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ON THE CONVERGENCE OF OPTIMIZATION ALGORITHMS

E. Polak

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Introduction—One of the greatest frustrations in the study of optimization

algorithms is the almost total lack of a general theory. This lack is

possibly due to the fact that algorithms are inventions and that their

convergence proofs are usually done on an ad hoc basis. In response to

this challenge, however, a few papers [1], [2], [3] have appeared in the

last two years, in which attempts were made to extract, from available

proofs, a number of principles governing the convergence of certain

classes of algorithms.

The present paper is less concerned with the process of extracting

general principles hidden in published convergence proofs than with the

construction of a theory of algorithms which can be used to synthesize

new methods or modify old ones. Specifically, it shows that certain forms

of necessary conditions of optimality are particularly suitable for util

ization in algorithms. Also, it presents a new convergence theorem (some

what akin to theorems in [2] and [3]), a particular case of which first

appeared in [4] and which is particularly easy to use in the synthesis of
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new optimization algorithms. To illustrate its applicability, a few

modifications of feasible directions [5] and gradient projection [6]

algorithms are presented, as well as a new hybrid type algorithm and a

new dual type algorithm. Its applicability to other algorithms is des

cribed in [4], [7], [8], Thus, this convergence theorem opens up a new

possibility for a unified study of a broad class of algorithms.

I PRELIMINARY RESULTS

We shall restrict ourselves in this paper to the following canonical

problem.

, ., „ . -0-1 -m
(1) Problem: Given continuously differentiable functions f , f , ..., f

from Rn into R , find a vector x e R satisfying f (x) < 0 for i = 1, 2,

..., m, such that

(2) f°(x) = min |f°(x) |fx(x) * 0, i=1, 2, ..., mj .

To be sure that (2) makes sense, we shall assume that either the set

fl =|x |fX(x) <0, i=1, 2, ..., ml is compact, or else that for every

aeR the set Ix |f (x) £aj is either bounded or empty.

(3) Definition: We shall call the elements of the constraint set ft

feasible, and we shall say that a vector x € fl is optimal if it satis

fies (2).

We begin by recalling a few characterizations of an optimal vector x.

These characterizations will subsequently be used in algorithm stop rules.

(See [10], [11].)

*• n

(4) Theorem: If x is optimal for (1) and S is any compact subset of R
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containing the origin in its interior, then

(5) min max <VfX(x), h> = 0 ,
hes ieJQ(x)

where, for a > 0 and any x e ft,

(6) J(x) = {0}u|i |f^x) +a>0, iG{1, 2, ..., m}} .

Proof: Suppose that (5) does not hold at an optimal x, then there is a

nonzero h* G S such that

(7) min max (Vf^x), h> = max <VfX(x), h*> = -e
hGS iGJQ(x) iGJQ(x)

where e > 0. Hence there exists a X* > 0 such that

f1(x + Ah*) * 0 for i G J (x) and X e (0,X*] , t
(8) . U

fX(x + Xh*) - fL(x) < 0 for iGJQ(x) and X<= (0,X*] ,

i.e. any x = x + Xh*, X G (0,X*] is feasible and results in a lower cost

than x, which contradicts the optimality of x. Q.E.D.

(9) Remark: If ft has no interior, then (5) is satisfied at all x G ft,

which makes (5) a useless condition in this case.

(10) Corollary: If x is optimal for (1), then there exist multipliers

K £0,4 £ 0, ..., £ s0, not all zero, such that

(id f; cWcx) = o
i=0

CXf (x) = 0 for i=l, 2, ...,m.

Proof: Let F be a matrix whose rows are Vf (x), i G Jn(x), and let p be

t3Q(x) denotes the complement of J.(x) in 0, 1, 2, ..., m.
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the cardinality of JQ(x). Then, by (5), the subspace FRn =(y |y=Fx,
xG Rn\ must be separated from the convex cone -|y |y£0j CR ,i.e.

there exists a nonzero vector £ G R such that

(12) <£,y> > 0 for all y ^ 0, yG RP ,

<€,Fx> = 0 for all xG Rn .

Assuming that the components of yG RP and ?GRP are numbered with in

dices from J (x), rather than consecutively, (12) yields

C1 < 0 for iG JQ(x)

D rvr(x) = 0
iGJQ(x)

Setting C1 =0for all iG JQ(x), we now get (10) and (11). Q.E.D.

(14) Theorem: Suppose, in addition to the assumptions stated in (1),

that the functions f , i = 0, 1, 2, ...,m are convex and that ft has an

interior. Then any vector x G ft satisfying (5) is optimal.

Proof: Suppose (5) is satisfied at a non-optimal x G ft and let xQ be any

point in the interior of ft. Then there exists a x* G ft such that f (x*) <

f (x), and, for some XG (0,1), the point x. = XxQ + (1 - X)x* is in the

interior of the set |x |f°(x) -f°(x) <: 0, f^x) <L 0, i=1, 2, ..., m}
i

Hence, by convexity of the f , we obtain

(15) {Vf^x), X;L -x> <; f1^) -f^x) < 0 for iGJQ(x) .

