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The emphasis in these notes is on unification. This unification manifests
itself in the use of a specific convergence theory, in the use of specific
necessary conditions of optimality, and in the unified treatment of algorithms
for discrete optimal control and for mathematical programming. For the sake of
making the presentation of a large number of algorithms easier within the time
and space available, the author has slightly modified a number of standard
algorithms so as to fit them better into a unified framework and has supplied
new proofs of convergence. In selecting algorithms to be discussed in these
notes, the author has given preference to methods which can be used both for
optimal control and for mathematical programming problems. Also preference has
been given to methods which can be discussed without introducing a great deal
of additional background material. As a result, dynamic programming, set approxi-
mation and cutting plane methods, and the reduced gradient and convex simplex

methods were amitted.

Lhe author's major contribution lies in the development and exploration
of the convergence theory presented, in exhibiting the relation between the type
of points different algorithms will compute for a given problem and in showing
how large families of feasible directions algorithms can be generated from
related and equivalent families of necessary conditions of optimality. The list
of references at the end of thé notes includes only those papers and books which
were used by the author to some degree in the preparation of these notes. They
are by no means an exhaustive bibliography. A number of results in these notes
are presented without reference to other people's work. Some of these results
are part of the oral tradition, while others are claimed to be probably new.
The reason for hedging and saying ‘'probably new" is that the author has found
on several occasions that results not known in the oral tradition in which he

participates were common knowledge elsewhere.
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NOTE TO READER

e-Procedures: Throughout these notes the reader will find algorithms including

statements of the form: if..., set ¢ = % €. The factor %-is used quite often

in practice, however, the algorithms remain convergent if any scale factor
B = (0,1) is used instead, i.e., the reader may replace % € by Be in all such
statements. In fact, the B is easily seen to ve a design paramecter.

Notation and Numbering:

1) The symbols || * | and {.,.) are used to denote the euclidean norm and
the usual scalar product, respectively.

2) Components of vectors are always superscfipted: Ceffey, 2 = (zl, z2,
veeg zn) GER?, elements of a sequence are always subscripted, c.g., Zs Zys Zps eees

3) We denote the interior of a set O by 8 ana its boundary by 3.

L) When referring to an equation within the same section, only the eguation
number is used, e.g., (7); when referring to an equation in the same chapter
but in a different section, the section number and equation number are used,
eeges (1.25); and when referring to an equation in a different chapter three
numbers are used, e.g., (I.3.16), the first giving the chapter, the second
the section, and the last the equation.

When a section within the same chapter is referred to, the chapter number

is omitted.

-\



)

o
‘Y

c.db

I. PRELIMINARY RESULTS . . . . . . . . .

1.
2.
3.
b,

TABLE OF CONTENTS

. . o e e o o . o

Optimal Control and Nonlinear Programmling Problems
Optimality Conditions . . . . . . . . ¢ . . . . .
Convergence Conditions . . . . . . .« . . « . . . .

A Few Useful Properties of Continuous Functions

II. UNCONSTRAINED MINIMIZATION AND BOUNDARY VALUE PROBLEMS

1.
2.
3.
L.
5.
6.

Minimization: General Theory . . . . . . . . .
Boundary Value Problems: General Theory . . . . .
Q‘J.as i"NeWton MEthOdS * o e e & e e e e e e e o e e

Conjugate Gradient Methods . . . . . . . . . . . .

Applications to Optimal Control . . . . . . . . . .

Minimization Without Calculation of Derivatives

III. CONSTRAINED MINIMIZATION PROBLEMS . . . . . . . . . .

1.
2.
3.
k.
5.
6.

IV. CONVEX OPTIMAL CONTROL PROBLEMS . . . . . . . .

1.

2.

FIG()RES e @ o e e e e o e + 6 ¢ e e e o 6 e o e o » o . e o e o o 3

REFERERCES

Penalty Function Methods . . . . . . . . . . . . .
Method of Centers . . . . . . . . . . ... ...
Methods of Feasible Directions . . . . . . . . e .
Further Applications to Optimal Control . . . . .
A Second Look At Feasible Directions Algorithms .

Gradient Projection Methods . . . . . . . . . . .

4 Further Extension of The Methods of Feasible Directions

Decomposition Algorithms . ; ..... e e e e e e e e .

-vii-

. .

e o e o e o o o o o e e o o * & o o o o o o ® o o o ¢ o

Page

10
17
21
21
28
31
36
¥

65
65

85

107

. 115

127
127
130
1k
146



=

L }

¢l

I. PRELIMINARY RESULTS

1. Optimal Control and Nonlinear Programming Problems

We shall present in these notes a number of algoritmms for solving discrete

optimal control problems of the following kind.
1. Problem: Given a dynamical system described by the difference equation

, g "
2. X, fi(xi’ui)’ x; €R’5 u, €RY,

- x.
i+l i

[y

-'—'0, 1"‘ 2,..0’ k-l 9

find a control sequence U = (uo, Uiseees uk-l) and a corresponding trajectory
X = (xo, Xyseoes xk) which minimize the cost functional
k-1
0
i=0
subject to the constraints

s5(u;) €0, 1=0, 1,..., k-1

l, gi(xi) = O3 hi(xi) <0, =0, 1...5 k,

po M v M v . Vi
where si: R R, g;° R" >R, hi: R" R ~. We refrain at this point from

loading down the problem statement with assumptions. The required differentiability
assumptions are usually clear from the context of an algorithm., Other assumptions,

such as linearity or convexity, will be stated when necessary.

8
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We shall now indicate the origin of dlscrete optimal control probléms.

Suppose that we have a differential dynamical system of the form
5. T W = £(x®), u®), 1), telo, t]

where x(t) € RY is the state of the system at time t and u(t) € B is the input
to the system at time t. Also suppose that we are given a performance functional

t

f
6. L (x(t), ult), t)dt
of

which we wish to minimize subject to x(0) & X, < RY, x(tf) € X, cRY and

0 f
u(t) €U c R*. In the form stated, this problem may be computationally intract-
able, at least as far as available computers or meaningful execution times are
concerned. Thus one is forced to impose additional restrictions on the problem
to make is solvable. A fairly simple device is to restrict u(+) to the class of

piece-wise constant functions with at most k discontinuities. For example,

‘ tf tf
7. u(t) = u, for te i T (i+1) ol 1P

i =0, 1,-.0, k'l, ui EU .

Then, if we let xi(t), i=0,1..., k-1, be the solution of (5) for

t e [itf/k, (i+l)tf/k], satisfying xi(itf/k) = x; and corresponding to u(t) = u

for t e [itf/k, (i+l)tf/k), and set x; . = xi((i+l)tf/k), we find that
(i+1)tf/k

+ f(xi(t), ui’ t)at ,
itf/k

8. X541 =%

i =0, 1,..., k'l ’

which defines the functions fi(xi’ui) in (2). Similarly, with u(t) restricted
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as in (7), (6) becomes

k-1
9. Z fg(xi,ui)
: © 10
(1+1)t . /x
where ‘fg(xi,ui) = fo(xi(t), w5, t)dt. Thus, the additional restriction
1t./k
from the form (5), (6) to the —

of the input u(t) by (7), results in a transformation of the optimal comtrol problem/
form (1). It should be noted that (7) does not represent the only restriction on
u(t) which results in a discrete' optimal control problem. Other possibilities

exist, with
.4
10, u(t) = wutt, te itf/k, (1+1)tf/k s
1=0

i = 0, 1,..., k-l

possibly being the most common class.
The discrete optimal control problem (1) can be viewed as a nonlinear

programming problem of the form

11. min {fo(z) | £(z) < 0, r(z) =0} ,

where £ R® ml, f: BE+R" and r: R® - IR{'.
To transcribe the discrete optimal control problem into the form (11), we
may proceed in one of two possible ways. The first is to set
z = (xo, Xyseees Xy Ugs Uyseons uk-l) and to define
' k-1
12, | ©(z) = Z fg(xi,u_i)

i=0
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13. | /xl - x5 = £ (x55u5)

ue

X = %y Feo B2 Wen)
8o (%p)
g, (x;)

r(z)

g (%)

1k, by (%4)
hl(xl) \

(z)

ne

By (3
8o (ug)

81 (U ) /

For the second transcription we set z = (xo, Uys Upseees “k-l)’ and define

xi(xo,-u) to be the solution of (2) at time i corresponding to the initlal state
X, and the control sequence 1L = (uo, Wiseens uk-l)' Then, we define
, k-1
(0] 0
15. | ©(z) & Z £ (x, (1,740 » 1)
i=0
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16. N EN)
g, (x; (%451

r(z) 4

g, (x, (x551))

a7, hy (%)

h, (x, (x45W))

hy (x (x55t1))
85(1g)

ne

f(z)

81 (%eq)

There are two ressons for transcribing the optimal control problem into the
form (11). The first is that the form (11) is considerably simpler than the form
(1) and is conceptually simpler to handle. The second reason is that our awareness
of the equivalence between the problems (1) and (11) makes it possible for us to
utilize a large number of very .sophisticated nonlinear programing algorithms in
solving (1). Hence, whenever possible, we shall first explain an algbrithm in
terms of the problem (11) and then particularize it for the form (1). This will
avoid the possibility of having simple ideas obscured by the very cumbersome
structure of (1).
| We shall later see that for some algorithms, (15), (16), (17) give the only

usable transcription, whereas to apply other algorithms we may prefer to use (12),
(13), (14).
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2. Optimality Conditions

The algorithms for solving the problem (1.11) which we shall describe in the
chapters to follow, are incapable of distinguishing between a local or a global
optimm. In fact, they can only be used to construct a convergent sequence of
points whose limit satisfies a particular optimality condition. We therefore pause
to state the most frequently used optimality conditions and to identify the cases
for which these conditions can be trivially satisfied., Obviously, whenever an
optimality condition is trivially satisfied, any algorithm which depends -on it
becomes useless. The proofs of the theorems stated below can be found in [C1].

1. Theorem: If z is optimal for (1.11), i.e., fO(;) = min {fo(z) | £(z) <0,
r(z) = 0}, then there exist multipliers 110 <0, nl < 05,009 v.m <0 and q;l, q:a,

cees q{t’, not all zero, such that

m £ |

2. Z plott(3) + Z w3 = o
i0 i3

and

3. wiet(3) =0 for =1, 25...s m.

This theorem is due to F. John [J1]. n .
L. Corollary: If there exists a vector h € R such that (vf:L (z),h) > 0 for all

. . . i 0 1 2 ,
ie{l, 2,..., m} satisfying fl(E) = 0, then.(v‘ s Vs Y seees ‘f‘) £C.

/Suppose that the vectors vri(2), 1 = 1, 25.0.» 1, are linearly independent.
5. Corollary:/ If there exists a vector h € R such that (vfl(Z),h) > O for all

te{l, 2,..., m} satisfying £(2) = 0, and (v (2),h) =0 for i =1, 2,..., %,

then p.o <0,

The two corollaries are special cases of the Kuhn-Tucker conditions [KA7.
6. Corollary: If z is optimal for (11) and r(:) =0, then

7. | min max  (vE(2),h) = O
hes ie Jo(%)

where S is any subset of R" containing the origin in its interior, and for any

a_>_0 and any z {Z' | fi(Z') So’ 1 =1y 25000) m}.
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8. 3,z = {0} u {i | H(z) +a> 0, i€ {1, 2,..., m}} .

