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ABSTRACT

This thesis deals with the problem of designing pattern
classifiers with the aid of uncategorized samples. It is
assumed that the samples have local concentrations, or
clusters, and to ald in the design of the classifiers, two
algorithms are Introduced which estimate the location of
these concentrations. More precisely, the algorithms esti~-
mate modes of essentially unknown probability distributions,
glven only a sequence of samples from the distribution. The
bulk of this research is concerned with proving the conver-
gence of these estimates as the number of samples becomes
large for the unimodal case.

The algorithms discussed here are shown to be specific
cases of general stochastic approximation methods, and the
convergence is a consequence of this fact. Since the methods
are particularly convenient computationally, requiring little
storage and reasonable computations, the algorithms have been
implemented on a computer, and the results of this effort are

given for the multimodal case as well as the unimodal case.



CHAPTER |

INTRODUCTION

The work reported in this thesis is concerned with the
design of classification procedures, when such design must
be based on unclassified samples. This Is a realistic pro-
blem, and examples of where the design must be of this type
will be given in later paragraphs. The techniques that we
shall explore make use of the relative concentrations of
samples in the measurement space. For this reason, we refer
to this body of techniques as cluster analysis.

One principal motivation is due to problems in pattern

recognition. Most of the problems in pattern recognition

that have been analyzed are really only problems In pattern

classification. It seems to us that genuine recognition

should involve the discovery of the existence of classes, as
well as classification. It is to this problem of discovery
that we address ourselves in this thesis.

The most famlliar example in which the exlistence of
classes has to be discovered Is taxonomy. The entire hier-

archy of classes must be discovered by examining the dis~-



tribution of characteristics formed by the samples that

have been collected. In problems of this type classification
is a means rather than an end. Classification in this

case serves the purpose of summarizing the detailed measure-
ments of a sample by its membership In a class. For classi-
fication to be useful In this type of application, 'variation'
within a class must be relatively unimportant in comparison
with "variation' among classes. This principle underlies

much of cluster analysis.

Even in well specified classification problems such as
automatic recognition of typewritten characters, cluster
analysis may be useful in order to make a preliminary class-
ification into various groups before final classificatlon
takes place. For example, the researcher may have correctly
categorized samples available (i.e., samples of A's,
samples of B's, etc.) but he may have difficulty achieving
a high recognition rate. This often occurs when a single
category, say the A category, contains capital A's, and
smell a's, and possibly different type fonts. The reason
the recognition rate Is low is that the names attached to
a class hage little In common with the natural groupings of
the data, and the natural classes must be discovered. An
appropriate procedure in this case is to 'rename'" the
groups. Thus cluster analysis can be employed to make inter-
mediate classifications, breaking the A category into several

categories, say Al. Az. and so on.
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Cluster analysis itself may be seen as a problem in
pattern classification. A simplified model of a pattern

classifier is shown below:

k
Measuring [X 8 R S IClassifica~ ———;leJ .« +sN)
Device tion Device

Figure 1.1

The measuring device converts, for purposes of classifi-
cation, real objects into a set of numerically valued measure-
ments. The classiflier then maps these measurements Into
one of N classes, numbered | through N. For example, we may
wish to distinguish football players (class 1) from jockeys
(class 2). Suppose we measure the height and welight of the
men (thus k = 2)., Because of individual differences between
men of the same category, the measurements within one class
are distributed over a region in the measurement spsce. To
handle such a distribution theoretically, we assume that
the measurements are random variables with law P(x | 1)
for class i. Thus a set of measurements is really a set of
random variables with a probability distribution para-
meterized by the class Index I. In the case above, the dis-

tribution of height and weight for Jockeys is quite different
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from the distribution for football players. The classifiler
must detect this difference and classify accordingly.

The central problem of pattern classification is the
design of these two blocks. Although the problem of choosing
good measurements is a vitally important area for research,
most research has been directed toward classifier design.

To a certain extent, this thesls perpetuates this bias. We
will thus concern ourselves with designing a good classlifier,
given an appropriate class of patterns to recognize.

It Is clear that specifying the set of patterns to be
recognized plays a major role in designing the classifier.

In certain cases, for example, If the distribution of the
samples (sample is a word used interchangeably with pattern)
is completely known for each of the N classes, the ''best"
classifier can be specified without examining a single
sample. On the other hand, If either the number of classes
or the distribution is: unknown (or partially unknown), or
if the undérlylng probabllity law Is represented only by
samples which are correctly categorized, then the samples
should be examined to determine the best classifler. For
example, If only certain prameters of the underlying distri-
butions are unknown, then the classifier should be designed
using sample estimates of these parameters.

Various techniques for implementing estimation precedures

and other classiflication schemes have been devised by various
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investigators. For a survey of some of this literature, see
Nilsson [12]. Although this literature Is falrly extensive,
there has been little research done in the area of pattern
classification where the least information Is available--
where the number of classes is unknown, where there are no
correctly classified samples, and where the underlying pro-
bability distribution is essentially unknown. (In such a
situation pattern classification can be identified with
cluster analysis.

The basic assumption in cluster analysis Is that the data
has local concentrations, or clusters. Thus [f the patterns

are represented in the measurement space as follows:

Figure 1.2

Xy

then the data is clustered, In this case Into two clusters,
and cluster analysis will attempt to sort these patterns Into
the two corresponding classes. In this way cluster analyslis
classifies data without prior specification of classes. As
before, the classification will depend on the particular

unclassified samples avallable, and cluster analysis has been

called learning without a teacher, since there are no cor-
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rectly classified samples available. For a summary of much
of the literature in cluster analysis, see Ball [1].
The cluster analysis problem fs to discover the clusters

and classify data into classes corresponding to the natural

clusters. There are relatively few different approaches to

such a problem. One approach exploits the idea that *“variation"

within a cluster is small compared with '"varlation' between
clusters. An attempt is thus made to find those sets S‘ which
make the sum of the varfances on each set Si a minimum. The
collection {SI} {s called a minimum variance partition, and
such mtnimum<varlance‘procudures have received some attention
in the literature. See, for example, Cox[8], who demonstrates
the minimum variance partition for the normal case, MacQueen
[11], who proves the convergence of a simple minimum variance
algorithm, and Ball and Hall [2], who use an iterative pro-
cedure on a finlte number of samples to obtain an approxima-
tion to the minimum variance partition. There are, however,
certain theoretical difficulties with these algorithms,

either in determining the correct number of clusters, or

in assuring convergence..

Another approach in cluster analysis which 1s applicable
only to the problem of classifying a finite number of samples
{s the similarity matrix method. A measure of “closeness'

8'1 is defined between the Ith and jth samples, and the

similarity matrix 1{s then defined as A= {alj}' An attempt
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is then made to group the samples in such a way that a'j is
small for { and ] in the group, and large if | is In the
group and J is outside. Bonner [4] uses such a formulation.
There are, of course, computational difficulties with such

a procedure If the number of samples Is large. This thesis
instead concentrates on methods which are easily computed,
have well understood characteriétlcs, and which still contri-
bute significantly to the cluster analysis problem. The
methods to be discussed here Involve, as a third approach,
estimation of modes of the underlying probability distri-
bution. The following paragraphs explain why knowledge of
the location of the modes is both useful and natural for
cluster analysis.,

Any classification device Is determined by its partition
of the measurement space. |If the classiflication device is
to be estlmated, it is reasonable to try to estimate the
partition. Generally speaking It is most convenient to
estimate parameters, yet it Is impossible to parameterize In
any convenient way all possible partitions of the measure-
ment space. It Is appropriate, therefore, to examine tech-
niques which estimate a reasonable number of parameters,
choosing those parameters which allow good classification
decisions to be made.

If the underlying distribution is parametric, then by

definition there is a finite collection of parameters
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{a), . . . a } such that the overall probability distri-

bution P can be written as
P(x) = f(a‘, . o . an,x)

where f(+) is a known function. In this case it is possible
to estimate these parameters based on samples from the dis-
tribution P, and thus determine an estimate of P. Once P Is
known, a good classifler can be designed. Unfortunately,
cluster analyslis problems are non-parametric in nature
(although some possibly relevant parametric work has been
done--see Fralick [10])), and there are no obvious parameters
to estimate. It is, of course, possible to estimate moments,
and In this manaer to estimate the distribution, but there
are many problems with this idea. High order moments

are required to approximate a multimodal distribution, and
the estimators for high order moments are quite bad. The
distribution can be estimated directly by using the sample
distribution or the 'potential function'" method (see Chapter
IV, Section 1), or by using the simpler sample histogram
based on cells. |f such a histogram procedure Is used in
cluster analysis, one does not normally want to cover the
entire measurement space with small cells for computational
reasons, and for this reason some work has been done on the
problem of optimum placement of the cells. See Sebestyn [17].
However, the procedure is still computationally complex and

has unknown theoretical properties. Rather than estimate
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the entire distribution function, It seems more profitable
to attempt to estimate relevant parameters.

The one set of parameters that does have meaning for a
large family of distributions and which would be appropriate
for cluster analysis Is the set of modes. A mode lis, of
course, a local maximum In the underlying density function.

The modes are perhaps the most natural measurement of
concentration. It is certainly true that the best choice of
a cluster analysls technique will depend on how the data
{s structured--that is, the meaning of ''clustered.' Al-
though a precise definition of cluster has intentionally
been avoided, almost any reasonable definition would either
implicitly or explicitly use the Idea that a cluster s a
subset of the data such that the underlying probability Is
unimodal over this set. A bimodal cluster is a contradiction
in terms. Thus knowing the number of modes Is really equiva-
lent to knowing the number of clusters.

