-loop poles to their original position by gain

adjustment, the root locus at the higher temperature must still go

through the original closed-loop pole positions. Such a root locus

is one that has a portion in right-half-plane that lies on a radial

from the origin since temperature changes cause the root locus to

shift radially.

A possible realization that has the required root locus is the

modified negative feedback oscillator shown in Fig. 4.7. In this

circuit, the multiple signal path of the bridged-T network permits

the realization of complex transmission zeros. This circuit can be

adjusted to obtain the root locus and closed-loop poles shown in

Fig. 4.8. An increase in temperature shifts the root locus radially

inward as shown by the dotted line. If the gain were temperature

invariant, the new closed-loop pole position would be

S0T2 =S0T1 +*T° AT <4-4>

where AT is the temperature increase, s is the original closed-
s °T1

loop pole, and yt is the temperature sensitivity of s due to

passive resistor temperature sensitivity, as is discussed in Chapter

3. By Eq. 3.30 of Chapter 3, this becomes

s

s = s - °T1_ AT (4.5)
°T2 °T1 | s II oT1|

Since the shifted root locus still goes through s , it is possible
°T1



to add a temperature controlled gain shift to make s = s
°T2 °T1

With the required temperature controlled gain term included, Eq.

4.5 becomes
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s .

s« •*n -I -nr^T +V w 1 aT (4-6)°T2 °ti lsoT1l G 3T

where G is the open-loop gain level. The required gain sensitivity

is obtained by setting the bracketted term in Eq. 4.6 equal to zero.

The requirement of root locus shaping is made clear in the
s

example by Eq. 4.6. yt of Eq. 4.4 is a complex number for the

system natural frequencies that produce.oscillation. The only
s-

parameter in the gain term of Eq. 4.6 that can be complex is y~ .

Therefore, in order to set the coefficients of AT equal to zero,
sQ

the argument of Yr is a function of both the gain level G which

determines the closed-loop pole s and the shape of the root locus.

The root locus of a basic oscillator cannot .satisfy this argument

equality condition and thus root locus shaping by the use of a non-

basic configuration such as demonstrated in the above example is

required.

This form of compensation could also be achieved by the use

of a twin-T network. However, a more complicated form than the

simple 3-pole twin-T would have to be used.

4.5 Miller Effect Compensation

In the previous section, the closed-loop poles are made tempera

ture insensitive by shaping the root locus and utilizing temperature-
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controlled gain variations. No attempt was made to desensitize the

open-loop poles. Controlling the open-loop pole sensitivities,

however, does represent another alternative to achieve temperature

compensation. It is this alternative that is discussed in this

section.

If it is possible to make the open-loop poles and the open-

loop gain level temperature insensitive, the closed-loop system has

temperature-insensitive natural frequencies. It is possible to make

each of the open-loop poles temperature insensitive by the tempera

ture compensation.method applied in the last section. Each pole is

realized individually in a minor feedback loop that has a temperature

controlled gain to make the insensitive. The insensitive natural

frequency of the closed minor loop then becomes an open-loop pole

of the major loop of the overall system. In a single-pole feedback

loop, no root locus shaping is necessary over the basic root locus

to achieve gain control compensation since both the temperature-

induced resistance changes and the controlled gain changes move the

pole along the real axis.

The design requirement for temperature compensation of the minor-

loop, closed-loop pole is to control the magnitude and sign of the

gain temperature sensitivity to offset the inherent pole sensitivity.

For the particular overall open-loop pole in question, say pg, the

minor loop requirement for insensitivity of p is

p p.. 9G
*e re m fA 7^

yT = yg YT C4-7}
m
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Pe .
where p is the open-loop pole of the major loop, yt is the tem"

perature sensitivity of p due to the temperature sensitivity of

the passive resistor, and G is the minor-loop, open-loop gain.

This is the zero sensitivity requirement of Eq. 4.6. Now, however,
P PY e and yr& are both real rather than complex since both can be re

presented as shifts in position on the real axis for a temperature

increment. Therefore, no special root locus shaping is required.

The reason that this form of temperature compensation is

called Miller-effect compensation is that all the typical minor

loop realizations for a single pole can be considered as Miller-

effect circuits. In fact, it is convenient to base the design on

Miller-effect circuits. An example in point is the circuit of Fig.

4.9a which might be used to achieve a single, negative-real, tem

perature insensitive pole. This circuit can be redrawn as shown in

Fig. 4.9b where it is recognized as a Miller multiplier of the con

ductance G2»

If the circuit of Fig. 4.9 is idealized as shown in Fig. 4.10,

the input resistance is of the form

R. = R(l+A ) (4.8)
in v v

where A is the gain of an ideal unilateral voltage amplifier and

is assumed real. Further, it is assumed that Rin = », and RQ = 0.

The temperature sensitivity of Rin is:
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R. , 8R. D (l+O
Y in =A 2L =Yt +Yt (4.9)YT R> 3T Yt Tt v

m

If A is realized so that

<1+V RYT V - " Y? C4-10)

then R. has a temperature coefficient equal to zero.

This procedure can be represented schematically as shown in

Fig. 4.11 to realize a single pole of Z. at -1/RC. If yt = ° and
RDthe diffused resistor has a temperature coefficient yt > tne Miller

resistance RM, which is R. of Eq. 4.8/ should be such that

or

df <*D ♦ V -° (4-n)

*D V *M *M ' f4 12>
Yt + p ^ d Yt = ° (4.12)

RD + RM T RD + RM

This description is the basis of Miller effect compensation

which is discussed in more detail in the next section.

4.6 Miller Sensitivity Formulation

In this section, the relations that must be satisfied to

realize an insensitive positive feedback oscillator based on Miller
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compensation of the basic oscillator are derived. Two configura

tions that do not change the gain insensitivity requirement of the

basic oscillator are developed in detail. The derivations are based

on a linear model of the oscillator system.

The parameter of concern is the total differential of frequency

with respect to temperature. If there are n temperature sensitive

parameters x , this total differential is given by

, , 3w 1 9o) 2 A . 3tri n * ,. ,A ,,>
dU= tW^1f+ 3^-liT +••• + 3X^^T >dt (4-13)

The frequency sensitivity is given by

w _ 1_ dtu
YT " a) T

(4.14)

As derived in Chapter 2, the basic positive feedback oscillator

with no distortion has a frequency of oscillation given by

w2 =: I (4.15)
o RlR2ClC2

The compensated oscillator can be realized by making this product

invariant with temperature. This can be accomplished by compensation

of the capacitances or resistances. Capacitor compensation produces

realization problems in the actual final design due to bias con

siderations to avoid positive feedback at dc. Therefore, resistance

compensation techniques are used. A linear sensitivity formulation
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based on a harmonic oscillator model is valid for the very low

distortion near-harmonic oscillators realized. The distortion is

less than 2.5% over the temperature range considered for the actual

oscillators.

Both series and shunt resistance compensation are possible.

The series resistance compensation technique of Fig. 4.12 is con

sidered first. If the model shown in Fig. 4.13 of the transistor

is valid, the total input resistance is given by

R,
R » R + -2. (4.16)

a 3

For the case of equal total R's and C's, the frequency of oscillation

is given by

U-&•(6Ra \)C W.17)

The sensitive parameters are B, R , and R.. Therefore, the

quantities of interest are 9w/93, 3oj/9R , and 9ci/9R,. These are

given by

3u ^ (4.18)
9$ (3Rc +Rb)2C

9w ^ 6 (4#19)
9Ra (BRc +Rb)2C
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iSL=._^§(4.20)
>Rb(3RC+\)2C

v*0=1.y3-YR(4.21) YT1+3R/RbTTTT

whichistheprimarydesignrelation.