(A form of this condition was probably first publishid by Zoutendijk [Z3;|*.)
Proof: Suppose (7) is false. Then there exists a § > O and a vector h € S such

that
9. (3,0 <8 forall 1ed,(2)

Taking the scalar product of h with both sides of (2) (in which we must set
Vri(;) =0,1i=1, 2,..., my since r(+) = 0), we now get a contradiction.
10. Remark: For the case r(.) = 0, Theorem (1) can be deduced fram Corollary (6),
i.e.y when r(-) = O, these two conditions are equivalent.
11. Proposition: Suppose that the set @ = {z | fi(z) < 0, i =1, 2,..., m} has no
interior and that r(-) = 0. Then (2), (3), and hence also (6) can be satisfied for
every z € Q (i.e., this condition is trivial when Q has no interior).
Proof: Suppose that for some i & {1, 2,..., m}, {z | fi(z) < 0} consists of only
one point, z*. Then Q = {z*} and Vfi(z*) = 0. We may therefore set p.i = -1, ujz 0,
i #1,3 =1, 2,..., m and satisfy (2) and (3). Now, suppose that {z | fi(z) <0,
ieI}, Ic{l, 2,..., m} has an interior, but that {z | £1(z) <0, i € I U {j}]
where j € {1, 2,..., m}, does not have an interior. Then, any point z* in Q is
optimal for the problem
1la. min {£(z) | £(2) <0, 1 €T}

*
and satisfies £9 (z') =90. Furthermore, by (1), we get for (1la), that there exist

multipliers v.J < 0 and p,i <0, i €I, not a1l zero, such that

(11b) wetd (") + T’ ploet(z") -0,
AN
iel

(11¢) p.ifi(z*) =0,1ie1I.

Setting all other }Li = 0, we find that we satisfy (2) and (3) by means of the above

multipliers.
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12. Theorem: Suppose that r(-) is affine and that the functions (), i =0, 1,
...s M, are convex. If Z satisfies r(2) = 0, fl(%) <O fori-=1, 2,..., my and

1
there exist multipliers p- < O, 12 < Osuevs P2 < O and §'s 4550005 §7, such that

m £
13. v (2) +Zuivfi(%) + Z vl = o,
i=1 i=1

‘}Lifi(%) = 0 for i = l, 2,0.0’ m [y

then % is optimal for (1.11) (see [K4]).

Proof: Let 0' ={z | £(2)< 0, i =1, 2,00, my °(2) =0, & =1, 2,..., 4.
Then, since the ri(-) are affine, for any z € Q', (Vri (2), z - %) = 0 and hence,
by (13), for any z € Q'

m
13a. (92, z - ) = Z wert @), 2 - 2)
i=1

Now, since the fi(.) are convex, we have, for any z € Q' and i € {i | fl(?a) = 0,

. iE{l, 2,000, m}},

13b. (vEi(2), z - ) < £7(2) <O .
Making use of (13), (13a), and (13b), we obtain
13c. £G) < @) - (@), z - 7
m 3 -
- ) - Z (et (3), z - 5
i=1
< @) .

Thus, ;, is optimal.
When applied to the discrete optimal control problem (1.1), the above

conditiors may assume a highly structured form. We now illustrate this by
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considering a special case.

14, Theorem: Suppose that gl(-) = ge(’) = eee = gk_l(-) = hl(') = h2(.) =

ves = hk_l(-) = 0 for problem (1.1). If the control sequence ;.10, {;’1""’ a‘k-l

and the corresponding trajectory ;co, ;cl,..., ;ck (1.e.y the ;ci, :J.i satisfy (1.2)) are
optimal for the problem (1.1), then there exist a scalar multiplier po < 0 and
vector multipliers Py> pl, p2,..., pk, “0’ “k’ "0 < 0y..0p p‘k-l <0, go < 0,

€ < 0> not all zero, such that

3, (x, s ) \7 a0 (x, 1, ) \T
1 - _ iviTi . 1:’0 i34
5. Py " Py = X P X ?
i i
i = 0, 1,.00, k"l
) 3g, (x;) \” aby(xo) "
16. Py = | ——— S £
0 3%, 0 3%, 0
A AT ~ e
dg, (x,) dh, (x,)
17. P = 3x, T * 3%y Sk
~ ~ ’ / Y -~ * ~
a0 (x.u)\T  [af. (x.,u,)\T Jas, (0) VT
18 0 iviTi + i7i" i R - 0
20, (si(ﬁi), B) =0 for 1=0,1,2,..., k-1,

To obtain Theorem (14) from Theorem (1), we proceed as follows. First, we
note that (2) is equivalent to the statement that vL(;) = 0, where L(z) = p.ofo(z)
+ (n, £(2)) + (¢> r(z)). Then we transcribe the problem (1.1) into the form (1.11)
using the formulas (1.12), (1.13) and (1.14), and set 'p,o = po, n o= (§O, r ¥o2 Byo

e p‘k-l)’ ¥ = (Pl’ Ppseces Py Ty ﬂk). Hence,
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k-1

L(z) = 2 Z fg(xi,ui) +
=0
k-1
+ Z (Pyay> Xagq = %y - F1lxpwy))
10

o {mys 8lxg)) + {mes g (x)

v (B By(xg)) + (B B (x))

k-1 ‘

R Z (rys 84(0)).
10

Now ccmputing Q-aléc-zl s 4 =0, 1yeees k and %’%1 , 4 =05 1yeoss k-1, and -
1

setting these equal to zero we obtain (15), (16)s (17) and (18).

51. Remark: One may sometimes wish to eliminate the u, in (18) and (20). This

can be done by substituting for (18) the condition

Oa & 3\T ~ & WT
Bf (x 1 ) afi(xi,ui)
&3 @ (] [T Rt SO

for all 6u such that

2k,

3. Convergence Conditions

The convergence theorems to be presented in this text can be thought of
as being extensions of Lyapunov Second Method for dynamical systems described
by difference equations. Prototypes of convergence results stated in the

particular form used in the text can be found in Polyak [P5]) and in Zangwill
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(23], [Z1]; related ideas appear in the works of Varaiya [V3], Levitin and
Polysk [12], Topkis and Veinott [T1], Hurt [H4], and in less explicit form in
Arrow, Hurwiz, Uzawa [Al], Zantendijk [24], and Zukhovitokii, Polyak and
Princk [Z5]. (The author was unawar of Polyak's work, vhich is closest to the

authors' at the time [PL], [P2] and [P3] were written.)

To establish that an algorithm converges and to explore the extent to which
it can be perturbed without affecting its convergence, we shall mostly use the
following results, which were first stated by Polak in [P3], [P2], [P1].

that
Suppose!/ we have a closed set T [Rn vhich contains desirable points. These

10a

points may be desirable ‘bece.use they are optimal for some optimlization problem, or
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because some optimality condition is satisfied at these points for some optimiza-
tion problem, or because some function vanishes at these points, ete. Now, suppose
that we propose to find desirable points in T by means of a search function

a: T+ T and of a stop function c: T-b[Rl.

1. Theorem: Suppose that,
(i) zeT is desirable if and only if
~n ~
2. c(a(z)) < e(2) 3

(i1) c(°) is either continuous at all nondesirable z &€ T or else c(z) is
bounded from above for z € T;

(iii) For every z & T which is not desirable, there exist an £(z) > 0 and a
8(z) > O such that
3. c(a(z')) - c(z") > 6(2)
for all z' = T such that ||z - z'|| < £(z2).

If the sequence zy € Ty £ =0, 1, 2yse.5 is constructed according to

’-l-. Z i=0, 1, 2,..-’

141 = 8(%)s

and construction stops only if for some integer j c(z 5 +1) < e(z j),(i.e.,

e(z; 1) > e(z;) for i =0, 1, 2,...) then either {z,} is finite and its last
element is desirable, or else it is infinite and every accurmlation point of {zi}
is desirable.

Proof: The case of {zi} finite is obvious. Hence, suppose that {Zi} is infinite
and that Zy -+ z* for ieKc {0, 1, 2,...}, with z* not desirable. Then there

* *
exist £ >0 and 6 > O and a k € K such that for all i > k, i €K

5. lzg - 2] <€”
and
6. elzy,) -clz) > 8" .
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Thus, for any two consecutive points z,, 25 44° i, (i+j) €K, i > k, of the

subsequence we must have
T elgyg) - olzy) = (elzg,y) - ez 50)) + (elngyyy) - elzgy.0)
oo+ (elzg,) - elz)) > 5

Now, for i € K, the monotonically increasing sequence c(zi), 1 =0,1, 25000s
must converge either because ¢(:) is continuous at 2 or because c(z) is bounded
from above on T. But this is contradicted by (7) and hence we are done.

In the preceeding development we had assumed that the relation between
successive points, Zis 25090 i=0,1, 2,..., constructed in the search for a
desirable point in T, was functional, i.e., that z, , = a(zi) . In practice,
however, it is usually impossible to compute a(z i) with arbitrary accuracy in
finite time, and one therefore accepts a point z 141 lying in an approximation
set, As(zi), to a(zi) . The parameter §(6 > 0) is used to express the precision
with which z, , approximates a(zi) ; it depends on z; and is usually driven to
zero as 2z, converges to a desirable point. Under these circumstances we have the
following convergence condition.

8. Theorem: Suppose we are given a search function a: T - T and a stop rule
c: T'-; Rl which sétisfy the conditions of Theorem (1) and, in addition, suppose
that c(°) is continuous.

For any z € T, let
9. () = (=t e1| [l2* - al@] <€)

Consider the following algorithm:
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for every 1 € K, 1 > k'and every y € AC'[zi]

13. o ely) - e(zy) 2€°

and therefore for i € K, i > k'

1k, c(zi+1) - c(zi) >¢!

Consequently, if i, i+j are two consecutive indices in K, with i > kj
- — - - ]
15. c(zi+;j) c(zi) = [c(zi_‘_:)) c(zi-l-;]-l)] + oeee * [c(zi+1) c(zi)] >¢€

and hence, c(zi) , 1 € K cannot converge to c(z*) , which contradicts the contimuity
of c(*). Therefore 2" must be & desirable point and the theorem is proved.

The approximations to a(z) defined by (9) are not the only ones Which can be
used in a convergent algorithm for computing desirable points in T. For example,
we can use approximations of the form A(z) = {z' e T | c(z') - .c(z) > B(c(a(z)) -
c(z)}, where B> O is fixed. The following theorem applies to this case as well
as to s mmber of other schemes which we shall later encounter.

16. Theorem: Let A(¢) be a map from T into the set of all subsets of T, and let
c: T lRl be a stopping rule which is either continuous at all nondesirable points
in T or else c(z) is bounded from above for z & T. Suppose that z € T is desira;ble
if and only if

17. e(z') - e(z) < 0 for at least one z'e A(z)

and that for every nondesirable z & T there exist an £(z) > O and a §(2) > O such
that

18. | e(z") - e(z') > 5(z)

for all z' & T such that ||z' - z|| < £(2z) and for all z" € A(z').
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If the sequence z; € Ty £ =0, 1, 25...5 is constructed to satisfy

19 Zi*leA(Zi) i = o, 1, 2’000

C(zi+l) > C(zi) i= 0, 1, 2,..0

and construction stops only if for some integer J, c(z 3 +l) < c(z 3) , then, either
{zi} is finite and its last element is desirable or else it is infinite and every
accunulation point of {zi} is desirable,

The proof of this theorem follows the same steps as the proof of Theorem (1)
and hence is omitted.

20, Remark: The reader must be careful not to read more into the statements of
the convergence theorems presented in this section than they say. Note that these
Theorems state only that if a comnvergent subsequence exists, then its 1imit point
will be desirable, To ensure thg.t convergent subsequences will exist, one must
make some additiéna.l assumptions. For example, one may assume that T is compact,
or else that for every real ¢ the set {z & T | c(z) < c(ao)} is compact, either
being sufficient to ensure the existence of convergent subsequences.

To conclude, we shall state a theorem which combines and generalizes the
results contained in Theorems (8) and (16)., The theorem given below will be
particularly useful in proving the convergence of algorithms which use finite
difference approximations td derivatives.

21. Theorem: Let A(¢,°) be a map from RT x T into the set of all subsets of T.
let ¢t T -+ R be a (stopping rule) function which is either continuous at all
nondesirable z € T or else c(z) is bounded from above on T.