But a(x.. - x) G S for some a > 0, and hence (15) contradicts (5). Q.E.D.

(16) Corollary: Under the assumptions of theorem (14), any x G ft which

n 1 m

satisfies (11) for some multipliers £ < 0, £ <0, ...,£ <0 (note
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0
£ 4 0!) is optimal.

The proof of the above is trivial and therefore omitted.

In order to establish the convergence properties of the algorithms

? we are about to present, we shall need the following new theorem. The

reader should note that it belongs to the same family of convergence

results as theorems by Topkis and Veinott [3] and Zangwill [2]. However,

the theorem below is more direct and more general than the Topkis and

Veinott result and somewhat easier to apply, though not quite as general

as the Zangwill result.

n 1(17) Theorem: Let T be a subset of R , let c:T+R be a "surrogate cost"

function, and let a:T+T be a "search" function. Suppose that:

(i) T contains desirable points which are characterized by the

fact that x G T is desirable if and only if

(18) c(a(x)j < c(x) ;

(ii) Either c(») is continuous at all non-desirable x G T or

else c(x) is bounded from above for x G T;

(iii) For every non-desirable xG T there exists a e(x) > 0 and

a 6(x) > 0 such that

(19) c(a(x')) -c(x') > 6 for all x' GT, ||x-x'||

Let {x-} be a sequence in T constructed according to the rule

(20) xi+1 = a(Xi), i = 0, 1, 2, ...

« and satisfying

(21) c(xi+l) > c(xi} *

£ e .
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Then, either {x.} is finite and its last element is desirable, or {x.}
1 i

is infinite and every accumulation point of {x.} is desirable.

Proof: Suppose that {x.} is finite and that x is its last element.
————— i s

Then the construction of new elements must have stopped because

c(a(x )) < c(x ), i.e., because x is desirable.
\ s / s s

Now suppose that {x.} is infinite and that x. •*• x* for i G K, K C

{0, 1, 2, ..., } , with x* not desirable. Then there exist e* > 0 and

6* > 0 and an integer k g K such that for all i i k, i G K,

(22) ||xi - x*|| * e*

and

(23) c(xi+l) " c(xi) * 6* •

Hence, for any two successive points x , x. ., i, i + j G K, i > k, of

the subsequence, we have

(24) c(x.+j) -c(x±) = (c(x±+j) -c(xi+j_1)) +... +(c(x.+1) -c(x.)) >5<

But, because of (21) and (ii), c(x.) -• c* < » for i G K, i •*• °°, which

is contradicted by (24). Hence each accumulation point of {x.} must be

desirable. Q.E.D.

We shall now show how the above theorem may be used to prove the

convergence of some well known algorithms. It will be seen that the na

ture of theorem (17) is such that not only does it permit us to prove

convergence of these algorithms but that it also enables us to establish

certain qualitative bounds on deviations from the ideal subprocedures

making up these algorithms, which are compatible with convergence. It

will also be seen that it provides guidelines for the derivation of new

algorithms from old ones.
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II METHODS OF FEASIBLE DIRECTIONS

In this section, we shall consider a class of methods introduced by

Zoutendijk [5] together with some new modifications. We shall assume

that the set ft has an interior, since otherwise these methods make no

sense as we shall soon see.

(25) Definition: For a > 0, let (f) :ft+R be defined by

<f> (x) = min max <Vf (x), h>
a hGS iGJ (x)

where J (x) is defined as in (6), and S is any given compact set contain
er

ing the origin in its interior (note that when ft has no interior <j> (x) = 0)

(26) Remark: To evaluate <J> (x) we solve

minimize a

(27) .
subject to a - (Vf (x), h> > 0 for i G Ja(x), hGS.

The optimal pair a (x), h (x) for this problem satisfies <fr 00 = aa00,

a (x) = max <Vf (x), h (x)> . In solving (27), we shall always set
iGJa(x)

h (x) = 0 whenever a (x) = 0 and h (x) is not unique. Note that a sensible
a a a

choice for Swould be S=|h|In*! <l\ ,or S=(h|||h|| £l| .
The algorithm we are about to present in the form of an idealized

computer program will find points x G ft such that <j>«(x) = 0. Note that

these algorithms are parametrized by the particular choice for the set S.

t(28) Algorithm: Suppose that a xfl G ft and e > e' > 0 are given.

To find a xn G ft, solve, using the algorithm (28), the problem (cont.
next page)
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Step 1: Set e(xQ) = e. (We shall use the abbreviated notation eQ =

e(xq).)

Step 2: Compute <j> (xQ) and h (xQ) by solving (27) for a= eQ, x = xQ.

Step 3: If $ (xn) < -en, set h(xn) = h (xn) and go to Step 4.
— e0 0

If <J> (xQ) > -£Q and eQ £ e' ,compute <J>0(Xq).