Forabroadtemperaturerangeforinsensitivity,itisdesired
g

tomakedYt/<*Taminimumoverthetemperaturerange,dYT/dTis

givenby

iYi„.!i+,i!i._^b3)2C4.22) dT3T[l+3Ra/Rb9T^^,2"V

Since3Y^/3T>0,9y*/9T<0,andY£>6,allthetermsarenega
tive,whichmeans

dYT
*<0(4.23)
dT

overanytemperaturerangesothesensitivitycanhavenozerounless

96R/9T>0,thismeansdyt/dlismonotonicoverthetemperaturerange

sothatYthasatmostasinglezerointhistemperaturerange.

TheshuntresistancecompensationtechniqueisshowninFig.4.14
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In this case, the total input resistance is given by

The derivatives of frequency with respect to the sensitive parameters

are then

9w JL__
93 = RfaC

9w _ J^
oR t%*t>

a R C
a

9(0

3Rb R^C

This gives a frequency sensitivity of

(4.25)

(4.26)

(4.27)

YW r: J_ Y3 - YR (4.28)
Yt ud /qd Yt Yt ^* ujl+Rb/3Ra 'T 'T

The derivative of sensitivty is given by

9T~ 1+R./3R 9T ,, .„ ,„„ ,2 lV 9T K ' Jl+Rb/3Ra .9T (1+Rb/3Ra)
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which may have a zero. This means that yt mav nave more tnan one

zero in the temperature range for the shunt case. However, as it

turns out for the actual design numbers as shown in Chapter 5, the

series case given a smaller total derivation over the temperature

range of 0° C to 65° C and is, by this measure, a more nearly

optimum design.

The transistor model shown in Fig. 4.13 which is used in the

immediately preceding derivation yields results that are straight

forward to interpret in relation to an insensitive design, but it

overlooks many potentially important parameters of a transistor

and therefore does not indicate any criterion for optimum transistor

realization in the monolithic circuit. If the transistor model of

Chapter 2 is introduced to the circuit of Fig. 4.12, the Miller

effect circuit that results is shown in Fig. 4.15. In this circuit,

the series base resistance is included in G£. The emitter-to-collector

input impedance of the more complete transistor model of the Miller

effect circuit is found to be

^C6f*c%(Gf+*c» +^(Gfgc+yy(Gf+gc) +W*c»
*Vo(Gf+gc) *Wo (4.30)

EC
xX+W +WVSo* +Vy +W*^

The model applied to the sensitivity derivation just done assumes

that only the first term of numerator and denominator of Eq. 4.30

is. significant which gives the input impedance Yin = 3QG£ as stated
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in Eqs. 4.16 and 4.24. In typical designs, Gf is on the order of

10"4 mhos and 3 ^70. For a well designed transistor that has low
o

basewidth modulation effects, and high collector series resistance

1/g » Eai« 4.30 may be approximated by51

g g (G«-+y )
* m*c fV (4.31)

EC y g +g y v

If the oscillation frequency u is less than o)g of the transistor,

Eq. 4.31 may be written:

a °m c t y (4 32)
EC g g +g_ v

6tt5c ''m

Since eg is equal to g^ and g = gQ/80> Eq. 4.32 becomes

* gmgc(Gf+go/6)
-YEC- (,) <4'5«

For the circuits realized in this laboratory, g < 2x10 mhos and

_3
g > 2x10 mhos. Therefore Eq. 4.33 is well approximated by

YEC = BGf

for G- < 10" mhos which is just the assumption required to get Eq.

4.16.
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£oo f(x">

(a) Piecewise Linear Gain (b) Modified Gain

Fig. 4.1 Second-Order Lienard's Equation Nonlinearity f(x)

Fig. 4.2 Compensated Oscillator
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Fig. 4.3 Idealized Diode Characteristic.

;ffiO

•

X

->(, >Co

IT

Fig. 4)4 Nonlinear Terms f(x) and g(x) for Compensated
.Oscillator
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AAAA- s\AAA VW1

Fig. 4.5 Ladder-type Negative Feedback Oscillator

.«* * K-H*

Fig. 4.6 Root Locus of Basic Negative Feedback Oscillator, Temperature
Variations
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Fig. 4.7 Multipath Negative Feedback Oscillator

^ X *+*-
0"

Fig. 4.8 Root Locus for Non-basic Negative Feedback Oscillator



120

AAA-

fVd ~1

0—t

i

r
AAAr 1_

S—^ A,
J

(a) (b)

Fig. 4.9 Compensated Pole Realization Circuit

R

R 177

Fig. 4.10 Idealized Miller Realization



•WW

Fig. 4.11 Compensated Pole
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Fig. 4.12 'Series Miller-type Compensation
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Fig. 4.13 Simple Current Transistor
Model
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Fig. 4.14 Shunt Miller-type Compensation
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Fig. 4.15 Total Miller-type Compensation Model
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V. INTEGRATED OSCILLATOR REALIZATIONS

5.1 Introduction

This chapter describes the actual integrated monolithic

realization of both compensated and uncompensated oscillators.

The results of experimental measurements on these oscillators are

Used to justify the assumptions and verify the conclusions of the

theoretical results of the preceding chapters. Three different

oscillators are realized, two of which are uncompensated and one

of which is compensated. All three are positive feedback config

urations. The first oscillator is the basic Wien-type uncompensated

oscillator described and analyzed, in Chapter 3. The second oscillator

is a non-basic, uncompensated oscillator based on a modification of

the first oscillator. The third oscillator is a compensated version

of the first oscillator. Before a detailed description of the ex

perimental investigation of these oscillators is given, a description

of some of the laboratory considerations and techniques is provided.
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5.2 Laboratory Considerations

There are two distinct considerations in the laboratory re

alizations of these integrated circuits. The'first is physically

designing the circuit elements of the realization so that they

have acceptable circuit performance. This acceptable circuit per

formance implies the realized device is well approximated by an

acceptable model. The other consideration is in obtaining ade

quate yields. In general, as the circuit area goes up, the yield

goes down. The oscillators realized here have an area of 80x80 sq.

mils which is large and gives low yields. Therefore, processing

steps involving multiple masks and other special techniques described

below are required to obtain non-zero yields for these circuits.

Laboratory considerations concerning both yields and adequate cir

cuit element performance are described in the following two sections.

5.3 Layout and Processing for Circuit Element Design

The circuit elements used in the monolithic realizations are

bipolar transistors, diffused resistors and MOS capacitors. Some

of the considerations of these circuit elements as monolithic com

ponents are discussed in Section 2.6 of Chapter 2, where it is

pointed out there that the diffused resistors appear as lumped

elements at the frequencies of interest. The elements that are

most likely to have unsatisfactory performance are the bipolar

transistors and the MOS capacitors as discussed below.
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The model proposed for the monolithic bipolar transistors in

Chapter 2 is repeated in Fig. 5.1. The processing affected para

meters that are of interest are the collector series resistance

1/g and the basewidth modulation factor which determines y and
' &c "

g of Fig. 5.1. The most desirable transistor is one with very

little basewidth modulation and a low series collector resistance53.

The collector series resistance is high in the transistors

realized in this laboratory (300-lOOOft) because of the lack of a

buried layer capability51*. A possible method to reduce the col

lector series resistance might be to decrease the collector material

resistivity. As the n-type collector material decreases in re

sistivity, the collector series resistance decreases, but so does

the basewidth modulation factor and the collector breakdown vol

tage. Therefore, this is not a desirable way to minimize the col

lector series resistance. The collector region bulk resistivity

is usually chosen as a compromise between a minimum collector series

resistance and a reasonable base resistivity profile that exhibits

negligible basewidth modulation (rQ >20kQ). Another method to re

duce collector series resistance that might be tried is using a

thicker expitaxial layer. This has the disadvantage that it increases

the collector to substrate parasitic capacitance CQ by increasing

the isolation wall area.