Suppose that (1) z € T is desirable if and only if

22, c(z') - c(z) 20  for a¥ll sk’ € AQJ = A(. ,2)

(11) for every non-desirable z & T there exist an £(z) > 0, a 6(z) > O and a
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v(z) > 0 such that

23, c(z") - e(z') > 6(z)

for all z' €T, ||2' - z|| < €£(2), and all 2" & Ay, 2z'), O < y < y(z). Now consider
the following algorithm: | |

2k, .Algorithm: Suppose that an 50 > 0 and a Zy € T are given.,

Step 0: Set z = z,
Step 1: Set € =§€,
Step 2: Compute a y & A(E, z)
Step 3: If c(y) - e(z) > € set z = y and go to Step 1
If c(y) - c(z) <€ set € =€/2 and go to Step 2.
let Zqs 22’"' be the successive values assigned to z in Step 3. Then either the

sequence {zi} is finite and its last element is desirable, or else it is infinite
and every accunulation point of {z i} is desirable. |

The proof of this theorem is a minor modification of the proof of Theorem (8)
and is theréfore omitted. The preceeding three convergence theorems are easily
seen to be convenient special ceses of Theorem (21), which correspond to A(°,*)
being of a special form, as in (8), to A(+,*) being independent of ¢ as in (16),
and to A(*,*) being independent of ¢ and A(e,z) consisting of a unique point, as
in (1). We now turn our attention to the object of our primary interest:
optimization algorithms.



4. A Few Useful Properties of Contimuous Functions

Throughout this text we shall make repeated use of a few properties of
contimoué functions. We shall summarize these properties in this section for
further reference.

1. Proposition: Suppose that £7(+) is a continuous function from R" into RY
*
and S is a compact subset of [Rn. Then for each z & [Rn, and for each § > O
. * * ¥ A
there exists an ¢ > 0 and a ) > O such that for all zeB(z e ) ={z |

”z-z*]l < e*} and for all he S,
2. |£5(z +an) - £1(2)| <5 for a1l A & [0A_].

N .
Proof: Let ¢ > O be arbitrary, but finite and let z < R". Then £ (+) is

. * A *
uniformly continuous on the compact ball B(z , ¢) = {z | ||z-2 || < ¢} and hence

there exists an g¢' > O such that

3. |£5(z) - £1(z")] <6

* *
for all z, z' € B(z , ¢) satisfying ||z-2'|| < e¢'. Let ¢ =min {e', &/2}, and
let M = max {|h| | hes}. Ifwe setr = ¢ /My then for all h & S and for all

* *
zeB(z, ¢ ),

*
b, IAn| < e for a11 A & (0,1 ]
¥*. *
5, (z+2Ah) €B(z, ¢ ) cB(z , ¢) for all A\ e (052 ]

*  o*
and therefore, because of (3), for all ze B(z , ¢ ) and for all he S,
6. |£°(z + An) - £(2)| <§ for alli e o571 .

7. Proposition: Suppose that £5(+) is a continuously differentiable function
from [Rn into ;Rl and S is a compact subset of IRn. Then for each z* = iRn and for

*
each § > O there exists an g > 0 and = )\m > 0 such that for all
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z e B(z*, e*) a {z | ]|z-z*|| < e*} and for all he S

8. |(v:t‘i(z + ch),hy - (vfi(z) shy| <6 for all ¢ e 052, ] -

)

*
Proof: Let ¢ > O be arbitrary, but finite and let z !Rn. Then the function
i *
(vfl(-), *Ys from R" X R" into lRl, is uniformly contimuous on B(z , g) x S

and hence there exists an g¢' > 0 such that

9. IKvet(z"),m%y - Cort(2),m)| < 6

for all (z,h), (z2%h') e B(z*, €) X S satisfying ||z'-z|| < ¢'s ||h"-h|| < e'. Now,
*
let ¢ = {e's ¢/2} and let M = max {|[hf| | he S}. If we set Ny = ¢*/M, then for

* %
all heS and for all z € B(z , ¢ ),

10

-

lenll < & for alig & [0, ]

11, (z +¢h) €B(z; ¢) Bz ¢) forall e [0 ]
and hence because of (9), for all z B(z*, e*) and for all h e S,
vet i
12, |¢vf(z + gh),h) - (vE (z),h) | <6 for all ¢ e[0,A ] .

13. Proposition: Suppose that for i = 0, 1,..., m the functions - fRn - IRl

are contimious. Then the function M: R" - lRl defined by

1k, M(z) = max {fi(z)] ie{0, 1,..., m}}

is also continuous.
*
Proof: Let z ean and § > O be arbitrary, then there exists an ¢ > O (possibly

B . * o *. A .x.
depending on z ) such that for all z€ B (2, ¢) = {z | ||z-2 || < €}

° ¥* - 0y ¥*
15. fl(z ) - 6 < fl(Z) < f:.(Z) + 6, i == 0, l’ooo, m.,
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Hence,
* .
1681. fi(Z) <M(Z) +6, i=o, 1,.0., m,
and _
i % .
l6b. ' f (Z ) - 6 <M(Z), 1l = 0, 1,..., m.

Taking the maximum over i in (16a,b), we get

17, M(z¥) - 8 < M(z) <M(z') + &

and hence M(+) is continuous.
-'-
18, Proposition: Iet y(+,+) be a continuous function from & x R" into IRl and

let S be a compact subset of [Rn. Then the function m: [Rn - lRl, defined by

19. m(z) = min {{(z,h) |h € 5},

is also contimuous.

Proof: Tet z*e " be axbitrary. We shall show that m(+) is contimious at z»
Let ¢ > O be arbitrary, and let B(z's ¢) = {z l]z-z*ll < e}. Then y(+,°) is
uniformly continuous on B(z*, e) x S, and, given any § > O, there exists an

e' > 0 such that
20, Jg(zh) - y(z*5h")| <8
*
for all (z,h), (z',h") e B(z ,¢) x S satisfying ||z-z']| <e's ||h-h'|| < ¢'. Let
*
¢ =min {e'se}, then

21, | #lzsh) -6 < ylz,m < y(z,n +6

* *
0 % %, the interior of B(z ,¢ ).
for all he S and all ze B(z» ¢ )/ From (21) we now get, by minimizing the .

appropriate terms over h € S,
*
22a, m(z) -8 < ¢(z,h) for all he S

: *
22b, m(z) < §(z,h) + & for allhe S .

n : - n2
This proposition is obviously valid for y: R~ x R =, continuous, SCR

and m(x) = min {§(x,¥) |y € S}. We shall only need the form (18).

compact,



e

by

Again minimizing over h e 8 we now obtain from (22),

23. |m(z) - m(Z*)| <

which shows that m(.) is contimous,
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ITI. UNCONSTRAINED MINIMIZATION AND BOUNDARY VALUE PROBLEMS

1, Minimizstion: General Theory

We shall now consider the problem:

1. min {fo(z) | zean} s

where 0: & -+ B is a continuously differentiable function with the property

that the set
2. . {z | £(2) < a}

is bounded for every o € Rl.f

A large number of algorithms for solving (1) fall into the following
category. For every z € R®, let D(z) be an n X n, positive definite ( > O) matrix

whose elements are continuous functions of z. Let

3. h(z) & -p(z)vf(z)
and let
h. " - a(z) & .. w(z) h(z) ,

where u(z) > 0 is the smallest positive scalar such that

5. Pz + 1(z) b(z) € £+ =)y 120,

Note that for every z e R" such that vfo(z) = 0, a(z) = z. Hence, the search

function a(+) defined in (4) and (5) can only serve for finding stationary points

which are not local maxima. When the function £9(+) is convex these stationary

Trnis property ensures that every sequence {xi} in B%, satisfying
£° (xi) < fo,(xo) , is compact and hence has accumilation points.
ﬁA]gorithms of this type are variations of the method of steepest descent probably

first used by Cauchy [C2] and have been in use for a very long time. For an
alternative discussion see Topkis and Veinott [Tl] or Zangwill ([z1].
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0
points will be the actual minima of f (+).
6. Theorem: Let Zq e R® be arbitrary. Suppose that the sequence Zs5 i=0,1

25..45 was constructed according to
Te _vzi.*_l = &(Zi), i=0 Ly 25000

0 0
80 . T (zi'l'l) <f (zi)’ i-= 0, 1’ 2reeey

where a(+) is defined by (4) and (5), and construction stops only if :t’o(z.i +l) >
fo(zi). Then either the sequence {zi} is finite, terminating at %o with

\?fo(zk) = 0, or else it is infinite and every accumlation point z' of {zi}
satisfies vfo(z*) =0,

Proof: We shall show that the assumptions of Theorem (1.3.1) are satisfied for

¢ 8 _° and z € B® defined to be desirable if and only if vE (z) = 0. Obviously,
a(z) = z for every z € R® such that vfo(z) = 0. Now, if z € R" is such that
vfo(zk) # 0, then (vfo(zk), D(zk) Vfo(zk)) = 6, > 0, and since vfo(o) is

continuous, there existsan¢, > O such that for all 0 < 1 < €y

9. £2(z, + wh(z)) fo(zk) + 1 (v%(z, + Eh(z))s B(z))

< £(z) - /2,

where € € [O,u]. Consequently, u(zk) > ¢, and f‘o(a(z.k)) < fo(zk), i.e., the
computation stops if and only if v£'(z) = O, so that condition (1) of Theorem (I.3.1)
is satisfied.
* n. 0, * *
Now, let z € R be such that v€ (z ) £0. Then p(z ) > O and we define

e: eRn -»[Rl by

10. o(z) = 2(z) - £2(z + n(z") h(2)) .

By inspection, ©(°) is a continuous function and

1. o(z") = £2(z") - 2" + p(z") n(z") = " >0.
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. *
Since 6(*) is continuous, there existsan e > O such that
: * *
12, IQ(Z) -O(z)ISG/E ’

i.e., such that

’13. 6(z) > o*/a

forall z e {z | ||z - z*” < e'}.
But

1k, | £(z) - £2(z + u(2) n(z)) > o(z)

and hence, setting 6(2*’(') = 072, e(z%) = ;, we £ind that assumption (iii) of
Theorem (I.3.1) is sé.t:lsﬁ.ed' and we are done. (Assumption (ii) is satisfied
since fo( ) is continuous.)

The search function a(-) defined by (4) and (5) cannot be calculated in a
finite mmber of operations because of the one-dimensional minimization indicated
in (5). We now give a modification of the algoritim (7), (8) which sheds light
" on the eitent to which the miﬁimization in (5) can be relaxed without affecting
. the convergence properties of the resulting algoritim.

15. Coro ¢ Suppose that we construct a sequence {zi} in R® such that
16, Zig = % * ).ih(zi), Ay 20, 1=0,1, 2,...,
o
and, for a fixed A >0,
o 0. *, 0 0
17' f (21) - f (zi+l) Z A (f (zi) -f (a(zi))) ’

vhere h(*) and a(+) are defined as in (3), and (4) and (5), respectively. Then
either {zi} is finite and its last element, z, s satisfies vfo(zk) =0, or {zi} is

infinite and every accumulation point zf of {Zi} satisfies vfo(z‘)_‘) =0,



ro

)

-25-

We omit a proof of this corollary since it follows directly from Theorem
(I.3.16) . The computational importance of this corollary lies in the fact that if
2¥ > 0 1s chosen to be extremely small, then, in all probability, just sbout any
coarse minimization of :‘;'o(zi + )\h(zi)), A > 0, will result in a Ay satisfying
(17) and hence in a convergent scheme, (However, the rate of converéence may

be affected adversely.)

We now give an algorithm for solving (1) which does not require us to
perform a one-dimensionsl minimization and yet can be proved to converge in the
sense of Theorem (I.3.16).

18. Theorem: Suppose that we are given an a € (0, %‘-) and that the sequence {z,}

in tRn is constructed to sa.tisfy, for 1 =0, 15 25ce0s

19. | 21 = 7% Y MB(E)

20, A (1) (725 h(z)y < Pz, + Mh(zy) - £2(z)
< Ay @ (w(z), nz )T

and

21. f°(z1+l) < fo(zi) s

(see Fig. 1),  where h(*) is defined as in (3). Then, either {zi} is finite
and its last element, 2y satisfies vfo(zk) =0, or {zi} is infinite and every

accumulation point z of {zi} satisfies vfo(z*) = 0,

i+l i
441 £ z; and fo(zi+l) <.fo(zi), by simple geometric reasoning. Thus, if the

Proof: Note that if vi'(z,) = 0, then z,,, = z, and that if vi'(z,) £ O, then
. ' 0 0 ‘

construction of 'Fhe sequence stops at z,, (because f (zk +l) =f (zk)), then

Vfo(zk) = 0, For the case where {zi} is infinite, we shall show that the

assumptions of Theorem (I.3.16) are satisfied for c -fo and, for A(e) defined by

“ne

A step-size rule of this type was probably first used by Goldstein and Price
f62]. |
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22, - A(z) & {z'=z+2h(z) |[A>0 and
A(1-0) (v£2(2)5 h(2)) < £(2") - £2(2) <2 @ (v(2), n(2)y .