If 4>0(x0) = 0, set xQ = xQ and Stop.

If <l>0(x0) < 0, set eQ = eQ/2 and go to Step 2.

If d) (xn) > -eA and en > e1, set en = en/2 and go to Step 2.
en 0 0 U u u

Step 4: Compute X(x0) > 0 such that

X(xQ) = max(x |Vf1^ +ah(xQ)) < 0 for all aG[0,X]

and i= 1, 2, — ,m| .

Step 5: Compute y(xn) G [0,X(x0)] to be the smallest value in that inter

val such that

(30) f°(x0 +u(x0)h(x0)) = min [f°(x0 +ph(x0)) |uG [0,X(xQ)]} .

Step 6: Set xQ = xQ + y(xQ)h(xQ) and go to Step 1.

(31) Theorem: Let x0, x^, x2, ... be a sequence in ft constructed by

min io |f1(x) - a < 0, i= 1, 2, ..., m| ,with initial feasible point

x1, a1 where xf is arbitrary and a' = max |f (x') |i= 1, 2, .,., bL

Since the optimal value a for this problem satisfies a < 0, (28) will

construct a x_ G ft in a finite number of steps, provided ft has an in

terior.
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the algorithm (28), i.e. x., x2» ... are the consecutive values assigned

to xn in Step 3 or Step 1. Then, either the sequence {x^ is finite and

its last element, say xfc, satisfies <J>Q(xk) = 0 or else {x±} is infinite

and every accumulation point x in {x.} satisfies 4>q00 = 0.

Proof: Obviously, the algorithm (28) defines a map a:ft-*-ft. We shall show

that this map together with the map -f (-f taking the place of c and ft

the place of T) satisfy the assumptions of Theorem (17). For the purpose

of applying Theorem (17) we shall agree to call a point x G ft desirable

if <J>0(x) = 0.

First we must show that the characterization (18) is satisfied. Thus,

suppose that xQ G ft satisfies <J>q(x0) = °* Then, since for all eQ > 0,

J (xQ) DJ00c0), we must have -£() < <f>Q(x0) < <f>£ (xQ). Hence, after a

finite number of halving of eq in Step 3, the algorithm will find that

<j>0(x0) = 0 and will set xQ = xQ, i.e. a(xQ) = xQ. This is in agreement

with (18).

Now, given a point x. G ft, the algorithm can only construct a new

point x1 such that f 00 <f (xQ). Hence, suppose that the algorithm

sets xx = xQ (i.e. xQ = xQ in Step 3 or Step 6). If xQ was reset to xQ

in Step 3, <t>0(xQ) = 0. Suppose xQ was reset to xQ in Step 6, i.e.

y(xQ)h(x0) = 0. But this implies that (J>£ (xQ) = 0, i.e. <t>£ (xQ) > -eQ:

a condition in Step 3 which does not permit a continuation to Step 6.

Thus xn can only be reset to the value xQ in Step 3 and then it satisfies

*0(x0) = 0.

We shall now show that condition (19) is satisfied. Let xQ G ft be

any point such that <|>0(x0) < 0. Then, from (30),
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(32) f°(x0 +y(x0)) -f0(x0) * -SQ
where 6n > 0. Now, from (6) it follows that there must exist a p1 >0

such that

(33) J (x) C J (xn) for all x G A(xn,pf) ,
£0 £0 ° °

where A(xQ,pf) =jx |xGft, ||x -xQ| | < p'j and eq is the value of
e(x0) used in computing h(xQ) in Step 2. Let M:R +R be defined by

(34) M(x) = min max <Vf1(x), h> .
hGS iGJ (xn)

e0 u

Then M is continuous and there is a p" > 0 such that

(35) |M(x) - <f> (xQ)| < eQ/2 for all xG A(xq, p") .

Let p = min {p',p"}, then, because of (33) and (35) and the fact <\> (xn) <
Eq u

-En, we have, for all x G A(xQ, p), that

(36) + (x) < M(x) < -En/2 .
Eq u

But J /n(x) C J (x), and hence, for all x G A(xn, p), we have
£0/2 eQ 0

(37) <j> /9(x) £ <j> (x) ^ -£n/2 .
e0/ e0 u

We therefore conclude that for all xG A(xQ, p) the algorithm (28)

will use a value e(x) > eq/2 in computing h(x) in Step 2, i.e. for all

xG A(xQ, p) and for all iG J , .(x), <Vf (x), h(x)> < -eQ/2.