Modes have other important properties. Not only are they
natural in the above sense, but, at least at present, they
are the only parameters which represent clustered data and
which can be conveniently estimated. In the next chapter,
an algorithm is presented which, based on experience in using
the method, can estimate all the modes of a distribution over
n-dimensional Euclidean space. This is a significant step

toward solving the cluster analysis problem, since reasonable
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classification can usually be made with no more information
than the number and positions of the modes.

To see one possible way modes can be used to categorize
data, consider the following procedure, called '"nearest
neighbor classification.' Suppose that each class is one
or more clusters, and suppose that data is grouped In this
fashion, that is, assume that the data is drawn from a dis-
tribution which is a super-position of n unimodal densitiles,
each class corresponding to one or more dengities. Assume
in addition that, although nothing Is known about the dis-

tribution, an Infinitée:sequence of classified samples is

available, denoted (xl,l]) , (xz.!z), e + o« « where
lj indicates the category or class of the jth sample xJ.
Classify a sample y of unknown category as follows: Find
the X, which is closest to y, say X ? and classify y as 'm'
This procedure has much to recommend it in terms of low
probability of error (See Cover and Hart [7]). However,
two facts.prevent it from being applied: (1) Every classified
sample must be stored--thus an infinite memory is required,
and (2) an infinite number of distances must be calculated
in order to find the smallestdistance. Even if only a
finite number of categorized samples are used, the stofage
and time problems are consliderable.

To cure these problems, and still preserve the basic

idea of nearest nelghbor classification, a modifled procedure
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involving only 'typical' or 'representative' samples has
been suggested. In this procedure, a sample is classified
into category i If it is closer to a representative of
category | than any other category. This Is illustrated
in Figure 1.3 . Note that in this rather idealized case,
classification of an unknown vector will be done almost as

accurately with representatives as with the whole data set.

3 3
3’3, 2
3() O 2 2
3 1 € @,
2 1
2 2 , 1 33 22
2 2 1
22(:& 2 |
3
3 1 1
33 @
, 3 NERNG
3
3 Figure 1.3
| = category | samples (2 clusters)

2 = category 2 samples (2 clusters)
3 = category 3 samples (3 clusters)

"“"Typical'" sample circled.

This is an eminently practical algorithm, since little
storage or computation is required. However, difficulties
arise when one attempts to choose the representatives. Here
cluster analysis Is useful again., It Is clear that there

should be at least one representative for each cluster, and
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if only one Is chosen, the one to choose is the cluster
"'eenter.'" This suggests two possibilitles--the conditional
mean of the samples In the cluster, or the mode of the
cluster. Both of these have much to recommend them, how-
ever the conditional means are relatively difficult to find
since the correct sets to condition on are hard to find.

Thus a mode estimation procedure seems most useful for class-
ification in the nearest nelghbor procedure.

It was mentioned above that good conditional means are
fairly hard to estimate. Interestingly enough;, even if it
were possible to find a good set of conditional means, In
most cases the classification can be done as well with the
modes. An Informative example is the case where each class
is a normal distribution, and the overall distribution Is
a superposition of n equally weighted normals with identity
covariance matrices and differing means. In this simplified
case, the optimum decision rule is to choose class | If
the sample Is closest In Euclidean distance to My the

mean of the lth

distribution. |f the appropriate set of
conditional means {u;} were found (by appropriate | mean
that u; is the average over the set of points which are
closest to u') then classification could be done In a sim-
ilar way, classifying a sample in class | If it is closest
to u?. This glves an Identical classification rule. How-

ever, this property Is shared by the modes, since assuming

that the means u, are not too close to each other, the
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same decision rule is defined by the modes. Thus It can
be seen that for classification purposes means, modes and
conditional means are equivalent in this case.

Even more importantly, the following chapters will in-
dicate that modes can easily be estimated, whereas means
and good conditional means are much harder to find without
apriori assumptions about the form of the underlying dis-
tribution.

Another property of modes is demonstrated by classifying
data in the followling way: Define a procedure based on
the points {g'}?_l by letting ¢ > 0 be small and deciding
a sample x is In class 1| If d(x,gi)< € for some metric
d, and otherwise make no decision, Then simply by the def-
inition of mode, as ¢ becomes small the use of this procedure
based on the modes will classify a greater proportion of the

samples than any other n points. That is

Pr{making a decision| modes}

Pr{making a decision | any n points}

In addition, If the samples close to a mode are all from a
single class (this Is a reasonable assumption common to
much of cluster analysis) then for € small every classifi-
cation declsion made by the above procedure using the modes
will be correct, and this will not in general be true for

any other n points.
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Modes have another property which makes them useful as
descriptors of clustered data. If a certain random variable
X € Rk has a density p(+) which has n modes at locations
My oo My, o oMo, then for any linear transformation A
from R* onto R¥ , the random variable Ax has a density which
has n modes at locations Am,, . . . ,Am . Thus it can be
seen that, using the modes as the essential property of
clusﬁerﬁ, a data set and any linear transformation of the
same data set will have the same clusters. " This makes a
clpsslflcatlon scheme based on modes relatively independent
of the units in which the measurements are made, and
independent of the particular quantities measured, so long
as the ‘'proper' set can be derived from them by an onto

linear transformation.

These last few paragraphs have attempted to show that
the set of mddes»Is the set of parameters most relevant to
cluster analfsls. They are very useful in the modified
nearest nelghbor classification technique, and they induce
the same classification rule as means in tﬁe simplest normal
case. The modes are, by definltion, in the reglons of
highest probability,and finally, modes are invariant under
linear transformation. This is not the whole argument,
which in general emphasizes the '"naturalness'' of modes. The

modes are the.most.intu!tlvely satisfying Indicators of
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where”the'clusters are centered, since, as was pointed out
earlier, cluste;s are by nature unimodal. Because of thls,
the modes are a reasonable measure of the location of the
cluster. Thus if modes can be conveniently estimated, the
cluster analysis problem will be considerably simplified.

The next chapter fntroduces two algorithms which esti-
mate modes in an extremely convenient manner. In one case,
the algorithm estimates points which are not quite modes in
the strict sense (i.e., local maxima) but which are '"averaged"
modes and may actually be more useful for cluster analysis.
Both algorithms are shown to be convergent in the unimodal
'case, and are expected to converge in the multimodal case,
~although no proof of this has been found.

In Chapier 111, the important generalization to n-space
is made, and it 1s shown that all the one dimenslonal re-
sults carry over to Rk. Chapter IV presents actual results
of these algorithms as they operate on computer generated
data, both unimodal and bimodal. Chapter IV also contains
the rather limited multimodal results obtained In this
research. .Flnally, the last chapter brlefly compares these
techniques with both conventional mode estimation procedures
and with other mode estimation procedures based on stochastic
approximation, Some extensions and generalizations are also

suggested In the last chapter.
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CHAPTER (1
MODE SEEKING ALGORITHMS
Sectlion 1, lntroduction.

In the flrst chapter it was seen that a significant
problem in cluster analysis would be solved If a technique
could be devised for locating modes in multimodal popula-
tions. In this chapter, we demonstrate such a technique.
In particular, a method Is given which, when provided a
sequence of samples from an unknow unimodal distribution,
extracts an estimate of the mode which converges to the
actual value of the mode. The method has been carefully
devised so that it will continue to work in the multimodal
situation.

To provide some Intﬁltlon regarding the particular al-
gorithm to be discussed here, consider the unimodal density
below:

(x)
P Figure 2.1
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in this case, the mean and mode almost colncide, so that
the mode can be estimated by estimating the mean. However,
if the method Is to work for multimodal as well as unimodal
distributions, estimating the mean Is unsatisfactory. |If
we can restrict our attention to a subset of the data whose
conditional density looks like Figure 2.1, then the mode can
be estimated by the conditional mean-- M, " %gx‘ where X
is a sample from the distribution In Figure 2.1 . This
procedure estimates the mode quite well when the distribu-
tion a symmetric about the mode, However, if the distribue
tion is skewed, the conditional mean is somewhat less satis-
factory as an estimate of the mode.

There is an easy cure for this. Consider the density in

Figure 2.2,

Figure 2.2

|

{
a é S d
If a smaller subset than the interval (a,d) is chosen,
and if It Is located properly, llke the Interval (b,c),
then the error in estimating the mode by estimating the
conditional mean on (b,c) is considerable smaller.

This discussion may seem a bit academic, for |f the mode

location is unknown apriori, these subsets cannot be placed
appropriately. That is, if the best location for these

intervals is known, the mode location is also known, with-
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out estimating anything.

Fortunately there is a useful procedure based on the
above discussion., We will attempt to estimate a good sub-
set of the‘data at the same time as the mode is estimated.
Considering only the unimodal case, one possible simultaneous
estimation scheme is as follows:

Let Xis Xgp o o be a sequence of iIndependent and
identically distributed random variables with a common
unimodal density p(+). Center an interval of length 2L,
with L>0 and specified, about Xy and call this center Hy.
Suppose we call the next sample which falls In this Interval
2% The density of the random variable Y, given that u'-E
is, as one might guess, the density p(+) conditioned on

being in the interval, and thus

(x) = p{x) for |x-E|sL

p
Hy=E g+l
yzl ! j p(z) dz
E-L

= 0 elsewhere.
Since p(*) is unimodal, the expected value of 2 is closer
than u, to the mode, and if we defide v, = (u‘+y2)/2 then
¥, Iis closer, on the average, to the mode than LR is.
A sequence Wys Mgy « o . can now be generated by ex-
tending this process. Thus if un-E is the present center
we define Yoel 25 the next sample which falls in the iInterval

(E+8,E+L). The new interval center is then obtained

n+l
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by averaging:

i
7] B cvm— (nu + Y ) o
n+l n+1 n n+l

If p(e) is unimodal, then for each n, M., |s closer to

the mode than ¥, Is, and in thils case convergence might be
expected. In fact convergence does obtain in such a situ-
atton., The assumption Is made in tbe following form: |If
Yo+l is closer, on the average, to the mode than ¥, is, we
will say the distribution is unimodal on the average. This

is a natural condition, and one which many unimodal distri-
butions satisfy.