For every \ € Rl and every z € an, let §(A,z) be defined by

23, 12 =2 (e +m2) - L) - 1) (v(2), b))

Let p(z) > O be the smallest positive root of the equation y(A;z) = O. Then the
procedure defined by (19), (20) and (21) will always set Ay 2 p(zi). Now note
that for every z € R® such that vfo(z) £ 0, $(A32z) < 0 for all A € [0, p(2)];
that §(0,z) = + & (vfo(z), h(z)); and that ¢(°;°) is jointly contimuous in A
and z. o

let z, € R® be such that Vfo(zi) 10 and let

i

ok, : By = max {y(a3z;) | A & [0, %p(zi)]} .
Then B; < 0, and there exists an ¢’ > O such that for all z & {z | [z - 2| < €'}
and )\ € (0, -;-' p(zi)],
25. Coy(z) < oBy/2.
Since (Vfo( *)s h(+)) is continuous, there exists an ¢" > O such that
26, @, @) < 5 (v(z)s niz)y v/ < 0,

for all z€{z | ||z - z;|| < €"}. ILet ¢ = min {¢', "}, then for all

ze(z | Iz - 2]l < €}5 the algorithm chooses a A, 2 p(z;)/2 such that

p(zy)

5 (vi%(2) 5 h(2))

27. £z +2, 1(2) - ©2(2) g ar (v(2), n(2)y < @

pzy) vy
=@ —>- 7 < °.
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p(zg) vy

. - - )
Setting e(zi) = ¢ and 6(21) = -0 —j—= ve find that the assumptions o

Theorem (I.3.16) are satisfied.
28, Remark: The following is a simple method for finding a Ay > 0 which

.r

satisfies (20) for a given Zge Select a sulteble step length, p > O, Let

29, o(r;3z) = £2(z + An(z)) - £2(2) - 1 & (v (2), n(z)) .

For ;]b= Oy 1, 25...5 compute 6(Jp; zi), stopping the calculation for the first
J > 0 such that ©(Jp; zi) > 0. If A; = jp satisfies (20) we are done., If not
there is a \, in [(3-1)p, Jp] which satisfies (20) and it can be found by
consecutive helvings of subintervals of [(J -1)ps Jp] in an obrviéms mammer., A
faster method would be to divide subintervals of [(j-1)p, jp] into thirds.

30. Remark: The proof of Theorem (18) indicates that a sequence {zi} in BY,

constructed to satisfy

31. Zi+l=zi+)\i h(zi), i=0, l, 23000

with )‘i computed as shown below, has the same convergence properties as the
sequence {z,;} constructed in (18).
32. Algorithm for A,: Choose a step size p> O eand anae€ (0, 1). Iet

3. 8(hs2) = £2(z + An(z)) - £2(z) - A1-0) (vE(z), h(z)) »

where h(z) is as defined in (3).

Step 1: Set A =p.

A

tep 2: Compute '9-(x;2i).

: If B(A5z;) < 0, set Ay =A.
If -G'(x;zi) > 0, set A = % and go to Step 2. *

*It is an obvious adaptation of the regula falsi method for finding a root.
*
This procedure was suggested to the author by M. G. Meyer.
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Note that (31) and (32) now define an (ordinary) function a: ®® -+ §%,

To conclude this section, we indicate a somewhat more general class of
algorithms which is used less frequently.

Let h()\‘;zb) be a contimuous function from IRl x R" into [Rn such that for every

z € R® satisfying Vfo(z) £ 0,

3. (v2(2), n(032)) < O ,

then the search function a: R” + R® defined by

35. a(z) = z + h(\(2);2)
6. 2.z + (A (2)32z)) = min £2(z + h(r;2))

* *
can be used to compute points z & R", satisfying Vfo(z ) = 0, as cluster points

of a sequence {z i} constructed to satisfy

37 . Vo Zi"’l = a(zi)

0

38. £z, < £(z;) .

i+l

The proof of this should be obvious by now, as well as the various ways in
which the minimization in (36) can be relaxed.

2. Boundary Value Problems: General Theory

We now address ourselves to the problem of finding a vector z € R® such that
g(z) = 0, where g: R® -+ [Rm is a contimuously differentiable function. Obviously

we can convert it to the form

1. ‘ min {£°(z) & ||g(z)”2 | ze®Y

and apply to it any one of the general algorithms described in the previous sub-

section. For example, let a(z) be defined by (1.4) and (1.5) for some continuous



a.«

n X n matrix D(z) > 0, i.e.,

T
2. a(z) = 2z - u(z) D(z) (%‘éz‘)-) g(z) & z+p(z) n(z)

with n(z) > O being the smallest positive real such that
2 2 >
3. le(a(z))||® < lla(z + wh(z))||* , for all pZ0

As we have already pointed out, this search function can be ﬁsed only to
£ind points z such that h(z)= -D(z) (ag(z)/az)T g(z) = 0., 8Since D(z) > O is non-
singular, h(z). = 0 if and only if (ag(z)/az)T g(z) = 0. Now suppose that 3g(z)/3z
has maximum rank for all z & R" such that g(z) £ O. Then the algoritim,

= a(zi), fo(z ) < fo('zi), i=0,1, 290s.s will indeed compute sequences

%14 1+l
{zi} in R® whosé accumlation points z*satisf‘y g(z*) = 0, This conclusion also
remains valid for the other aléorithms discussed in the preceeding section. ' Note
that the assumption that (3g(z)/dz) has maximum renk at all z € R® for which
g(z) £ 0, produces the same effect for the problem (1) as did the assumption of
convexity of fo(°) for the problem (1.1l), i.e., the algorithms presented will
compute points z such that g(z*) = 0 (or such that fo(z*) _<_ f‘o(z) for all
26 B".

Now let us consider the following problem,
4. min {£°(z) | r(z) = 0}

where fo: RS -+ ERl and r: R - [R{' are continuously differentiable functions.

For this case, Theorem (I.2.1) indicates that if g e R" is optimal, then there
exist multipliers v@co, vl,..., ¢‘t‘, not all zero, such that
A
o) O, A
5. y v (Z) + e ¢ R

i=1
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(Note that the condition p.o 4 vgo <0 in (I.2.1) looses its significance when
there are no inequallty constraints and is therefore omitted). We can use
algorithms in the class described previously to find points z R" satisfying (5),
for some ﬁo, ‘gl,... ’ .3‘!‘ not all zero, as follows.

There are two possibilities. Either we must set \yo =0 in (5) or not., If
(wl, we,..., ‘?L)’ ¢ = (z,4) and defining

we must set \t,:o = 0, then, setting ¢

g: B x RY + &" x RY by
L
6. gc) = Z ¢ ori(z) ,
i |
r(z)
try to

we canlcompute points ¢ satisfying g({) = O as previously explained.

If ¢o £ 0, then we may set ¢0 = -1 and define
£
i 0
7. g(e) = v et (z) - v(2)

i=1
r(z)

Suppose that for all z such that r(z) = O, the vectors vri(z), i=1, 2
«eey 4, are linearly independent. Then g(¢) = O, with g defined by (6), cannot
have a solution. However, g(r) = 0, with g defined by (7), may have a solution.
If one does not know whether the vectors vri(z) are linearly independent or not
at all points 2 satisfying r(z) = 0, one may try to solve g(g) =0 with g(-) -
defined by (7) and switch to the formula given by (6) if ”g(g)||2 does not cofrverge
to zero but to a positive value.
8. Remark: Suppose that for all z R" such that r(z) = 0, the vectors vri(z),

i =1, 2y..., 4, are linearly dependent. Then for any z satisfying r(z) = 0, we
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cen satisfy (5) with ¢C = O, 1.e., in this case condition (5) is trivial and, in
all likelihood our computations will only produce a non-optimal point z satisfying
r(z) = 0, which could have been obtained more easily by solving r(z) = O directly.

9, Remark: Consider now the problem

—————

0, i

10. min {£(z) | r'(2) 1y 250nes 4

fi(Z) So, i l’ 2,0.., M} b2 ZE[Rn,

il

first defined in (I.1.11), and suppose that all the functions in (10) are
continuously differentiable, This problem can be converted to the form (4) as

follows., For i =1, 25400y my let
41 2
11, i (2) 4 (max {0, fi(z)}) .
Then r**1(z) = 0 if and only if £(z) < 0y i = 1, 2,..., m, and therefore (10) is

equivalent to

12. min {£2(2) | £ (z)

0’ i = 1, 2,..., l,+m]

However, for any z such that ri(z) 0, i =1, 2y...5 44m, and which is in

1}

the interior of the set {z | fi(z) <0, i=1 25,00y m}, we £ind that vri(z) = 0,
for i = 4+1, 4425...5 4Hm. Thus, for all such z, the condition (5) is trivially
satisfied, and hence the form (12) is an unproductive transcription of (10) as

far as obtaining solutions to (10) is concerned.

3. Quasi-Newton Methods

which are presented

We shall now consider a few specific algorithms/in the class/in the preceeding
two sections; These methods are primarily characterized by the particular choice
of the matrix D(z) in (1.3). The step length (n(z) or xi) to be used can be
determined according to any one of the rules previously indicated: (1.5), (1.20),

or (1.32).
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i.e., min{fo(z) | =z eERn]

1. Steepest Descent Method: For the problem (1.1)l, this method sets D(z) = I,

the identity matrix, so that

| h(z) = -v£(z) .
This algorithm is credited to Cauchy [C2], and more recently to Curry fcs].
2., Modified Newton-Raphson Method: For the problem (1.1), this method sets

p(z) = (aafo(z) /Bza) -1 (assuming that this inverse matrix exists and that it is

continuous and positive definite), so that,

: 2.0 -1
3. nz) = - (X&) T o)
1T

[

Consequently this method can only be used to solve the problem (1.1) when fo(-)

is strictly convex. This algorithm was also described by McCormack and Zangwill
(M), and again by Zangwill in [21].% 0
To solve problems of the form g(z) = 0, or vf (z) = O, assuming that

(2e(z) faz) -1, , (a_afo(z) /azz) -l, exists, the modified Newton-Raphson methodlsets

or

(52)” (42)”

b D(z) = oz dz
or
20(3) J8 T
. ; D(z)=3fz -1 a2fz'l'-l’

322 32>

respectively. Thus defined, D(z) is positive definite and, for the problem

g(z) =0,

-(2) (b_ L ||g(z)"2) ’

6. h(z) 32

-2(z) (éﬁiﬂ)T a(z)

0z

- (M) - g(z) ,

dz

?For the best classical treatment of the Newton-Raphson method, see Kantorovich (xk2].
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while for the problem min {’fo(z) | z e RY,

Te h(z)

0(z) (& 3 Iv@?)"

2.0, \\T
-D(z). E—éﬂ vt (z)
0z

2.0 -1
37t (z) 22 (z) .
32

In this case the step length is again set as in (5), (20) or (32), but with
0
% lle(2)}] o % ”vfo(z)“ taking the place of f (z).

8. Remark: In Section II.2 we pointed out that the assumption that £0(-) is
convex ensured that the algorithms would compute points z such that fo(z*) <
fo(z) for all z‘e ERn. Note that for the modifications of the Newton-Raphson
method, the assumption that £°(e) is strictly convex, must be made to ensure

the same results, ‘ |

| The computation of (3g(z) foz) 1 oor (32f0(z) /322) "L can be quite expensive,
Hence one may wish to use the matrix (agl(zd)/az)-l (or (aefo(z:j) /az2) "l) for

J =4, i+ly...s i+k steps, say, and then recompﬁte it again., It is easy to show
that this will also result in a convergent algorithm for solving

min {32: "g(z)"2 | ze [Rn}, or (min {-32= llvfo(z)“2 | = e %}, provided there exists an
a> 0 such that

)\ ()72
9 " (aazz) (a 52 ) 2 @
for all

‘o 2 2.
10, 2 ez | e < letz)I3) 3

or



for all

12. zefz | o' @I° < IveGIA .