Now, for any x G A(xQ, p) and i = 0, 1, 2, ..., m, we have, by the

mean value theorem, that

Proposition: Let M(x) = min g(x,y) where g:RnxRn-*R is continuous and
yGY

Y C R is compact. Then M(») is continuous.
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(38) f*Yx +Xh(x)) = f^x) +X(Vf^x +£h(x)), h(x) >,

where £ G [x,X]. Since the functions <Vf (•)» •> , i = 0, 1, 2, ..., m,

are uniformly continuous on A(xQ,p) x S, for each iG {0, 1, 2, ..., m},

there exists a X > 0 such that

(39) |<VfX/x +£h(x)), h(x) >- <Vf1(x), h(x)> | < eq/4

for all £g [O.X1]. Similarly, since the functions f (•) are uniformly

on A(xn,p) and since S is compact, there exist X > 0, i = 1,

2, ..., m, such that

(40) If^x +£h(x)) -f^x)] < £0/2 .

Now, for each xG A(xQ,p) and for each iG J ,*(x), <Vf (x), h(x) > <

-En/2, and for each xG A(xQ,p) and for each ig J , n(x) ,f (x) < _£q/2.

Hence, setting y =minjx ,X , ..., X ,X ,X , ..., X |, we have, for

any xG A(xQ,p)

fx(x +yh(x)) -f*(x) * -yE0/4 for all iG^e(x)(x) ;
f^x +yh(x)) -fi(x) < 0 for all iGJ£(x)(x) .

Since for all x G A(xn,p) we must have y(x) > y, we are led to the

conclusion that

(42) -f°(x +y(x)h(x)) -(-f°(x)) > yeQ/4, for all xGA(xQ,p) ,

i.e. that condition (19) is satisfied. This completes our proof.

We have already observed that by setting S=^xGR||x|<l^,we

can compute <J> ( v(x) and h(x) by solving a linear programming problem,
E ^X^

i.e. these quantities are obtainable by finite step procedures. Thus,

the weak link in the algorithm seems to be the requirement of solving

(41)
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equations of the form f (x + Xh) = 0 and of minimizing the function f (•)

along the linear segment jx |x=xQ +uh(xQ), yG [0,X(Xq)]|. The follow
ing propositions which are obvious in the light of Theorem (17), shows

to what extent these operations may be approximated without affecting

the convergence properties of the algorithm.

(43) Proposition: Suppose that in Step 6 of the algorithm (28) xQ is

reset to xfl + yJi(x0), where, for a fixed yG (0,1], yQ satisfies

(44) (f°(xQ) -f°(x0 +PqMxq))) >w(f°(x0) -f°(xQ +y(x0)h(x0))j .
Then Theorem (31) remains valid.

(45) Proposition: Suppose that Steps 4 and 5 of the algorithm (28) are

replaced by the Steps 4*, 5' below. Then Theorem (31) still remains valid

Step 41: Compute X > 0, X > 0, X > 0, ..., X > 0 to satisfy, for any

0 < 6 < 1/2,

(1 -6)X° <Vf°(x0), h(xQ) > < f°(x0 +X°h(x0)) -f°(x0)

£ 6X° <Vf0(xQ), h(xQ) >;

Xi6 <Vfi(xQ), h(xQ) > < f^XQ +xVxq)) -f1(xQ) < -f1(xQ)

for i i 0, i G J (xn) ;
e0

-eq6 £ f1^ +Xih(x0)) < 0, for igJ£ (xQ) .

Step 5': Set y(xQ) =minjx |iG {0, 1, 2, ..., m}j .

The introduction of e_ into the algorithm (28) ensures that for each

non-optimal x_ G ft, there exists a p > 0 and a X > 0 such that for all
u m

xGft, ||x-Xq|| <p,we have x+ Xh(x) G ft for XG [0,X ], i.e. it en

sures a minimal step size about each non-optimal xn G ft. This effect is
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obvious from the proof of Theorem (31).

A second important, but not entirely independent, effect of using

e in (28) is to ensure that we do not solve systems of simultaneous equa-

^ tions of the form f (x) = 0, i G I, for points on the intersection of sur

faces when these points are not optimal. The solution of such a system

of nonlinear equations by gradient methods requires an infinite number of

operations and hence solution points would become convergence points of

a sequence x~, x.. , x„, ... constructed by an algorithm not using an e

procedure. Thus, an algorithm would jam (or zigzag) without "the anti

jamming precautions" defined by the use of e_ in the algorithm (28).

Ill GRADIENT PROJECTION METHODS

We shall now consider two variants of Rosen's gradient projection

method [6], These methods are particularly attractive when the constraint

set ft is a convex polytope with interior and f (•) is convex. When ft has

no interior, one simply restricts oneself to the linear manifold contain

ing ft.

(46) Assumption: We shall suppose that the cost function f (•) is convex

and that the constraint functions f (•)» 1 = 1» 2, ..., m are of the form

(47) £1(x) = <f±> x> -b1 ,

where f. G Rn and b G R . We also assume that the set ft =<x |f (x) s.

0, i = 1, 2, ..., m j> has an interior.

(48) Definition: For every x G ft and a > 0 let

Ia(x) = |i |<f±, x>-b1 +a > 0, ig{1, 2, ..., m}} .
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(49) Assumption: We shall suppose that there exists a a* > 0 such that

for every xG ft and aG [0,a*] the vectors f., i G I (x) are linearly

independent.

