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ABSTRACT

This thesis deals with the problem of designing pattern

classifiers with the aid of uncategorlzed samples. It Is

assumed that the samples have local concentrations, or

clusters, and to aid In the design of the classifiers, two

algorithms are Introduced which estimate the location of

these concentrations. More precisely, the algorithms esti

mate modes of essentially unknown probability distributions,

given only a sequence of samples from the distribution. The

bulk of this research Is concerned with proving the conver

gence of these estimates as the number of samples becomes

large for the unlmodai case.

The algorithms discussed here are shown to be specific

cases of general stochastic approximation methods, and the

convergence Is a consequence of this fact. Since the methods

are particularly convenient computationally, requiring little

storage and reasonable computations, the algorithms have been

implemented on a computer, and the results of this effort are

given for the multimodal case as well as the unlmodai case.



CHAPTER I

INTRODUCTION

The work reported In this thesis Is concerned with the

design of classification procedures, when such design must

be based on unclassified samples. This Is a realistic pro

blem, and examples of where the design must be of this type

will be given In later paragraphs. The techniques that we

shall explore make use of the relative concentrations of

samples In the measurement space. For this reason, we refer

to this body of techniques as cluster analysts.

One principal motivation Is due to problems In pattern

recognition. Most of the problems In pattern recognltIon

that have been analyzed are really only problems In pattern

class!fI cation. It seems to us that genuine recognition

should Involve the discovery of the existence of classes, as

well as classification. It Is to this problem of discovery

that we address ourselves In this thesis.

The most familiar example In which the existence of

classes has to be discovered Is taxonomy. The entire hier

archy of classes must be discovered by examining the dls-



trlbution of characteristics formed by the samples that

have been collected. In problems of this type classification

Is a means rather than an end. Classification in this

case serves the purpose of summarizing the detailed measure

ments of a sample by Its membership In a class. For classi

fication to be useful In this type of application, "variation"

within a class must be relatively unimportant In comparison

with "variation" among classes. This principle underlies

much of cluster analysis.

Even In well spectfted classification problems such as

automatic recognition of typewritten characters, cluster

analysts may be useful In order to make a preliminary class

ification Into various groups before final classification

takes place. For example, the researcher may have correctly

categorized samples available (I.e., samples of A's,

samples of B's, etc.) but he may have difficulty achieving

a high recognition rate. This often occurs when a single

category, say the A category, contains capital A's, and

snail a's, and possibly different type fonts. The reason

the recognition rate Is low Is that the names attached to

a class have little In common with the natural groupings of

the data, and the natural classes must be discovered. An

appropriate procedure In this case Is to "rename" the

groups. Thus cluster analysis can be employed to make Inter

mediate classifications, breaking the A category Into several

categories, say A., A-, and so on.



Cluster analysis Itself may be seen as a problem In

pattern classification. A simplified model of a pattern

classifier Is shown below:

Measuring
Devi ce

x e R Class 1fI ca

tion Device

Figure 1.1

JJ_l2_, • .,N)

The measuring device converts, for purposes of classifi

cation, real objects Into a set of numerically valued measure

ments. The classifier then maps these measurements Into

one of N classes, numbered 1 through N. For example, we may

wish to distinguish football players (class 1) from Jockeys

(class 2). Suppose we measure the height and wetght of the

men (thus k • 2). Because of Individual differences between

men of the same category, the measurements within one class

are distributed over a region In the measurement space. To

handle such a distribution theoretically, we assume that

the measurements are random variables with law P(x | 1)

for class I. Thus a set of measurements Is really a set of

random variables with a probability distribution para

meterized by the class Index 1. In the case above, the dis

tribution of height and weight for jockeys is quite different



from the distribution for football players. The classifier

must detect this difference and classify accordingly.

The central problem of pattern classification Is the

design of these two blocks. Although the problem of choosing

good measurements Is a vitally Important area for research,

most research has been directed toward classifier design.

To a certain extent, this thesis perpetuates this bias. We

will thus concern ourselves wtth designing a good classifier,

given an appropriate class of patterns to recognize.

It Is clear that specifying the set of patterns to be

recognized plays a major role In designing the classifier.

In certain cases, for example, If the distribution of the

samples (sample is a word used interchangeably wtth pattern)

is completely known for each of the N classes, the "best"

classifier can be specified without examining a single

sample. On the other hand, If either the number of classes

or the distribution Is unknown (or parttally unknown), or

if the underlying probability law Is represented only by

samples which are correctly categorized, then the samples

should be examined to determine the best classifier. For

example, If only certain parameters of the underlying distri

butions are unknown, then the classifier should be designed

using sample estimates of these parameters.

Various techniques for Implementing estimation procedures

and other classification schemes have been devised by various



Investigators. For a survey of some of this literature, see

Nllsson [12]. Although this literature Is fatrly extensive,

there has been little research done In the area of pattern

classification where the least Information Is available--

where the number of classes Is unknown, where there are no

correctly classified samples, and where the underlying pro

bability distribution Is essentially unknown. In such a

situation pattern classification can be Identified with

cluster analysis.

The basic assumption In cluster analysts ts that the data

has local concentrations, or clusters. Thus If the patterns

are represented In the measurement space as follows:

Figure 1.2

then the data ts clustered, tn thts case tnto two clusters,

and cluster analysts will attempt to sort these patterns Into

the two corresponding classes. In this way cluster analysts

classifies data without prior specification of classes. As

before, the classification will depend on the particular

unclassified samples available, and cluster analysis has been

called learning without a teacher, since there are no cor-
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rectly classified samples available. For a summary of much

of the literature in cluster analysis, see Ball [1].

The cluster analysis problem is to discover the clusters

and classify data Into classes corresponding to the natural

clusters. There are relatively few different approaches to

such a problem. One approach exploits the Idea that "variation"

within a cluster is small compared with "variation" between

clusters. An attempt Is thus made to find those sets Sj which

make the sum of the variances on each set Sj a minimum. The

collection (S.) Is called a minimum variance partition, and

such minimum variance procudures have received some attention

in the literature. See, for example, Cox[8], who demonstrates

the minimum variance partition for the normal case, MacQueen

[11], who proves the convergence of a simple minimum variance

algorithm, and Ball and Hall [2], who use an Iterative pro

cedure on a finite number of samples to obtain an approxima

tion to the minimum variance partition. There are, however,

certain theoretical difficulties with these algorithms,

either in determining the correct number of clusters, or

In assuring convergence.

Another approach In cluster analysis which Is applicable

only to the problem of classifying a finite number of samples

Is the similarity matrix method. A measure of "closeness"

a is defined between the Ith and Jt samples, and the

similarity matrix Is then defined as A - {af j>. An attempt



is then made to group the samples tn such a way that a.. Is

small for 1 and J tn the group, and large If 1 ts tn the

group and j ts outside. Bonner [k] uses such a formulation.

There are, of course, computational difficulties wtth such

a procedure tf the number of samples Is large. Thts thesis

instead concentrates on methods which are easily computed,

have well understood characteristics, and which still contrl

bute significantly to the cluster analysts problem. The

methods to be dtscussed here Involve, as a third approach,

estimation of modes of the underlying probability distri

bution. The following paragraphs explain why knowledge of

the location of the modes Is both useful and natural for

cluster analysis.

Any classification device Is determined by Its partition

of the measurement space. If the classification device ts

to be estimated, It Is reasonable to try to estimate the

partition. Generally speaking It Is most convenient to

estimate parameters, yet It Is Impossible to parameterize tn

any convenient way all possible partitions of the measure

ment space. It Is appropriate, therefore, to examine tech

niques which estimate a reasonable number of parameters,

choosing those parameters which allow good classification

decisions to be made.

If the underlying distribution ts parametric, then by

definition there Is a finite collection of parameters



{a., . . . a } such that the overall probability distri

bution P can be written as

P(x) - f(ctj, . . . <*n,x)

where f(*) Is a known function. In this case It ts possible

to esttmate these parameters based on samples from the dis

tribution P, and thus determine an esttmate of P. Once P Is

known, a good classifier can be designed. Unfortunately,

cluster analysis problems are non-parametric tn nature

(although some possibly relevant parametric work has been

done--see Frallck [10]), and there are no obvious parameters

to estimate. It ts, of course, possible to esttmate moments,

and In this manner to esttmate the dtstrtbutton, but there

are many problems with this Idea. High order moments

are required to approximate a multimodal distribution, and

the estimators for htgh order moments are quite bad. The

distribution can be estimated directly by ustng the sample

distribution or the "potential function" method (see Chapter

IV, Section 1), or by ustng the simpler sample histogram

based on cells. If such a histogram procedure ts used tn

cluster analysis, one does not normally want to cover the

entire measurement space with small cells for computational

reasons, and for thts reason some work has been done on the

problem of optimum placement of the cells. See Sebestyn [17].

However, the procedure ts still computationally complex and

has unknown theoretical properties. Rather than estimate
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the entire dtstrtbutton function, It seems more profitable

to attempt to estimate relevant parameters.

The one set of parameters that does have meaning for a

large family of distributions and which would be appropriate

for cluster analysis is the set of modes. A mode Is, of

course, a local maximum In the underlying density function.

The modes are perhaps the most natural measurement of

concentration. It is certainly true that the best choice of

a cluster analysts technique will depend on how the data

Is structured— that ts, the meaning of "clustered." Al

though a precise definition of cluster has Intentionally

been avoided, almost any reasonable definition would either

Implicitly or explicitly use the Idea that a cluster Is a

subset of the data such that the underlying probability Is

unlmodai over this set. A btmodal cluster ts a contradiction

in terms. Thus knowing the number of modes ts really equiva

lent to knowing the number of clusters.

Modes have other Important properties. Not only are they

natural In the above sense, but, at least at present, they

are the only parameters which represent clustered data and

which can be conveniently estimated. In the next chapter,

an algorithm Is presented which, based on experience In using

the method, can estimate all the modes of a distribution over

n-dlmenslonal Euclidean space. This Is a significant step

toward solving the cluster analysts problem, since reasonable
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classification can usually be made with no more Information

than the number and positions of the modes.