In fact, one can generalize the above observation even further, as follows.

13. Theorem: Consider the problem

lh.‘ - min {fo(z) | ze R}

where £2: R® o lR:L is continuously differentiable,

.Suppose that the sequence z; E[Rn, 1=0,1, 250045 is constructed to

satisfy
15. 241 = % tAghy
0 0
16. i f (zi-l"l) < f (zi) ]

with the h, # 0 chosen so as to satisfy

17. - (9£2(2) 5y > ol (2] [yl

for some fixed p > O, and with the A, > O chosen either to be the smallest

i
real satisfying

(0] 0
18. £ (zi + Xihi) =min £ (zi + }\hi), A>0 ,

or else to satisfy
19. A (10) (w25 b)Y < Pz, + b)) - Lz,

< oo (v(z)s b ,

for some o (0, —é’- o Then either the sequence {zi} is finite and its last

element z, satisfies vfo(zk) = 0 or else it is infinite and every accumilation
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point 2z of {zi} satisfies vfo(z*) -o.t

This theorem can be proved by making use of Theorem (I.3.16) and of the
contimuity properties of fo(-) . 'Theorem (13) bears not only on some of the
modified Newton-Raphson methods sketched out above, but also on conjugate
gradient methods which we shall discuss in the next section.
20. Remark: The modified Newton-Rephson methods described in this section
differ from the classical form in one important respect. They require one
additional operation -- the dommtation' of p,(zi) or 7\1 -~ to obtain Zs 41 from
240 Although this means that these methods involve more work, their convergence
is not limited to a small region about the desirable points, which is the case
with the classical form of the Newton-Rephson method. As far as rate of
convergence is concerned, it is not difficult to see that with the modified
Newton-Raphson methods fo(zi) -+ fo(‘é), or “g(zi)" +0, as 1 » », at a rate at

least as fast as when the classical form is used.,

*The convergence properties of the sequence {zi} are unaffected by whether one

always uses (19), or always (20), or whether one alternates between them in any
manner, to compute Ase

!
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4. Conjugate Gradient Methods

Although j!:he rate of convergence of the quasi-Newton methods is quite
satisfactory, they require the calculation of second partial derivatives as well
as the inversion of possibly large matrices azfo(z) /az2 in the minimization of
fo(z) , z € R". We shall now describe a class of methods which require the
computation of only the gradient of fo(z) and whose convergence rates are never-
theless considerably superior to that of the method of steepest descent, though
not quite as good as those of some of the quaesi-Newton method's.

These methods are called con.juéate gradient methods and they all have in

common the feature that they require at most n steps to solve the problem
1. min {(z, Hz) | z e R} ,

where H is an n X n positive definite symmetric matrix. Consider for the moment
0

the problem min {f (z) | z € [Rn} and suppose that fo(-) is twice continuously

differentisble., Let % be an optimal point for this problem, then vfo(%) = O and

for 6z small, i.e., for z = Z + 6z in a small ball ebout %, we have
0 " -
2. fo(z) -£(2) & (62, H(Z) 62) ,

where H(2) = 3°f°(z)/az°. Thus, it is heuristically clear that any method which
is efficient in solving the problem (1), very likely, will also be efficient in
solving the problem min {fo(z) | ze [Rn} s provided it is convergent for this
problem, and provided, of course, that aet‘o(z) /322 is positive definite in a
neighbvorhood of the optimsl po:lntsl‘i.

We begin the description of these methods by a discussion of a biorthogonaliza-
tion process. T Suppose that we wish to construct‘ two sequences in Rn, &y> 8yreees

8n-1 and h,s hl,..., h'n-l’ such that

TWe follow here the presentation of Hestenes [H2], see also [H1].
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3. <gi’gj) = 0 for all i ié J
and
b, (hi,th) =0 for all i £ J

where H is an n x n positive definite, symmetric matrix. We can do this by means
of the Gramm-Schmidt orthogonalization method as follows.

Let 8o be arbitrary. Set ho = e Now, let

(8y28q)
which ensures that (go,gl) = 0, Next, set
4b, hl = gl + 'YO ho, with YO = - T—-——I’mo’h())
This process can obviously be continued as follows:
ke, g2=B20go+gl+7\l}ml; h2=g2+y1hl+a20h0,

where kl’ 520 are chosen to mgke (go,ge) = (gl,ge) = 0, and Ao a20 are chosen

to make (ho, Hhe) = <h1’ Hh2) = 0, and so forth, until for some m < n, & = hm = 0.
The interesting thing about this construction is that the coefficients 620 and azo,
ete., are zero, as we now show, .

5. Theorem: Suppose that for 1 =0, 1, 25...,

6. €540 =8 + A Hhys hy =g, +y; Ny g =hy

with | |
_ Leys85) (Hhy585,1)

" B SR O 17T T, By
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where His annx n symngtric positive definite matrix. Then, for i, j =0, 1,
2,..0,

8 (gy28) = 644 llggI® ana (v, my =5, |3

¢ 54254 ij =1 i? g/ T P15 Wilm

where 613 is the Kronecker delta.

Proof: We give a proof by induction. By construction, (go,gl) = (go,th) =0,

Now, suppose that for some integer k, 0 < k < n-1
8a. | (hi,HhJ) = (gi,gd) =0 forall i#J3,1i, J<k
and let 1 € {1, 25...5 k-1}, then
(g + Ny Hyes &)
| M (Hhks gi)
Me (Hhks (h " Y41 i-l)) = 0 .,

Also, (gk, gk+l) = 0 by the choice of )‘k and

8. | (gk+1, gi>

i

(g + Ay iy &)
A (Hys gy) = O (g, = hy).

Similarly, <h'k+1’ Hhk) = 0 by construction of Yie* Hence, let 1 {0, 1, 2,

Be. (Eyrr? &0

000 k"l} 9 then

8a. -y )

(Bqq + Yy Tyeo 1Y)
(8412 HBy)

1
<gk+l, 'i.i- (Si+1 - gi)) = 0 L]
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i.e., if (8a) is true for k it is also true for k+l. But it is true for k = 0,

hence it is true for k = 0, 1, 2,... which completes our proof.

For the vectors constructed above, it 1s ecasy to show that the following

hold:

9- (hi’gk> = 0 for all i (=3 {0, l, 2’.0-’ k‘l}

" (s 8,1) (B0 €540

' | Yi 7T, by T T (egs &)

 {8y410 8540 1840 &)
- (g;:8;)

i = 0, l’o-o, n-lo

ll. )\ - - <gi’gi> _ (hi’ gi>

To establish (9), we note that for 0 < i < k,

(Bys 447

1la. <hi’ Ek>



Now, (ho, gl) = 0 since hO = gqe Suppose therefore that (hi’ gi-;-l) =0

» for all i & {0y 1y...5 k-1}, with k € n-1. We shall show that it must then also

be true for i

11b.

k.

e Bn) = (e gy kN Hy)

[}

<hk’ gk> + )\k <hk’ Hhk>
B * Vg1 M) + Ay (Hyo B

B+ hy (i 1y = 0

£

£

To establish 10, we proceed as follows.

-:-L-<g - 85 8:.q)
W R A 1

e i T
g (Hh,, by = 1
i i X'._ <gi+1x' gi’ hi)
1
_ (8341 €147
<gi’ hj}
LTIy
85> 85 + V3.3 Byp)
LY
. + )
(a0 Bryp) - 8140 Ep)
!: <gi’ gi>
by To establish (11), we observe that
114 (gi, gi> (hi = Yi_l hi'l’ Si) <hi’ gi)

(gg> Hny)  — (hy - vy 4 hy g5 Hy)y (b, Hhy)
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Now, suppose that we wish to minimize fo(z) = (2, Hz), where H is an
n x n symmetric positive definite matrix, starting with a given Zge Suppose that we

construct Zys Zpsese according to

z = Z +)\ i'—'o’ l, 2’000

i+l i 174

12.

h ho=

141 = B2 t vy By - Hzgs 1=0515 2.

with y, chosen so that (b, Hh, .) =0 and ), chosen so as to minimize fo(zi+ )\hi)

for A > 0, i.e., since vfo(z) = Hz, )‘i must satisfy (hi, Hzi+1> =0,

Hence,
13 Ay =- Oy By VR iy Bgyp)
. i 8y ) i {Hh,;h,)

Now, let g, = - vfo(zi) = - Hz;, then, for i = 0, 1, 25..., n-1, the vectors
g;» h; satisfy (6) and (7) (see (10), (11)). Also, since (by (9)) (h,j’ g;) =0
for al1 0 < j < i, and since i =0, 1, 2,..., g = Hz = 0 for some m < m.
Consequently zm - 0, which is the desired solution. |

There are two convergent adaptations of the above procedure to problems of
the form min {£(z) | z e RY.
14, Assumption: For the purpose of the conjugate gradient algorithms we are about
to describe, we shall assume (in addition to requirement stated in Section II.1) that
the set {z | fo(z) < fo(zo)} is bounded, that fo(°) is twice continuously
differentiable, and that there exist 6. > 8, > O such that for all x, z € {z | £(z)
< fo(zo)},

2.0
2
P e O ER RN

o}

15. Fletcher-Reeves Algorithm [FL4]:

(1) Teke Zo € R® to be a good guess at the minimum of fo(z) .

(1) For i =1, 2, 3,..., compute z;, h;, g, according to the rule



-ho-

zi+1 = zi + )“i hi
0

491 = Bg t Y3 Byo By =g s

where A N is the smallest positive )\ such that

. 0
(which implies that (vf (z:.L + Ay hi)’ h) = <gi+l’ h) = 0), and

(81412 8342)
(8> &;)

180 Yi = 1) i = 0’ l’ 2,0.0

Sequences {zi} constructed by this algorithm can be proved to converge to
points z* such that vfo(zf) = 0, However, to ‘prove convergence requires a more
complicated convergence theorem than the ones described in Section I.3. On the
other hand, the following simple modification of (15) can be readily treated. by
means of the convergence results already established.

19. Polak-Ribiére Algorithm [P4]:

(1) Take Zg € B to be a good guess at ‘the minimum of fo(z).

(i1) For i =1, 2, 35...5 compute z; according to (16) and (17), but with

(8141 - 852 &40
<gi’ gi)

0. oy s i=0,1, 2...

We shall now prove the convergence of (19).
21, Theorem: If Zos Zys Zpreees is a sequence in R® constructed according to

(19), then there exists an o> O such that

22, | - (85_‘3 hy) = allslﬂ ”hi” ’
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and either {z i} is & finite sequence, terminating at %5 with vfo(zk) =g = 0,

* *
or else every accumulation point z of {zi} satisfles vfo(z .) =0,

Proof: We only need to prove (22) since the second assertign then follows from

and let g(z) = -vfO(2)
Theoren (3.13) .~ Let H(z) = aafo(z) /322/ Expanding -g(z) about any point Zgs

i=0, 1 2y¢esy in the sequence generated by the'algorithm, we find that

23 T8y = - 8(z) = -z 4y ny)

1
- gy + 7‘1 f H(zi + 0Ny hi)dg hi
0

Since <hi’gi+l) = 0, we get -

(h 9 8-) (S s & )
oh, N, = i A AR
(hy> Hyhy) (hy> Hyh)

where

1
T{i = f H(zi-l-g)\ihi)d; .
) 0

Note that for all z € K s 8-1|Iz||2 < (25 §1 z) < 8 ||z||2 Now, from (20) and (23)

~ and (24), we get that

25, v = - (Bpp0 By B (&yo &)

_ ey BB
so that

legall < 1B« Ingll  leg,qll 8
6. | ‘Yil < 1+l i 1 < o & 2 B8 °n

z 24 |
8, IIn, gl 8y



Iy
.

»A

-

Now,

27, "hi-l-l" < ”3-1_,.1“ + l'Yil ”hi“

which, because of (26 ), becomes

n
But
29. (hygpe 814> = (B + vy By 81400 = (85405 85,9)
Hence,
2
g ol lles,s | gl gyl 1|
> llsi+1||

g all(2 +8,/6,)

which is the desired result.