(50) Definition: For every a G [0,a*] and x G ft let

(51> FI (x) • «i>tel (X)
a a

be a matrix whose columns are f., i G I (x) (ordered linearly on i). Let

P , » be the matrix which projects R onto the subspace spanned by the

j. 4. n
vectors f., i G I (x), and let P_ , N be the matrix which projects R

i' a '* *a'x'
onto the subspace orthogonal to all the f., i G I (x), i.e.

(52> PT / >* = FT t \(FT ( \¥T t \I1FT ( \I (x) I (x) \ I (x) I (x)/ I (x)
o a x o a ' a

(Note that matrices PT ( v, PT , v are symmetric and positive semidefinite.)
vx; vx;

Consequently, for every x G ft and a G [0,a*] we have

(54) Vf°(x) = Px (x)Vf°(x) +Pj (x)Vf°(x)

= FT t .£ (x) + PT ,vVf°(x)
Ia(x)sav xa^

where

(55) ,o(x) =(F;a(x)FIo(x)) l ^(x)Vf°<x) .
It now follows directly from corollaries (10) and (16) that x is

+

When I.,(x) is empty, we shall assume that P_ , x is the zero matrix and
a ^OO

1 a
that P . . is the identity matrix.
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optimal if and only if

P^(i)vf°(5) -o,
(56)

S0(x) ^ 0.

We make one more observation before stating an algorithm. Consider

the expansion (54) and let jG Ift00. Then, from (54) (since
± ± ±

PIa(x)-jPIa(x) = PIa(x))j

(57) Pla(x)-jVf0(x> " ^a(x)Pla(x)-jfj +\(^f°M •
and, since (57) is a decomposition into orthogonal components,

(58) llp^^ooll2 =Kw)2!^^!!2*!^,^)!!2
Finally note that

(59> <V PI„(x)-j7f°(x) >=C«(X) <fi' ?iaW-jfJ >•
(60) Algorithm: Suppose we are given a e G (0,a*], with a* as in (49),

a e1 G (0,e) and a xQ g ft.

Step 1: Set eOO = e (We shall use the abbreviated notation eq = e(xq)).

Step 2: Compute

(61) h (x ) = Pj ( )Vf°<V •
e0 U eo °

Step 3: If ||h (xQ)||2 >eq, set h(xQ) =-h£ (xQ) and go to Step 6.

If ||h (Xq)||2 £Eq and eq se', compute hQ(x0) (as in (61)) and
e0(Xq) (as in (55)).

If ||h0(x0)||2 =0and £q(xq) =0, set xQ =xQ and
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stop (xn is optimal). Otherwise, set h(xQ) =

-h (xQ) and go to Step 4.

If ||h£ (x0) I|2 <£q and Eq >e\ go to Step 4.

Step 4: Compute £ (xn) (as in (55)).£0 0

If £ (xn) = 0, set h(xn) = -h (xn) and go to Step 5.Eq 0 0 Eq 0

If £ (x) # 0, compute
£0

(62) h (x0) = P^ ( j.jVf0^)
0 Eq 0

such that

(63) ||h (x0)|| = max ||Pj ( H'f°(x0)ll
0 ^V^ eo °

^q(x0) >0

Set h(xn) = -h (xn) and go to Step 5.U Eq u

Step 5: If ||h(x0)||2 <eq, set eq =£Q/2 and go to Step 2.

If ||h(x0)||2 >Eq, go to Step 6.

Step 6: Compute y(xn) > 0 to be the smallest value satisfying

(64) f°(x0 +y(x0)h(x0)) =min jf0(x0 +yh(xQ)) |(xQ +yh(xQ)) Gft|
Step 7: Set xQ = xQ + y(xQ)h(xQ) and go to Step 1.

(65) Theorem: Let xQ, x,, x„, ... be a sequence in ft constructed by

the algorithm (60), i.e. x^, x2, ... are the consecutive values assigned
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to xn in Step 7. Then, either {x } is finite and its last element is op

timal, or else {x.} is infinite and every accumulation point of {x } is

optimal. (When f is strictly convex, the problem has a unique optimal

solution x and then x -»• x.)

Proof: We shall again make use of Theorem (17) under the assumption that

T = ft, a:ft-*ft is defined by the algorithm (60), and c = -f . We begin by

showing that the characterization (18) is satisfied. Suppose xQ is op

timal. Then hQ(x0) = 0 and £q(xq) - 0. Now, for any eq > 0, I (xQ) D Iq(xq)

and hence

(66) £ (x ) ^ 0
e0

and

(67) ||h (x0)|| - ||h0(x0)|| = 0
e0

Consequently, after a finite number of halvings of eq in Step 5, the al

gorithm will stop in Step 3, resetting xQ to its original value. This

satisfies (18).