There are steps that can be taken to decrease the collector.

series resistance without having some of the drawbacks mentioned

• +
above. One is to surround the base diffusion region with an n
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diffusion as shown in Fig. 5.2. Another is to decrease the physical

dimensions of the transistor. A decrease in the surface area of the

transistor base region with a close spacing of the n ring decreases

the bulk series resistance. The amount of this reduction is limited

by the fabrication facilities, such as camera resolution in the mask

producing setup and mask alingment control. The actual dimensions

used are indicated in Fig. 5.2.

The vertical dimension of the transistor can be reduced by

modifying the predeposit and diffusion processing. The more shallow

structure has a lower collector series resistance since the thickness

of the region under the base region is greater. This modification

is equivalent to a thicker expitaxial layer, except that it does not

change the collector to substrate parasitic capacitance CQ.

Transistors realized in this laboratory in a 12y epitaxial

layer with a 3.5y collector junction depth and a single collector

stripe have had a collector series resistance on the order of lkft.

Transistors made with the geometry of Fig. 5.2 according to the

schedule in Table 5.1 have a collector junction of 2.5-3.0y and a

collector series resistance of 300Q.

The other circuit element of importance is the MOS capacitor.

This capacitor is formed by an aluminum coating over an oxide

layer covering the silicon expitaxial layer as shown in Fig. 5.3.

The circuit area that is to be capacitive is exposed in the emitter

. . . +
predeposit step so that the expitaxial layer in this area is an n

on n region. This minimizes the parasitic series resistance asso-
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ciated with the capacitor due to the bulk resistance of the epi

taxial layer that forms the bottom plate.

In order to obtain the capacitance values desired, a six mask

process is adopted. In this way, a very thin oxide is creased in

the capacitive areas which' increases the capacitance realized from

.06 pF/mil2 to .24 pF/mil . The value of capacitance for 1500 Aof

oxide is .24 pF/mil 2 and this is about the minimum oxide thickness

possible for good yields.

5.4 Processing for Yield Improvement

Circuit failures are found to be due mainly to pinholes appear

ing in the oxide at some point in the processing. These pinholes

can cause circuit failure by shorting p-type regions in the circuit

to the substrate by p-type pipes. These pipes are formed through

the pinholes during the isolation processing steps. Shorting of the

aluminum interconnection pattern through apinholes to the circuit

can also occur. The former is the major cause of transistor and

resistor failure and the latter is the major cause of MOS capacitor

failure.

The pinholes causing these problems are not so much due to

faults occuring during oxide growth as to photo-resist processing

failures. These photo-resist failures occur in two ways: one is

unintended dark spots in the final mask due to a faulty emulsion or

dirt. The other problem is the appearance of flaws in the photo

resist coating due to dirt or mechanical damage.
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To avoid the p-type pipes formed accidently in the isolation

process, a dual mask system is used for the isolation predeposit

photo-resist exposure. After the initial oxide is grown on the

wafer, an isolation pattern is exposed and partially etched. The

wafer is then returned to the furnace for further oxide growth.

After the wafer is re-coated with photo-resist, the second isola

tion pattern is exposed twice through different masks with the

identical pattern. Alignment is achieved by using the isolation

pattern already partially etched into the oxide. In this way, as

long as the flaws in the two masks do not coincide, mask failures

do not occur.

Faults in the photo-resist are controlled^ by careful filtering

of the photo-resist solution. Precautions are taken to avoid possible

sources of dirt to keep the mask and wafer dirt free. In addition,

a significant yield improvement for MOS capacitors'can be obtained

by coating the capacitor areas with additional photo-resist after

the initial photo-resist layer has been exposed and developed but

before etching the oxide.

A typical composite processing schedule is contained in Table

5.1.

5.5 Uncompensated Oscillator Realizations

The uncompensated oscillators are based on two of the positive

feedback oscillator configurations introduced in Chapter 2. One-
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of these configurations is a basic form and is a current amplifier,

Wien-type oscillator. The other is a non-basic modification of this

configuration. The Wien-type oscillator is discussed first.

The basic Wien-type oscillator shown in Fig. 5.4 is considered

first. The open-loop transfer function is Eq. 2.15 of Chapter 2.

This equation is

A s/R-C0
T = Li (5.1)
1 s^ + (1/R1C1 +1/R2C2 +l/RjC^s + l/R1R2CiC2

The starting condition is

A > i + 1 + 2 (5>2)
R2 Ll

If the equality sign holds, harmonic Oscillation occurs at a frequency

\ •RlR2ClC2 (5-3)

For a very low distortion, near-harmonic mode of oscillation, Eq.

5.3 gives a very close approximation to oscillation frequency. In

Chapter 3, it is shown from the expression for the current gain of

the linearized amplifier (Eq. 3.42) that the nonlinear contribution

to temperature sensitivity is on the order of 50 ppm/ C. This is

more than an order of magnitude less than the linear contribution
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and therefore the temperature sensitivity can be approximated by

linear contribution derived from Eq. 5.2. The MOS capacitors have

a temperature sensitivity less than 50 ppm/ C over the entire

temperature range as shown in Fig. 3.3 of Chapter 3. Since this is

a negligible contribution, the temperature sensitivity is found

directly from Eq. 3.10 which is derived from Eq. 5.3. It is

4° --yt (5'4)

The actual monolithic realization had the circuit values shown

in Fig. 5.4 which were determined by computer-aided analysis of a

complete circuit model for near-harmonic oscillation. The actual

oscillator was realized by removing the compensation elements from

a compensated oscillator. The monolithic realization, which is

shown in Fig. 5.5, had an oscillation frequency of 140kHz at 27 C.

The design value of the diffused resistors was 5% greater than the

actual values shown in Fig. 5.3. With VC(, = 12.0V, Idc =6 ma and

the dc input power to the circuit was approximately 90 (mw). The

amplitude of the output at the collector of T2 was 3 volts peak.

The oscillation frequency dependence, on temperature that was

experimentally measured and that predicted by Eq. 5.5 from measured

resistor sensitivity data are both shown in Fig. 5.6. The total

frequency deviation of the oscillator is 11.5% over the temperature

range 0°C to 65°C. The experimental and predicted results shown in
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Fig. 5.6 corresponds well and indicate that the assumptions used to

obtain Eq. 5.4 are reasonable.

The second oscillator considered is the uncompensated non-basic

configuration shown in Fig. 5.7. This non-basic oscillator is

analyzed in Chapter 2 and has the closed-loop transfer function of

Eq. 3.10 which is repeated here.

V2 *12z2l =if "4" C5-5>

where A is the determinant of the nodal equations and found to be

*& -*mA2 t-G77 GE "GL CV^ 1 ^

The circuit elements indicated in Eq. 5.7 are shown in Fig. 5.7. As

discussed in Chapter 2, Eq. 5.6 is the dominant term of the determin

ant A by an order of magnitude. The natural frequencies of the system

are found by setting A = 0. The real part is set equal to zero to

obtain harmonic oscillation and this requires for G.. = G2 = G, and

C, = C2 = C that GE = 2G . The frequency of oscillation is then

»n * % (5.7)
o C

Again, if the resistors track closely with temperature and the oscil

lation is near-harmonic, Eq. 5.7 is a good approximation and the linear



contribution to temperature sensitivity is an adequate description

of the oscillator performance. This is given by Eq. 5.4 which is
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YT°= -Y* (5.8)

The final circuit v. lues are chosen by computer-aided analysis

of a complete circuit model to achieve near-harmonic oscillation.

The circuit model of the transistors used in the analysis was the

intrincis hybrid it model with an added collector to substrate (ground)

capacitance of 10 pF and series base resistance r of 50ft. The cir-

cuit was designed to operate at 6 ma of input current at V_c = 10V.