To see one possible way modes can be used to categorize

data, consider the following procedure, called "nearest

neighbor classification." Suppose that each class ts one

or more clusters, and suppose that data Is grouped In this

fashion, that Is, assume that the data ts drawn from a dis

tribution which Is a super-posItton of n unlmodai densities,

each class corresponding to one or more densities. Assume

In addition that, although nothing ts known about the dis

tribution, an Infinite sequence of class 1fled samples ts

available, denoted (x.,lj) , (x2,l2) where

1. Indtcates the category or class of the j sample x..

Classify a sample y of unknown category as follows: Find

the x. which Is closest to y, say x . and classify y as I .
i m m

This procedure has much to recommend It tn terms of low

probability of error (See Cover and Hart [7])« However,

two facts .prevent It from being applied: (1) Every classified

sample must be stored--thus an Infinite memory is requtred,

and (2) an Infinite number of distances must be calculated

In order to find the smallest distance• Even If only a

finite number of categorized samples are used, the storage

and time problems are considerable.

To cure these problems, and still preserve the basic

Idea of nearest neighbor classification, a modified procedure
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Involving only "typical" or "representative" samples has

been suggested. In this procedure, a sample ts classified

Into category 1 If It Is closer to a representative of

category 1 than any other category. This 1s Illustrated

In Figure 1.3 • Note that tn thts rather Idealized case,

classification of an unknown vector will be done almost as

accurately with representatives as with the whole data set.

(D
1 ' 1

1 /^ 1

1

©
1 1

2 1

2 2

1

I

1 1

^4
, 'I '

3 3

1

2

2 2

Figure 1.3

1 - category 1 samples (2 clusters)

2 • category 2 samples (2 clusters)

3 • category 3 samples (3 clusters)

"Typical" sample circled.

This ts an entnently practical algorithm, since little

storage or computation ts required. However, difficulties

arise when one attempts to choose the representatives. Here

cluster analysts ts useful again. It Is clear that there

should be at least one representative for each cluster, and
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If only one Is chosen, the one to choose ts the cluster

"center." This suggests two posstbt11t1es--the conditional

mean of the samples In the cluster, or the mode of the

cluster. Both of these have much to recommend them, how

ever the conditional means are relatively difficult to find

since the correct sets to condition on are hard to find.

Thus a mode estimation procedure seems most useful for class

Iflcatton tn the nearest neighbor procedure.

It was mentioned above that good conditional means are

fairly hard to esttmate. Interesttngly enough, even If tt

were possible to find a good set of conditional means, In

most cases the classification can be done as well with the

modes. An Informative example ts the case where each class

Is a normal distribution, and the overall distribution Is

a superposition of n equally weighted normals wtth identity

covartance matrices and differing means. In this simplified

case, the optimum decision rule Is to choose class 1 If

the sample ts closest tn Euclidean distance to p., the

t h
mean of the 1 distribution. If the appropriate set of

conditional means (u?) were found (by appropriate I mean

that u? ts the average over the set of points whtch are

closest to u.) then classification could be done tn a sim

ilar way, classifying a sample In class 1 If tt ts closest

to U|. This gives an Identical classification rule. How

ever, this property Is shared by the modes, since assuming

that the means u. are not too close to each other, the
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same decision rule ts defined by the modes. Thus tt can

be seen that for classification purposes means, modes and

conditional means are equivalent In this case.

Even more Importantly, the following chapters will in

dicate that modes can easily be estimated, whereas means

and good conditional means are much harder to find without

aprlort assumptions about the form of the underlying dis

tribution.

Another property of modes ts demonstrated by classifying

data tn the following way: Define a procedure based on

the points {£i}?.i by letting e > 0 be small and dectdtng

a sample x Is tn class 1 If d(x,£{)< e for some metric

d, and otherwise make no decision. Then simply by the def

inition of mode, as e becomes small the use of this procedure

based on the modes will classify a greater proportion of the

samples than any other n points. That Is

Pr{maktng a decision) modes} jfc

Pr{mak!ng a decision | any n points}

In addition, If the samples close to a mode are all from a

single class (this Is a reasonable assumption common to

much of cluster analysts) then for e small every classifi

cation decision made by the above procedure ustng the modes

wtll be correct, and thts will not tn general be true for

any other n points.
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Modes have another property which makes them useful as

descriptors of clustered data. If a certain random variable

x € R has a density p(*) which has n modes at locations

m. , m„, . . m„ , then for any linear transformation A
I z * n

from Rk onto Rk , the random variable Ax has a density which

has n modes at locations Am., • • • »Amn» Thus It can be

seen that, ustng the modes as the essential property of

clusters, a data set and any linear transformation of the

same data set wtll have the same clusters. This makes a

classification scheme based on modes relatively Independent

of the units tn which the measurements are made, and

Independent of the particular quantities measured, so long

as the "proper" set can be derived from them by an onto

linear transformation.

These last few paragraphs have attempted to show that

the set of modes ts the set of parameters most relevant to

cluster analysts. They are very useful tn the modified

nearest neighbor classification technique, and they induce

the same classification rule as means In the simplest normal

case. The modes are, by definition, In the regions of

highest probabl11ty,and finally, modes are Invariant under

linear transformation. This Is not the whole argument,

which In general emphasizes the "naturalness" of modes. The

modes are the most Intuitively satisfying Indicators of
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where the clusters are centered, since, as was pointed out

earlier, clusters are by nature unlmodai. Because of this,

the modes are a reasonable measure of the location of the

cluster. Thus If modes can be conveniently estimated, the

cluster analysts problem wtll be considerably simplified.

The next chapter Introduces two algorithms which estt

mate modes tn an extremely convenient manner. In one case,

the algorithm estimates points which are not quite modes In

the strict sense (i.e., local maxima) but which are "averaged"

modes and may actually be more useful for cluster analysts.

Both algorithms are shown to be convergent In the unlmodai

case, and are expected to converge In the multimodal case,

although no proof of this has been found.

In Chapter III, the Important generalization to n-space

Is made, and tt ts shown that all the one dtmenstonal re-

suits carry over to R . Chapter IV presents actual results

of these algorithms as they operate on computer generated

data, both unlmodai and btmodal. Chapter IV also contains

the rather limited multimodal results obtained In this

research. Finally, the last chapter briefly compares these

techniques with both conventional mode estimation procedures

and with other mode esttmatton procedures based on stochasttc

approximation. Some extensions and general 1zattons are also

suggested In the last chapter.
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CHAPTER I I

MODE SEEKING ALGORITHMS

Section 1. Introduction.

In the first chapter tt was seen that a significant

problem In cluster analysis would be solved If a technique

could be devised for locating modes In multimodal popula

tions. In this chapter, we demonstrate such a technique.

In particular, a method Is given which, when provided a

sequence of samples from an unknown un(modal distribution,

extracts an esttmate of the mode which converges to the

actual value of the mode. The method has been carefully

devised so that tt will continue to work tn the multimodal

situatton.

To provide some Intuition regarding the particular al

gorithm to be discussed here, consider the unlmodai density

be 1ow:

Figure 2.1



18

In this case, the mean and mode almost coincide, so that

the mode can be estimated by estimating the mean. However,

If the method Is to work for multimodal as well as unlmodai

distributions, estimating the mean ts unsatisfactory. If

we can restrict our attention to a subset of the data whose

conditional density looks like Figure 2.1, then the mode can

1nbe estimated by the conditional mean-- uR • -J>Xj where Xj

ts a sample from the distribution In Figure 2.1 . Thts

procedure estimates the mode quite well when the distribu

tion a symmetric about the mode, However, If the dlstrtbut

tton ts skewed, the conditional mean ts somewhat less satis

factory as an estimate of the mode.

There ts an easy cure for thts. Consider the density tn

Figure 2.2.

Figure 2.2

tbe d

If a smaller subset than the Interval (a,d) ts chosen,

and tf tt ts located properly, like the Interval (b,c),

then the error tn estimating the mode by estimating the

conditional mean on (b,c) ts considerable smaller.

This discussion may seem a bit academic, for If the mode

location Is unknown aprlorl, these subsets cannot be placed

appropriately. That Is, tf the best location for these

Intervals ts known, the mode location Is also known, with-
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out estimating anything.

Fortunately there Is a useful procedure based on the

above discussion. We will attempt to estimate a good sub

set of the data at the same time as the mode Is estimated.

Considering only the unlmodai case, one possible simultaneous

estimation scheme ts as follows:

Let x., x,, • . be a sequence of Independent and

Identically distributed random variables with a common

unlmodai density p(*). Center an Interval of length 2L,

with L>0 and specified, about x., and call this center u..

Suppose we call the next sample which falls tn thts Interval

y2. The density of the random variable y2 gtven that u.«£

Is, as one might guess, the density p(0 conditioned on

being In the Interval, and thus

Z ' P(z) dz

- 0 elsewhere.

Since p(') Is unlmodai, the expected value of y2 ts closer

than u. to the mode, and tf we defioe VU - (u.+y2)/2 then

u2 Is closer, on the average, to the mode than y. Is.

A sequence U,, y2, • . . can now be generated by ex

tending thts process. Thus tf u-£ ts the present center

we define y ., as the next sample which falls In the Interval
1n+1 r

(£H,£+L). The new Interval center Vn<fi Is then obtained
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by averaging:

"n*1 " TIT (nyn * W '
n+1

If p(«) Is unlmodai, then for each n, yn+j Is closer to

the mode than y ts, and tn thts case convergence mtght be

expected. In fact convergence does obtain tn such a situ

ation. The assumption Is made in the following form: If

y ., Is closer, on the average, to the mode than u ts, we
'n+1 n

wtll say the distribution Is unlmodai on the average. This

Is a natural condition, and one which many unlmodai distri

butions satisfy.