By construction, the algorithm stops setting xQ = xQ in Step 3 if

and only if xn is optimal. This is the only possible condition for setting

xn = xn, since it is not possible to have y(xQ)h(xQ) = 0 in Step 7 for the

following reasons. First, h(xQ) = 0 is not allowed in Step 6 and hence

in Step 7. Second, if h(xQ) f 0, then y(xQ) f 0, since for all iG I£ (xQ),

<h(xQ), f1> <0and <Vf°(x0), h(xQ) >= -||h(x0)||2 <0.

We must now show that (19) is satisfied, i.e. that if xQ g ft is not

optimal, then there exists a p > 0 and 6 > 0 such that

(68) "(f°(x +y(x)h(x)) -f°(x)j *6 for all xGft, ||x -xQ||<p.
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Let e0 be the last value of e(xQ) (i.e. just before being reset again in

Step 1). Then, either

(69) ||h (x0)||2 >e ,
e0

or else

(70) ||h (x )||2 >e .
fc0

Suppose (69) took place, i.e. that h(xQ) = -h£ (xQ). Then there

exists a p1 > 0 such that

(71) Hpi (x )vf0(x)M2 * eo/2 for a11 xe A(Vp,)

(where, as before, A(Xq,pi) =[x |xGft, ||x -xQ|| sp'j ).

Let p" > 0 be such that I (x) C I (xn) for all x G A(xn,p") and let
e0 £0 ° °

p = min{p!,p"}. Then, for all x G A(xQ,p) and a G [0,£q],

(72) ||P* (x)Vf°(x)|| >||Pj (x)Vf°W|| >||P* (So)Vf°W|| ieQ/2 .

We therefore conclude that if (69) took place, then for all x G A(xQ,p),

the algorithm will use a final value of e(x) > £q/2.

Now suppose that (70) took place, i.e. that h(xn) = -h (xQ). Then,
u Eo

either ||h (x )|| > 0 or ||h (x )|| = 0.
e0 0

Suppose llh (xn)|| = 61 > 0. Let p" > 0 be such that I (x) c" eq 0 £q

I (xft) for all x G A(x„,p"). Then there exists a p G (0,p"], such thatEq 0 0

for all xG A(Xq,p) and for all aG [0,£q],

(73) ||h(x)|| >||Pj (jt)Vf°(x)||2i ||PX (x)Vf°(x)||2
a e0

i Up1 , ^(x)!!2^ «-/2 ,
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and hence for all x GA(xQ, p), the algorithm will set e(x) > 6*/2 > 0.

Now suppose that ||h (xn)|| = 0. Then,
G0 U

Vf°(xQ) = £ ^ (x0)f.
iGl (xn) 0

£0 °

and in this representation the coefficients are unique. Now let

S1 = min{||p17f°(x0)|| |ICI£ (xQ), ||P^Vf°(x0>||>o)

(74) and

«2 = min{ max ||P^_±Vf°CxQ>|||K I£ (x,,), ||P*Vf°(x0)||-o}
^(x0)>0 °

iGl

Obviously, 6- > 0 and 6_ > 0. Let 6* = min {6,,62}, and, again,

let p" > 0 be such that I (x) C I (xn) for all x G A(xA,p"). Then there
G0 £0 ° °

exists a pG (0,p"] such that for all xG A(x0,p) and all a G [0,Eq],

either

|px (x)vf(x)||2a &'/2

(75) or

max ||P (.x)_iVf<x) 112 >«'/2 .
I„(x) ovte-a

We therefore conclude that if (70) took place, then for all x G

A(xn,p), the algorithm will use a final value of e(x) > 6f/2 > 0.

Now, for all x G A(xn,p), and for all i G I (x), <f., h(x) > < 0
U E/ v 1

(x)
(see (59), (61)), and so, as far as these constraints are concerned, one

can displace oneself an arbitrary amount in the direction h(x) from x
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without violation. We now conclude (as in the case of the feasible direc

tions algorithm) that there exists a^> 0such that x+ Ah00/||h(x)||G

ft for all Xg [0,X ]and xG ft, ||x - xQ|| < p.

Next, we note that <Vf°(x),h(x) ><-eq/2 (or -672) for all x
A(xQ,p) and that there exists ay such that ||h(x)|| <Yfor all x

A(xn,p). It now follows, by means of an argument essentially identical

to the one following (31), in the proof of the feasible directions algo

rithm, that (68) is satisfied for some 6 > 0. This completes our proof.

Since <Vf(x),h(x) >= -||h(x)|| , one may wish to accelerate the al

gorithm (60) by increasing ||h(x)|| as much as possible at each step. The

following acceleration procedure is very easily seen as not affecting the

convergence properties of the algorithm (60). (To account for it we need

to modify the proof of Theorem (65) only very slightly).

