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Summary—We consider a multiple-input multiple-output feedback

system consisting of a linear time-invariant subsystem and a

memoryless time-invariant nonlinearity. The linear subsystem

is represented by its impulse response which includes a unit

step (i.e., an integrator). The nonlinearity is not required

to be of the noninteracting type nor to be bounded away from

zero by some sector condition. It is shown that for any

"almost constant" input the error e2 is bounded and goes to

zero as t—» oo .

I INTRODUCTION

The Popov criterion has been a significant departure in

the stability theory of nonlinear feedback systems [1-4].

Many generalizations of the criterion have been published

[5-13]. The present paper extends previous results in
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several directions. A multiple-input multiple-output feed

back system is considered. The linear time-invariant

subsystem is described by a convolution. The matrix impulse

response contains a step at the origin, i.e., the subsystem

contains an integrator. Furthermore the impulse response may

contain an infinite number of Jumps provided that their total

variation be finite. Equivalently, the time derivative of

the impulse response is required to belong to the convolution

algebra d [14-15]. The nonlinear subsystem is required to

be memoryless and time invariant. However the nonlinearities

may be interacting. Also, even though there is an integrator

the nonlinearities are not required to be bounded away from

zero. The multiplier considered is of the form P + sQ where

the constant matrices P and Q need not be diagonal. Finally,

even though there are only very weak assumptions on the non-

linearities, the error will go to zero as long as the inputs

are "almost constant" that is, the assumptions on the inputs
require them to become asymptotically constant. The results

presented below extend previously published ones in at least

one of the following aspects: (1) the class of linear sub

systems considered, (2) the class of nonlinearities considered,
(3) the class of inputs considered and (4) the class of
multipliers considered.
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II NOTATIONS

In the following we shall encounter real numbers,

vectors (in Rn) and elements of function spaces. The symbol

•Jis used to denote the magnitude of a real number and the

norm of a vector in Rn. We denote by R, the set of nonnegative

real numbers. The developments that follow are valid inde

pendently of the choice of norm in Rn because all norms in Rn

are equivalent. For function spaces we use the following

norms: let f:R+—>Rn, then by definition,

and

llfll £sup|f(t)
I' I'co t><

£ f(t)
1 J0 ' v '

dt.

With these norms, the resulting normed spaces are denoted by

Ln and Ln, respectively. When the symbols and are

applied to a matrix or to a matrix-valued function, they

denote the induced operator norms.

The subscript T, as in f_, denotes the truncation of the

function f at time T, namely,

fT(t)
f(t) for 0 < t < T

0 for t > T

The scalar product of two functions of R+ into Rn is
denoted by <•,.>; this scalar product can be truncated and we

define T

y>T &J x'(t) y(t)dt
0

<x<
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Ill SYSTEM DESCRIPTION AND ITS ASSUMPTIONS

Consider the multiple-loop feedback system shown in

Fig. 1. The variables ux, Ug, ex, e2, y-^ y2 denote func

tions defined on [0,co) and having values in Rn. The block

labeled G denotes a linear, time-invariant, nonanticipative

subsystem whose input-output relation is given by a

convolution:

yi(t) = (G * ex)(t) t > 0 (l)

where G is an n x n matrix-valued function, identical to

zero for t < 0. The block labeled ^ denotes a memoryless,

time-invariant nonlinearity. The equations of the systems

are

e2 = Ug + G * ex (2)

e! " u! - t(e2) (3)

Upon imposing certain restrictions on G and t, we shall

prove that, provided the inputs ^ and Ug belong to certain

classes, the resulting functions e,, yn, e0 and y0 are in
Too 112 2
Ln ; furthermore e2(t), y2(t)—*0 as t—^ oo.

For ease of reference, we state the more explicit

assumptions concerning the system of Fig. 1 as follows:

Gl. The derivative (in the distribution sense) of G belongs

to the convolution algebra ^: By that we mean G is of the

form
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00 • A •rR6(t) + S R16(t-t±) + Ga(t) = Rfi(t) + G (t) for t > 0
G(t) - i=Sl tt

^0 for t < 0

(4)

where R and the R^ are constant n x n matrices such that
CO

S
i=0

Ri < od , 0 < t-^ < t2 < ... , Ga is a function in L .

oo

Note that Ga(t) A ER^Ct-tj) + Ga(t) for t > 0, and zero

elsewhere.

G2. The open-loop impulse response matrix of G is further

assumed to be of the form

rRl(t) + Ga(t) for t > 0
G(t) - (5)

lo for t < 0

where l(t) denotes the unit step. It is further assumed that

G € L . The assumptions pertaining to the nonlinear sub

system are as follows:

Nl. $:Rn—>Rn and is continuous.