The algorithm has been devtsed to enable yn to converge

to a mode In the multimodal situation as well. (However, no

completely satisfactory proof of convergence In this general

situation has been found.) Thus, depending on the starting

point u., the algorithm will converge to one of the modes,

and if it Is restarted at a new y. It will converge again,

thts ttme to a possible different mode. This, combined wtth

a method for dtsttngutsh1ng the different values to which

y Is converging, provtdes a simple and effective algorithm

for finding all the modes of a multimodal distribution.

An Important consideration here Is the ease with which

the algorithm can be applied, since so little has to be

stored or computed. The samples x^, x2, * . • are used

sequentially and then discarded and the only parameter which

must be stored and updated Is yp. The computations are also

straightforward.
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In the next section, the algorithm Is precisely stated,

and Its convergence is shown under the "unlmodai on the

average" assumption. Actually a slightly generalized

version of the algorithm ts studied; whereas we have con

sidered In this section

n+1

n+l

In the next section we consider

u • y -a(y - v .t) •
Hn Hn nXMn yn+l'

In Section 3 the unlmodaiIty assumption Is more care

fully studied, and there It Is shown that most unlmodai

densities satisfy It. Section 4 Introduces a new, though

similar, algorithm, and Section 5 is concerned with rates

of convergence.
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Section 2. A mode seeking algorithm, and Its convergence

proof.

THEOREM 2, Let x.,x2, . . be a sequence of Independent

Identically distributed real random variables, each wtth

a fixed probability density p(*), and assume Ex2 < ». Let

L be a fixed positive number and derive a new sequence

yj,y2, . . . and yj»y2» ... as follows:

For n « 1,2, . • define

y • x. where J, • 1 and for m • 1,2, . .
n J * 1

n

m

and define y. • y.

for a sequence a of positive numbers.

Let the density p(") be such that the function

f(C) - S --W— xP(x) dx »* ,n tho »uPP°rt
f
J 5-1

p(x) J ^.L of p

satisfies

U - 6)fU) > 0 for 5*0 . (2.1)

Let a satisfy
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Tt - « la2 < • . (2.2)
L n *• n

Then E(y - 0)2 •*- 0 and y «♦ 0 with prob. one.as n-*»,
n n

REMARK Condition (2.1) ts a type of unlmodallty requirement,

denoted In the sequel as unlmodai on the average about 0.

Because p(') Is judged only by Its characteristics averaged

over an Interval of length 2L, p(») may dtffer slightly

from a true unlmodai distribution. In fact, If L ts made

very large, many denstttes become unlmodai on the average,

and In the limiting case of L • • , any density Is unlmodai

wtth 0 taken as the mean. Our primary Interest ts tn smaller

values of L.

Proof of THEOREM 1: Condition (2.1) ts a requirement on

the expected value of the random variable yn(gtven that

u -i"5)• Yn nas a den8,tv 9,ven bY

>- In t-tM "rX^L' for |x-*'* L
J E-L

elsewhere

as can be seen by considering, for any set A C(£-L,£+L),

the probability that y2 Is In the set A, given that

y. - £* That Is,



Prob{y2 e A|yj-U
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Pr{x2 e A or

x2 t (C-L,5+L) and y Aor

L

}

x2,x3 I (£-L,£+L) and x^ e Aor

The events on each line are disjoint, so we can write

n

- Pr{x2 e A}+ l^ Pr{xj e A and
1-3

Xj i 4C+L9g+L) 2a»J<! >

Since the x.'s are Independent and identically distributed,

this can be written as

Pr{x2 cA}]T(l-Pr{xeU-L,5+L)})
1-1

- Pr{x € A} / Pr{U-L,5+L)}

as desired.

Thus the function f(*) appearing in (2.1) can be written

as

fU) - £ - E Y (2.3)

where the random variable Y~ • (y given yn_i*0 • The

subscript n can be dropped since the distribution of yn

given y ,-£ Is Independent of n.

Using this result, the theorem follows as a consequence

of the following stochastic approximation theorem. See

Ovoretsky [9].
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THEOREM 2 Let Z- be a one parameter family of real random

variables, £ e R, and deftne g(£) - EZ~ . Assume g(£) extsts

for every £• Oeflne a sequence x as x. arbitrary and

x ^i • x_ - a z^
n+1 n n n

where z Is an observation of the random variable Zw ,
n x

n

and where a Is a positive sequence such that
n

K • - l< K00

Let Z_ have uniformly bounded variances, and let g(*) satisfy

|fl(0l < A|^I + B some A,B , (2.4)

g(C) (C " 0) > 0 for &Q for some 0, (2.5)

inf |gU)| > 0 all 0<t.<t,< ~ (2.6)
t,<lc-0|<t2 1 2 '

Under these circumstances, x * 0 In quadratic mean and
n

with probability one as n-*».

To apply thts result to the mode seektng algorithm we

define a random variable Z- « £ - Y- where Y, ts the prevtosly

defined r.v. with density

Pv (x) - M?U) for |x-S|*LY^~' rd

J E-L
p(y)

elsewhere.
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Defining, as before, the function f(£) - E Z-, we tdenttfy

this f(') wtth the g(*) appearing In THEOREM 2 and observe

that since f(*) Is contlnous, (2.5) Implies (2.6). By

(2.1), (2.5) holds. To verify {2.4) we note that by the

nature of the random variable Y», |£-Y£|£L wtth prob. one

and thus |f(€)|*L. In addition, E Z| £ U2. These facts,
combined wtth condition (2.2) of THEOREM 1, guarantee that

yn - 0.
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Section 3* Unlmodai on the average examined.

In the last section a simple algorithm was Introduced

which observes samples through a window, and centers this

window on the average of the observed samples, and It was

shown that the estimates y converge to a value 0 If the
n

underlying density satisfies a condition (2.1) which we called

unlmodai on the average. It Is of considerable Interest to

examine the class of densities which have this property, and

to study the meaning of the value 0 .

We have already seen that condition (2.1) is a require

ment on the expected value of the random variable y- which

appears tn the theorem. y£ Is the random variable defined

by considering for L>0 fixed only those values of a basic

r.v. x (with density p(0) which fall tn an Interval

(£-L, £+L) . Thus the density of y- ts

p(z)

fV*L
P(x)

J E+L

P (2) - PUJ |z-5l< Ly —

e Isewhere

and Is seen to be parameterized by £ , a real number which

can vary over the support of p(:). Condition (2.1) says that

the expectation of y_ is always closer to 0 than £

This is an Intuitively satisfying requirement, and one

would expect It to be satisfied by many unlmodai distributions.
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To understand which ones satisfy tt, we first note that

If p(») is a symmetric unlmodai density then p(*) ts almost

unlmodai on the average. More precisely:

THEOREM 3 Let p(«) satisfy p(x) < p(y) for |y-©|< Ix-©|.

Let f(£) be defined for £ In the support of p and L>0 by

5 + L

5-L
f(£) - £ - r^r—! I xp(x) dx .

5-L

Then, for every L>0,

f(€)(s-e) < 0. (2#7)

Proof: Let L>0 be fixed, and take e-0. Note that

£- f(0 -*+ +L ] t xp(x+?) dx
p(x) -L

so (2.7) is satisfied for £>0 tf

xp(x+£) dx < 0.r
-L

This requires verifying that

/: x[p(x+£) - p(-xH)] dx < 0 ,
0

which ts certainly satisfied tf

p(x+£) < p(-x+C) for x In (0,L).
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Considering £>x tt Is true by assumption, and noting that

p(x+£) a p(-x-£) tt Is true for £<x. A simitar argument

holds for £<0. This completes the proof.

Thus any unlmodai symmetric distribution Is almost unl

modai on the average. However, condition (2.7), a weaker

version of (2.1), is not sufficient for convergence. Thts

Is demonstrated by taking p(») as a uniform distribution

of base 2a, and choosing L<a. Such a p(-) satisfies (2.7)

and in thts case y_ wtll not converge, but will wander about
n

In the region (-a+L,a-L).

The condition we want -- unlmodai on the average -- is

obtained if p(«) is strictly unlmodai as follows:

THEOREM 4 Let p(#) be symmetric about 0 and assume

p(x) < p(y) If |x-0| > |y-0|. Then, for every L>0,

p(«) ts unlmodai on the average, that Is:

U-0)f(5) > 0 £ + 0

Proof: From the preceding proof we see that we must show

that, for £>0,

L

xp(x+£ ) dx < 0

which again ts true tf p(x+£) < p(-x+£) for a set of positive
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measure of x In (0,L). The strict Inequality holds excluding

only the point x»£ and points where p(x+£) • p(-x+£) » 0.

Thts result Is easily applied to show that the normal

and exponential distributions, among others, are unimodal

on the average about the mode.

In fact, p(*) need not be strictly unlmodai, as "flat

spots" are permitted:

THEOREM 5 Let L>0 be fixed, and let p(0 be unlmodai and

symmetric about 6. Assume there Is an L° < L such that

for x, y In the support of p,

p(x) - p(y) implies |x-y|<2L° or (x-9) - -(y-6)

Then p(a) is unimodal on the average about 6 .

Proof: As before, It Is sufftctent to show that

p(x+£) < p(-x+5) for all x In some set S o (0,L) which has

positive measure. Thts will be satisfied tf we take

5 • (L°,L) , since for every x tn thts S,

|(x+£) - (-x+£)| > 2L° .

This result shows that the uniform distribution and the

trapezoidal distribution ; / \ are unlmodai

on the average provtded that the Intervals where the density

Is nonzero and constant are of length less than 2L.



31

If p(-) Is strictly unimodal but not necessarily symmetric

about the mode 0 , then it Is true that for every L> 0, there

exists a ©' tn (0-L,0+L) such that p(») Is unlmodai on the

average about 0'. More precisely:

THEOREM 6 Let L> 0 be fixed, and let p(. ) satisfy

p(x)< p(y) for x<y<0, and p(x)<p(y) for x>y>0 . Then there

exists a 0' In (0-L,0+L) such that f(0') « 0. If all such

0' satisfy

L [ p(0'+L)+ p(0'-L)]

e'+L
< 1 (2.8)

e-L
p(x)

then 0 ' Is unique, and p(») Is unimodal on the average

about 0' for thts L.