We conclude this section with the Fletcher-Powell [F3] version of the
Davidon [1,)2] algorithm. This‘ is a very efficient conjugate directions algorithm
which approximates the Newton-;ﬁaphson method but whose application to control
problems is limited by the fact that the dimension of control problems
produces unreasonably large core storage requirements.

\

31.. Davidon-Fletcher-Powell Algorithm:

(1) 1Let Hy = I, the n x n identity matrix, Take z, to be a good guess at the
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minimum of fo(z).
(1) For 1 =1, 2,... compute z;» H; according to the rule

Z

141 = 23t MHy 8

i+1 ~ i (Azi, Agi) (Agi, Hi Agi)

where A; > O is the smallest positive real such that
33 fo(z )<fo(z +\ H, g) for all A >0
53¢ i+’ S i i 8 ="

0 n
In (32), B2y = Zy.y "%y B =~ F (2y)> bg; = g;,4 - 8> end, for yeR,
x ) ¥ is a dyad, i.e., an n X n matrix whose ijth element is x'yY.
3%, Lemma: For i =0, 1, 2,..., the matrices H; ere symmetric and positive
definite. ‘ |

Proof: For i =0, H, = I, a symmetric positive definite matrix. By (32), H .

is symmetric if Hi is symmetric, hence we only need to prove that the Hi are

positive definite. We give a proof by induction. Suppose Hi > 0, Then, for

n
any nonzero vector z e R,

(Z, Azi)a (Z, Hi Agi)a

B (B Hy B < (e Ho) - (bz508) — (Beys> H; ley)

Since Hi > 0, Hi‘/ 2 is a well defined symmetric positive definite

let p = Hi'/e 2z and let q = }[i/a 0g;. Then (35) becomes

‘ o _ \2 {z, Azi)2
%. = B 2 = G T ey

Applying Schwartz's inequality we obtain (p,p){a,q) = “p”2 ”q”2 > (p,q)a, and

hence >
' (Z, Azi>

37“ ‘ ‘ (Z, Hi+1 Z) 2 = <Azi’Aqi>

Now, since (‘Azi\ gi-!-l) = 0,



y

&y

38, . {Azi, bgy) = - (bzyy g5 q) + (8255 &)
= + <Azi’ gi)
= MC(H; g5 8) > O

and hence,

39. | (z, H; ;20 2 0 .

Now suppose that z £ O but (z, H, 5 2) =0. Then, from (36) and (38), we must
have that

(1) (2, 8z;) =0 and
(i1) (psp){asq) = (psq)a-

But (ii) implies that p = ag, for some @ real, i.e., that z = & Ag-,L and hence
by (i) we 'should have that ( bgys Az,) =0, which contradicts (38), Therefore
Hi 41 > O, which completes our proof.

the
40, Theorem: For i =0, 1, 2,..., let p.? > 0 be / largest eigenvalue of H

i
and let u:; > O the smallest eigenvalue of Hi’ Suppose that there exist real
M and m such that u: < M and p.i' >mfori=0,1, 2,... Then, either the sequence

{z,} generated by (32) and (33) is finite, terminating at z,, with v (z) = 0,

-or else {zi} is infinite and every accumulation point z* of {zi} satisfies

*
Vfo(z ) =0,
This theorem also follows directly from Theorem (3,13) and we therefore

omit its proof, (It was also presented by Daniel [Dl]) .

no
4. Remark: At present there are / known assumptions on fo(') which guarantee

that the sequence of matrices H; generated by (32) arnd (33) will have eigenvalues
bounded both from below and from above. In current practice, the sequence Hi is

restarted periodically from I-Io = I, to prevent the eigenvalues of Hi',ﬁ-om
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becoming excessively spread out. When the sequence H, is constructed using (32)

and(33), with the additional feature that H, is set equal to H, for i =0,
ks 2k,,.., it follows directly from Theorem (3.13) that every accumulation point
2" of {z,} will satisfy vf'(z) = O.

In conclusion, we wish to point out that there exist a large mmber of
variants of the methods presented in this section, all of which are heuristically

derived, and whose computational merits are briefly discussed in a survey paper

by M.J.D.Powell [P6], to which the interested reader is referred.

5. Applications to Optimal Control

As we have already seen in Chapter I, discrete optimal control problems
are mathematical programming problems -- usually of large dimension. Therefore
all the algorithms discussed so far are, at least in principle, applicable to
these problems. ‘In this section we shall discuss how the immense structure of
the optimal control problem can be utilized to produce simplifications in the
calculation of the vector h(z), without which our task may well be hopeless. In
general, these simplifications will consist of substituting a sequence of "low
dimensional"” operations for a single "high dimensional" operation.

We begin by considering the free end optimal control problem:

k-1
E o v
1. .min fi(xi,ui) + cp(xk), X, eR’, u, - [Rp' ,
i=0
subject to
2. Xg40 = %y = T3 (xgouy) i=0, 1,...5 k-1 with xg = X,

This form of problem usually arises when penalty functions, to be discussed

later, are used to cope with inequality constraints on the states X, and on the

controls u; .
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Since Xo = ;‘0 is given, the X, i=1 25..., k, are uniquely determined by
the sequence z = (uo, Uyseees uk—l) and (2), i.e., X, = xi(z). Therefore (1) is

a pro'blem of the form

3. . min £(2), zeR  (n = k)

where
k-1

.. P - Z L(x,(2)5 u) +0(x (2))
i=0

In what follows, when we write Xys We mea.n Xy (z).

We now show a method for computing vf ( z) Note that

ur
5 (T 2:°(z) _ 3% (2) | af Lz) | oo 22(z)
) T 3y, L]
and that for i = O, l, 25e009 k-1,
k-1 0
0
.. 20(2) _ af (x s i) . Efﬁ(xj,uj) 3fi(z)
. aui au ax;j aui
J:i'!'l

dp(x)  ax (2)
oxy ouy

Now, for k> J> i, and 1 =0, 1, 25...5 k, let & be an n X n matrix

Jsi
satisfying Qi’ g = I, the identity matrix, and

af:j (xd,ud) ‘
7. §;j+1,1 B §3,1 = ““§§g'f‘“ Gj’i, J =1, i+l,..., k-1 .
Then ‘ '
ox, (z) L, (x,uy) \
8 = = ¢ —L 7L for  § =441, $42,e..s k
U, Jsitl T ou, \

= 0 for j =1, 2y.e.y i.

(0]
*Note that vfo(z) is a column vector, but éia.éﬁ)_ is a 1 x n Jacobian matrix, i.e.,

a row vector.
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Hence, for 1 = 0y, 1, 25... k-1,

0 k-1 0
* duy - du, A% 3 Jei+l duy
J=i+l '
(%) of, (x;5u,)
+ e — .

CTox, Yeial T oo

Since we are in the habit of working only with column vectors, we transpose (9)

to get
T 0 T T k-1 0 T
10 afo(22 _ afi(xi’ui) + 3fi(xi:ui) QT ij(xjsud)
° ou - o0 du, Jeitl X,
1 i i J
j=i+l
T | \ 7
aui kyi+l axk
Now, for 1 = 1y 2j.e0s ky let Py be the solution of
0
11. P; - D = —_— P + | —— ’
i i+l axi i+l axi
3p(x,) T
With p}{ = aJ{-k °
Then
3 (x)\T L 382 (x,5u,)\ T
12. . = g 90" S i A L 4
i ky1 axk ol ?x 3
J=1
and

0 T T
0 T - [af su,) dF, (x,
1. (5;_(_1) _ (_i.‘f_i__‘_‘;__) . ( _ﬁ‘_ﬁ) -

ouy auy
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Thus, to compute vfo(z), we first solve (11) to obtain the vectors P> Ppoeees Py
and then use (13) to complete the evaluation.

With the procedure for computing vfo(z) developed, it should now be obvious
how one can use the method of steepest descent (3.1), or any one of the
conjugate gradient mefhods (%.15), (4.19), (%.31), for solving (1).

We shall now show how to apply the modified Newton-Rephson method (3.2) to
an optimsl control boundary value problem. Note that the procedure we are about

to develop also applies to the solution of problems of the form (1). Consider

the problem
k-1 .
b min P (x,50,) +olx)s x, €BY, v, = R*
) - A | PLX /s Xy s Uy ’
i=0
subject to
13- Xpq =% = Tyleu), 120, 1raees k-1

where x, and gk(xk) =0 (gk:. RY -+ IR") ére given, We essume that all the
derivatives we shall use are continuous in all thelr arguments.

As we recall, the modified Newton-Rephson Method can be used to obtain a
confrol sequence ‘ﬁo, ﬁl”"’ G‘k—l’ and a corresponding trajectory ;‘0’ ;Cl’
cees ;‘k satisfying the necessary conditions of optimality for (1s), (15),
developed in Section I.2, i.e., it can be used to find vectors ;c ’ ;cl,..., ;:k’

~

Uy ul,..., u'k-l’ and multiplier vectors 51’ 52,... s 51{’ n such that

0 for i = 0, l’ooo’ k-l ;

-~ "N
391 - Xg - £y (xp00)

~ ~\T 0, a\T
18. 5 - 5 _ afi (xi,ui) 5 + Bfi (xi’ui) - 0
_ ‘ i i+l oxy i+l 3xy -

for 1 = l, 2,000, k-1 H
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o ~ T
g (x,) T ¥ (%) o
19. P - —a';k""‘ T+ 3%, =
20. \ 7w, ) T, ) ham

for i = 0, 1,000, k"l.

Note: We have assumed that the problem (14), (15) is not "degenerate", i.e.,
that the mltiplier of (afg(;ci,ﬁi)/axi)T in (18) is -1 and not zero.

Iet Z = (xl’ x29..., xk’ P1, Pz’..v., Pk’ “’ 110, ul’ooo, uk-l)’ then (16), (17)’
8™ ¢’ x B+ B x g% x g(EDY

(18), (19) and (20) define amap r: R x R
X RY x IR(k)u, i.e., if we set n = 2kv + £ + kp, then



w,‘

oy

-52-

r: B® 4 R%, We wish to find a z € R® such that r(z) = O.
t
As we recall from (3.7)%(2) , the "direction" of motion for the modified

Newton-Raphson method, is given by

-1
21. n(z) = - (§§£_l) r(z) .
(We obviously assume that (3r(z)/3z) "l exists.) Hence h(z) is the solution to
the equation
22. ar(z) n(z) = r(z) .

3z

With r(z) defined as above, and h(z) 2 (8%q5 6Xps000s 8% s 8Py5 6Ppreves

6B 5 8% 8Uys SUyseces 6uk_1), (22) can be expanded using (16), (17), (18)
and (19). Thus, from (16) we get

df, (x,5u,) of, (x,5u,)
230 6xi+l - 6xi = '—'ig;c'i.——.i— 6xi + —'_j'.-égi—'}'—' 6ui - 'V'i, i = 0’ 1, 2,...’ k"l .
where 5x0 = 0 and
ah. Vi = xi+l - xi - fi(xi’ui) H
from (18),
2 afi(xi’ui) T
2 By "8y =\ T, ) PPia
— T -
+ - Efiffilgiz 8x
axi ax1 Pii1 i
— T -
df, (x,5u,)
. 3 i Bi p Pion Sui
au, L i ]
2,0 T
? fi(xi’ui) agfg(xi,ui) T
- ﬁxi - au ax — Gui - wi ]
axi i 774

for 1 = 1y 25400 k-1, where
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26. Wy =Py "~ Py %,

From (19) we get

where

From (20) we ge‘b, for 1 = O,’ 1’ 2...., k'l,

agfo(x s, ) T
ivviti
- ——————————— 8xi

(0]
Bafi (xi ,ui) T
-\ &

(0] T

T (
P T
1+1 axi

af, (%, u.) \ T ‘—f’af (x,5u,) \T
29 +a ii 3 ) ¢5x-!-35'§:lii P su
axi \ aui i+l i aui L \ aui .i+l i
. . ‘
+ afi(xi’ui) 6 - t 0
“3u, Pijjga "% =09
where
3t (xou) V¥ [3f, (x,5m,) }T
30 6 - R U B o Al A
. 1 = 3u, du, Pin1
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From (29), for i =0, 1, 2,...5 k-1, su, can be solved for in terms of 6x; and

8Py q- Since (29) is linear in the variational arguments (i.e., the 6% 6Py and
6“1)" the expressions for the 6u:L will be linear in their arguments
(sxi, 6pi+1). Substituting for su, into (23) and (25), we now have to solve

a boundary value problem of the form below to complete our calculations of h(z) =

6z.