The design oscillation frequency was 320 kHz with the elements of

the RC frequency selective network having the values C = 100 pF

and R = 5kft. The MOS capacitor area was chosen on the basis of an

assumed 706 pF/mil . For the oxide thickness of 1500 A used, the

2
capacitance per unit area was .24 pF/mil . This is equivalent to

I

an 80 kHz frequency of oscillation if R = 5 kQ. The actual values

of feedback R achieved were 5.8 kft, 15% higher than the design value.

This corresponds closely to the actual oscillation frequency of 65.5

kHz.

The actual circuit values are shown in Fig. 5.7 and the mono

lithic circuit is shown in Fig. 5.8. The circuit has an oscillation

frequency of 65.5 kHz at 27°C. The total frequency deviation over

the temperature range of 0°C to 65°C is 13.5%. A comparison of actual
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measured oscillation frequency dependence on temperature and that

predicted from measured resistor sensitivity is shown in Fig. 5.9.

Again, it is seen that the two compare well and the approximation to

obtain Eq. 5.8 is reasonable.

The oscillation frequency dependence on temperature for f =

200 kHz was also measured by replacing the MOS capacitors with

external, zero temperature coefficient capacitors. Again the rela

tion of Eq. 5.8 held to within 10%.

The transfer characteristic of the amplifier was measured to

determine the 3 db point with the positive feedback loop and MOS

capacitors removed. The amplifier was driven by 4 kfi current source

and the voltage output on the collector of T2 was measured. (The

input impedance of the amplifier measured as 50ft at 200 kHz.) The

3 db point was found to be 2.2 MHz.

5.6 Selection of Compensation Technique

As is discussed in Chapter 4, linear compensation is more de

sirable than nonlinear compensation for the oscillator considered

here. Moreover, the linear compensation technique selected should

not increase the nonlinear contribution to temperature sensitivity.

For root locus shaping, the closed-loop poles would have moved on

the root locus to compensate for the 12% radial shift of the locus

over the temperature range. It is difficult to find a straightforward

circuit that can provide this radial closed-loop pole movement on
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the locus and therefore this compensation method is not used. The

Miller compensated realization is selected as best satisfying the

requirement for no increase in the nonlinear contribution with a

minimum complexity realization. If for the positive feedback oscil

lator the frequency determining resistors are both realized by iden

tical Miller-type desensitizing schemes, their ratio remains invari

ant. For a realization of the oscillator as a voltage or current

transfer type, the gain requirement is thus independent of temperature.

As is pointed out in Chapter 3, amplifiers which have an insensitive

gain are straightforward to realize.

Miller compensation of the capacitors is not used because of

the requirement of zero open-loop transmission at dc to avoid possi

ble bias instability. Therefore, Miller compensation of the resistors,

which has been analyzed in the last chapter, is the basis of the

design selected.

5.7 Design and Performance of the Compensated Monolithic Oscillator

The series of the Miller compensated resistance is selected

over the shunt form because, for the element sensitivities encountered,

it is possible to have a smaller total deviation of frequency over

the temperature range considered for the series form. The linear

contribution to temperature sensitivity for the series form shown in

Fig. 5.10 is, by Eq. 4.21 of Chapter 4,
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o d Bo R re o\
Y*r = no ^d Yt ~ YT (5-93T BR +R^ 'T 'T3Ra+Rb

The design values of temperature sensitivities at 30 C are yt - 6000

ppm/°C and yS = 180° Ppra/°C which are based on experience. Setting
foYT°= 0gives

1+ BRa/Rb =Yt°/Yt =3.34 (5.10)

Eq. 5.10 gives the value ^ =30R& for BQ %70. The resistance ratio

is determined well by geometry control.

The circuit was designed to have an operating point of 2.0 ma

in Tl, 0.5 ma in T2 and T4, and 1.0 ma in T3. The design values

for R and R were R = 2 kfl and R, = 60 kft. Taps were provided

on R and R. to provide adjustment so that the R would be set

equal to 2.5 kft and R, = 50 kft.

The realization had B = 55 and R. = 78 kG. To make a zero

of sensitivity near room temperature, the tap on R& was chosen so

that R = 3.3 kfi (2.5 kfi design). The final circuit values of the

actual integrated realization are shown in Fig. 5.9. The monolithic

circuit is shown in Fig. 5.11. With Vcc = 15.0V, Idc of the power

supply was approximately 3 ma. This corresponds to a power input of

45 mw. The oscillation frequency is 130 kHz with an output amplitude

of 2.0v p-p. The temperature sensitivity and measured distortion

over the temperature range o C to 65 C is shown in Fig. 5.12. The
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distortion was measured with an H.P. distortion meter that filtered

out the fundamental and measured remaining RM7 voltage. The total

frequency deviation is 2.4%. This is seen that the Miller compensa

tion produces a zero of temperature sensitivity when the linear and

nonlinear contribution cancel over the mid-temperature range. There

is a reduction by a factor of 5 of the total frequency deviation over

the temperature range 0 C to 65 C. '
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No. Step Atm. Temp. °C Time - min. Comment

1 Initial oxide Steam 1175 20 -

2 Initial Iso.

Pattern Exp.
+ Etch

- - - Isolation

Pattern

3 Isolation

oxide
r

Steam 1175 20

4 Double Exp.
Iso. Patrn.

- - -
-

+ Etch

5 Iso Predep. N2+B2H2 985 60

6 Iso. Drive-

in
°2

N2

1175

1175

5

15 hrs.

Steam 1175 10

N2 1175 3

7 Single Exp.
+ Etch.Base

- -
- -

Resistors
•

8 P Predep. N2+B2H6 950 20 60-70Q/O

9 HF rinse

(12%)
m

10 Drive-in

p-regions
Steam 1150 10

N2 1150 90

•

~i6oa/o

Table continued on next page



No,

11

12

13

14

15

16

17

18

19

20

Step

Single Exp.
Etch emitter,
n+ regions

n+ predep,

HF Rinse

(12 1/2%)

MOS oxide

Single Exp.
MOS pattern
+ etch

Drying

Double Expo.
Etch windows

Emitter trim

Metalization

Sinter

Atm,

N2

+P*N
3 5

Wet 0.

N.

N,

N,

Temp. C Time - min.

950 40

1050 15

1050

1100

525 30

Table 5.1 Typical Processing Schedule
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Comment

~7ft/D

3700 8

Etch in oxide

etch using
color to de

termine oxide

thickness

Extra PR coat

As needed
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Fig. 5.2 Monolithic Bipolar Transistor, Physical
Layout
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Fig. 5.5 Monolithic Realization of Wien-type Oscillator
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J+Vcc (lO.OV)

AAAr

Fig. 5.7 Non-basic Uncompensated Oscillator

Fig. 5.8 Monolithic Realization of Non-basic Oscillator
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Fig. 5.11 Monolithic Realization of the Compen
sated Oscillator
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Fig. 5.12 Compensated Oscillator Temperature Sensitivity
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VI. CONCLUSIONS AND RECOMMENDATIONS

The total sensitivity of an oscillator has been shown to

be the sum of a term due to linear effects in the circuit and a

term due to nonlinear effects. Circuit configurations were found

such that the nonlinear term was negligible compared to the linear

term in a monolithic realization. For these circuits, a compensa

tion technique was found that produced a specified zero of sensitivity

at a particular temperature and a reduced sensitivity over a given

temperature range. .At the sensitivity zero., the linear and nonlinear

contribution to temperature sensitivity just cancel.

The oscillators realized experimentally had an oscillation fre

quency that is processing dependent. Better processing control than

is available would give closer tolerances than the +15% seen in the

results of Chapter 5. Final tuning could be accomplished by etching

the aluminum of the MOS capacitors to remove excess capacitance and

achieve the desired frequency.
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For the compensated circuits, the temperature at which

the zero of sensitivity occur depends on the circuit element

sensitivities and the 3 realized for the transistors. A 10%

error in 3 would cause about a 10°C shift in the sensitivity
o

zero. Again, better process control can yield a more predict

able value of the zero.