Proof: Construct an arbitrary density of this type as

fol lows:

x>0

p(x) - J
P,(x)

P2(x) x<0

where pj and p2 are symmetric and strictly unlmodai. Thus

they are unimodal on the average for thts L. Clearly

f( y) - y -
+ L

xp(x) dx

ry*L -L

p(x)
y-L
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has the correct properties (that is, satisfies 2.1) for

|u|<L. We need to check the case |y|< k. Define 0' as a root

of f. f has a root, since f Is continuous and Is posittve

for \i> L and negative for u<-L. (We take 0»O here). That this

0' is unique, and that f has the correct property, can be

most easily verified by noting that f(-) is dtfferenttable

and has a positive derivative at ©• If and only If

-0' + L

p(x) - L[p(0+L) + p(0-L)] > 0.
J 0'-L

This Is true by assumption (2.8). This proves that 0' Is

unique, since if f(*) had more than one root, the derivative

of f would change sign. But we have only a single sign. Thus

only one root, and f(-) has the desired properties.

The four preceding theorems have shown that a large class

of unimodal densities Is unimodal on the average. This class

Is even larger, since the criteria for unlmodallty used In

this chapter is relatively Insensitive to slight modifications

to the density function.

THEOREM 7 Let L>0 be fixed. Let p(-) be unimodal on the

average about zero and let q(«) be a symmetric density with

bounded support satisfying

Lq(L)

1
+ L

q(x)
-L

< 1
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Then there Is a \°<1 such that for all A In (X°,l), the

density Xp + (l-X)q ts unlmodai on the average about zero

for this value of L.

Proof: We must show, for y>0, that

y+L y+L

x[Xp(x) + (l-X)q(x)] < y/ [Xp(x) + (l-X)q.(x)]
y-L -d-L

By assumption, p(0 satisfies

ry+L y+L
j xp(x) » y/ p(x) + h(y) where h(y) >0.
Jy-L -ii-L

Thus we must show

•y+L

xq(x)
y-L Jy-L

ry+L y+L
xq(x) < y/ q(x) + ^ .

A Taylor serlves argument shows that for small y, say |y|<e

xq(x) < y/ q(x) .
y-L Jy-L

Thus we choose X° as the smallest positive number such that

.y+L U.+ L

sup xq(x) -y/ q(x) - M- < ft
ycS J y-L Jy-L l A U

where the set S • {x |x tn support p and |x|<£ } . Such a

X° always exists, and satisfies the requirements of the

theorem.
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To Illustrate this result we can take

q(x) • |cos ax| |x|< M

n 0 elsewhere.

Then with proper normalization, and with any M, any a, and

roughly half the possible values for L, Xp + (l-X)q Is still

unimodal on the average for X close to 1, yet this density

Is clearly no longer unimodal.

More general results of this type can be obtained. For

example If q(*) Is neither symmetric nor locally unimodal,

the theorem Is still basically true, except that the "mode"

may be moved slightly.

Incidentally, this proof suggests another fact.

FACT If p. and p2 are unimodal on the average about 0,

then for any X 1n (0,1), Xp1 + (1-X)p2 »s also unimodal on

the average about 0.

The results presented In this section show that the

condlt!on--unImoda1 on the average--whIch Is required for

convergence of the mode seeking algorithm 1s satisfied for

a large class of probability densities, both unimodal and

"nearly" unlmodai. This is not surprising, since the con

dition arises In a fairly natural way.
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Section 4. A shrinking Window algorithm.

One of our goals In thts research has been to ftnd modes

In multimodal distributions. No completely satisfactory

proof has been found that the algorithm discussed In section

2 converges In the mult(modal situation, but convincing argu

ments and computer results seem to Indicate that convergence

does hold. The argument regarding convergence goes as

follows: at step n, the algorithm only considers samples

from the distribution wtthln L units of y . If JU is nearing
n / n 9

a mode, and L Is chosen small enough, then the algorithm

"sees" only samples from the region about that mode, and

does not see the other modes. This argument ts at least

valid for some special multimodal dlstrlbutIons--see Chapter

IV, section 3.

The idea of putting in a window (y -L,y +L) can be gen-
n n 9

erallzed. Consider an algorithm whtch reduces the size of

the window as It proceeds. This should Improve the ability

of the algorithm to converge in the multimodal situation,

since with the width of the window decreasing toward zero,

sooner or later the algorithm will concentrate on only

one of the modes.

There Is a second Justification for such a "shrinking

window" algorithm. Recall that the method discussed In

Section 2--the "fixed window" aIgorlthm--may not converge to

the tvue mode. Intuitively speaking, it should be possible
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to make the shrinking window algorithm converge to the true

mode of a unimodal distribution. This Is Indeed the case,

and ts shown below.

THEOREM 8 Let Ln be a sequence of positive numbers. For

a fixed probability density p(.) with Ex2<« define a random

variable Y? by Its density:

V(M) "rPff*2- |x-*'<Ln
5 I P(y)

• 0 elsewhere.

Let p(-) have derivative p'(*) defined a.e. which satisfies,

for x In the support of p,

(x"e)pT^r" <° for **e <2-9)

t,<|x-0|<t2 'P' (x)l> ° for °<ti<t2< °° <2-1°>

Define a sequence of r.v.s yn by y?-x (x a r.v. with density
p(*)) and

"n+l " "n * VV'n*

where vn Is an observation on Yjj and an Is a sequence of pos-
n

itlve numbers satisfying, along with L ,
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Ln*°

IanL„ "" (2.11)

n n

Under these cl rcumstances ,yft -»• 0 as n+« with probability

one and In quadratic mean.

REMARKS Condition (2.9) and (2.10) are again unlmodallty

conditions of a considerably stronger nature than the earlier

unimodal on the average. We are no longer permitted the

luxury of averaging over a set, but must have a very strict

unlmodallty: p(») dlfferentI able and p'(x)<0 for x>0, and

p'(x)>0 for x<0.

This algorithm has been presented In a slightly different

form from THEOREM 1. An equivalent sequence y and y can
n n

be derived from a sequence xlfx2, . . . . of t.I.d. random

variables with common density p(*) as follows:

U, - X,

\ m\ • •»<VW
where

yn - x. where jQ-1 and for m-1,2, . . .
Jn

Jm
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To prove the theorem, we need the following lemma:

LEMMA Let the density p(-) be dlfferentI able a.e., and

assume (x-0)p'(x)<O for xi<0. Then for every L>0,

1 ft*1U-6)U "(J+T *p(x) dx) >0 |£-0|>L (2.12)
| P(x) J£-L

JC-L

Proof of lemma: Write p(*) as

p(x) - p1 (x) x £ 0

P2(x) x < 0

where Pj and p2 are symmetric densities. By the nature of

p, p,and p2 are strictly unlmodal. For £-0>L,(2.12) Involves

only p1# and Is thus valid (by THEOREM k) f and similarly for

-£+0>L, (2.12) involves only p2.

Proof of THEOREM 8: We take 0-0 without loss of generality.

Oeflne the function

fnU) - E[£ - y" ] and note that

|fnU>| < Ln all£,n. (2.13)

Also,

Var[5 - Yp <U* all £,n {2.\k)
and using the lemma

Sfn<5) > 0 forU|>Ln. (2.15)



3
9

in
a
d
d
i
t
i
o
n
,

f
{•
)

ca
n

be
e
x
p
a
n
d
e
d

as
a
s
e
r
i
e
s

In
th
e

fo
n

r
m

fn
U

)
-

f(
O

L
j

*
gt

t.
L

j)
(2

.1
6)

wh
er

e
*Y

jL
n'

•»
0

as
L

•*
0.

By
w

ri
tin

g
p(

»)
as

a
Ta

ylo
r

n

s
e
r
ie

s
a

n
d

e
v
a

lu
a

ti
n

g
f

(•
)

w
e

d
ed

u
ce

th
a

t

a
n

d
th

u
s

b
y

(2
.9

)
a

n
d

(2
.1

0
)

w
e

h
a

ve

*f
(5

)
>

°
fo

r
&

e
,

5
in

su
pp

or
t

o
f

p
(2

.1
7)

In
f

|f
(£

)|
>

0
0<

t,<
t9

<
«

.
(2

.1
8)

t,<
U

-0
|<

t2
'

2

W
e

w
il

l
a

s
s
u

m
e

th
a

t

.(
e.

L
j)

a
s

L
•>

0
L

2
n

n

un
if
or
ml
y

fo
r
5

In
a

co
mp
ac
t

se
t.

Th
is

Is
tr
ue
,

fo
r
ex
am
pl
e,

If
p'
('
)

Is
co
nt
in
uo
us
,

In
wh
ic
h

ca
se

(2
.9
)

Im
pl
ie
s

(2
.1
0)
.

Wi
th

th
es
e

fa
ct
s,

th
e

th
eo
re
m

ca
n

no
w

be
pr
ov
en

as
a

co
ns
eq
ue
nc
e

of
Dv
or
et
sk
y'
s

[9
]

ge
ne
ra
l

st
oc
ha
st
ic

ap
pr
ox
im
a

ti
on

th
eo
re
m,

wh
ic
h

ap
pe
ar
s

In
th
e

ap
pe
nd
ix
.

We
sh
ow

th
at

A
-

D
a
r
e

s
a
t
i
s
f
i
e
d
.

R
e
w
r
l
t
e



40

where

By the definition of fn, EZn - 0 and thus 0 Is satisfied.

(2.14) yields EZ2 < 4a2L2 and by (2.11) ]>EZ2< • f thus

C Is satisfied, since we have assumed that Ey2-Ex2<».

To verify that A Is satisfied for the transformation

TnK) - »n " •„'>„> •
we let bn be a sequence of positive numbers tending to

zero such that

KLnbn " * ' (2.19)

Define pfl - L2bn. We define the sequence n of positive
numbers as

j"f |fn(«| > PB.