The algorithm has been devised to enable M, to converge
to a mode in the multimodal situation as well, (However, no
completely satisfactory proof of convergence in this general
situation has been found.) Thus, depending on the starting
point Uy the algorithm will converge to one of the modes,
and if it Is restarted at a new ¥, it will converge again,
this time to a possible different mode. This, combined Qith
a method for distinguishing the different values to which

u_ is converging, provides a simple and effective algorithm

n
for finding all the modes of a multimodal distribution.

An important consideration here is the ease with which
the algor!fhm can be‘applled, since so little has to be
stored or computed. The samples Xys Xgp & o o are used
sequentially and then discarded and the only pérameter which
must be stored and updated Is M, The computations are also

straightforward.
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in the next section, the algorithm is precisely stated,
and its convergence is shown under the "unimodal on the
average' assumption. Actually a slightly generalized
version of the algorithm Is studied; whereas we have con-
sidered in this section

|
u ® e (nu +y )
n+l N+l n n+l

1
= u - e (u - y ) ’
n n+1 n n+l

in the next section we consider

Hp = Wy ° an(un - Yn+l)'

In Section 3 the unimodality assumption is more care-
fully studied, and there it is shown that most unimodal
densitles satisfy it. Section 4 introduces a new, though

similar, algorithm, and Section 5 is concerned with rates

of convergence.
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Section 2. A mode seeking algorithm, and Iits convergence

proof.

THEOREM 1 Let XyoXgy o o be a sequence of independent
identically distributed real random variables, each with

a fixed probability density p(°), and assume Ex? < ®, Let
L be a fixed positive number and derive a new sequence
YieYas ¢ o o and HysHas =« - 23 follows:

For n= 1,2, . . define
y = xj where Jl = | and forms= 1,2, , .,
n

Joe1 ™ jﬁl?{ll Ium-x'|<L }

m

and define LR A
Mogp = Wy = 8 (u -y.)

for a sequence a, of positive numbers.

Let the density p(°) be such that the function

E+L
f(g) = &£ - —E;r—- xp(x) dx , £ in the support
p(x) of p
satisfies
(E - B)F(E) > 0 for EO . (2.1)

Let a, satlisfy
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= 2 ®
Z.n © Za" < . (2.2)
Then E(un -0)2=+0 and u_+ © with prob. one.as n+o,

REMARK Condition (2.1) is a type of unimodality requirement,

denoted in the sequel as unimodal on the average about ©.

Because p(°*) is judged only by its characteristics averaged
over an interval of length 2L, p(°*) may differ slightly

from a true unimodal distribotion. Ia fact, if L Is made
very large, many densities become unimodal on the average,
and In the limiting case of L = » , any density Is unimodal
with © taken as the mean. Our primary Interest is in smaller

values of L.

Proof of THEOREM 1: Condition (2.1) is a requirement on
the expected value of the random variable yn(glven that

un_l'ﬁ). y, has a density glven by

Py |u _E(x) - EI%LiL' for |x-E|s L
n n-1 j p(v)
E-L
= 0 elsewhere

as can be seen by considering, for any set A C (E-L,E+L),
the probability that Y, is in the set A, given that

u' = £, That Is,
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Piob{y, € Alu'-E} = Prix, € A or

x, ¢ (5-L,E+L) and X3 € A or

X9 Xg ¢ (E-L,E+L) and x, € A or
. * . . ® }

The events on each line are disjoint, so we can write

n
= Pr{x2 € A}+ E: Pr{x‘ € A and
i=3

x; ¢ AEaL,evL) 2g)<i}.

Since the x"s are independent and identically distributed,
this can be written as

- Prix, ¢ A}) (1-Prixe(§-L,&+0)})
=]

= Pr{x € A} / Pr{(g-L,E+L)}

as deslired.

Thus the function f(+) appearing in (2.1) can be written
as

f(E) = g - E Ye (2.3)

where the random variable YE = (y given un_‘-E). The

subscript n can be dropped since the distribution of Yo

glven u__,=£ is independent of n.

Using this result, the theorem follows as a consequence

of the following stochastic approximation theorem. See
Dvoretsky [9].
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THEOREM 2 Let ZE be a one parameter family of real random
variables, £ € R, and define g(&) = EZ; . Assume g(E) exlists

for every £. Define a sequence x, as x, arbitrary and

where z is an observation of the random variable Zx ’

n
and where a is a positive sequence such that

Joo == Iai <o

Let Z5 have uniformly bounded variances, and let g(+) satisfy

|g(g)] < Alg] + B  some A,B . (2.4)
g(g) (£ -0) >0 for E¥®0 for some O, (2.5)

inf |g(g)] > 0 all 0<t,<t,< = (2.6)
t,<|g-0]<t, ’

Under these clircumstances, x, * © In quadratic mean and

with probabllity one as n-w,

To apply this result to the mode seeking algorithm we
define a random variable ZE = £ - YE where Ye Is the previosly

defined r.v. with density

-E—;P(L)-— for lx-ﬁl‘l.

fE_Lp(y)

= 0 elsewhere.

Pvg(“) -
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Defining, as before, the function f(£) = E ZE' we ldentlfy
this f(*) with the g(¢) appearing in THEOREM 2 and observe
that since f(¢) is continous, (2.5) implies (2.6). By
(2.1), (2.5) holds. To verify (2.4) we note that by the
nature of the random variable Yg, IE-YE!SL with prob. one,
and thus |f(£)|sL. In addition, E 2} g 4L®. These facts,
combined with condition (2.2) of THEOREM 1, guarantee that

¥, O.
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Section 3. Unimodal on the average examined.

In the last section a simple algorithm was introducéd
which observes samples through a window, and centers this
window on the average of the observed samples, and it was
shown that the estimates W, converge to a value © if the
underlying density satisfies a condition (2.1) which we called
unimodal on the average. It is of considerable interest to
examine the class of densities which have this property, and
to study the meaning of the value © .

We have already seen that condition (2.1) is a require-
ment on the expected value of the random variable YE which
appears in the theorem. yE Is the random variable defined
by considering for L>0 fixed only those values of a basic
reve x (with density p(:)) which fall in an interval

(E-L, &+L). Thus.the denslity of Vg is

P (z) = p(z) lz-gl< L
Vg
E+L
f p(x)
E+L
= 0 elsewhere

and is seen to be parameterized by £ , a real number which
can vary over the support of p(:). Condition (2.1) says that
the expectation of yE is always closer to © than & .

This is an intuitively satisfying requirement, and one

would expect it to be satisfied by many unimodal distributions.
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To understand which ones satisfy it, we first note that
if p(*) is a symmetric unimodal density then p(®) Is almost

unimodal on the average. More precisely:

THEOREM 3 Let p(<) satisfy p(x) < ply) for |y-0]< [x-0].

Let f(g) be defined for £ in the support of p and L>0 by

E+L
1
f(g) = ¢ - ——-——-f xp(x) dx .
g+l -
plx) 7 &L

E-L
Then, for every L>0,

f(g) (£-9) < 0. (2.7)

Proof: Let L>0 be fixed, and take 60, Note that
| |
8- (&) = &£+ ¢ J{ xp (x+£) dx
p(x) -L
E-L
so (2.7) is satisfled for £20 If

L
J( xp(x+£) dx < 0.
-L

This requires verifying that

L
Jf x[p(x+§) - p(-x+£)]1 dx < 0 ,
6 :

which Is certainly satisfied If

P(x+E) < p(-x+£) for x in (O,L).
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Considering &>x it is true by assumption, and noting that
p(x+E) = p(~-x-E) it is true for §<x. A similar argument

holds for £<0. This completes the proof.

Thus any unimodal symmetric distribution is almost uni-
modal on the average. However, condition (2.7), a weaker
version of (2.1), is not sufficient for convergence. This
is demonstrated by taking p(*) as a uniform distribution
of base 2a, and choosing L<a. Such a p(+) satisfies (2.7)
and in thils case M will not converge, but will wander about
in the reglon (-a+L,a-L).

The condition we want ~- unimodal on the average -- is

obtained if p(*) is strictly unimodal as follows:

THEOREM 4 Let p(+) be symmetric about © and assume
p(x) < ply) if |x-0] > |y-0|. Then, for every L>0,

p(+) is unimodal on the average, that Is:

(g-0)f(g) > o E# 60

Proof: From the preceding proof we see that we must show

that, for &3>0,

L
j xp(x+& ) dx < 0
-L

which again is true If p(x+§) < p(-x+E) for a set of positive
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measure of x in (0,L). The strict Inequality holds excluding

only the point x=f and points where p(x+&) = p(-x+E) = 0,

This result is easily applied to show that the normal
and exponential distributions, among others, are unimodal
on the average about the mode.

In fact, p(*) need not be strictly unimodal, as '"flat

spots' are permitted:

THEOREM 5 Let L>0 be fixed, and let p(°+) be unimodal and
symmetric about 6. Assume there Is an L° < L such that

for x, y in the support of p,

p(x) = ply) implies |x-y|<2L® or (x-6) = -(y-9)

Then p(+) is unimodal on the average about 6 .

Proof: As before, it iIs sufficlent to show that
p(x+E) < p(-x+E) for all x In some set S ¢ (0,L) which has
positive measure. This will be satisfied If we take

S = (L°,L) , since for every x in this S,
| (x+8) = (-x+g)| > 2L° .