Step l1: (Acceleration procedure, to be inserted between Step 1 and Step

2 of (60)):

Compute £ (xn), h (xn) (as in (55), (62)).
e0 e0

If £ (xn) ^ 0, go to Step 3.
eo

If £ (x ) %0 and ||h (x )|| > 2||h (x )||, set
e0 0 0

h(xn) = h (xn) and go to Step 5.0 £q 0

If £ (x ) # 0 and ||h (x )|| < l\ |h (x )||, go to
Eq u eQ v e0

Step 2.

This concludes our discussion of the convergence of gradient
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projection methods. We shall next discuss methods which are a cross be

tween gradient methods and methods of feasible directions.

IV METHODS OF FEASIBLE DIRECTIONS WITH PROJECTION OPERATORS

In the algorithm (28), to obtain a "feasible direction" h(xQ), we

had to solve a minimization problem. In the algorithm (60) this process

was replaced by the computation of a projection operator which, gener

ally, is easier to calculate. However, algorithm (60) is only applicable

to problems with linear inequality constraints. We shall now present a

modification of (60) which applies to more general situations. This modi

fication was inspired by a closely related heuristic algorithm described

in [9].

(76) Assumption: We shall suppose in this section that all the functions

f , i = 0, 1, 2, ..., m in (1) are convex and that the set ft =

{x | f (x) < 0, i = 0, 1, 2, ..., m} has an interior.

(77) Assumption: We shall suppose that there exists a a* > 0 such that

for every a g [0,a*] and x G ft, the vectors Vf (x), i G I (x) are linearly

independent (where I (x) was defined in (48)).

We shall retain in this section the notation introduced in the pre

ceding one with the following, rather obvious modification. For every

a G [0,a*] and x G ft we shall let

(78) Fi (x) • Vfi(x) lei (x)
a a

be a matrix whose columns are the Vf (x), i G I (x) (ordered linearly on i)
a

x

"a

The projection matrices PT , N, Px , N will still be defined by (52) and
I (x) I (x) J
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(53), respectively, with the matrix F ,. now defined by (78), etc.
LaKX)

(79) Algorithm: Suppose we are given a eG (0,a*] with a* as in (77),

an e1 G (0,e), and a xQ g ^.

Step 1: Set e(x0) = e. (We shall use the abbreviated notation £Q = e(xq))

Step 2: Compute

(80) h (x ) = Pj ( Nvf°(x0) •
0 e0 °

Step 3: If ||h (xQ)||2 >eq, set h(xQ) =-he (xQ) and go to Step 6.

If ||h (Xq)|| < eq and eq < £*, compute hQ(x0) (with eq =0

in (80)) and £q(xq) (as in (55)).

If hQ(x0) =0and £q(xq) ^ 0, set xQ =xQ. (xQ

is optimal.) Otherwise set h(xn) = -h (xn)U £q

and go to Step 4.

If ||h£ (xq)||2 <zQ and e0 >e', go to Step 4.

Step 4: Compute £ (xn).
e0

If £ (x0) ^0, set h(xQ) = -h (xQ) and go to Step 5.

If £ (xn) # 0, computeeq u

(81) h (x0) = P1 ( j.j'f0^)
u Go

such that
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(82) |He (x0)|| = max MP1 (x j^Vf0^)!] .
•0 te!£o(x0) e^O"

?e0<x0>>0

Set h(xn) = -h (xn) and go to Step 5.u Eq u

Step 5: If ||h(x0)||2 <eq, set eq »eq/2 and go to Step 2.

If ||h(x0)||2 >Eq, go to Step 6.

Step 6: Set K (xn) = I (xn) when h(xn) = -h (xn) and set K (xn) =Eq u Eq u U Eq U Eq

I (xn)-j when h(xn) = -h (xn). Compute
Eq u u Eq u

(83) v(x0) =3(x0)h(x0) +F (Xq)(f^ ^^F^ (Xq)) t

where t = -en(l, 1> •••> 1) and 3(xfi) > 1 is the smallest positive scalar

such that

(84) (Vfk(xQ), v(Xq) ><-Eq

for k = 0 when h(xn) = -h (xn) and for k = 0, j when h(xn) = -h (xft).0 e0 0 0 e0 0

Step 7: Compute X(xn) > 0 such that

(85) X(Xq) = max{x |f1^ +Cv(xQ)) <0, ?G[0,X], i=1, 2, ..., m|

Step 8: Compute pOO to be the smallest value satisfying

(86) f°(x0 +y(x0)v(x0)) = min {f0(xQ +Pv(Xq)) |yG[0,X(xq)]} .

Step 9: Set xn = xn + y(x0)v0O and go to Step 1.

(87) Remark: Note that the above algorithm differs from the algorithm

(60) only in the operations defined in Step 6.

(88) Theorem: Let xn, x1, x«, ... be a sequence in ft constructed by
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the algorithm (79), i.e. x.., x«, ... are the consecutive values assigned

to xn in Step 7. Then either {x,} is finite and its last element is op

timal, or else (x.} is infinite and every accumulation point of {x.} is

optimal. (When either f is strictly convex or ft is strictly convex, or

both, there is a unique optimal solution for the problem (1), and hence

a unique accumulation point for the sequence {x.}, when infinite).