To show that nn can be taken to go to zero, we remark

that if any function f(-) satisfies (2.18) then If 6 * 0
n '

one can choose a sequence n *• 0 such that
n

Jnf |f(C)| > e„ .
nnsUls! n

p

To apply this to our situation define $ - — +y where
n L2

2\ n

TB • tup "
n »„<i«i<« «•;



Mote that regardless of n . 3 + 0 by the uniformity
n n '

assumption. By construction p /L2 *• 0 and thus B -• 0.
n n n

Now using the above remark we define n + 0 by
n '

'nf |f(€)| > 8n .

This means

Inf |f(C)| - sup |g(C.LJ!)/L*| > p_/Lj
n„<UU> n n«„*m*i

which Implies

!"f [ |f(£)
nn*UI*i

9(C,Ln)/L2| ] > pn/L2

which In turn Implles

j"f I lf^)L2 + g(S,L2)|] > Pn

n n

41

as desired. By using this sequence, and breaking up the

range of the argument of Tn(») we show that condition A Is

sat)sfted;

,f lrM|iLM then
n' n

lTn(rn}l - K ""nV'nH « Ln + •„«•„ •

,f 'rn'*Ln then we know rn and fn*rn* have thc same s?9n
(2.15) and If r < a f(r ) then

n n n



K -V„<r„>l • -J'„<'»> I - IM <a„Ln .

Alternatively, If af (r ) < r we have
n n n n

* lrJ " Vn for ,*lrJ*1n

* nn for Ir„ I<T1„

* |rn' • Vn for Ms»lrnl*"n
and n>nu.

n

in any event, for n large,

|Tn(rn)| <max [L|| ♦ a^ , v kJ-a^J

k2

and ln + anLn + 0, nn- 0, and using (2.19), Janpn
Thus A ts satlsfl

pletes the proof.

Thus A Is satisfied for y„ a* In the extension. This com-

This section, plus section 2, contain all the baste

convergence properties which have been found regarding these

two mode seeking algorithms. To summarize, It has been

shown that under very reasonable,condltlons--untmodal on

the average, which Include most "unlmodal" densities (THE

OREMS 3 to 7)--the fixed window algorithm converges to a

value 0 which ts at most a known distance from the true

mode (THEOREM 1) If more accuracy ts desired, the shrinking
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window algorithm converges to the true mode for densities

which are well behaved and strictly unlmodal (THEOREM 8).

Thus accuracy can be traded for generality of result by

choosing one or the other of these algorithms.
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Sectton 5. Rates of Convergence.

In this sectton the rates of convergence of the two mode

seeking algorithms are discussed. In addition, some com

ments are made about the asymptotic distribution of the r.v.

Pn. Many of these results are based upon known characteris

tics of stochastic approximation methods.

The following theorem considers the original fixed win

dow algorithm.

THEOREM 9 Let Uj,p2, ... be the sequence of random

variables derived from the fixed window mode seeking algorithm

as deftned tn sectton 2. Let the underlying denstty p(v)

be such that the function

f(£) -5- _J J xp(x) dx
I P(x) *"L
J S-L

satisfies

U-0)f(£) > 0 If &e (2.20)

f(C) - BjU-0) ♦ o(£-0) for 3?>0 . (2.21)

Let the weighting sequence a be of the form a - a/n
n n

b

with 2a > 1/3j. In this case, n*' (yn - 0) Is asymptotically

normal with zero mean and variance a2a2/(2a$.-1) where

a2 - Var Ye.



45

K&oof: This ts an application of Sacks'[14] theorem on

asymptotic distribution, which appears for reference in the

appendix. Our f(«) ts hts M(») and we must verify that

f(€) * K(£-0) for some K>0. Thts ts a consequence of (2.21)

and |f(C)| <L. Finally E^-Y^)2*^ <*> since |$-Y |<L a.s.

This result demonstrates that the random variable u
Kn

has a variance about the mode 0 which decreases as 1/n, where

n ts the number of samples x. which have been averaged Into

the current estimate u . The more Interesting question from
n » i

a comptattonal standpoint ts, of course, how does the var

iance behave as a fuctton of n°, the number of samples either

used o_r discarded. (Remember that the random variable Y. ts

derived from x by discarding all samples which do not fall

In the interval U-L.5+L)). Fortunately n° Is related by a

constant factor to n, at least asymptotically. It ts easy

to show that, for large values of n,

0+L.,; p(x) dx - n

0-L

Thus the variance of y decreases as 1/n° as well.
n

The question of when (2.21) holds arises Immediately.

The following result ts appropriate:

THEOREM 10 Let p(0 satisfy
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K - L[p(0+L) + p(0-L)3 < . ,_ _.
KL —r r6+L < ] (2.22)

P(x)
0-L

Then (2.21) holds with B] « 1 - K..

Proof: A Taylor series expansion of ?(•) can easily be

found to be

f(0 -[i-L[P(9^L+ p(e"L)] Jtt-e) «• 0(5-0)
p(x)

0-L

and the result follows.

The following result covers the rate of convergence of the

shrinking window; algorithm.

THEOREM 11 Let Vj,u2, ... be the sequence of random

variables derived from the shrinking window mode seeking

algorithm. Assume the function

1 r*+L
fU) " 5 vi+r xP(x) dx

I P(x) J£-L
J e-L

satisfies

Al2* f(5)/(C-0) for some A>0. (2.23)

Let a - a/na and let a L2 - b/n with Ab>!.
n n n
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Under these circumstances,

E(un - 0)2 * K/n for some K<«. (2.24)

Proof: This proof follows the lines of the proof of a

simple Robblns Munro stochastic approximation theorem

appearing In Sakrtson[16]. By deftnttton,

n+1
V - a (u
Hn nXHn

Thus, taking 0-0,
2 .

V

2a £E(u -y |u -£)
n* pn 7n,pn *'

.2+a2E[(yi -y )2|p «£]
n *n 7n 'Hn *'

Using (2.23) plus E[(u -yj2 |y -S3 $ H2 we obtain
n n n n

Taking unconditional expectation and denoting b - Eu2
* n *n

we have

n+1 n n n n n

We may iterate this to obtain

n-1

where

n 1H1,n-l +*I akLk*k,n-l

6

k-1

k,n " I (l " 2AaJLJ2) 0iik*n
j-k+1

- 0 k*n

(2.25)



Taking logs of (2.26) and ustng the Inequality

log(1 - x) * -x

we may show

n

Vn * **•» <-2A I yj i .
J-m+1

Directly approximating

J«m+1 j-m+1

with Ab > 1

yields

6m,n * <m+"n>2 •

Similarly the second term In (2,25) can be bounded:

n-1 n-1

k-1 n k-1 k14"' k-1 k1+a

£ C/na .

Thus bn goes to zero at least as fast as l/na t and

(2.24) follows.

To explain the relationship between the previously

defined n and n°,for the shrinking window algorithm,

the following theorem has been proven.

48
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THEOREM 12 Let a - a/na and L - L/n(,"a)/2. Then THE-
1 n n

6REM 11 states that E(y -0)2 •*• 0 with a l/na rate. Let
n

n° be the number of samples either used or discarded before

the n sample Is averaged In. Then, for large n,

n° « K(n+1)(3"a)/2 <2-28>

and therefore a 1/na rate Is a |/n«2a/<3-a) rate> and |f

ae (0,1) then 2<X/(3-a) e (0,1).

Proof: The expected number of samples used between th<

th stI and (1+1) computations, given p., Is

1/P, - 1/ 'VLI
p(x) dx .

VI"LI
th

Thus at the n step In the algorithm we have used or dis

carded approximately

i
i-1

1/P

samples. Since yR •+ 0, It can be shown that If L + 0, and

p(«) continuous then

Pl/P0
r^l+Ll

EJyrLf p(*) J/I

re+L

•^e-L

This result can be used to show that

p(x) ] -* i .

" ii

[ J 1/P, ]/[ £ 1/P. ] •> 1
i-i i-i



and thus

n

1-1 '

for large n. (This Is the expected number of samples used

or discarded If the window had been centered on 6 , Instead

of U|.) This yields

n re+Lt n

n° « Y}' [\ P(x) J" Y. 2L|p(e+Ll)

x>,

i-1 G-L, i-1

' £./l
2p(e) ,.,

If L, - ,/|(l-«)/2 then

n

1 /I

n© a „ \ .« ^ •*•/_. «\0+lK Y* ,a *K'(n+D
i-1

which Is (2.28). This completes the proof.

50



51

CHAPTER III

MODE SEEKING IN HIGHER DIMENSIONS

Section 1. Introduction.

Since the motivation for mode seeking algorithms is

pattern classification, It Is particularly important to ex

tend the results of Chapter II to higher dimensions. Pattern

classification is almost always done in higher dimensional

spaces, since In practical situations many measurements are

made on a single object, making up a vector in Rk with k>1.

Thus any tool useful for pattern classification must operate

In high dimensional spaces. This chapter extends most of

the results of the previous section to the estimation of

modes in probability distributions over Rk, and this exten

sion Is a most natural one. We assume Rk Is an inner pro
duct space with inner product

xT r
<x,y> - x y - 2,x.y. where x -

and norm

|x| - <x,x>,/2

Xkl
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Sectton 2. The fixed window algorithm.

THEOREM 13 Let x,,x2, ... be a sequence of Independent

Identically distributed random variables taking vaiues In
k

R , each with a fixed probability density p(') over Rk.

Let S be a fixed bounded set, and derive two new sequences

vl» Y2» • . and ]i|,y2, . . as follows:

P, - x,

For n - 1,2,3 . . def!n<

yn - x j where j} - 1 and for m - 1,2, . .

and
Jm

ln+i - >\, " •>„-*„>

for a sequence an of positive numbers.