This resdlt shows that the uniform distribution and the

trapezoldal distribution f are unimodal

— e P . N

on the average provlided that the Intervals where the density

is nonzero and constant are of length less than 2L.
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If p(+) is strictly unimodal but not necessarily symmetric
about the mode © , then it Is true that for every L>0, there
exists a €' in (0-L,0+4L) such that p(*) Is unimodal on the

average about ©', More precisely:

THEOREM 6 Let >0 be fixed, and let p(.) satisfy
p(x)< p(y) for xy0, and p(x)<p(y) for x>y>0 . Then there
exists a @' in (©-L,0+L) such that f(©') = 0. If all such

©' satisfy

L [ p(6'+L)+ p(e"L)] < (2.8)
d(e%L
eLL P(X)
then © ' is unique, and p(*) is unimodal on the average

about 0O' for this L.

Proof: Construct an arbitrary density of this type as

follows:
p](X) Xgo
p(x) =
Pz(x) x <0

Y

where Py and p, are symmetric and strictly unimodal. Thus

they are unimodal on the average for this L. Clearly

1 +L
f(uw = u- J. xp(x) dx
-L

uhl
J p(x)
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has the correct properties (that is, satisfles 2.1) for
|lulsL. We need to check the case |p|< L. Define 8' as a root

of f. f has a root, since f Is continuous and Is positlive

for u> L and negative for u<-L. (We take ©=0 here). That this
©' is unique, and that f has the correct property, can be

most easily verified by noting that f(.) is differentiable

and has a positive derivative at @' if and only if
~0'+L

p(x) - Llp(e+L) + p(o-L)] > 0.
e'-L

This Is true by assumption (2.8). This proves that o' is
unique, since if f(+) had more than one root, the derivative
of f would change sign. But we have only a single sign. Thus

only one root, and f(+) has the desired properties.

The four preceding theorems have shown that a large class
of unimodal densities Is unimodal on the average. This class
is even larger, since the criteria for unimodallity used in
this chapter is relatively insensitive to slight modifications

to the density function.

THEOREM 7 Let L>0 be fixed. Let p(*) be unimodal on the
average about zero and let q(+) be a symmetric density wlith
bounded support satisfying

Lq(L)

+L

_[_Lq(x)

< 1
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Then there is a A°% 1 such that for all A in (A°,1), the

density Ap + (1-1)q is unimodal on the average about zero

for this value of L.

Proof: We must show, for u>0, that

TL AN

u+lL
J’ x[Ap(x) + (1-2)q(x)] < {[ [ap(x) + (1-2)q(x)]
p-L -L
By assumption, p(+) satisfies
u+L u+L
_[ xp(x) = H[ p(x) + h(yp) where h(u) >0.
u-L -L
Thus we must show
p+L +L ()
(x) < f (x) + B :
ju_qu 0 <uf a0+ j

A Taylor serives argument shows that for small u, say |u|<e

u+L +L
[ xq(x) < ujr q(x) .
- u-L u-L

Thus we choose A° as the smallest positive number such that

u+tl +L
sup ’[ xq{x) -uJ7 q(x) - ?é%; <

ues u-L u-L

where the set S = {x |x in support p and |x|<e } . Such a

A° always exists, and satisfies the requirements of the

theorem.
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To illustrate this result we can take

q(x) = |cos ax]| |x]< M
= 0 elsewhere.
Then with proper normalization, and with any M, any a, and
roughly half the possible values for L, Ap + (1-2)q Is still
unimodal on the average for ) close to 1, yet this density
is clearly no longer unimodal.

More general results of this type can be obtained. For
example if q(+) is neither symmetric nor locally unimodal,
the theorem Is still basically true, except that the ''mode'
may be moved slightly.

incidentally, this proof suggests another fact.

FACT | f P and p, are unimodal on the average about O,
then for any X in (0,1), AP, + (l-x)p2 Is also unimodal on

the average about 0.

The results presented in this section show that the
condition--unimodal on the average--which is required for
convergence of the mode seeking algorithm is satisfied for
a large class of probabllity densities, both unimodal and
:"nearly" unimodal. This §s not surprising, since the con-

dition arises in a falrly natural way.
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Section 4. A shrinking window algorithm.

One of our goals in this research has been to find modes

in multimodal distributions. No completely satisfactory

proof has been found that the algorithm discussed In section
2 converges in the multimodal situation, but convincing argu-
ments and computer results seem to indicate that convergence
does hold. The argument regarding convergence goes as
follows: at step n, the algorithm only considers samples
from the distribution within L units of My | f Fn Is nearing
a mode, and L Is chosen small enough, then the algorithm
''sees' only samples from the region about that mode, and
does not see the other modes. This argument is at least
valid for some special multimodal distributions--see Chapter
IV, section 3,

The idea of putting in a window (un-L,un+L) can be gen-
eralized. Consider an algorithm which reduces the size of
the window as it proceeds. This should improve the ability
of the algorithm to converge in the multimodal sltuation,
since with the width of the window decreasing toward zero,
sooner or later the algorithm will concentrate on only
one of the modes .

There is a second Justification for such a "shrinking
window" algorithm. Recall that the method discussed in
Section 2--the '"fixed window' algorithm--may not converge to

the teue mode. Intuitively speaking, it should be possible
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to make the shrinking window algorithm converge to the true
mode of a unimodal distribution. This is indeed the case,

and is shown below.

THEOREM 8 Let Ln be a sequence of positive numbers. For
a fixed probability density p(<) with Ex?<» define a random

variable Yg by its density:

pon(x) = el | x-g] <L,

¢ | ply)
-t

= 0 elsewhere.

Let p(*) have derivative p'(*) defined a.e. which satisfles,

for x in the support of p,

(x-e)%%é?i <0 for x#0 (2.9)

¢ <|12;|<t [p'(x)[> 0 for 0<t,<t,< = (2.10)
| 2

Define a sequence of r.v.s M, by Hy=x (x a rov. with density

p(¢)) and
un+l = un - an("n-yn)

where y is an observation on Y" and a 1is a sequence of pos-
n n

¥a

itive numbers satisfying, along with Ln'
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Ln + 0

laL? = = (2.11)
2 Za:L: < o,

Under these clrcumstances,un +© as n +> @ with probability

one and in quadratic mean.

REMARES  Condition (2.9) and (2.10) are again unimodality
conditions of a considerably stronger nature than the earlier
unimodal on the average. We are no longer permitted the
luxury of averagingover a set, but must have a very strict
unimodality: p(+) differentiable and p'(x)<0 for x>0, and
p'(x)>0 for x<o.

This algorithm has been presented in a slightly different
form from THEOREM 1. An equivalent sequence u and Y, can
be derived from a sequence Xy1X99 o « o« o oOf i.l.d. random

variables with common density p(*) as follows:
M1 70X

Mp = M, - an(un-yn,,)

where
y. = xj where jo-l and for m=},2, ., ., .,
n

min {1] |um+‘-x‘|<Lm}

Jm‘lﬂ, - Jm<'
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To prove the theorem, we need the following lemma:

LEMMA  Let the density p(+) be differentiable a.e., and

assume (x-0)p'(x)<0 for x¥0. Then for every L>0,

| E+L
(£-0) (¢ oS T g xp(x) dx) > 0 [g-0|>L (2.12)
| plx) Je-L
4 &=L
Proof of lemma: Write p(+) as

p(x) = pl(x) x2 0

= Pylx) x <0
where P and P, are symmetric densities., By the nature of
P, Pjand p, are strictly unimodal. For £-0>L,(2.12) involves
only py, and is thus valid (by THEOREM 4), and similarly for

-g+o>L, (2.12) involves only Py

Proof of THEOREM 8: We take ©=0 without loss of generallty.

Define the function

f (E) = E[g - Yg 1 and note that

|f,(8)| <L, allg,n. (2.13)

Also,
var{t - Yg ] < hL: all g,n . (2.14)

and using the lemma

£f,(8) >0 forlEl>L . (2.15)
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where

z, =a lu - v:"- f,(u )],

By the definition of fn’ EZn = 0 and thus D Is satisfled.
(2.14) yields sz: < ha:L: and by (2.11) [ez:< @ , thus
C Is satisfied, since we have assumed that Eu?-Exz<~.
To verify that A is satisfied for the transformation
Toluy) = - a f.(u) ,
we let bn be a sequence of positive numbers tending to

zero such that
2 -
ZanLnbn @ (20'9)

Define p = L:bn. We define the sequence n, of positive

numbers as

inf |f (8)] >p_.
n,sl&lsr " "
To show that n, can be taken to go to zero, we remark
that if any function f(+) satisfies (2.18) then if B,* O,

one can choose a sequence n,* 0 such that

inf |f(8)] >8_ .
&l n

n.sié
To apply this to our situation define Bn - -%'*Yn where
L
’(Eol-:) n
n_<|&| <1 L
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Note that regardless of N,» B,* 0 by the uniformity
assumption. By constraction pn/L: * 0 and thus 8 _+ 0.
Now using the above remark we define n,* 0 by

;nr l|1=(5)| >B, -

nn‘é:s

This means

f |f(g)] - su |g(g,L2)/L2]| > p /L2
' n‘lET" n n n n

in
URIEIFY n

n

which implies

;nr SR = ele L DL T > e L]

n giElé

n

which in turn implies

inf fF(g)L2 (g,L2
SIElsll | £CEILE + g(g,L2)]] > P,

Mn

as desired. By using this sequence, and breaking up the
range of the argument of Tn(') we show that condition A is
satisfied:

If |r |sL, then

ITn(rn)I - lrn - ahfn('n)l EL, +al .