Proof: Again, we shall simply show that the assumptions of Theorem (17)

are satisfied. We omit a demonstration that condition (18) is satisfied

since in this case it is identical to the one given for algorithm (60) in

the proof of Theorem (65).

We shall now show that for every non-optimal xn G ft, there exist a

p > 0 and a 6 > 0 such that

(89) -(f°(x +MOOv(x)) -f°(x)) > 6 for all xG A(xQ,p) .

First, proceeding as in the proof of Theorem (60), and, in addition,

using the fact that the f are continuously differentiable, we can show

that if x. G fi is not optimal, then there exists a p > 0 and a 6* > 0 such

that for all x G A(xn,p)

(90) ||h(x)|| > ^ > 0,

i.e. e(x) > 6!/2 for all xG A(xQ,p). Next, we find that, by (84), for all

xG A(Xq,p)

(91) <Vf°(x), v(x) > < -e(x) £ -672

and, if K£(x)(x) * Ie(x)(x) (say K£ (x)(x) = I£(x)(x) - j),

(92) <Vfj(x), v(x) > * -e(x) £ -6V2 .
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Furthermore, for all iGKe(x\00, xGft, ||x -xQ| |£p,

(93) <Vfi(x), v(x) > = -e(x) < -672 .

Finally, an inspection of (83), (84), (61) and (62) indicates that there

exists a p G (0,p] and a M G (0,«>) such that ||v(x)|| < M for all x

A(xn,p). The proof may now be completed by following the steps after (37)

in the proof of Theorem (31).

(94) Remark: The acceleration Step 1' proposed for algorithm (60) can

also be utilized in the present algorithm.

We now turn to an entirely different type algorithm whose conver

gence can also be proved by means of Theorem (17).

V A DECOMPOSITION ALGORITHM

So far, we have presented a number of algorithms whose convergence

was proved by setting c = -f in Theorem (17). In order to show that c

may have to be chosen differently, we present a simple decomposition al

gorithm which is in the class discussed extensively in [7].

Consider the particular problem

(95) minimize ||x| | subject to Axg^,

N

where x G R , ||x| | = J] (x ) ,A is a n x N matrix with N >> n, of rank
i=l

n, and ft C R is defined by

(96) ft = (z G Rn |f^z) <0, i=1, 2, ..., m|

and is assumed to be strictly convex and compact.

(97) Definition: Let S={z GRn |||z|| =lj and let v:S-*ft be defined
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by <z - v(s), s > < 0 for all z g ft.

(98) Definition: Let T={s GS| <s, v(s)> <o}. Let c:T+R be de
fined by

(99) c(s) = min{| |x| |2|< s, Ax - v(s) > =* 0| ,

and let w:T+Rn be defined by

(100) w(s) = Ax(s) ,

where x(s) G Rn is such that c(s) = ||x(s)||2, i.e. x(s) =c(s)A s/||A s||.

(101) Remark: It is shown in [7] that v, w, and c are continuous maps.

(102) Algorithm: Suppose that a s G T is given.

Step 1: Compute v(s ), c(sQ), and w(sQ).

Step 2: If v(s )=w(s ), stop. (c(sQ) is the minimum cost for (95)

and x(s ) is the desired solution, i.e. w(sQ) = Ax(sQ) ).

If v(s ) 4 w(s ), compute a(sQ), where a:T+T is defined by

a(s) Ga(s) = s' GT|[s' =Xs +y(w(s) -v(s)j, X, yG(-«,-H»)}

(103) Jc(a(s)) =max {c(s') |s1 Go(s)}

and ||s — a(s)|| is minimized (to make a(s) unique).

Set sn = a(sQ) and go to Step 1.

(104) Theorem: Let sQ, s ,s2> ..., be a sequence of points in T gener

ated by the algorithm (102), then either {s.} is finite and its last

element, s,is such that c(sk) =min|||x|| |Ax G ft| and x(sk) is op

timal for (95), or else {s.} is infinite and si -• s, where c(s) =

min|||x|| |AxGft| and x(s) is optimal for (95).
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It is shown in [7] that the map (ca):T-HR is continuous and hence

that the maps c and a as defined by (99) and (103) respectively, satisfy

the conditions of Theorem (17).

For practical aspects of algorithms such as (102), i.e. methods of

computing v(s) and the effect on convergence of finitely calculable approx

imations to v(s) and a(s), the reader should consult [4] and [7].

CONCLUSION

In presenting a unified approach to optimization algorithms, we

have mostly used as examples variations of well known nonlinear program

ming algorithms. However, this approach is also fruitful in application

to optimal control algorithms such as those in [7], to unconstrained

optimization algorithms [8] (modified Newton methods, conjugate gradient

methods), and to penalty function algorithms such as [12]. Thus, the

scope of the approach presented in this paper is quite large, and it is

hoped that it will lead to new developments.
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