Let the density p(») be such that the function

f(0 - € -

satisfies

Js+517HT / xp(x) dx
's+$

<C-e,fU)> > 0 If &e9 £ tn support p

Let aM satisfy
n '

Ja - »
** n Un K"

Then |yn - e| •• 0 as n -• - with prob. one •

(3.1)

(3.2)
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REMARK Condition 3.1 Is an obvious analog of 2.1, and

again can be denoted as unlmodal on the average. The ex

tension ts a natural one, since tf we take k - 1 and

S - [-L,+L] for L>0 then this theorem reduces to the previous

one. In this sense S ts the k dimensional generalization of

the "window" [-L,+L]. S may be arbitrary, though the par

ticular set S- [-L,+L]k will be seen several times here.

Proof of THEOREM 13: As before, condition (3.1) is a re

quirement on the random variable Y„ - y alven u .«£
£ rn v Kn-1 *"

Y. has the distribution

Py (x) - f p(x) for x-£ eS
* ' p(y)I S

elsewhere

Thus the function f:R* + RK can be written as

f(£) - £- EY^.

The proof of the above theorem follows, as before, from

the following stochastic approximation result (See Sacks[l4]).

THEOREM 14 Let Z^ be a one parameter family of random
variables In Rk, with pe Rk, and define g(u) - EZ .
Assume g(u) exists for every u. Define a sequence x as

^ n

xl arb|fary and xn+| - xn - anzn where zn ts an observation



on Z and where a is a sequence of positive numbers
n

satisfying £an -« ,Ja2 <« . Let Zy have uniformly
bounded variances and assume g(») satisfies

|g(li)| < Kju-el (3.3)

<g(u)»ii-0> >0 for ui«0 for some 0,K.>O. (3.4)

«I<|I-J|*t2l,<M)| >0 for0«1<*2'(- ' (3.5)

Then *n + Q with probability one.
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To apply this result, we define Z- - £ - Y- and note

f(£) - EZ?. We then Identify ff (.) with the g(0 appearing
In THEOREM 14 and conclude that (3.1) guarantees that (3.4)

and (3.5) hold, since f(.) Is continuous. We note also

that sfnce S ts bounded, |C"Y^| * Kw.p.l for some K>6 and
therefore |f($)| * K. Thus to check (3.3) we need only show
that for some e>0,

|f(OI < M5-e| for ICl < e (3.6)

Since f(-) Is dtfferenttabte, (3.6) holds If the Jacobtan

of f atcB has finite entrres, that ts

»l(*i. :!V
< •

H
J 5-0

This ts easily verified. The Jacobtan ts explicitly exhib

ited In the proof of THEOREM 19 ( Sectton 5 of this chapter).
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Sectton 3. Unlmodal on the average examined.

The significance of condition (3.1) Is considered here.

Generally, the results of Chapter II, Section 3 carry over.

As before, if p(») is a spherically symmetric unlmodal density

thenp(') Is almost unlmodal on the average.

THEOREM 15 Let p(-) satisfy p(x) £ p(y) for all

|x-0| £ |y-0|. Then for any symmetric set S, f(») satisfies

<5-0,f(S)> * 0 .

Proof. Consider 0-0. We must show

cT [ '

/S+?(y) j**<
xp(x) dx ] * |C|

A change of variables indicates that we need only show

£T / xp(x-K) dx * 0.
JS

•eflne the set $• - [x e S| £Tx * o] and note that
since S Is symmetric,

£T Jxp(x+C) dx - / 5Tx [p(x+0 -p(-x+5)]
s Js°

Since for all xeS| ,£Tx £0 and |x+$1 * |-x+£|
the unimodaltty assumption yields

dx .

p(x+C) - p(-x+C) $ 0 which completes the proof.



Unlmodal on the average ts obtatned If p(#) Is spher-

ically symmetric and strictly unlmodal as follows:

THEOREM 16 If p(«) satisfies p(x) - p(y) whenever

|x-0|-|y-0| and p(x) < p(y) whenever |x-0|>|y-0| then

for any symmetric set S, f(«) satisfies

<S-e,f<5)> > 0 &0 .

Proof: Following the last proof, we show that

£T Jxp(x+£) dx >0 for &® .
S

Define S* • [x e S| £ x > o] and note that since S ts

symmetrlc

5T Jxp(x+C) dx - |Vx [p(x+£) - p(-x+£)l dx .
s s°

Since for all x e S° £ x > 0, and since |x+£|>hx+€|

for all x e S°, the result follows.
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Sectton 4. The shrinking window algorithm.

The shrinking window algorithm extends to R In an

obvious manner as follows:

57

THEOREM 17 Let L be a sequence of positive numbers. For
n

ka fixed probability density p(») over RK define a.srandom

variable YJJ ,£e R ,taking on values in Rk by its density:

p(x)

I

5

M!U) " f "^ -«* sn
n

• 0 elsewhere

where Sr - [-Ln,+Ln] . Assume p(.) Is dlfferenttable

with gradient Vp(») defined a.e. which satisfies

<x-0,7p(x)/p(x)> < 0 for x*0 and (3.7)

x in the support of p.

inf |Vp(x)| >0 0<t.<t,<co (3.8)
t,*|x-0|*t2 ' 2

|Vp(x)/p(x)|* K| x-0| . (3.9)

Define a sequence of random variables y In Rk by y - x

(x a r.v. with density p(«)) and

yn*1 " »n - an(% " ^n!

where yn is an observation on Yn , and a Is a sequence
Pn n



which satisfies, along with L ,
" n'

L * 0

lafL
2i 2 < oo

n n
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(3.10)

Under these circumstances, u •• 0 as n -• » with prob. one.

*EHARK Agaln(3.7) and (3.8) are logical extensions of

their one dimensional counterparts (2.9) and (2.10). All

are clearly untmodality requirements.

Proof of THEOREM 17: We will follow the one dimension proof

fairly closely, using the Sacks and Derman[15] extension of

Dvoretsky's theorem. We again take 0-0.

Let bn be the sequence of positive numbers tending to

zero such that

Ya L2b - «
** n n n

and let pR - L2b . Define n •* 0 as

|nf <5.fn<0> ,/2

where f (•) Is defined as
n

f„<e> - ? -
p(x)

«„♦€

xp(x) dx

V*

(3.11)

(3.12)

(3.13)
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that Is,

f„U) - E(C - y£) . (3.14)

We can expand f (•) as follows:
n

fn(5) - h(5)L2 + g(5,L2) (3.15)

where again we have

|gU,L2)/L2| -.0 as Ln - 0,

and we assume that such convergence ts uniform on a compact

set of 5's. Again this will certainly be true If Vp ts

continuous, In which case (3*7) Implies (3*8). By expanding

the density p(*) as a Taylor series and Identifying h(*) at

the coefficient of the L2 term, we find
n

hU) - - tfO/pU) (3.16)

and (3.7) and (3.8) yield

<£.nU)> > 0 for &0 (3.17)

Inf |hU)| > 0 0<t.<t,<« . (3.18)
Vlcl*t2

To show the n defined above can be taken to go to zero, we

define 0 - p*/L2 + ym where
n n n n

K,9<5.l.*)>| , , 1%.
Y- • s«P t s«P 9<C,l!> .
" \t\t\S* Ul vlcui

Stich a y + 0 by the uniformity assumption. Thus $_ •+ 0.
*n n



We now define n + 0 as
n

Inf <£iM£l> > e
nnS|5|il 15

which can always be done when h(«) satisfies (3*17) and

(3.18). Rearranging we obtain

<€,h(5)L2 + g($,Lj>
Inf 2 P_ > p.

vi«i*i m

as desired. Finally note that (3*9) Implies that we can

find a sequence k •»• 0 such that for k *|S|,
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I'.(01

Ln
i k'|5 (3.19)

We can now use the preceding and

|fn(0| * K,Ln (3.20)

to show that A to D are satisfied. We define T (•) by

un+l " un n n n n n n n

where Z - a [u - y" - f (y )]. By (3.14), D Is satisfied,
n n n v»- n n

C follows by noting that since |£ - Y'| < KjLR with prob.

one, EZ2 < K,a2L2 , and (3.10) yields TeZ,, < ». Finally
2 n n

we have

lTn<'n>l* rn - anfn(r)|2
n n n n '



n nnnn n'nn'

if max(kn,nn) * |rn| $ 1 we have from (3.19) and (3.12)

ITJ* * |rJ*(HK.a2L2) " 2VnKI

This yields

|T„| i |rJ(I*K'«*I«),/2 -
n n

a p
n*n
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i |rn|(l*K'.|;Lj) - anpn . (3.2I)

Using (3.10) and 13-1 >) we see A ts satisfied for this

range of rn. For |rfl| < max(kn,n )we use (3.20) to obtain

|T I $ max(k ,nn) + K,a<iL .
n n n Inn (3.22)

A check of the proof shows that (3.21) holds If r] *|r |*M
n n

for M arbitrary, and by the extension, the result follows.
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Section 5. Rates of Convergence.

This sectton dtscusses the rate at which Ely -0|2
n

goes to zero for both the fixed wtndow and the shrinking

window algorithms.

THEOREM 18 Let u.,u2, . . be the sequence of random var

tables derived from the fixed wtndow procedure as defined

In THEOREM 13* Let p(*) be such that the function

f(« - S " ]

-'s+i
p(x)

satisfies

<S-e,f(S)> > 0 for £i*0 (3.23)

f(€) - B(5-0) + 5(^-0) for positive definite (3.24)

Band l6($"e)l - 0 as |e-e|-M>.
l€-e|

Let the weighting sequence a be of the form a - a/n

wtth 2ab.>1, b. being the smallest eigenvalue of B. Assume

Cov Yq - ir for ir non-negative definite. Under these ctr-
1/2cumstances, n ^n~®) ,s asymPtot^ca11y normal wtth

zero mean and covartance £ defined as follows:

Let b., . . . b. be the eigenvalues of B In decreasing

order. Write B - PDP where P Is orthogonal and D is a

diagonal matrix whose diagonal elements are b., • • b..
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th -1.Define ir | * as the I,J element of P irp. Then I - PQP -1

where the l,jt element of Q Is

a2(abj +abj - I)"1*?,

Proof: This follows from a theorem due to Sacks [14]

which appears tn the appendix. First we verify that

|f(0| * K|C-9|

which follows from (3.24) and |fU)|$ K'. Finally, since

S fs bounded, |S"YJ < Kn, and thus

E|C"YC|2+V <K» for v£0.