If |r laL ~ then we know ro @and f (r ) have the same sign

(2.15) and 1If Py < anf(rn) then
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|?n - anfn(rn)l - anlfn(rn)l - [rn[ <al .

Alternatively, If anfn(rn) < r, we have

e, - a f (r)] = Ir, | a | f,(r )]

< |rn| - ap, for Ig[rnlann
<n, for |r |<n_
<le | - a o for Ma|r lan_
and ">"M‘
In any event, for n large,
ITn(rn)l <max [L +alLl ,n, Ir t-a,0,]
and L+ al ~+0, n,* 0, and using (2.19), Zanpn - o,

Thus A Is satisflied for Y, @8 In the extension. This com-

pletes the proof.

This section, plus section 2, contain all the basic
convergence properties which have been found regarding these
two mode seeking algorithms. To summarize, it has been
shown that under very reasonable,conditions--unimodal on
the average, which Include most "unimodal' densities (THE-
OREMS 3 to 7)--the fixed window algorithm converges to a
value © which Is at most a known distance from the true

mode (THEOREM 1) If more accuracy is desired, the shrinking
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window algorithm converges to the true mode for densities
which are well behaved and strictly unimodal (THEOREM 8).
Thus accuracy can be traded for generality of result by

choosing one or the other of these algorithms.
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Section 5. Rates of Convergence.

In this section the rates of convergence of the two mode
seeking algorithms are discussed. In addition, some com-
ments are made about the asymptotic distribution of the r.v.
B,e \Many of these results are based upon known characteris-
tics of stochastic approximation methods.

The following theorem considers the original fixed win-

dow algorithm.

THEOREM 9 Let Myskas o o o be the sequence of random
variables derived from the fixed window mode seeking algorithm
as defined in section 2. Let the underlying density p(¥)

be such that the function

+L
f(g) = g - [——tl——- J7 xp(x) dx

E+
(x) &t
J 5-Lp X
satisfies
(g-0)f(g) > 0 if £¥0 (2.20)
f(E) = B'(E-e) + o(£-0) for 8,>0 . (2.21)

Let the welghting sequence a, be of the form a, = a/n
with 2a > I/BI. In this case, n's (un - ©) is asymptotically
normal with zero mean and variance azozl(ZaB,'l) where

g2 = Var Yo o
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Reoof: This Is an application of Sacks'[14] theorem on
asymptotic distribution, which appears for reference in the
appendix. Our f(¢) is his M(¢) and we must verify that

f(£) £ K(E-0) for some K>0. This is a conséquence of (2.21)
and |f(E)| £ L. Finally E(E-Y€)2*9<tw since IE-YEl<L a.s.

This result demonstrates that the random variable ¥,
has a variance about the mode O which decreases as 1/n, where
n is the number of samples Xy which have been averaged into
the current estimate L The more interesting question from
a comptational standpoint is, of course, how does the var-
fance behave as a fuction of n°, the number of samples elther

used or discarded. (Remember that the random variable Y_ Is

£
derived from x by discarding all samples which do not fall
in the Interval (E-L,E+L)). Fortunately n° is related by a
constant factor to n, at least asymptotically. It is easy

to show that, for large values of n,

o+L "
n?-[ p(x) dx = n .
o-L

Thus the variance of L decreases as 1/n° as well,
The question of when (2.21) holds arises immediately.

The following result Is appropriate:

THEOREM 10 Let p(°) satisfy
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- Llp(O+L) + p(O-L)]

L o+l
J. p(x)
o-L

< (2.22)

Then (2.21) holds with BI a | - KL.

Proof: A Taylor series expansion of #(°) can easily be

found to be

Fg) = [ - lp(est) + p(OL)] y(g q) 4 o(g-0)
j‘ p(x)
o-L

and the result follows.

The following result covers the rate of convergence of the

shrinking window:: algorithm.

THEOREM 11 Let HypsMps o o & be the sequence of random

variables derived from the shrinking window mode seeking

algorithm. Assume the functlon

i E+L
f(E) = E - | T — xp(x) dx
p(x) “E-L
satisfles
| AL2g £(E)/(E-0) for some A>O. (2.23)

Let a, = a/na and let anL: = b/n with Ab>1.
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Under these circumstances,

E(un - 0)2 g K/n for some K<w, (2.24)

Proof: This proof follows the lines of the proof of a
simple Robbins Munro stochastic approximation theorem

appearing in Sakrison[16]. By definition,

Une) ® By ~ an(un - yn)

Thus, taking ©=0,
Eupyyluy=8) = &% - 28 EE(u -y |u =£)

+a:E[(Mn‘Yn)2|Mn'€]
Using (2.23) plus E[(un-yn)zlunnil s hL: we obtain
Efulyyl vo=€1 & (1 - 24a L2)E2 + haZL2 .

2

Taking unconditional expectation and denoting bn - Eun

we have

- 2 2; 2
b sy = bn(l 2AanLn) + hanLn

We may iterate this to obtain

n-1
bn - blsl,n-l +h EZ aiLin,n-l (2.25)
kw1
where n
Bk.n - Z (v - ZAaJLj) - 0gkgn
Jmk+l

= 0 kiﬂ .



Faking logs of (2.26) and using the Inequalilty
log(l - x) g -x
we may show

Bm,n s exp {-2A E: aJL} } .,

Jmm+1
Directly approximating
n n
jé‘;“ajl.j - J-Z;_“ bilj with Ab > 1

B s (m+1/n)2 ,

Similarly the second term in (2,25) can be bounded:

"Zkkknl s Ao Zk”)z

n2 ML

§ ¢/n% .

Thus bn goes to zero at least as fast as 1/n® s and

(2.24) follows.

To explain the relationship between the previously
defined n and n®,for the shrinking window algorithm,

the following theorem has been proven.

L8



b9

THEOREM 12 Let a = a/n® and Ln - L/n(‘-u)/z. Then THE-

OREM 11 states that E(un-e)2 + 0 with a l/nq rate. Let

n® be the number of samples elther used or discarded before

th

the n sample is averaged in. Then, for large n,

n® =« K(n+,)(3-a)/2 (2.28)

02a/(3-a)

and therefore a 1/n% rate is a 1/n rate, and If

a € (0j)) then 2¢/(3-a) € (0,1).

Proof: The expected number of samples used between the

th

i and (H-I)St computations, given Uy is

p'+L'

/P, =1/ J p(x) dx .

Mitby
Thus at the nth step in the algorithm we have used or dis-

carded approximately
n
n® = E: l/P'

samples. Since M, €, it can be shown that If l..n + 0, and
p(*) continuous then
p'+L

Pi/Pg = [J

r 8+,
pi(x) 1/1 J p(x) 1 —-1 .
i i o-L,

u; -t

This result can be used to show that

n n
SNV IS VDY 1/Pg 1+
i=] i=]
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and thus
n
ﬂ° = leae

for large n. (This is the expected number of semples used

or discarded if the window had been centered on © , instead

of u‘.) This yields

n 9+L‘ n
n® = Z]/ [J p(x) ] = Z 2L p(0+L,)
=1 e-L, i=1

n
x = Z ey
|

1fL, = -z

n
n® = K Z;“ s K'(n+1)%*!
i=]

which is (2.28). This completes the proof.
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CHAPTER 111

MODE SEEKING IN HIGHER DIMENSIONS
Section 1. Introduction.

Since the motivation for mode seeking algorithms is
pattern classification, it is particularly important to ex-
tend the results of Chapter Il to higher dimensions. Pattern
classification is almost always done In higher dimensional
spaces, since In practical situations many measurements are
made on a single object, making up a8 vector In Rk with k>1,
Thus any tool useful for pattern classification must operate
in high dimensional spaces. This chapter extends most of
the results of the previous section to the estimation of
modes in probability distributions over Rk, and this exten-
sion is a most natural! one. We assume Rk Is an inner pro-
duct space with inner product

<X,y> = xTy = zx'y‘ where x = X .

X
Lk

and norm

le - <x’x>|/2
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Section 2, The fixed window algoflthm.

THEOREM 13 ket XjoXgy o o & be a sequence of Indepandent

identically distributed random variables taking vatues In
Rk, each with a fixed probabhlity density p(°*) over Rk.
Let S be a fixed bounded set, and derive two new sequences

Yy» ¥Y2» « . and HisHys « . as follows:
H =
For n = 1,2,3 , , define

Yo ™ xj where JI =1 and form= 1,2, , ,
n

ooy 318 (11 G0 5]
and
un+l = un - an(un-yn)

for a sequence a of positive numbers.

Let the density p(*) be such that the function

S+E

f(g) = ¢ - —;m-f xp(x) dx
J[ S+
satlsfles

<E-0,f(E)> > 0 if £¥0, £ In support p (3.1)
Let a satisfy
Zan = Ja2 < » (3.2)

Then lun -0 0 as n+® with prob. one.
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REMARK Condition 3.1 is an obvious analog of 2.1, and

again can be denoted as unimodal on the average. The ex-

tension is a natural one, since if we take k = 1 and

S = [-L,+L] for L>0 then this theorem reduces to the previous
one. In this sense S Is the k dimensional generalfzation of
the "window' [-L,+L]. S may be arbitrary, though the par-

ticular set S = [-L,+L]k will be seen several times here.

Proof of THEOREM 13: As before, condition (3.1) is a re-
quiremeat on the random variable YE = Yn glven un_'-E.