Even though a reduction in overall sensitivity of the oscil

lator is obtained, the frequency does show considerable variation,

with temperature. This is due to the large deviation of the tem

perature sensitivity of the compensated oscillator from zero at the

temperature extremes. The major cause for this is the large dif

ference in temperature sensitivity between the diffused resistors

and the compensating transistors. A different processing schedule

might make these sensitivity values more closely matched. As in

pointed out in Chapter 3, the shallower transistor structures have

a 3 with a lower temperature coefficient. In addition, the higher

the emitter doping of the transistors, the lower the 3Q temperature

sensitivity is. Resistors also have temperature coefficients that

are dependent on processing.

As the final point, the major concern in the monolithic realiza

tion of the oscillators considered is the linear contribution to

temperature sensitivity. For oscillators that employ thin film de

vices in the frequency selection feedback network, the nonlinear term

may become significant and nonlinear compensation resulting from ex

tension of the results of Chapter 3 may become of interest.



APPENDIX A

The purpose of this appendix is to determine the effect of

a frequency scale K on the closed-loop system poles. A frequency

scale by K implies the closed-loop poles sq becomes

150

O K.

As is pointed out by Eq. 3.19, the frequency scale K is

K»1+Yt ^ (A-2)

Applying this to Eq. A-l gives

s»-s

AT o YT

In the limit as AT -+ dT, Eq. A-3 becomes

ds D
o R

"df = " So YT

This is 'the result needed to show

So 1 3so _ So R

(A-4)
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APPENDIX B

Consider a second-order system described by the generalized

form of Lienard's equation

x + f(x)x + g(x) = 0 (B-1)

The functions f(x) and g(x) are assumed to have the properties:

i. f(x),g(x) e C(—,-)

ii. df(x)/dx exists

iii. f(x) and df(x)/dx bounded

iv. f(o) < 0 and a period solution exists

The periodic solution of (B-1) can be expressed

A

x(t) = —• + I k cos(noit + A ) (B-2)
z n=l n n

Since Eq. B-1 equals zero,

T .:

/(x + f(x)x + g(x))dx =0 (B-3)
o



Considering Eq. B-3 term by term, one obtains

/ x dt = x

and

J f(x)x dt = <£f(x)dx = 0

where the integral of the last line is taken over x from x(o)

to x(T). Thus

J g(x) dt = 0
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(B-4)

(B-5)

(B-6)

Multiplying Eq. B-1 by x and integrating the result over the period

gives

/ (xx + xf(x)x + g(x)x)dt = 0 (B-7)

On a term.by term basis, integration by parts gives

/xx dt =/x2 dt (B-8)

and
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T . .

/ xf(x)x dt = (f)xf(x) dx = 0 (B-9)

Substituting Eqs. B-8 and B-9 in Eq. B-7 gives

T T

J xg(x) dt = Jx dt (B-10)

Eq. B-10 is the generalized relation between frequency and

harmonic content.
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APPENDIX C

The nonlinear equation considered is

x + f(x)x + x = 0 (C-l)

A computer program for the periodic solution is written in

Fortran IV for the IBM 7094. For this solution, Eq. C-l is lin

earized about a point x on the limit cycle by putting Eq. C-l

into the form

x+2ax+x=0 (C-2)

where 2a = f(x ) = 3 - dF(x)/dxl . F(x) is the amplifier gain
o |x-xQ

characteristic. The linearized equation is solved for a small

increment of time. A new a is calculated from the new value of xq

and time again incremented. This process continues until a well

converged limit cycle is found. Summing the time increments to

traverse the final limit cycle once gives the period.

The actual solution is carried out. on a state-space basis.

If y = dx/dt, the state of the system is given by (x,y). For given

initial conditions, a is calculated from f(Xj). The form of the

solution is chosen on the basis of whether the roots of



s + 2ots +1=0 are real or imaginary. The new set of initial

conditions on the solution curve are found by incrementing time

by At and solving

s.At s2At
x2 = Ae + Be

s-At s2At
x2 = s.Ae + s?Be

155

(C-3)

where A and B are determined from (x-.,y..).

The time increment is chosen to limit the error in the linearized

model to some predetermined maximum. This error limit is based on

the predicted deviation of f(x2) from f(x.) for a given time incre

ment. Define h(x) as h(x) = df(x)/dx. In the linear portions of

the curve, h(x) =0. If x, is in the linear portion of the curve,

t is chosen such that h(x2) $ 0. If h(x^ f- 0, At is chosen by

an approximation, which for x < 0 is represented by

At = (Xj • h(xx))

where 6 is given by 6 = |f(x2) - f(x1)|. This represents the ac

curacy of the solution. Low accuracy and rapid convergence occur

for 6 large, which is used to determine the approximate limit cycle

6 is then varied to its smallest value which is chosen so that the
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limit cycle is independent of <5 to five places. The program is as

follows:

C OSCILLATOR WAVEFORM SOLUTION

1 DIMENSION X(500), Y(500), T(401), W(400), DT(1), SL(9),

F(400)

1,D(27),G(400),JR(402)

1604 DATA SL/3.02,3.04,3.06,3.08,3.10,3.12,3,14,3.16,3.18/,(X(N),

N=441, 1449)/0.7700,0.8500,0.9300,0.9900,1.0400,0.3125,0.8930,

1.1750,31.2250/,(D(N),N=l,9)/9*0.01/

614 Y(405)=3.0

2500 DEL=.025

616 Y(406)=0.2

617 DO 1771 K=6,7

2233 M=2

2234 N=l

3 T(1)=0.0

619 X(l)=X(K+440)

5 Y(1)=0.0

3001 IF(K-6) 500,500,9500

500 X(K+410)=9.0/(2.0*SL(K))

501 Y(K+470)=4.0*SL(K)**3/81.0

502 RB=Y(K+470)

521 X(K+470)=X(K+410)



3002. GO TO 6

9500 X(K+410)=15./(4.0*SL(K-1))

9501 Y(K+470)=SL(K-1)/(5.0*X(K+410)**4)

9502 RB=Y(K+470)

9521 X(K+470)=X(K+410)

6. DO 17 1=1,250

970 JR(I)=0

580 IF (ABS(X(I))-X(K+410)) 81,81,93

81 IF(K-6) 3181,3181,3081

3081 F(I)=0.5*(3.0-SL(K-1)+5.0*RB*X(I)**4)

3044 GO TO 370

3181 F(I)=0.5*(3.0-SL(K)+3.0(RB(X(I)**2)

84 GO TO 370

93 F(I)=1.5

370 P=F(I)

1370 IF (F(I)-l.O) 8,300,400

8 W(I)=SQRT(1.0-F(I)**2)

1090 L=l

2091 GO TO 1200

300 W(I)=1.0

1091 L=2

2090 GO TO 1200

400 W(I)=-F(I)+SWRT(F(I)**2-1.0)

401 F(I)=-F(I)-SQRT(F(I)**2-1.0)

1092 L=3
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1200IF(N-l)1201,1201,1205

1201DT(1)=D(K)

1202JR(I)=1

1203.N=4

1204GOTO200

1205IF(ABS(X(I))-X(K+410))2393,385,385

2393N=2

2394IF(ABS(Y(I))-0.001)377,377,2395

2395IF(X(I)*Y(I).)1990,377,1380

1380IF(K-6)3380,3380,3480

3380DT(1)=DEL/((6.0*RB*ABS(X(I))+.01*DEL)*ABS(Y(I)))

3381GOTO1381

3480DT(1)=DEL/((20.0*RB*X(I)**4+.01*DEL)*ABS(Y(I)))

1381JR(I)=9

1382IF(DT(1)-.10)200,200,1383

1383DT(1)=.10

1384JR(I)=10

1385GOTO200

1990COR=1.0-0.5*X(I)/Y(I)