N2. For some constant real matrix P

♦(S)fP§ > 0 for all § € Rn (6)

where ' denotes transposition and

f(§) =* 0 iff g = 0

N3. There is a function V € C1 mapping Rn into R such that

V(§) > 0 for all 5 € Rn

and for some constant real matrix Q

Q'*($) = W(?) for all g € Rn (7)
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Concerning the feedback system we make the following
assumptions:

U. The inputs are subjected to the conditions

ul' ul €Ln and "2* u^ €Ln

(where the derivatives are calculated in the interval (0,oo))
and, for any such inputs, e ,* y and y0 €L2 ;

x £ i 2 ne

roughly speaking,for such Inputs there Is no finite escape
time.

IV COMMENTS

I. The class of open-loop impulse responses allowed

by Gl and G2 include many special cases: a typical
element of G has the behavior shown in Pig. 2. The class
of allowed impulse responses include those of linear time-

invariant differential systems whose transfer function goes
to zero as| .|—•«>, of plants with several transportation
lags, of systems with tapped delay lines, of distributed
systems. Note also that G has a unit step and that, as a
consequence of Gl and G2, the elements of G are in L® also

0(t)-»R as t-»oo« indeed, from Gl and G2 it follows that
0o(t)|—»o as t-*oo.

II. As a consequence of the assumptions on the inputs,
it is easily verified that ux <= lJ ni£>, fig 6l£ rt L* and
Ua €L~. we might describe ug as "an almost constant input"
because ^1^^ and, consequently, Ug(t)-> vu^ (a con
stant vector in Rn) as t—>oo.
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III. The absence of finite escape time can be

guaranteed at the cost of an additional assumption on $.

If for some constant k, [$(§)| < k|g|,V §€Rn then, together
with G €L00, the Bellman-Gronwall lemma implies that e2
is bounded by an increasing exponential; then exponential

bounds on y2, e-^ yx follow easily.

V MAIN RESULT

Theorem 1.

Let the system S of Fig. 1 satisfy the assumptions

Gl - G2, Nl - N3, and U. If the constant matrices P and Q,

defined in N2 and N3 are such that the matrix PR is real

symmetric, and positive definite and the Hermitian matrix

(P + JwQ)G(ju,) + Gf(-Jot))(P' - jtaQ1) (8)

is Positive semi-definite for all weR, then e1, e2, y.,,
_ • ooy2 and eQ are in Ln . Furthermore e2(t), y2(t) —>0 as

t —• oo .

Proof.

First let us make a simplifying observation. By the

linearity of G the effect of Ul on e2 can be replaced by an
equivalent input (at the second summation point) given by
G*ux £v2. Since G€L00 and G€&>and also ux, ux €LJ;
we have (taking derivatives in the distribution sense)
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1
V = G * U € L
2 1 * n

a. . . j[
v2 _ g * ^ € Ln

Thus the equivalent input satisfies the assumptions required

of Ug. Therefore, we set u, = 0 and replace xx^ by u =

u2 + G * u1. We write

0(t) = t[e2(t)] for t > 0 (9)

Consequently the system equation obtained from (2) and

(3) is

e2 = u - G * 0 (10)

Differentiating both sides and using (5), we obtain

e2 = u - [R + Ga(0+)]j2f - Ga * ft (11)

Consider the function w defined by

t

w(j2f,t) =P[(G *jaTJ(t) -RJ 0(t«)dt'] +[QD(G «J2f)](t)
0 (12)

where D denotes the time-derivative operator. Let

n(t) &J 0(t»)dt« (13)

then with (10) and (11)

w = p(u - e2 - r^) + q(u - e2) (14)

Let us truncate these expressions to [0,T] and calculate

using Parseval!s theorem
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T

'0

oo

<w,0>T =J w(t)«0(t)dt

CO

=k {CD^T(Jtt,)[(p +J*Q)3(J») -j^ ra]&p(Jw)d« (15)
where we used the fact that over [0,T], w(0,t) = w(0 ,t).

Since the integrand in (15) depends only on the hermitian part

of the bracketed matrix, and since -PR/(jio) is a skew her

mitian matrix, we obtain

-1 <x>

<W'#>T -Iff / ^(J«)C(H-J««)0(ja.)4O*(j.) (P'-J.Q')]«L(j„)4»
(16)

Finally, using the assumption (8) of the theorem we conclude
that

<*> 0> > 0 for all T > 0 (17)

Use now (14) into (17)

<Pu + Qu, 0> - <prt1, 0>

-<Pe2, 0>^ -<q^2, pf> >0 for all T>0 (18)

Applying integration by parts to the first term of (18)
and noting that u€L^and u€lJ r\ L®and u€LJ, we
obtain successively
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<Pu + Qu,0> = <Pu + Qu,t)>t

=(pu(T) +Qu(T)J r\(T) - <Pu +Qu,i>

<| Pu(T) +Qu(T)||t}(t)| +||pu +Q*d

<(|p||u(t)|+|q||u(t)
T"co

UN +

< k
Ti'cd

00

(19)

where = sup m(t) and k is a constant depending
oo t€[0,T]' '

on P, Q, u, u, u and is independent of T.