YE has the distributlion

pY'(x) - —P(x) for x-E € S
& ply)
S+E
= 0 elsewhere
Thus the function f:Rk > Rk can be written as
f - - EY .
(g) & £

The proof of the above theorem follows, as before, from

the following stochastic approximation result (See Sacks [14]) .,

THEOREM 14 Let Zu be a one parameter family of random

variables in Rk, with u e Rk

» and define g(u) = EZ".
Assume g(u) exists for every u. Define a sequence X, as

Xy arbitrary and Xoel = %X a z where z, is an observation
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on Zx and where a, is a sequence of positive numbers
n
satisfying fan = , Xa; <o , Let Zu have uniformly

bounded variances and assume g(+) satisfies

leGw)| < K, |u-o] (3.3)

<g(u),u-0> >0 for uke® for some 0,K,>0. (3.4)

inf [g(u)| > 0 for 0<t, <t,<w . (3.5)
t,slu-olst,

Then X, > © with probability one.

To apply this result, we define ZE - f - YE and note
f(g) = EZE. We then identify F(+) with the g(+) appearing
in THEOREM 14 and conclude that (3.1) guarantees that (3.4)
and (3.5) hold, since f(+) Is continuous. We note also
that since S is bounded, |§-Y€| € Kw.p.1 for some K>0 and
therefore |f(£)| ¢ K. Thus to check (3.3) we need only show

that for some ¢>0,
£ | < k,|&-0] for |E| <€ (3.6)

Since F() is differentiable, (3.6) holds if the Jacobian

of f ag<© has finite entftes, that is

3f'(5!, o e sk)

9%, gm0

This Is easily verified. The Jacoblian is explicitly exhib-
ited in the proof of THEOREM 19 ( Section § of this chapter).
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Section 3. Unimodal on the average examined.

The significance of condition (3.1) is considered here.
Generally, the results of Chapter ||, Sectlion 3 carry over.
As before, if p(¢) is a spherically symmetric unimodal density

thenp() is almost unimodal on the average.

THEOREM 15 Let p(°) satisfy p(x) s p(y) for all

|x-6] 2 |y-6|. Then for any symmetric set S, f(+) satisfies
<E-0,f(£)> a2 0 .

Proof. Consider 6=0. We must show

T [ ! Jr xp(x) dx ] g |&|? .
(y)
fsé T Tseg

A. change of variables iddicates that we need only show

T J( xp (x+E) dx 5 0.
s

Define the set SE - {x e S| ﬁTx p 0} and note that

since S s symmetric,

ET JrXP(X+€) dx = J[ ETx [p(x+E) - p(-x+E)] dx .
S SE

Since for all x € SE , E'x 5 0 and | x+E| 2 |-x+£]|

the unimodality assumption ylelds

p(x+E) - p(-x+E) 5 0 which completes the proof.
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Unimodal on the average is obtained if p(°) i$ spher-

ically symmetric and strictly unimodal as follows:

THEOREM 16 If p(¢) satisfles p(x) = p(y) whenever

| x-0|=]y-0] and p(x) < p(y) whenever |x-0|>|y-0| then

for any symmetric set S, f(+) satisfies

<g-0,f(g)> > 0 E$O .
Proof: Following the last proof, we show that

ET jrxp(x+€) dx > 0 for £¥0 .
S

Define SE = {x e s| ETx > 0} and note that since S is

symmetric

ET-/.xp(x+£) dx = J’ETx [p(x+E) - p(-x+E)] dx .
S S?
g
Since for all x ¢ SE , ETx > 0, and since | x+&| >} x+£|

for all x € SE, the result follows.
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Section 4. The shrinking window algorithm,

The shrinking window algorithm extends to Rk in an

obvious manner as follows:

THEOREM 17 Let Ln be a sequence of positive numbers. For

a fixed probability density p(s) over Rk define a.:random

variable Yg s £ € Rk » taking on values in Rk by its density:
p,,ﬁ(x) - -2-(—*_)_ x-a € Sn
Ye f ply)
Sn+g

= 0 elsewhere

where s, = [-Ln,+Ln]k. Assume p(.) 1s differentiable

with gradient Vp(-) defined a.e. which satisfles

<x=0,7p(x)/p(x)> < 0 for x¥o and (3.7)
x in the support of p.

inf |vp(x)] >0 Ot <t <m (3.8)
t,&|x-0]st,
[7p(x)/p(x)|& K| x-0] . (3.9)

Define a sequence of random variables Hp in Rk by My = X

(x a rov. with density p(s)) and
Hney © ¥y ~ an(“'n - Yn?

where Yn Is an observation on Y: , and a is a sequence
n
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which satisfies, along with Ln'

Ln + 0
2.“
ZanLn (3.10)

za:L:_< o .

Under these clrcumstance:, un+ © as n >+ » with prob. one.

REMARK  Again(3.7) and (3.8) are logical extensions of
their one dimensional counterparts (2.9) and (2.10). Al

are clearly unimodality requirements.

Proof of THEOREM 17: We will follow the one dimension proof
fairly closely, using the Sacks and Derman[15] extension of
Dvoretsky's theorem. We again take 0O=0,

Let bn be the sequence of positive numbers tending to

zero such that

ZanL:bn a8 ® (30")

and let p = L:bn. Define n + 0 as

<g,f_(g)>
n sigfsl 1 > p, (14ka212) /2 0o (3.12)
n

where fn(-) is defined as

f (g) = ¢ - ) xp(x) dx (3.13)
n (x) [
fs,,+2 X S +E
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that is,

n

£a(8) = EE - YD) . (3.14)
We can expand fn(°) as follows:

fn(E) = h(E)L; + Q(E.L:) (3.15)
where again we have

lg(§,L2)/L2] » 0 as L =+ 0,

and we assume that such convergence is uniform on a compact
set of §'s. Again this will certainly be true iIf Up is
continuous, in which case (3.7) implies (3.8). By expanding
the density p(*) as a Taylor series and identifying h(:) as

the coefficient of the &: term, we find
h(g) = - pE)/p(E) (3.16)

and (3.7) and (3.8) yleld

<g,h(E)> > 0 for &¥0 (3.17)
inf |h(g)] >0 0<t <t <@ (3.18)

To show the n, defined above can be taken to go to zero, we

- 1 2
define Bn pn/Ln + Y, where

I<E:9(€t|-:)>l
Yo ° 3 T

sup
n.&l&lst | €l n,&

aslEls!

u
Els

Séch a Yo * 0 by the uniformity assumption. Thus Bn -+ 0,
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We now defline nn + 0 as

inf <g,h(§)> > B
n sl&ls g

n

which can always be done when h(¢) satisfies (3.17) and

(3.18). Rearranging we obtain

<€, ()L + glg,L,)>
‘nf > prl|
n,&l&ls) | &l

as desired. Finally note that (3.9) implies that we can

find a sequence kn + 0 such that for kn£|£|,

| £, (&) ]
Lz

s K'g| . (3.19)

We can now use the preceding and
lfn(E)l S Kan (3.20)
to show that A to D are satisfied. We define Tn(-) by

uﬂ+| - un B aﬂfﬂ(uﬂ) - zﬂ * Tn(un) - zﬂ

where 2 = an[pn -y - fn(un)]. By (3.14), D is satisfled.

u
n
C follows by noting that since |§ - Ygl < KL, with prob.
one, 52: < Kza:L: , and (3.10) yields ZEZn < o, Finally

we have

ITalrad [% = Try = ot () |
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= legl? - 2a <r o6 (r)> + 226 (r)]2,
If max(k_,n ) § Irnl S | we have from (3.19) and (3.12)
T 1% 5 Irnlz(l+K'a:L;) - 2a p'tr | .
This yields
1,1 s Te lQekrazez) /2 o g o
9 |fnl(l+K'a:L:) -ap, . (3.21)

Using (3.10) and 13.1)) we see A Is satisfled for this

range of r . For lrnl < max(kn,nn)we use (3.20) to obtain

ITnI S max(kn.nn) * Ka Ll . (3.22)

A check of the proof shows that (3.21) holds if nn‘lrnlsn

for M arbitrary, and by the extension, the result follows.
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Section 5. Rates of Convergence.
This sectlion discusses the rate at which Elun-el2
goes to zero for both the fixed window and the shrinking

window algorithms.

THEOREM 18 Let BioMgs o - be the sequence of random var-

iables derived from the fixed window procedure as defined

in THEOREM 13. Lét p(°+) be such that the function

f(E) = e - —..__‘-..-_ j xp(x) dx
f p(x) “Js+&
S+§

satisfles
<g-0,f(g)> > 0 for £#0 (3.23)

f(g) = B(£-0) + §(&-0) for positive definite (3.24)

B and L?LSZ%LL'» 0 as |g-o|~0.
£E-0

Let the weighting sequence a_ be of the form a = a/n

with xabk>l, b, being the smallest eigenvalue of B. Assume

k
Cov Ye = % for m non-negative definite. Under these cir-

nl/2

cumstances, (un-e) is asymptotically normal with

zero mean and covariance I defined as follows:
Let bl' . o e bk be the eigenvalues of B In decreasing

1

order. Write B = PDP_ where P is orthogonal and D Is a

diagonal matrix whose diagonal elements are b‘, . . bk’
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1

Define “?j as the i,jth element of P 7P, Then I = PQP-‘

where the i,jth element of Q is

- 1)"w;j X

az(abix+ ab

J

Proof: This follows from a theorem due to Sacks [14]

which appears In the appendix, First we verify that
| £(e)| & K|g-0]

which follows from (3.24) and |f(E)|S K'. Finally, since
S Is bounded, |g-Y£| < K", and thus

2+v

E|lg-Y < K" for v20.

gl
The question arises as to what densities satisfy (3.24).
This requires examing the Jacobian of f(°*), since B = {bI }

J

where

b . 3f(e)
ijJ 3¢ *
J |g=e

If we assume for § = [-L,+L]k that p(°*) has some symmetry,

then B will be diagonal, and (2.24) is easily verifled.