1991IF(K-6)3791,3791,3891

3691DT(1)=DEL/((6.0*RB*ABS(X(I))+.01*DEL)*ABS(Y(I))*COR)

3692GOTO1992

3891DT(1)+DEL/((20.0*RB*X(I)**4+.01*DEL)*ABS(Y(I))*COR)

1992JR(I)=11

1993IF(DT(1)-.10)200,200,1383
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377DT(1)=.001

378GOTO200

385N=N+1

386IF(N-4)390,200,4392

390IF(L-2)1392,377,1390

1392DT(1)=(ATAN((W(I)*Y(I))/((W(I)**2+F(I)**2)*X(I)+F(I)*Y(I))))

955JR(I)=5

1391GOTO200

1390DT(l)=(ALOG(ABS(F(I)*(Y(I)-W(I)*X(I))/(W(I)*(Y(I)-F(I)*X(I))))))

1/(W(I)-F(I))

956JR(I)=6

391GOTO200

870DT(1)=0.0001

871JR(I)=13

872GOTO200

4392IF(ABS(X(I))-X(K+470)-0.0001)870,392,392

392H=(P*Y(I)+0.5*X(I))

900IF(X(I))904,377,901

901IF(H-.OOOl)908,902,902

902DT(1)=(Y(I)+SQRT(Y(I)**2-4.0*(X(K+470)-X(I))*H))/(2.0*H)

962JR(I)=12

903GOTO376

904IF(H+.0001)905,905,908

905U=-X(K+470)

906DT(1)=(Y(I)-SQRT(Y(I)**2-4.0*(U-X(I))*H))/(2.0*H)

957JR(I)=7
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907GOTO376

908DT(l)=-(X(K+470)-ABS(X(I)))/ABS(Y(I))

958JR(I)=8

376IF(DT(1)-0.001)5377,5377,200

5377DT(1)=0.0001

200IF(L-2)10,310,402

10T(I+1)=T(I)+DT(1)

59EX=EXP(-F(I)*DT(1))

61C2=COS(W(I)*DT(l))

62S2-SIN(W(I)*DT(1))

64A=X(I)

65B=(Y(I)+F(I)*X(I))/W(I).

66X(I+1)=(A*C2+B*S2)*EX

67Y(I+1)=(-A*(F(I)*C2+W(I)*S2)+B*(W(I)*C2-F(I)*S2))*EX

201GOTO17

310T(I+1)=T(I)+DT.(1)

313X(I+l)+(X(I)*COS(W(I)*T(I))-(Y(I)*SIN(W(I)*T(I)))/W(I))*COS(W(I)*

1T(I+1))+(X(I)*SIN(W(I)*T(I))+(Y(I)*C0S(W(I)*T(I)))/W(I))*SIN(W(I)*

2T(I+1))

314Y(I+l)=-(X(I)*COS(W(I)*T(I))-(Y(I)*SIN(W(I)*T(I)))/W(I))*W(I)*

1SIN(W(I)*T(I+1))+(X(I)*SIN(W(I)*T(I))+(Y(I)*C0S(W(I)*T(I)))/W(I))*

2W(I)*COS(W(I)*T(I+l))

315GOTO17

402T(I+1)=T(I)+DI(1)

405X(I+1)+((W(I)*X(I)-Y(I))*EXP(F(I)*(T(I+1))))/(W(I)-F(I))

1+((F(I)*X(I)-Y(I))*EXP(W(I)*(T+1)-T(I))))/(F(I)-W(I))

406Y(I+1)=F(I)*((W(I)*X(I)-Y(I))*EXP(F(I)*(T(I+1)-T(I))))/(W(I)-F(I))

1+W(I)*((F(I)(X(I)-Y(I))*EXP(W(I)*(T(I+1)-T(I))))/(F(I)-W(I))
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17 CONTINUE

50 PRINT 51,K

51 FORMAT (1H1,I2)

40 PRINT 41

41 FORMAT (5H TIME, 10X, 7HX VALUE 7X, 7HY VALUE, 7X, 5HDECAY, 7X,

14HFREQ, 7X, 4HTEST)

18 PRINT 19, (T(J),X(J),Y(J),F(J),W(J),JR(J), J=l,250)

19 FORMAT (E13.5,2X,E12.5,2X,E12.5,2X,E12.5,2X,E12,5,2X,I2)

1671 CONTINUE

20 PRINT 21, (X(M+410),X(M+470),Y(M+470), M=6,7)

21 FORMAT (3(2X,E12.5))

150 STOP

44 END



APPENDIX D

Piecewise linear computer program to determine periodic solution

of x + f(x)x + x = 0 written for the IBM 1800.

LINK RFA

COMMON XE(5),YE(5),XC(5),YC(5),T,I,W,S1,S2,ACT,DEC,X1,X2

READ(1,1) X1,X2,DEC,ACT,YK

1 FORMAT (5F10.5)

3 WRITE (2,2) X1,X2,DFC,ACT,YK

2 FORMAT (5F10.5)

WRITE (2,61) •

61 FORMAT (1H1,2X,2HXE,10X,2HYE)

YE(1)=YK

XE(1)+X1

W=SQRT(1.0-ACT**2)

S1=-DEC-SQRT(DEC**2-1.0)

S2=-DEC+SQRT(DEC**2-1.0)

CALL LINK (KLA)

44 END
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LINKKLA

COMMONXE(5),YE(5),XC(5),YC(5),T,I,W,S1,S2,ACT,DEC,X1,X2

T=0.0

A=(YE(1)-S2*XE(1))/(S1-S2)

B=(YE(1)-S1*XE(1))/(S2-S1)

T1=(AL0G(ABS(SL*(YE(1)-S2*XE(1))/(S2*(YE(1)-S1*XE(1))))))/(S2-S1)

T2=1.8*T1

4C=A*EXP(S1*T2)

D=B*EXP(S2*T2)

XE(2)=C+D

YE(2)=Sl*C+s@*D

IF(XE(2)-Xl-.0005)5,5,6

'6H=DEC*YE(2)+0.5*XE(2)

IF(H)18,18,19

19T2=T2+(YE(2)+SQRT(YE(2)**2-4.0*(X1-XE(2))*H))/(2.0*H)

GOTO4

18T2=T2-(XE(2)-XI)/YE(2)

GOTO4

5T=T+T2

A=XE(2)

B=(YE(2)-ACT*XE(2))/W

T1=(-ATAN(A/B))/W

T2=1.1*T1

7XE(3)=(A*COS(W*T2')+B*SINfW*T2))*EXP(ACT*T2)



YE(3)=ACT*XE(3)+W*(B*COS(W*T2)-A*SIN(W*T2))*EXP(ACT*T2)

IF(XE(3)-X2-.0001)8,8,40

40T2=T2+(X2-XE(3))/YE(3)

GOTO7

8T=T+T2

CALLLINK(KAA)

44END
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LINKKAA

COMMONXE(5),YE(5),XC(5),YC(5),T,I,W,S1,S2,ACT,DEC,X1,X2

A=(YE(3)-S2*XE(3))/(S1-S2)

B=(YE(3)-S1*XE(3))/(S2-S1)

T1=(AL0G(ABS(S1*(YE(3)-S2*XE(3))/(S2*(YE(3)-S1*XE(3))))))/(S2-S1)

T2=1.8*T1

12C=A*EXP(S1*T2)

D=B*EXP(S2*T2)

XE(4)=C+D

YE(4)=S1*C+S2*D

IF(XE(4)-X2+.0005)10,11,11

.10H=DEC*YE(4)+0.5*XE(4)

IF(H).21,22,22

21T2=T2+(YE(4)-SQRT(YE(4)**2-4.0*(X2-XE(4))*H))/(2.0*H)

GOTO12



22T2=T2-(XE(4)-X2)/YE(4)

GOTO12

11T=T+T2

A=XE(4)