Since PR is real symmetric and positive definite

<PRn, #>T =<PRti, f|>T

= i- iT(T)PRTi(T)

>|\oh(T) (20)

where \m is the least eigenvalue of PR, a positive number.

Now for the last scalar product in (18), we obtain

successively

<Qe2, 0>T =<e2(0, Qfne2(-)]>T
•T

e2(t)W[e2(t)]dt

f«2(T)
=• J de2VV[e2]

e2(0)

= V[e2(T)] - V[e„(0)]

-10-
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ults above in (18), we conclude that,
Using all the res

for all T > 0,

1vI(T) 2+ <Pe2(.),*Ce2(.)]> +ne2Wl<^4^ V[e2(0)]
2 ' (22)

Now, by N2,<Pe2(0, He2(03>T >0 for all T>0 and, by
N3, V[e2(T)] > 0 for all T> 0 hence (22) gives us

|xmln(T)|2 <kUJ +V[e2(0)] (23)

We note that (23) is true for all T > 0 and since the
right-hand side is a monotonically increasing function of

T for all T > 0 we may replace I*n(T)j by

left-hand side of (23) and we have

r\
T 0D

2
*n
T

< k
oo —

T]
T oo

+ V[e2(0)]

in the

(24)

The inequality (24) implies that

constant independent of T, i.e., n £ L~ .

We now truncate (10) and take the L® norms of both sides;

we obtain

n
T co

00

is bounded by a

'2T
<

oo —
u
T! CO

(g * -n>,
co

(25)

where we have used the facts that 0 - ti and G * ti = G * r\
GO

(in the distribution sense). Since G £ & and r\ € L , we
co co

have 6 * n € L [14-15]. This combines with u^L to
n n
co

give us e € L . With this result if we observe that

•ii.





y2(t) =^r[e2(t)], and fis acontinuous map of Rn into Rn,
we conclude that y2 €L^°because *maps compact sets into
compact sets. Finally yx €L^because yx = e2 - U2 both of

which are in l£° .

The last step is to show that e2(t) and y2(t)—* 0

as t—*co. Use (11) and take L°£-norms of both sides and

obtain

e2T oo^ u oo+(lRl+l°a<0+)l>!k2!oSlhJlyaloo (26)

Each term on the right-hand side is finite and is indepen

dent of T, hence e2 € L°°. As a consequence the bounded
function e2(#) is uniformly continuous on [0,co). Now going

back to (22), we have

<Pe2(0* He2^^>T < oo for all T € [0,oo)(27)

In other words, for some finite M, independent of T, we

obtain

T

'0

J *Ce2(fc)]fp e2(fc) dt < M for all T>0 (28)

By N2, the integrand in (28) is positive whenever e2(t) ^ 0.

Since e2(«) is uniformly continuous on [0, oo) and takes

values in the closed ball B( 0,||e2[| ) -- which is a com

pact set in Rn -- and since the function i|r(»)!P • is a

continuous mapping of Rn into Rn, the mapping ti >

He2(t)]lp e2(t) is uniformly continuous on [0, oo).

-12-



Hence (28) implies that f[e2(t)]'P e2(t)-—>0 as t—* oo .

In view of the continuity of t, the boundedness of e2 and

N2, this implies that e2(t)—> 0 as t—*oo consequently so

does y2(t) = f[e2(t)]. This concludes the proof of the

theorem.

VI CONCLUSION

Under very general assumptions pertaining to the linear

subsystem, the nonlinearity and the multiplier, we have

established sufficient conditions of the stability of a

multiple-input multiple-output time-invariant feedback

system under almost constant inputs. The results extended

previously published ones in several directions: the linear

time-invariant subsystem is decribed by a convolution. The

matrix impulse response contains a step at the origin, i.e.,

the subsystem contains an integrator. Furthermore, the

impulse response may contain an infinite number of jumps pro

vided that their total variation be finite. The memoryless

time-invariant nonlinearities may be interacting and although

there is an integrator the nonlinearities are not required to

be bounded away from zero. In contrast to most previous

work on generalizations of Popov criterion to the multiple

feedback systems, the multiplier considered need not be a

scalar function or a diagonal matrix. Finally, even though

the inputs are present, the error will go to zero provided

that the inputs are "almost constant".
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Fig. 1. Multiple-input multiple-output system under consideration.



Fig. 2. Typical behavior of the ij-element of the impulse response
matrix G(t).
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