THEOREM 19 Let p(-:) satisfy, for some L>0, and all i=1, ., , k,

p(xl. . .,t, . . xk) - p(xl, . e ,-t, . e X
lth lth
Then for § = [-L,+L]k, B Is diagonal, and is positive definite

k) )

if and only If
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+L +L
2L J[ . . .-[ p(xl. e bk, . xk) < Jr p(x) dx
- teh S
-t L it (3.25)
for all I = 1, ., . k.
Proof: This simply requires evaluating the warious
partial derivatives of f(+). Thus:for i¥],
+L +L +L +L
1 .
b = I ®  — o o o o o o o g, (x) dx
! RN A R T
Pros - L, L -L
th
missing
where
giJ(X) - xi [p(xlo o.L’ o o Xk) - p(x]o o'?L, e Xk)] )
Yeh teh
J J
+L tL
a ] - L c e
I I Jf . J[ hy(x) dx
-L -L
T
missing
where

h‘(x) - p(x', A .xk) + p(x', R xk)

*
ith ‘th

By the symmetry assumption, bU = 0, thus B is diagonal.
(3.25) guarantees that b,y >0, which insures that B is
positive definite. Note that blj are always finite, a

result used In THEOREM 14,
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Turning to the shrinking window algorithm, we have

the following result on rate of convergence:

THEOREM 20 Let LI be the sequence of random variables

derived from the shrinking window algorithm. Let the function

f(+) defined:In THEOREM 18 with § = [-L,+L] satisfy

ALZ ¢ ‘5;i';;f)> .for some A>0. (3.26)

Let the sequences a_ and Ln satisfy

n
anL: = K/n a, = a/n®

If AK > 1, then
Elu, - 8]* < Kllna .

Proof: The proof follows the one dimension proof of

THEOREM 11 (Chapter ii, Section 5) exactly. Assuming ©=0

we write
lun+||z - Iun - an(un-yn)lz
= lugl? - 28 <u ,u -y >+ a,lu -y |? .

Taking conditional expectations we can bound the middle term

as before, using (3.26), and the proof follows.
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CHAPTER 1V

COMPUTER SIMULATION

This chapter contains comptational results derived from
application of the mode seeking algorithms to computer gen-
erated data. In the first section, the varlance of the es-
timates Mo is computed for both of the algorithms discussed
in previous chapters, and the results indicate that L does
converge in the bimodal situation as well as the unimodal.
In the second section, a similar mode estimation procedure

involving simultaneous estimation of all the modes is defined,

and some computational results given. Finally, the third
section presents some limited theoretical results on the

multimodal problem.

Section 1. Program description and results,

The results of this section, summarized in Figures 4.1
to 4.4, show that the mode seeking algbrithms do converge for
both unimodal and bimodal! data. The values used in these
graphs are derived from a computer program which first

generates a data set, and then implements elther the fixed
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window or shrinking window algorithm and applies it to the
data. The process is repeated several times to obtain

estimates of the variance. Specifically:

1. The values A, NSH, BETA, L, N, and ITER
are specified, and VAR is initially set
to zero.

2, Samples are generated according to a
density p(x) = [p, (x) + Pl(x - NSH)1/2
where pl(-) is a symmetric triangular
density with base 10.

3. The samples are used sequentially in
the mode estimation procedure un =
Moo- an(un - yn) with a = A/ n‘-BETA/2

until N samples have been averaged into

the estimate, using a window of initial
length 2L, which Is reduced to 2L/nBETA
after n samples have been averaged in.

4, DIST is computed as the smaller of the
distances of My to 5, and Hy to 5 + NSH,
and the variance computed:

VAR = VAR + (DIST)Z .

5. If the mode has been estimated ITER

times, and thus VAR has ITER terms av-

eraged in, then VAR/ITER, the sample

variance, is printed. Otherwise go to 2.
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The preceding is a multipurpose program. |f BETA
is zero, the so called fixed window algorithm is imple-
mented, and if 0 < BETA < 1, then the shrinking window
algorithm is used. Also, 1f NSH Is zero, then the dis-
tribution is strictly unimodal, and if |[NSH| > 5, then
the density has two sharp peaks, one at 5, and the other
at 5 + NSH.

This general program has been run with all permuta-

tions of the basic options, as follows:

FIGURE ALGORITHM TYPE DATA TYPE
b1 FIXED WINDOW UNIMODAL
h,2 FIXED WINDOW 8 1 MODAL NSH = 8
4,3 SHRINKING WINDOW UNIMODAL
BETA = .2
b4 SHRINKING WINDOW BIMODAL NSH = 8
BETA = ,2

Thus the unimodal data has a density

5 )
and the bimodal data has density
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For each of these four cases, the variance (VAR)
is graphed on the following pages for values of N between
25 and 225. The results demonstrate two things: (1) the
variance decreases roughly as predicted and (2) the esti-
mates of the modes are in fact converging to the modes,

since the variance Is computed about the true modes.
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Section 2. Simultaneous estimation of modes.

The algorithms as implemented in Section 1 of this
chapter are rather wasteful of the data generated. Typi-
cally many more samples must be generated than are actually
used in estimating the mode. Thus If a distribution is
made up of two widely separated modes, it is unlikely that
any samples from the region about one of the modes will ever
be used. To make the program more "efficlient' it seems
that several modes should be estimated at once. Such a pro-
cedure has been Implemented.

The procedure considered here uses a sample which falls
to "hit" the intervals of interest to center a new interval
as follows: Start the fixed width window algorithm as
usual, When a sample does not fall in the window, use it to
center a second window of the same size. Continue the pro-
cedure with two windows until another sample falls outside,
and in that case center a third interval about this point.
This process can be continued. Whenever one interval over-
laps another, simple shorten the interval which has had
fewer points averaged into It, doing the shortening in a
symmetric fashion, so that the interval keeps the same center,
and is still symmetric, although shorter by an amount suffi-
cient to insure disjointness.

Experfence has show that with a well chosen value for

L, the (initial) window width, the results of the above
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technique represent quite well the various modes in the
data. Filgures 4.5 and 4.6 indicate the results of such a
procedure. The data (500 and 1500 samples, respectively)

is two dimensional, and is drawn from a superposition of

two spherically symmetric triangular distributions (which
perhaps should be called conical) with support set of radius
five indicated by dotted lines. The procedure is implemented
in its most obvious two dimensional form, with the set

s = { x| |x|<L}. The number of samples averaged into each
ball (nominally of radius L = 3, but in many cases reduced
by the disjointness requirement) ls.lndlcated in each ball.
The results are generally satisfactory, although several

extraneous '"modes' are estimated, as would be expected.
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Section 3. Multimodal convergence.

The results of the computer simulation with bimodal data
seem to indicate that the methods perform satisfactorily in
multimodal situations. This agrees with the intuitive argu-
ment which points out that as the estimate ¥, moves toward
a mode, only samples near that mode are averaged into the
estimate, and if this is true, then the unimodal convergence
result justifies convergence. Just such an argument wil)
prove convergence for certain special distributions. We
need an assumption that each mode is '"Isolated' so that

U, cannot move from one mode to another.

THEOREM 21 Let L>0 be fixed and let the density p(°) on

the real line be of the form

n
p(x) = Y app; ()
=]
where a, > 0, Z“; = 1, and p'(-) unimodal on the average
about ©,, 1T =1, . . n, Define L, = [ai,b'] as the smallest
interval containing the support of pi(°). Assume, without

loss of generality, that 8, sa, 3..358a,. Assume
a, - b, 2L i =1, .. .n-1. (4.1)

Then the random variable M, generated by the fixed window

algorithm (THEOREM 1) converges ( in quadratic mean and
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with probability one ) to the simple random variable ©

which takes on the value 9' with probability 0.

Proof: The proof is obvious. If the first sample, X,

is from p, (+) (this happens with probability @, ) then

all succeeding samples which are averaged into L also

come from pk('), because of (4.1). Since pk(°) is unimodal
on the average, u_ given that x Is from pk(') converges to

©, by applying THEOREM 1.

k

A similar result is true for the shrinking window

algorithm:

THEOREM 22 Again assume the density p(e) Is of the form

n
p(x) = Za‘p(x) R Pl(') satisfying (2.9) and (2.10), fi.e.
differentiable and strictly unimodal about G'. Define

a, and bl as before, and assume that for some €>0,

Then the random variable My generated by the shrinking
window algorithm (THEOREM 8) will converge to a simple
random variable taking on the values 6' i=1, . .,n , each

with positive probability.

Proof: We use the fact that Ln + 0, Assume that for

n>n_, L <e. Then if u"e s in the support of pk(-)
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( this occurs with positive probability ), then as in
THEOREM 2) only samples from pk(°) are averaged Into M

for n > n_. THEOREM 8 yields the convergence result.

80
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CHAPTER V
COMPARISON AND CONCLUSION
Section 1. Comparison.

This thesis has discussed two mode seeking methods.
There are, of course, other mode estimation procedures.
Most of them are of a very different nature from the methods
suggested in this work, in that almost no assumptions are
made about the density function whose mode is to be estima-
ted. One class of procedures uses the samples to construct
an estimate of the underlying distribution function (d.f.),
and estimates the true mode (a unique maximum of the density
is assumed to exist) by the mode of the sample d.f.