The question arises as to what densities satisfy (3.24).

This requires examtng the Jacobtan of f(-), since B « {b..}

where

IJ
illifiL

H S-e

If we assume for S - [-L,+L] that p(») has some symmetry,

then B will be diagonal, and (2.24) is easily verified.

THEOREM 19 Let p(•) satisfy, for some L>0, and all 1-1, . . k,

p(x., . .,L, . . x.) - p(x,, . . t-L, . . x.) .
,th ^th

Then for S - [-L,+L] , B is diagonal, and is positive definite

If and only If
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+L +L

2L J . . . I p(xr . .,L, . xk) < j p(x) dx
-L -L t th JS

(3.25)

for al1 I - 1, . . k.

Proof: This simply requires evaluating the various

partial derivatives of f(»). Thus:for li<J,

♦ L +L *L +L

"'J01 '7Ts Jy • •I /• • ••/ 'u(x)d
-L -L -L -L

Jth
mt ss) ng

where

gjj(x) - Xjtptxp .,L, . . xk) - p(xr .,TL, . . xk)] y
!th tth

x

+ L i-L

bii " 1• p7~s /"•'•/ hiU) dx
-L -L

jth
mt ss tng

where

h,(x) - p(xr . ,,L, . .xk) + p(x]f . .,-L, . . xk) .
Ith Ith

By the symmetry assumption, b.. - 0, thus B Is diagonal.

(3.25) guarantees that b^ >0, which insures that B is
poaitive definite. Note that bj. are always finite, a

result used In THEOREM 14.
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Turning to the shrinking wtndow algorithm, we have

the following result on rate of convergence:

THEOREM 20 Let Vj ,u2 be the sequence of random variables

derived from the shrinking window algorithm. Let the function

f(-) defined In THEOREM 18 with S - [-L,+L]ksattsfy

AL2 * <$-*>,fU)> .for $ome A>0# (3#26)
c-e 2

Let the sequences a and L satisfy
n n '

anLn " K/" •„ " •/»"

If AK > 1, then

E|lin " S|2 < K./n a

Proof: The proof follows the one dimension proof of

THEOREM 11 (Chapter tt, Sectton 5) exactly. Assuming 9-0

we write

IVhI2 • |yB - *n<vvn)ll

Taking conditional expectations we can bound the middle term

as before, using (3.26), and the proof follows.
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CHAPTER IV

COMPUTER SIMULATION

This chapter contains computational results derived from

application of the mode seeking algorithms to computer gen

erated data. In the first section, the variance of the es

timates yn Is computed for both of the algorithms discussed

In previous chapters, and the results indicate that y does
n

converge In the bImodal situation as well as the unlmodal.

In the second section, a similar mode estimation procedure

Involving simultaneous estimation of all the modes Is defined,

and some computational results given. Finally, the third

section presents some limited theoretical results on the

multimodal problem.

Section 1. Program description and results.

The results of this section, summarized In Figures 4.1

to 4.4, show that the mode seeking algbrtthms do converge for

both unlmodal and blmodal data. The values used In these

graphs are derived from a computer program which first

generates a data set, and then Implements either the fixed
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window or shrinking window algorithm and applies it to the

data. The process Is repeated several times to obtain

estimates of the variance. Specifically:

1. The values A, NSH, BETA, L, N, and ITER

are specified, and VAR is Initially set

to zero.

2. Samples are generated according to a

density p(x) - [p}(x) + P](x - NSH)]/2

where p.(«) ts a symmetric triangular

density with base 10.

3. The samples are used sequentially In

the mode estimation procedure y -
r n

« /.. \ !*u a/ 1-BETA/2yw - an{V„ - y ) with aM - A/ n
n n n n n

until N samples have been averaged Into

the estimate, using a window of Initial

length 2L, which ts reduced to 2L/nBETA

after n samples have been averaged In.

4. DIST Is computed as the smaller of the

distances of yN to 5, and yN to 5 ♦ NSH,

and the variance computed:

VAR - VAR + (DIST)2 .

5. If the mode has been estimated ITER

times, and thus VAR has ITER terms av

eraged In, then VAR/ITER, the sample

variance, Is printed. Otherwise go to 2.



The preceding ts a multipurpose program. If BETA

Is zero, the so called fixed window algorithm ts Imple

mented, and If 0 < BETA < 1, then the shrinking window

algorithm is used. Also, If NSH is zero, then the dis

tribution Is strictly unlmodal, and If |NSH| > 5, then

the density has two sharp peaks, one at 5, and the other

at 5 + NSH.

This general program has been run with all permuta

tions of the baste options, as follows:

68

FIGURE ALGORITHM TYPE DATA TYPE

4.1 FIXED WINDOW UNI MODAL

4.2 Fl XED WINDOW BIMODAL NSH - 8

4.3 SHRINKING WINDOW

BETA - .2

UNI MODAL

4.4 SHRINKING WINDOW BIMODAL NSH - 8

BETA - .2

Thus the unlmodal data has a density

5 10

and the blmodal data has density
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For each of these four cases, the variance (VAR)

is graphed on the following pages for values of N between

25 and 225. The results demonstrate two things: (1) the

variance decreases roughly as predicted and (2) the esti

mates of the modes are In fact converging to the modes,

since the variance Is computed about the true modes.
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Section 2. Simultaneous estimation of modes.

The algorithms as implemented In Section 1 of this

chapter are rather wasteful of the data generated. Typi

cally many more samples must be generated than are actually

used In estimating the mode. Thus If a dtstrtbutton ts

made up of two widely separated modes, It ts unlikely that

any samples from the region about one of the modes will ever

be used. To make the program more "efficient" It seems

that several modes should be estimated a't once. Such a pro

cedure has been Implemented.

The procedure considered here uses a sample which falls

to "hit" the Intervals of Interest to center a new Interval

as follows: Start the fixed width window algorithm as

usual. When a sample does not fall In the wtndow, use tt to

center a second wtndow of the same size. Continue the pro

cedure with two windows until another sample falls outside,

and In that case center a third interval about this point.

This process can be continued. Whenever one Interval over

laps another, simple shorten the Interval which has had

fewer points averaged Into tt, dotng the shortening In a

symmetric fashion, so that the Interval keeps the same center,

and ts still symmetric, although shorter by an amount suffi

cient to insure dlsjolntness.

Experience has show that wtth a well chosen value for

L, the (Initial) window width, the results of the above
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technique represent qutte well the various modes In the

data. Figures 4.5 and 4.6 Indicate the results of such a

procedure. The data (500 and 1500 samples, respectively)

Is two dimensional, and Is drawn from a superposition of

two spherically symmetric triangular distributions (which

perhaps should be called conical) with support set of radius

fUve Indicated by dotted lines. The procedure Is Implemented

In its most obvious two dimensional form, with the set

S - { x| |x|<L}» The number of samples averaged Into each

ball (nominally of radius L - 3, but In many cases reduced

by the disjotntness requirement) is indicated In each ball.

The results are generally satisfactory, although several

extraneous "modes" are estimated, as would be expected.
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Sectton 3. Multimodal convergence.

The results of the computer simulation wtth bI modal data

seem to tndtcate that the methods perform satisfactorily In

multimodal situations. This agrees with the intuitive argu

ment which points out that as the estimate y moves toward

a mode, only samples near that mode are averaged Into the

estimate, and If this ts true, then the untmodal convergence

result justifies convergence. Just such an argument will

prove convergence for certain special distributions. We

need an assumption that each mode ts "Isolated" so that

yn cannot move from one mode to another.

THEOREM 21 Let L>0 be fixed and let the density p(*) on

the real line be of the form

n

p(x) - 2j*jPj *x*
l-l

where (Xj > 0, Jct} » 1, and Pj(«) unlmodal on the average

about 0j, I - 1, . . n. Define L| - [aJfb|3 as the smallest

Interval containing the support of p.(«). Assume, without

loss of generality, that a] j a2 $* . . & a^. Assume

+1 " bi * L I - 1, . . n-1 . (4.1)

Then the random variable y_ generated by the fixed window
n

algorithm (THEOREM 1) converges ( in quadratic mean and
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with probability one ) to the simple random variable G

which takes on the value ©j with probability a{.

Proof: The proof Is obvious. If the first sample, x,

is from Pk(0 (this happens with probability c*k) then

all succeeding samples which are averaged Into yn also

come from Pk('), because of (4.1). Since Pk(*) Is unlmodal

on the average, y given that x Is from pu(m) converges to
n n

0k by applying THEOREM 1.

A similar result Is true for the shrinking window

algorlthm:

THEOREM 22 Again assume the density p(-) Is of the form
n

p(x) - £a p(x) , p.(*) satisfying (2.9) and (2.10), I.e.

differentlable and strictly unlmodal about 9,. Define

a* and b. as before, and assume that for some e>0,

a.+. - b > e 1-1, . . »n-1 .

Then the random variable y generated by the shrinking

window algorithm (THEOREM 8) will converge to a simple

random variable taktng on the values 0. t-1, • .,n , each

with positive probability.

Proof: We use the fact that Ln + 0. Assume that for

n > n , L < e. Then If y^ ts In the support of p^(#)
e' n n_ *



( this occurs with positive probability ), then as In

THEOREM 21 only samples from Pk(s) are averaged Into y(

for n > n . THEOREM 8 yields the convergence result.

80
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CHAPTER V

COMPARISON AND CONCLUSION

Section 1. Comparison.

This thesis has discussed two mode seeking methods.

There are, of course, other mode estimation procedures.

Most of them are of a very different nature from the methods

suggested in this work, in that almost n_o assumptions are

made about the density function whose mode is to be estima

ted. One class of procedures uses the samples to construct

an estimate of the underlying distribution function (d.f.),

and estimates the true mode (a unique maximum of the density

is assumed to exist) by the mode of the sample d.f.