B=(YE(4)-ACT*XE(4))/W

T1=(-ATAN(A/B))/W

T2-1.1*T1

16XE(1)=(A*COS(W*T2)+B*SIN(W*T2))*EXP(ACT*T2)

YE(1)=ACT*XE(1)+W*(B*COS(W*T2)-A*SIN(W*T2))*EXP(ACT*T2)

IF(XE(1)-X1+.0001)30,15,15

30T2=T2+(X1-XE(1))/YE(1)

GOTO16

15T=T+T2

CALLLINK(RAA)

44END
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LINKRAA

COMMONXE(5),YE(5),XC(5),YC(5),T,I,W,S1,S2,ACT,DEC,X1,X2

WRITE(2,41)(XE(J),YE(J),J=1,4),T

41FORMAT(2(2X,E12.5)/2(2X,E12.5)/2(2X,E12.5)/2(2X,E12.5)/6X,E12.5)

CALLLINK(KLA)

44END
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APPENDIX E

This appendix lists a program written in modified Fortran II

for the IBM 1800 computer with 8k of core storage. The program is

useful only for determining the period of any periodic solution to

an equation of the form

a,x" + a0x + a,x + ax = 0 (E-l)
3 2 1 o

where the coefficients depend on x in a piecewise linear sense. Each

coefficient a. may be given three values according to:

a., for x > x. . i = 0,1,2,3 (E-2a)
ll 1

a.2 for xx <x<x2 i=0,1,2,3 (E-2b)

ai3 for x<x2 i=0,1,2,3 (E-2c)

The values of the coefficients are a part of the input data. The

program is unending in that it runs until interrupted by the operator.

The detail listing of the program is as follows.. All the links are

introduced by the same common state which is:

COMMON A(3,4),XR(3,4),X(10),Y(10),Z(10),X1,X2,K,L,TI,DT,R(3,3),

1S(3,3),T(3,3)U(3),V(3),IR,AQ(3),N,TA(10),JM



The main program consists of 8 links, the first of which is called

by an XEQ RKA call card.

LINK RKA (1)

READ (1,1) ((A(I,J),J=1,4),I=1,3),X1,X2,Y(1),Z(1),DT,IR

WRITE(2,1) ((A(I,J),J=1,4),I=1,3),X1,X2,Y(1),Z(1),DT,IR

FORMAT (4F10.5/4F10.5/4F10.5/5F10.5,10X,I2)

X(1)=X2

TI=0.0

K=0

L=l

CALL LINK (R3RD)

END

LINK R3RD (2)

DIMENSION XCOF(4),C0F(4),R00TR(3),ROOTI(3)

COMMON A(3,4),XR(3,4)

DO 11 K=l,3)

XC0F(1)=A(K,4)
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XC0F(2)=A(K,3)

XC0F(3)=A(K,2)

XC0F(4)=A(K,1)

CALL POLRT (XCOF,COF,M,ROOTR,ROOTI,IER)

IF(ROOTI(l)) 1,2,1

1 IF(ROOTI(2)) 20,21,20

20 , IF(R00TI(3)) 31,30,31

31 PAUSE 0003

CALL EXIT

30 XR(K,1)=R00TR(3)

XR(K,2)=R00TR(2)

XR(K,3)=ROOTR(l)

IF(R00TI(2)) 33,33,34

33 XR(K,4)=-ROOTI(2)

GO TO 99

34 XR(K,4)=R00TI (2)

GO TO 99

21 XR(K,l)=ROOTR(2)

XR.(K,2)=ROOTR(l)

XR(K,3)=ROOTR(3)

IF(ROOTI(l)) 22,22,23

22 XR(K,4)=-ROOTI(l)

GO TO 99

23 XR(K,4)=ROOTI(l)

GO TO 99
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2 IF(R00TI(2)) 3,5,4

3 XR(K,4)=-R00TI(2)

GO TO 6

4 XR(K,4)=R00TI(2)

6 XR(K,l)=ROOTR(l)

XR(K,2)+ROOTR(2)

XR(K,3)+ROOTR(3)

99 A(K,1)=1.0

A(K,2)-XR(K,1)-2.0*XR(K,2)

A(K,3)XR(K,2)**2+XR(K,4)**2+2.0*XR(K,1)*XR(K,2)

A(K,4)=-XR(K,1)*(XR(K,2)**2+XR(K,4)**2)

GO TO 11

5 XR(K,l)=ROOTR(l)

XR(K,2)=ROOTR(2)

XR(K,3)=ROOTR(3)

XR(K,4)=0.0

A(K,1)=1.0

A(K,2)=-XR(K,1)-XR(K,2)-XR(K,3)

A(K,3)=-XR(K,3)*(XR(K,1)+XR(K,2))-XR(K,1)*XR(K,2)

A(K,4)=-XR(K,1)*XR(K,2)*XR(K,3)

11 CONTINUE

CALL LINK (PRTA)

END
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LINK PRTA (3)

CALL SSWTCH (0,NS)

GO TO (21,20),NS

20 WRITE(2,7) ((A(I,J),J=1,4),I=1,3),X1,X2,Y(1),Z(1),DT,IR

7 FORMAT (4E12.5/4E12.5/4E12.5/5F10.5,10X,I2)

WRITE (2,1)

1 FORMAT (3HXR1,9X,3HXR2,9X,3HXR3,9X,3HIMG)

WRITE (2,2) ((XR(I,J),J=1,4),I=1,3)

2 FORMAT (4E12.5/4E12.5/4E12.5///)

WRITE (2,3)

3 FORMAT (1HT,11X,1HX,11X,1HY,11X,1HZ)

21 N=3

CALL LINK (CALC)

END

LINK CALL (4)

TA(1)=0.0

DO 10 M=l,3

R(M,1)=XR(M,3)-XR(M,2)

S(M,1)=XR(M,2)**2-XR(M,3)**2

T(M,1)=XR(M,2)*XR(M,3)**2-XR(M,3)*XR(M,2)**2
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R(M,2)=XR(M,1)-XR(M,3)

S(M,2)=XR(M,3)**2-XR(M,1)**2

T(M,2)=XR(M,3)*XR(M,1)**2-XR(M,1)*XR(M,3)**2

R(M,3)=XR(M,2)-XR(M,1)

S(M,3)=XR(M,1)**2-XR(M,2)**2

10 T(M,3)=XR(M,1)*XR(M,2)**2-XR(M,2)*XR(M,1)**2

DO 11 M=l,3

U(M(=XR(M,2)-XR(M,1)

11 V(M)=XR(M,2)**2-XR(M,1)**2-XR(M,4)**2

N=3

K=3

JM=1

IF(XR(3,4)) 7,7,8

7 CALL LINK (SOLVR)

8 CALL LINK (SOLVC)

END
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LINK SOLVC (5)

20 QC=XR(N,1)**2+XR(N,2)**2+XR(N,4)**2-2.*XR(N,1)*XR(N,2)

TC=DT

AC=(Z(L)-2.0*XR(N,2)*Y(L)+(XR(N,4)**2+XR(N,2)**2)*X(L))/QC

BC=(-Z(L)+2.0*XR(N,2)*Y(L)+(XR(N,1)**2-2.0*XR(N,1)*XR(N,2))*X(L))

1/QC
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C=(U(N)*Z(L)-V(N)*Y(L)+(XR(N,1)*XR(N,2)*U(N)-XR(N,4)**2*XR(N,1))

1*X(L))/(XR(N,4)*QC)

45 EXC=EXP(XR(N,2)*TC)*COS(XR(N,4)*TC)

EXS=EXP(XR(N,2)*TC)*SIN(XR(N,4)*TC)