For example, Parzen [13] uses the sample d.f., defined

for a sample Xys o o 09X as

Fn(x) = n-l{number of x“s which are less than x}

to construct estimates 61, 62, ¢« « o by

0O = max .j;-IK(ﬁﬁl) an(Y)

n - X Lo

where K(*) 1s a "weighting"function. Parzen is able to prove
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under smoothness conditions on K(°*) that provided h(n)+ 0
as n=+o9, Gn is asymptotically normal! and converges to ©, the
true mode. He shows E(en-e)2< cn"® where B<1/2.

Similarly, in a recent paper Venter [18] has suggested
a slightly different technique, using ordered samples
YI’ .« . ,Yn. A sequence of estimates en is defined as the
midpoint of the interval formed by the first and last m
(m fixed) consecutive Y"s which are closest together. He
shows en + O, the true mode (assuming it exists), with
convergence rate no better than n-'/B.

The deficiencies of these techniques are numerous.
Neither generalizes In an obvious way to Rk, and this 1Is
a very serious limitation. In addition, the computations
required to implement either scheme are almost overwhelming.
A sample d.f. is hard to compute, and obtaining ordered
samples from samples is non-trivial, requiring the storage
of all the samples. Similarly, computing the integral and
finding the maximum In Parzen's scheme are quite difficult,
and Venter's estimates are no easier to find.

Thus if one Is willing to assume that the underlying
distribution is unimodal (or, using the computational or
theoretical results of Chapter |V, several distinct modes),
then the mode seeking methods presented here are preferable
to these ''estimate the d.f.' procedures.

A very different approach, which has not been applied

to the problem of estimating modes but which Is obviously
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related, is the approximation of the density p(+) by a

function q(+), where
M

q(x) = E: @, (x)
i=l

where the ¢‘(°) are known functions. The "best'" choice of
the ai's can be found using stochastic approximation, invol-
ving samples from the density p(+). See Blaydon [3]. The
mode can then‘be estimated by finding the maximum value of
q(x). ‘Of course, unless p(+) is of a special form, no finite
value of M and no choice of the ¢; will give an accurate
estimate of the true mode, but in many cases the estimate
based on q(+) will be sufficiently close. This may be a
useful'procedure. The method is based on the ''potential
function" approach to patternrrecognition developed by
Braverman [5].

Another approach to mode estimation which also uses
stochastic approximation has been suggested by Burkholder [6].
He extends stochastic approximation to the problem of the
est}matlon of the point of inflection of a regression function.
(The methods suggested in this thesis simply require estima-
ting the root of a regression function.) Since a mode is by
definition a point of inflection of the distribution function,
this procedure seems ideally suited to the estimation of
modes. An apparent difficulty with Burkholder's presenta-

tion is that he requires samples from a family of random



84

variables YY such that EYY = F(y) where F(°*) is the d.f.
whose mode is to be estimated. However, we are given only
the random variable x with d.f. F(¢). |In this case YY can

be derived from x as follows:

Yy(w) = | if x(w) & v

=0 if x(w) > v .

In this way the difficulty is avoided. With the family YY
is can be shown that the sequence of random variables X

generated by

X = X - [ an-l = (an-2+Y3n)/2]

0 L
I N3

converges with probability one to the mode ©. Y3n-2°

y3n_], and an are observations on the random variables

Yx - ? Yx , and Yx P respectively, and the sequences
n n n n n
a and c¢_ satisfy
n n
c, * 0 Zan = o Jal/ch < =,

F(*) must be strictly unimodal, with requirements on the
density quite comparable to those placed on the density in
the shrinking window algorithm discussed in this work.
Burkholder is also able to prove, under even more restric-
tive conditions on the density, that X is asymptotically
normal, with a variance which decreases as n-g, with £<1/2,

This procedure possesses many of the properties of the



methods described in this work, and thus may be quite

useful in pattern classification.and cluster analysis.
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Section 2. Conclusion.

This work has established two basic facts: first,: that
mode estimation prodecures are quite useful for pattern
recognition and cluster analysis, and second, that two par-
ticularly convenient mode seeking algorithms have several
desirable properties.

This was accomplished by first introducting the concept
of cluster analysis and discussing its relationship to pat-
tern recognition. It was argued that any cluster analysis
procedure would be more effective If the mode locations were
known. For this reason, a mode estimation technique was
described which could estimate modes in multimodal distri-
butions and a proof of convergence was given in the unimodal
case. A similar method, the shrinking window algorithm, was
then introduced, and its convergence properties were found.
Since it is of considerable interest to know about the rates
of convergence and the extensions to higher dimensional spaces
of both the algorithms, this was discussed. Finally, compu-
tational results were presented which confimed convergence
in both unimodal and bimodal situations, and in the previous
section, the mode estimation procedures defined in this work
were favorably compared with. other methods.

Several questions on this topic have been left unans-
wered by this work. The most significant result which was

not obtained was the proof of convergence in multimodal
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populations. The procedures do converge under certain as-
sumptions about disjoint support sets, but the computational
results seem to indicate that a more general result may be
true. This problem of multimodal convergence may be framed
more generally by asking under what conditlions does a sto-
chastic approximation process converge to one of several
roots. All present theorems consider only one root. A
related problem is the development of a good technique for
distinguishing the various modes to which the algorithms are
converging.

Various outher topics may be worthy of further study.
One important question is how to choose the value A in
a = A/n or anL: = A/n in the mode seeking algorithms.
Based on the rate of convergence results, there are optimum
values for this parameter, yet without knowledge'of the den-
sity p(¢), the best choice of A cannot be made.

Several generalizations are apparent, though thelr use-
fulness Is at times not clear. For example, the results of
Chapter Ill in extending the procedures to Rk could probably
be generalized to much more general inner product spaces.
Or, different sets over which unimodality Is judged might
be considered. In the one dimensional versions we consider
the set [-L,+L], or in the shrinking window case, the set
[th;+Ln]. A most interesting generallization would be to
allow L or Ln to be random variables. Similarly, another

extension would be to consider the properties of the algor-
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Ttms when the sequence u_is generated by, for some K(°),

un+l = un B anK(”n - Yn)’

This work deals only with the special case

K(x) = x 1f |x|<L

= 0 elsewhere,

or, in the case of higher dimensions

K(x) = x if xe S

= 0 elsewhere.

Finally, nothing in this work Is concerned with mode

estimation with a finite number of samples. The two pro-

cedures described in this thesis are consistent and there-

fore asymptotically unbiased. However, they are Inefficient

in the use of samples, since only a fraction of any data set
is actually used to calculate the estimate, and they do not

have well understood properties for the finite case.
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Section 1. Stochastic Approximation.

IHEOREM A (Dvoretsky [3]) Let « ,8,, and Y be positive
sequences such that an*o, ZBn<w. and Zvntw. Let Tn(°) be
measureable transformations satisfying

A. |Tn(r|. cor) -0] g max{c_, (l+8n)|rn-el-yn}

Let X, and Yn for n=1,2,. . . be random variables and define

B. X L Tn(x'. L) L] 'xn) + Yn

n+l

Assume

C. Ex] <« and JEY? < =

0. ElY | Xgp o o x 1 =0 wp.l .

Then

Lim E(xn-e) = 0 and

n->ce

Pr {limx =0} =1 .
n

[1 axd

EXTENSION: Y, may be replaced by a non-negatlve-functlon
Yn(rl, . . rn) and the result holds provided
Zyn s o uniformly for all sequences

Fyefys + o for which suplrn|< M for some M.
n
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The following extension to Rk is due to Sacks and

Derman [7].

THEOREM B Let the same conditions as in THEOREM A be sat-
isfied with these modifications: {xn}, {Yn}. and {Tn} are
k dimensional random vectors, C. should be interpreted as
EIYnI2 » and the absolute value In A. should be read as

norm. The conclusion is that Ixn-el + 0 w.p.l .

EXTENSION The extension of the one dimensional result

permitting random Y, remains valid.
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S;ctlon 2. Sacks' Results on Asymptotic Distribution.

These results are due to Sacks [14].

THEOREM Let Y(x) be a real random variable for each x and
define M(x) = EY(x). Assume M(x) = 0 has a unique solution

X = 0, Define

el xn - anY(xn)

where a, satisfies Zan = «, and Za: < @, and x, arbitrary.
Assume

Al {x-0)M(x) > 0 for x#0©

A2 |[M(x)| < K,|x-@] and inf  JM(x)| >0
t,<[x-0]<t
2

0<t'<t2< o ,

A3  M(x) = K(x-0) + &6(x,0)

where 8(x,0)/(x-0) » 0 as x+0.

Ak EY2(x) < Ky EY2(0) = o2 ,

A5 ElY(x)|2+v for some v>0.

Let a, = A/n with 2AK > 1, Then n'/z(xn-e) is asymptotically

normal with zero mean and variance A2g2(2AK - l)-l.

THEQOREM (Rk) Let Y(x) be a set of random varlables in Rk,

and define M(*) and x as before. Assume

Al <x-0,M(x)> > 0 X0



"

A2' | M(x)]| < K'Ix-el and inf [M(x)| > o

t,<|x-0]<¢,

for 0<t|<.t2< ® .,

A3' M(x) = B(x-0) + &(|x-0]) where B is positive

definite
Ab' E|Y(x)|? < Ky E|Y(6)|2 = ® for 7 non negative

definite
A5t E|Y(x)|%*Y some v>0.,

Assume a = A/n with Abk > 1/2. Then n]/z(xn-e) is

asymptotically normal with zero mean and covariance I
defined (along with bk) by:

Let b‘, . « b, be the elgenvalues of B In decreasing -

k
order. Define P as B = Pt)l’-l where D Is diagonal with entries

bl’ « o o bk' Defline "?j as the l,jth element of P-'nP.

)

Then £ = PQP ' where Q = {qij} and

= A (Ab, + AbJ + l)"n°

9 ; iy .
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