3la. 6xi+1 = Aisxi + B16p1+1 -vy i=0,125...5 k-1
31b. 6D, = Cyb%; +Dy6D, o =Wy 1 =1, 25...5 k-1
Sle. b%g = O Gy X, +8 =0, 6P = G 6% + M bx + ¥y

We may now proceed in one of several ways to solve_ (31) for 5xi,
i =1 25...9 ky 5pi, i =0y 1yeees ky and §x, The most straightforward one is
to simply set up (31) as a combined array and try to invert the matrix on the

left, i.e.,



+

T

7)'

g

-55-

I 0O 0o O -Bo o oo

-Al I 0 Xy} 0 0 0 0 —Bl 0 csee

0 -A2 I 0 ecece 0 0 0 XX 0 -B2 QO oo

0 0 0 -Ak..lI 0 R Exx 0 —B](—]_
32. * sece - ecooe

-Cl 0 0 o I Dl 0 0

0‘ -Ca 0 e00c0ceccee 0 0 I ..D2 Q eevccee

0 soe 0 -Ck-lo seececcccssecee 0 I -Dk-l

Q ecscevscees

0 .oooouooooonoco—hﬁ{‘"ooooooooouoooooooo0 I

-G

0

0

o

0

%‘ 0 .0............‘0..........o

T
k

(32)

B 0%

-'Vk -1

-W

"Wg-1

"8

Y

(9

Obviously, this is an enormous matrix in any practical situation, e.ndl cannot

be solved (and even, possibly, stored in core) without a certain amount of cunning

which takes its strﬁcture into consideration.

In what follows we shall assume that the inverse matrices used do indeed exist,

and shall develop a method for solving (32) which exploits its structure to the

fullest extent.

harder to 'utilize the structure of (32) in its solution.

Now, for i = k-1, we have from (31) that

33.

8Py 3 = Cioq 8%koq *+ Doy P = ¥ o

If we treat, for the time being, 6pk as a known constant, we see that

34,

Where K, = C,_, and %, _

J = 141,

k-1 = D1 8P = W3-

8Py = Kpop 8% g + ey

When these inverses do not exist, it obviocusly becomes much

Hence let us suppose that for
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35. 8Pi4q = Kypg 8%54q M9

and find the corresponding expression for §p;. From (312) and (35)

36. | Oy = A8 H B S B T

Solving for X492 Ve get

36b. = (I - B,K

1
8%y 19 1Kiqq) — [AgOXg + Bywg o - vy .

Substituting from (35) for 6Py q in (31b), we get,

37 5e; = Cybxy + DKy o (T = BKy )™V [ASxy + Bwg o + vy] # Dyny
= [0 + Dy (T~ B Ky A 6%
+ [0y +Dy 1+1(I ByKy,y) Byl %501
- DK (T B v mwy
i.eA., we find that
38. | apir = Kbx; +uy s
vhere for‘ i = k-lseees 1y Ki and "y satisfy
39. Ky = [0y + DK (T - BK )7 A
4. . Moo= DT+ Ky (T - BKy o)UY wyyy
DyKy (T = ByKy )™ vyt Wy

Since (35) is true for j = k-1 (i.e., for i = k-2), we conclude by induction

that it must also be true for j = k-2, k-35..., 1. Note that we still must give

boundary conditions for (39) and (40) . Since Ky = Cp_q» We set Kk = 0, hence

k-
from (35) ’ nk ='6Pko
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To solve (31) with the boundary conditions given, we compute the K.,
i= k"l’ k‘2’oo.’ l’ from (39) ’ with Kk = 0, Then, from (39) s We compute ni,

in the form

M. ng = FPm + € 1=kl k2.l

(actually, we only compute the matrices Fi and the vectors € i) . Substituting

from (41) into (36a), and using the fact that 8%, = 0, we obtain 6x, in the form

42, '6xk=E61>k+§ .

Now making use of the boundary conditions (31c) for 6x, and §p,, we obtain,

3. B G sx, =G (T -EMk)-l(E Glf s + Ey, +E) =g
which 'yields
k. s = (oT-EM) LB ™ (g, - G (T-EM) HEy, + ©))

With 6% determined we can now obtain all the required quantities.

There are a mmber of cases in which the amcupt of labor involved in solving
the necessary condition equations (16) to (20) is considersbly less than for the
general case we hajre described above. We shsll now consider two of these rather

important special cases.

Case I
k-1 k-1

L5, minimize !2‘- Z ”‘11"2 + % Z llx; - xi*“2
i=0 i=1

subject to

k6. Xyaq = Bxg + Bug, i=0,1, 25,00y k-1,

with Xg e R\", uy € tRp', and Xy = ’;co, X = ;ck given.

/
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Assuming that po = -1 is true, the necessary conditions (16) to (20)

require for this problem, that the optimal U, and X, satisfy

h?- ) §i+l '=. A;Ei + Bﬁi, i=0, ...y k-1, xo = xo, ?Ck = x.k 3
n o *

).}8. Pi = ATﬁi"'l - (xi - xi )’ i= l’ 23¢0ey K
A Ta

).|.9' . -ui -!- B pi+1 = 0, i= 0, 1,..., k-1 .

TA . A ~ ) A
From (49), ﬁi = BPy .40 1 =0, 1,..., k-1, and hence the optimal Uy, Wys...r W 5

A S . ~ a
8-nd xo’ xl""’ Rk’ and P1’ P2’ooo, Pk sa-tiSﬁ (’-’-9) and.

a T -
50a. xi_'_l = Axi + BB pi+1, i=0, lyeessk=1, xo = xo, }Ck = xk

~ TA A ¥,
50b. : Py = ADy - (3 -x)

Obviously, there is no need to use the modified Newton-Raphson method to solve (50),

since it is linear and of the form of equations we already know how to solve.

Case II
k-1

51, minimize Z £2(x,) + .12l_ lugl?
) |

subject to |

52. X3 = X3 = T;(x) + Buy, 1 =0, 1y.0ey k-1 ,

xq € R, uy (= lRp', with Xy = ;co, X, = ;Ck’ given, Again assuming that po = =1, the

necessary conditions (16) to (20) require for this problem that the
optimal ;"i and ?ci mist satisfy

A ~ L)

A A A A »
53. X9 "X = fi(xi) +Bus  1=05 lyeess k-ly Xy = X5 X =X 3
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LA

. a 3fi(x1)T . 0, |
5’4—. Pi - pi+l = axi 141 - Vfi(xi)’ i= l’ 2,..., k 5
A T A
55‘ . - ui + B pi+1 = 0, 1= 0, l’ooo, k-1 .

Since f\l can be obtained in terms of '1\)1 47 from (55), we eliminate (55) before

applying the modified Newton-Raphson method to the following resulting system:
. . ' T -~ ~
56. Xgep "%y = Tylxg) #BBDy 5 120 Lieens kol Xy = Xg Xy = X

T
afi (xi)

o 0
57. Pyt P = ("o ) P T () =1 2 kel

In the above derivation, note the great saving in labor which results from the
. with

fact that ui may be expressed in terms of pi +1° 88 compared / the general case
presented in the beginning of this section_.

For further reading on the use of the Newton-Raphson method in control
problems, the reader should consult [B4] and [Ll]. Also, to see how dynamic
prograxmning can be used to develop a related algorithm, the reader should

consult [M2].
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6. Minimization Without Calculation of Derivatives

The calculation of the derivatives of a function may be quite costly and
one may therefore wish to avoid it. There are basically two types of
algorithms for minimization which avoid the calculation of derivatives. The first
type approximates derivatives by finite differenges s the second type 1s
intrinsically independent of derivative calculations. We shall now give a few
examples of algorithms which avoid the computation 'of derivatives.

Consider again the problem

1. min {fo(z) | z erY

where fO: [Rn -+ le is at least once continuously differentiable, and for every
a real, the set {z | :t‘o(z) < a} is bounded. The following three methods
approximate derivatives by means of finite differences.

2., Modified Steepest Descent: Assumé that a z. € IRn and an € > 0 are given,

0
Step 0: Set z = Z4
Step 1: Set € = € ’

Step 2: Compute the vector he(z) e R®, whose T component, hi‘(z) » is defined by
3. hi(Z) 9-—%(fp(z +eg) - 2(2))s 1 =1, 23000y n

and g, is the ith colum of a n x n unit matrix, i.e.; g, = (1, Oyeees 0),

g, = (05 1, 05...; O) ete.

Step 3: Compute a p.e(z) > 0 to be the smallest real such that

L, fo(z + p.e(z) he(z)) < fo(z + p.he(z)) fo:p 2all p>0

Step L: 1If fo(z + p.e(z) he(z)) - fo(z) < -¢, set z =2z + ue(z) he(z) and go to

1]

0
step 1. If £(z + 1 (2) be(2)) - 2(2) > -¢, set ¢ = ¢/2 and go to Step 2.
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We can use Theorem (I.3.21) to show that if {zi} is a sequence constructed
by the algorithm (2) (i.e.; Zys Zpreses are the consecutive values assighed to
z in Step 4), then either {zi} is finite, i.e., the algorithm jams up at z,, and
vfo(zk) = 0, or else it is infinite and every accumulation point z* of {z i}
satisfies v (s") = O. |
5. Remark: Instead of choosing ne(z) to satisfy (4), we may take v.e(z) to be

any value satisfying, for some a e (0, %),

6. -1,(2)(1-0) (n_(2), B (2)) <Pz + u (2) b_(2)) - 2(2) <
< p,e(z) o4 ( he(z) s he(z)> .

For a comparison see (II,1,18).

7. Modified Newton-Raphson Method (Goldstein and Price [G27
. d
Suppose that fo( *) is strictly convex!/twice continmuously differentiable; and

that a z er" and an ¢, > O are given,

[}
N

Step O: Set z
Step 1: Sejt € = €ye

Step 2: Compute the n X n matrix He(z) whose it

column is -i—' [Vfo(z + € §i) -
- vfo(z)], where §, is the 1™ column of the n x n unit matrix,

Step 3: If Hc(z)""l exists, and (vfo(z), Hc(z)-l vfo(z))> 0, compute pc(z)
according to (6) (or (¥)), with b (2) & -1 (2)™" v£%(2), and go to Step b,
Otherwise, set ¢ = -g and go to Step 3.

Step 4: If:fo(z + 'p.e(z) he(z)) - fo(z) < -¢» set z =z + ue(z) he(z) a.nd go to

Step 1. TIf £2(z + » (2) b(2)) - £2(z) > -¢, set ¢ = £ and go to Step 2.

. We can again show by means of Theorem (I.3.21) that either the sequence {zi},

of consecutive values assigned to z in Step 4, is finite, terminating at 2, and
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vfo(zk) = 0, or else {zi} is infinite and all the accumulation points z* of {zi}
satisfy Vfo(z*) = 0, Since a strictly convex function has a unique minimum, Z,
we conclude that zg z.

We conclude this chapter with a very simple method for unconstrained
minimization which does not require any derivative eveluations. It isjarticularly

effective when the function fo(-) , which one wishes to minimize on an, is of the

form
8. ‘ fo(z) = Z fg(zi) .
i=1

For i = 1, 25..0s D, let £, be the i column of the n X n unit matrix, i.e.,

the € j are the usual co-ordinates for R'. ILet V13 Vpseees Vo in an, be defined
bYs vy =895 V5 =845 V3 =850 v = “Epseves Vop 1 = B Vo = Epe We can now
state the method of local variations.

9, The Method of Local Va.r:i.a:l::t.ons:'r

Suppose & zq = ERn, and a p> 0 are given,

Setz=zo,p=

Step O: Pqe

Step 1: Set i = 1.

Step 2: Compute PG + pv;) .