EX1=EXP(XR(N,1)*TC)*AC

X(L+1)=EX1+BC*EXC+C*EXS

Y(L+l)+XR(N,l)*EXl+(BC*XR(N,2)+C*XR(N,4))*EXC+(-BC*XR(N,4)+C*XR(

1N,2))*EXS

Z(L+1)=XR(N,1)**2*EX1+(BX*XR(N,2)**2-XR(N,4)**2)+C*(2.0*XR(N,4)*

1XR(N,2)))*EXC+(BC*(-2.*XR(N,4)*XR(N,2))+C*(XR(N,2)**2-XR(N,4)**2

2))*EXS

GO TO (78,47,68),N

47 IF(K-2) 48,48,58

48 IF(Y(L+1)) 50, 50, 49

49 K=4

N=2

GO TO 57

50 IF(X(L+1)-X1) 53,53,51

51 IF(K=2) 55,52,52

52 TC=TC+DT

GO TO 45

53 IF(K-2) 56,54^4

.54 TC=TC-DT

K=l

GO TO 45



55 TC=TC-(X(L+1)-X1)/Y(L+1)+.01*DT

GO TO 4.5

56 N=l

K=l

57 TA(L+1)=TA(L)+TC

GO TO 10

58 IF(Y(L+1)) 59,60,60

59 K=2

N=2

GO TO 67

60 IF(X(L+1)-X2) 61,61,63

61 IF(K-4) 65,62,62

62 TC=TC+DT

GO TO 45

63 IF(K'-4) 66,64,64

64 TC=TC-DT

K=3

GO TO 45

65 TC=TC+(X2-X(L+1))/Y(L+1) +.01*DT

GO TO 45

66 N=3

K=3

67 TA(L+1)=TA(L)+TC

GO TO 10

68 IF (X(L+1)-X2) 72,70,70

70 IF(K-2) 74,74,71
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71 TC=TC+DT

GO TO 45

72 IF(K-2) 75,75,73

73 TC=TC-DT

K=2 '

GO TO 45

74 TC=TC-.9*((X(L+1)-X2)*Y(L+1))/(Y(L+1)**2-X(L+1)*X2+X(L+1)**2)+.01*

IDT

GO TO 45

75 TA(L+1)=TA(L)+TC

K=2

N=2

GO TO 10 ^

78 IF(X(L+1)-X1)' 80,80,82

80 IF(K) 84,84,81

81 TC=TC+DT

GO TO 45

82 IF(K) 85,85,83

83 TC=TC-DT

K=0

GO TO 45

84 TC=TC+.9*((X1-X(L+1))*Y(L+1))/(Y(L+1)**2-X(L+1)*X1+X(L+1)**2)+.01*

IDT

GO TO 45

85 TA(L+1)=TA(L)+TC

K=4



N=2

10 L=L+1

TC=0.0 .

IF(L-IO) 12,13,13

13 CALL LINK (PANS)

12 IF(XR(N,4)) 15,15,14

14 CALL SSWTCH(2,MC)

98 GO TO (20,97),MC

97 CALL LINK (PCK)

15 CALL LINK (SOLVR)

END
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LINK SOLVR (6)

Link SOLVR is the same as link SOLVC except as noted here.

Statement 20 of SOLVC is replaced by:

20 DO 11 M=l,3

11 G(M)=(R(N,M)*Z(L)+S(N,M)*Y(L)+T(N,M)*X(L))/(R(N,M)*XR(N,M)**2

1+XR(N,M)*S(N,M)+T(N,M))

State 45 and the following 5 statements are replaced by:



45 EX1=EXP(XR(N,1)*TC)*G(1)

EX2=EXP(XR(N,2)*TC)*G(2)

EX3=EXP(XR(N,3)*TC)+G(3)

X(L+1)+EX1+EX2+EX3

Y(L+1)=EX1*XR(N,1)+EX2*XR(N,2)+EX3*XR(N,3)

Z(L+1)=EX1*XR(N,1)**2+EX2*XR(N,2)**2+EX3*XR(N,3)**2

State 12 of SOLVC and all subsequent statements ar.e replaced by:

12 IF(XR(N,4)) 14,14,15

14 GO TO 20

15 CALL LINK (SOLVC)

13 CALL LINK (PANS)

END

LINK PCK (7)

WRITE (2,1) x(L),Y(L),Z(L)

1 FORMAT (3E12.5)

CALL LINK (SOLVC)

END
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LINK PANS (8)

CALL SSWTCH(1,MS)

GO TO (3,4),MS

3 WRITE (2,1)(TA(M),X(M),Y(M),X(M),M=1,9)

1 FORMAT (E13.6,E12.5)

4 X(L-9)=X(L)

Y(L-9)=Y(L)

Z(L-9)=Z(L)

TA(L-9)=TA(L)

L=l

10 IF(XR(N,4)) 14,14,15

14 CALL LINK (SOLVR)

15 CALL LINK (SOLVC)

END
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APPENDIX F

A perturbation analysis of the periodic solution of the

nonlinear system is done by the method of Krylov, Bogoliubov,

Mitropolsky5**. The system is represented by the equation

178

x + o> x = yf(x) x (F-l)

It is assumed to have the solution

x = a cos r\> + y u*"1-' (a,i|>) + ... (F-2)

where u is a periodic function of ij> and a. ty and a satisfy

a=uA(1)(a) +y2 AC2: (a) ... (F-3)

i= a) + yBC1)(a) + y2 B(2;) (a) ... (F-4)

This gives for the first approximation of the autonomous aystem:

x = a cos ty (F-5)

a=\ F*(a) (F-6)
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* =.o) ' (F-7)

and for the second approximation:

n F*(a) sin ^
x = a cos « + H. J ?L_^^ (F-8)

n=2 n -1

a = H. F* (a) (F-9)

* = a) + y2 B2(a) (F-10)

The term of inerest is the second term in this approximation,

In the case of the van der Pol equation

f(x) = e(l-yx2) (F-ll)

This gives

3

F*(x) =x-H|- (F-12)

or

2 3

F (a cos 40 =a(l -H|_ )Cos ty -H*- cos 3f (F-13)
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Theidentityismade

sothat

2 *
ya

F_(a)=a(l-£•)(F-14)

F*(a)=-H|_(F-15)

2

i"T"CI-^)(F-16)

Integratingbyquadraturesgives

Ast+»

2,i12.

—12,2=e<F"17) (1-jyc)aQ

a=2/S£(F-18)

Ifli=1,a=2whichistheknownfirstorderapproximationamplitude

forthevanderPolform.

Ingeneral,Bv'(a)isgivenby

m'1*dFl(a}1rn2pn2Ca)
2u>an=2n-1

Forthesecondapproximation,thisgives



For a = 2,

I 2r 1 a2 x7a4 \
* =a) -e <8 •T + 296 }

% = 1 - 16

For the case where

f(x) = e(l- x*)

F (x) is

F*(x) =x-y%-

This leads to

F (a cos ij;) = a(l •
5a4 ."40 ) cos * •

5a

' 80

Then

• : a f~ a va = -j ew(l-y-g-)

Integrating by quadratures
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(F-20)

(F-21)

(F-22)

(F-23)

80 COS 5* (F-24)

(F-25)



gives

As t +

For B2(a)

4ri 1 ' 4.a (1 - j vaQ)
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log 1 ° 4 % =vajt (F-27)
(1 - 8 ya )aQ

a2 =4JJ. (F-28)

« r >, 1 r a5 .,- 5 4. 1 r 9 ra5 .2 25 r a5.2n
B2(a) =" 8a" (a " T )(1 " 8 a >" TT [ 8 C16 } + 24 ( 16") ]

2a

(F-29)

For u = 1,

B2Ca) -'&• (MO)

SO

* =.0) +e2f|j (F-31)



Thus

2 28

Uo " 1 - e 192
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(F-32)

Eqs. F-21 and F-32 show the dependence of the fundamental fre

quency of oscillation on the parameter e. These results are con

sidered in Chapter 3.
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