For example, Parzen [13] uses the sample d.f., defined

for a sample x., . . • ,x as

F (x) - n {number of x.'s whtch are less than x}

to construct estimates 0,, ©2, ... by
00

0n - max fh"^^) dFjy)
n -oo<x<« J h n

where K(a) ts a "we Ightlng"functIon. Parzen is able to prove
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unde>r smoothness conditions on K(«) that provided h(n)-»» 0

as n*"*, G is asymptotically normal and converges to 0, the
Z. .«

true mode. He shows E(Q -q) < Cn p where 3<l/2.
n

Similarly, In a recent paper Venter [18] has suggested

a slightly different technique, using ordered samples

Y., . . ,Y . A sequence of estimates 0 Is defined as the
in n

midpoint of the interval formed by the first and last m

(m fixed) consecutive Y.'s which are closest together. He

shows 0 -• 0, the true mode (assuming It exists), wtth

-1/3convergence rate no better than n •

The deficiencies of these techniques are numerous.

k
Neither generalizes In an obvious way to R , and this Is

a very serious limitation. In addition, the computations

required to implement either scheme are almost overwhelming.

A sample d.f. Is hard to compute, and obtaining ordered

samples from samples ts non-trtvtal, requiring the storage

of al1 the samples. Similarly, computing the Integral and

finding the maximum In Parzen's scheme are quite difficult,

and Venter's estimates are no easier to find.

Thus tf one ts willing to assume that the underlying

distribution ts unlmodal (or, using the computational or

theoretical results of Chapter IV, several distinct modes),

then the mode seeking methods presented here are preferable

to these "estimate the d.f." procedures.

A very different approach, which has not been applied

to the problem of estimating modes but which ts obviously
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related, is the approximation of the density p(») by a

function q(#) , where

M

q(x) - Y a| *! M
1-1

where the <(>.(•) are known functions. The "best" choice of

the a,'s can be found using stochastic approximation, invol

ving samples from the density p(-). See Blaydon [3]. The

mode can then be estimated by finding the maximum value of

q(x). Of course, unless p(*) Is of a special form, no finite

value of M and no choice of the $j will give an accurate

estimate of the true mode, but In many cases the estimate

based on q(*) will be sufficiently close. This may be a

useful procedure. The method Is based on the "potential

function" approach to patternrrecogn1tion developed by

Braverman [5]*

Another approach to mode estimation which also uses

stochastic approximation has been suggested by Burkholder [6].

He extends stochastic approximation to the problem of the

estimation of the point of inflection of a regression function

(The methods suggested in this thesis simply require estima

ting the root of a regression function.) Since a mode Is by

definition a point of inflection of the distribution function,

this procedure seems ideally suited to the estimation of

modes. An apparent difficulty with Burkholder's presenta

tion Is that he requires samples from a family of random
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variables Y such that EY - F(y) where F(*) Is the d.f.

whose mode Is to be estimated. However, we are given only

the random variable x with d.f. F(«). In this case Y^ can

be derived from x as follows:

Y (w) - 1 If x(u>) £ Y
Y

- 0 If x(a>) > y .

In this way the difficulty Is avoided. With the family Y^

Is can be shown that the sequence of random variables x^

generated by

a
j

2n*l " *n *T [y3n-1 " <Vsn-2^3n>'«
cn

converges with probability one to the mode 0. Y3n-2»

y„ ., and y- are observations on the random variables
'3n-1 3n

Y . Y , and Y , respectively, and the sequences
x -c * x +c
*n n xn n n

a and c satisfy
n n

c - o Un - - Wnu> <-.

F(#) must be strictly unlmodal, with requirements on the

density quite comparable to those placed on the density In

the shrinking window algorithm discussed In this work.

Burkholder Is also able to prove, under even more restric

tive conditions on the density, that xr Is asymptotically

normal, with a variance which decreases as n , with £<1/2.

This procedure possesses many of the properties of the



methods described in this work, and thus may be quite

useful In pattern class Ificat Ion.and cluster analysts.
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Section 2. Conclusion.

This work has established two baste facts: first, that

mode estimation prodecures are quite useful for pattern

recognition and cluster analysts, and second, that two par

ticularly convenient mode seeking algorithms have several

desirable properties.

This was accomplished by first introducing the concept

of cluster analysis and discussing its relationship to pat

tern recognition. It was argued that any cluster analysis

procedure would be more effective If the mode locations were

known. For this reason, a mode estimation technique was

described which could estimate modes in multimodal distri

butions and a proof of convergence was given In the unlmodal

case. A similar method, the shrinking window algorithm, was

then introduced, and its convergence properties were found.

Since it is of considerable interest to know about the rates

of convergence and the extensions to higher dimensional spaces

of both the algorithms, this was discussed. Finally, compu

tational results were presented which conftmed convergence

in both unlmodal and blmodal situations, and in the previous

section, the mode estimation procedures defined in this work

were favorably compared with other methods.

Several questions on this topic have been left unans

wered by this work. The most significant result which was

not obtained was the proof of convergence In multimodal
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populations. The procedures do converge under certain as
sumptions about disjoint support sets, but the computational
results seem to Indicate that a more general result may be

true. This problem of multimodal convergence may be framed

more generally by asking under what conditions does a sto

chastic approximation process converge to one of several

roots. All present theorems consider only one root. A

related problem is the development of a good technique for

distinguishing the various modes to which the algorithms are

convergi ng.

Various outher topics may be worthy of further study.

One Important question Is how to choose the value A In

a - A/n or a L2 - A/n In the mode seeking algorithms.
*n n n

Based on the rate of convergence results, there are optimum

values for this parameter, yet without knowledge of the den

sity p(#), the best choice of A cannot be made.

Several generalizations are apparent, though their use

fulness Is at times not clear. For example, the results of

Chapter III In extending the procedures to R could probably

be generalized to much more general Inner product spaces.

Or, different sets over which unlmodallty Is judged might

be considered. In the one dimensional versions we consider

the set [-L.+L], or in the shrinking window case, the set

[*L,.+L ]. A most interesting generalization would be to
1 ••' n* n

allow L or L to be random variables. Similarly, another
n

extension would be to consider the properties of the algor-
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Itms when the sequence y Is generated by, for some K(#)»
n

"n+1 - Vn " anK(,Jn " 'n* '

This work deals only with the special case

K(x) - x If |x|<L

- 0 elsewhere,

or, In the case of higher dimensions

K(x) - x If x e S

« 0 elsewhere.

Finally, nothing in this work is concerned with mode

estimation with a finite number of samples. The two pro

cedures described in this thesis are consistent and there

fore asymptotically unbiased. However, they are inefficient

in the use of samples, since only a fractton of any data set

Is actually used to calculate the estimate, and they do not

have well understood properties for the finite case.
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Section 1. Stochastic Approximation.

THEOREM A (Dvoretsky [3]) Let a ,B . and ym be positive
n n n

sequences such that a -K), 7$ <», and Ty •00. Let T (•) be
n " n ** n n

measureable transformations satisfying

A. |Tn(r,, . . rn) - 6| <max{an, (1+3n)|rn-6|-Yn>

Let x^ and Y for n-1,2,. . . be random variables and define

B' xn+l " Tn(V • • •*„> + Yn

Assume

Then

C. Ex? < • and JEY 2 < -
n

0. E[YM | x., . . xJ - 0 w.p.1

Llm E(x -0) - 0 and
n-*» n

Pr {llm x - 0} - 1 .
n-~> n

EXTENSION: Yn may be replaced by a non-negative function

Yn(>*i> * * r ) and the result holds provided
n i n

J,y • w uniformly for all sequences

r]9r2t . . for which sup | rn |< M for some M.



91

The following extension to R Is due to Sacks and

Derman [7]•

THEOREM B Let the same conditions as in THEOREM A be sat

isfied with these modifications: {x }, {Y }, and {T } are
n n n

k dimensional random vectors, C. should be Interpreted as

, and the absolute value In A. should be read asElY I2

norm. The conclusion Is that |x -0| -»• 0 w.p.1

EXTENSION The extension of the one dimensional result

permitting random y remains valid.
n
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Section 2. Sacks' Results on Asymptotic Distribution.

These results are due to Sacks [14].

THEOREM Let Y(x) be a real random variable for each x and

define M(x) - EY(x). Assume M(x) - 0 has a unique solution

x - 0. Define

xn ♦1" xn * V(*n>

where a satisfies Ta_ - «°, and 7a2 < «, and x. arbitrary.
n ** n ** n i '

Assume

Al <x-0)M(x) > 0 for xi<0

A2 |M(x)| < Kjx-0| and Inf *|m(x)| > 0
t|<|x-e|<t

2

0<tj<t < » .

A3 M(x) - K(x-0) + 6(x,0)

where 6(x,0)/(x-0) ?• 0 as x-*0.

A4 EY2(x) < K2 EY*(0) - O2 .

A5 E/Y(x)| for some v>0.

Let an - A/n with 2AK > 1. Then n1/2(x -0) is asymptotically
n n ' '

normal with zero mean and variance A2a2(2AK - 1)" .

THEOREM (Rk) Let Y(x) be a set of random variables In Rk,

and define M(*) and x as before. Assume
n

Al <x-0,M(x)> > 0 xi«0
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A2* |M(x)| < K.|x-0| and fnf | M(x) | > 0
t,<|x-0|<t2

for 0<t|<t2< • .

A3' M(x) - B(x-0) + 6(|x-0|) where B Is positive
defInlte

A4» E|Y(x)|2 < K3 E|Y(G)|2 -it for it non negative
definite

A5' E|Y(x) 2+V
some v>0.

1 /2
Assume a - A/n with Ab. > 1/2. Then n ' (x -Q) Is

n k n

asymptotically normal with zero mean and covarlance I

defined (along with b.) by:

Let b., • . b. be the eigenvalues of B In decreasing -

order. Define P as B - PDP where D Is diagonal with entries

b., . . . b, . Define ir!. as the I , J element of P irP.

Then Z - PQP where Q - {q»|} and

qjj - A(Abj +Abj +ir'irfj
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