_Sﬂe;)_}': If fo(z' + pvi) < fo(z ), go to Step k.

12 £°(z +pv,) 2 £°(z ) and 1 < 21, set 1

i+l and go to Step 2.

p/2 and go to Step 1.

If fo(z + pvi) > fo(z ) and 1 = 2n, set p

Step 4t Setz =2 + pVy and go to Step 1.

" 10, Remark: It is cleer that this procedure can be made to be somewhat more

efficient by using past information in choosing the first i e {1, 2;..., 2n}

for the cyclic scan of the values £° (z + p\’i) . The particulars of such

"modifications are best worked out with respect to the specific class of problems

in which one is interested.

TThié me":l'.ho]d seems to have been known for quite a while. It was described in [R1]
and C31.
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The Algorithm (9) generates a sequeﬁce of points {zj} which lie in the
bounded set { z | Afo(z) < fo(zo)}, and hence {z ,j] contains convergent |
subsequences. The point z 3 is the :)th consecutive value assigned to z in Step (&) of (9).
11. Definition: We shall say that a subsequence [zk] of a sequence {z j}
generated by the Algorithm (9) is p-stationary if

(2, + o) 2 £(2)s 1=1, 2,00 20,
where p, is the largest value of p used concurrently with z, in Step 3 of 9).
(i.e0s 2y =2y + py Vy> for some 1 & {1, 25...5 2n}.) |
12, Theorem: Let {z J} be an infinite sequence of points in ®" generated by
the Algorithm (9). Then {z } contains p-stationary subsequences, and each limit

point of a p-stationary subsequence is a local minimm or saddle point of fo ().

. Proof: Since the set {z | £ (z) < £ (zo)} is bounded, starting with zy, it is

possible to construct only a finite number of points zy satisfying, for a fixed

P>05 255 =%
o finite number of steps, the Algorithm (9) will construct a p-stationary point

. (0] (0]
+ pV5> je {1, 2,.7., 2n}, and f (Zi-l-l) < f (zi). Hence, after

Z) . Pursuing this argument, we see easily that {z } must contain p-stationary
subsequences {z}, k € Kc {05 1, 2,...}, such that the/g,};;oicii%:edt}wlr:lues of p,
converge to zero as k - w,

‘Now, let {7z}, keKc {0, 1, 2,...} be any p-stationary, convergent
subsequence constructed by (9) and let z* denote its limit point. Then, we have,

for each k € X,

130 fo(zk + Pkgj) _>_ fo(zk)\’ j

l, 2,..., n

v

0 0
lho ” f (Zk - pkgj) f (Zk), j l’ 2,.00’ n

Applying the Taylor expansion to (13) and (14), we obtain,
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afo-(zk + )\jpk gj)

15. fo(zk) + Py N 3 fo(zk)s J =1y 295000y n
) : Z
)\J e [0,1]
0 J
df (z, - wp, &)
16. £(2,) - py % 3 k2 ©(z)s =1 2.1,

oz
= 1“1 (= [o’l] .
*
Hence, since Z 25 py O and since fo( *) is continuously differentiable,
we conclude that afo(z )/az‘.j = 0 for J =1 25¢0ey Ny i.e., that vfo(z ) =0,
that
so / z* is a stationary point. The fact that it must be a point of local

minimm or a saddle point now follows by inspection,
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III. CONSTRAINED MINIMIZATION PROBLEMS

1. Penalty Function Methods

| Penalty function methods for' solving problems of the form
min { fo(z) | zea EIRn} were first proposed by R. Courant in 1943 [C4]. The
intuitive reasoning behind these methods is as followé. Suppose that we wish
to minimize fo(z) subject to r(z) = 0, with z € R", and fo(') and r(°)

continuously differentiable. Now consider the problem

1. minimize v, (z) & ©2(2) + 2 Jlr@)|%,  1-0, 1, 2,...

with 0 < )‘0 < 7\1 < 7\2,... If )‘i > 0 is very large, the cost in not ‘satisfying
r(z) = O becomes very high in (1) and hence one may expect the solutions %i of
(1) to lie in, or close to, the set O & {z | r(z) =0}. We also note that
Yi(z) = fo(z) for all z € Q, and hence Yi(;i) < min {fo(z)l r(z) =0}. If
ki > 0 is allowed to grow infinity, one may therefore expect that the values
vy (z;) will grow monotonically to the optimel value, min {f"(z) | r(z) = 0}, amd
that the z, will converge to & z  Q which is optimal for (1).

There are two separate reasons for wishing to consider sequences of problems
such as (1), rather than to solve (1) for a single preassigned value of A; > 05
to obtain an approximation to min {fo (z) | r(z) =0}. The first is that one
really does not know how to pick such a )\ 1 and hence one prefers to observe the
growth of the values yi(gi) and to stop when this growth becomes negligib;.e.

The second reason is that if one started with a rough guess z. and tried to

0
minimize 'Yi(z) for Ay > O very large, the term )\iHr(z)lI2 would be extremely large
in comparison with f£(z), thus swamping it. In addition, computer overflow would

be likely to occur. Thus, one would tend to increase the 7\1 gradually, using 'ii,
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which minimizes 'Yi(z) » as the starting point in minimizing Yy _'_l(z) . We shall
return to computational specifics of penalty function methods after establishing
two of the better-known methods in this class. (The first is due to Zangwill [Z2],
the second to Fiacco and McCormack [F1], [F2].)

Exterior Penalty Functions.

Suppose tha.t we wish to solve the following problem

2. P: min {fo(z) | z €0}

fo is a continuous function from R® into Rl, and Q is a nonempty,

closed subset of R-,

3. Definition: A sequence {pi(-)}: 0’ of continuous real-valued functions
defined on R", is called a sequence of (exterior) penalty functions for ther set

Q if for every j. = 0, 1’ 2,.00,

b, pi(z) =0 if end only if z e Q
and

pi(z) >0  for everyz¢ Q

5. pi_'_l(z) > pi(z) for every =z ;ég
6. pi(z) 4+ as 1+ +e, for every fixed z ¢ Q .

Now consider the sequence of problems

(0]

Te Pi: min {f (Z) + pi(Z) ' zZ Emn}, i1 =0, 1, 29c00s
where the pi(-) are exterior penalty functions for Q.

Let

8. ' b = min{ip(z)|zen}

9. bi = min {fo(Z) + Pi(Z)‘ z EiRn}, 1=0y1 2y00e
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Ifweassm,thatbandthebi exist and that they are finite, then we have the
following result,

10. lemma: The sequence {bi}:___o satlsfies by < by < by < cev S by cee < b,
Proof: For 1 =0, 1, 2,...y let 7, €R" be such that

10a. o b, = £ (zy) + p,(z,)

Using (5), we obtain

0
10b. by < fo(’i-q-l) + Py (200) S T2y +Pyug(255) =By -

Now, using (4) and (10a) we get

10c. bi“s_ fo(z) + pi(z) = 19(2) for all z C Q,

i.eo’

b

ismin{fo(z)lzsa} =b,

which completes our proof.
11. Lemma: Iet {Pi( .)};’ o Pe & sequence of penalty functions for the
® n @
constraint set @, and let {z,}, , be & sequence inR'. If {z;}, , comverges to
a point z*; z; ¢#Qfori=1 2,..., and the sequence {p:‘..(zi)}-,;';'_-.:L is bounded,
. .
then 2z € Q. _
Proof: We shall prove this lemma by contradictioh. Suppose that z* is not in
2, and let M> O, be the bound on p;(z;), i.e., 0 < py(z;) <Mfori=1, 2 30eee
* . % :
Since z ¢ Q, and, by (6), pi(z ) #+ 4o, there exists an integer x'such that

*
pn(z.)' > 2M, Now, since Pn'( ) is continuous, there exists a ball B with center
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2" such that for all z € B

1la. Pnc(z) 2 %M

Note that since pn.(z) =0 for z€Qy, BN Q =@, the empty set. Now, z; z*
and hence there is an integer " such that z; €B for all i > w'. Iet 4 =
max {n'x”}, then for all i > %s z; B and, by (5) and (11a)

, M
1l'b. pi(zi) ?_ pn(zi) _>_ 2 s

which is a contradiction, since pi(zi) <M Henqe z e Q.

12, Theorem: Suppose that for 1 = 1, 2,..;, the problem p; defined in (7
has a solution Zye Then any accumilation point of the sequence {zi};° 1 is
optimal for the problem p defined in (2).

Proof: Without any loss in generality, we may assume that z; z. First, if
for any integer J,.p 5 (z J) = 0, then z:j € Q, and zJ. also solves the problem P
(since fo(z) = fo(z) + pj(z) for z € Q). Consequently, by Lemma (10),

b, =D for every 1 > J and hence‘- Pi(zi) =0 for all i > j, since pi(z) >0
for all z ¢ Q. Therefore for all 4 > J» 2, €0 and is also an optimal solution
to problem P, Since Q is élosed, z* € Q, and, since fo( +) is contimious,
fo (z*) = by, 1.e., z' 18 an optimal solution to the problem P.
Now suppose that z, €Qfori=0,1 2,.., Since zg 2" and fo(-) is

* .
contimous, £ (zi) -+ fo(z )s and hence there exists a positive mumber M < o, such

TIr the set {z |fo(z) + Dy(2) < b} is bounded, then, since this set contains the
entire sequence {zi} s {zi} has accumlation points.
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that

13, |f°(zi)| <M for i=0,1,2,...
Consequently, since fo(zi) + pi(zi) <b for 1i=0,1, 2,...,
14, Pi(z:l) <b+M |

and therefore, the sequence {pi(zi)} 4.0 1s bounded. It now follows from
Lomma, (:IJ.) that, z € 0 and 8o, by the definition of b,

15. ‘ b < £(z")

But, for & = 0, 1, 2,..0s b 2'£(2,) + Dy (z,), and p, (z,) > 0. Hence
b> f(z#) and therefore we must have b = f(z#). Since z € and f(z*) =by 2
is an opt:l.ml point for P, |

We shall now give some exanrpies of penalty functions which satisfy the
rroperties stipulated in Definition (3).
16, Proposition: Tet £': E® 4 &Y, 1 =1, 2,..., m, be contimous Punctions

and let
170 QQ{ZIfi(Z) 50, i =l, 2’00." lﬁ} .
For es.c‘h'i =05 1y 254005 let A Rr® -'blRl be defined by
| | m , |
18. : pi(z) =2y Z [max {f‘j(z), 0}]a
A =

where )‘i and ¢ are scalars satisfying xi>0 and > 1, If 11 l>).

for i = 0, 1, 2,..., and >‘i ++® as i o then {p,(- )}1=o is a sequence of
penalty functions for the set Q.

Proof: First note that 0 is closed since the functions £()s 4 =0, 1, 25000y m,
are contimous. Next, sinee f’(‘-), =1 2y...9 my 15 eontimmouns, qd(,) is

also e¢atinuons, Where
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18a. "P(z) L [mex {£9(2), O}]

Finally, since [qj(')]a is continuous, pi( *) is contimuous.

Since 2y > 0, pi(z) =0 4if and only if z € Q and pi(z) > 0 for all
z & Q. Since Ny > My :.1(=z§),41;,2,..., pi+l(z) > pi(z) for every z ¢ Q.
Since )y = 4= as i+ cn/i!or every z ¢ Q. Therefore, by Definition (3),

{pi(')};i) is a sequence of penalty functions for Q.

18c. Proposition: For every i =0, 1, 2,..., the function pi( *) defined in
(18) is contimously differentiable on R® 1f the functions :E",L (), 1 =1, 2
.ses K, are contimwously differentiable on R" and « > 2.

19. Proposition: Let r: R® » |'Rm be a contimous function on R and let
Q= {z: r(z) =0}, For eachi =0, 1, 2y..., let the map Dy R’ -+ !Rl be

defined by
20, py(2) = Allr(@)]®
wheére A; and @ are scalars with \y>0Oeanda>1, If Ma >N for i =1, 2,

eees aNd 7‘1 + 4o as i1 4 =, then {pi(-)};___o is a sequence of penalty functions
for Q. Also, P:l( ¢) is continuously differentiable on R® if r(+) is contimously
differentiable on [R" and a > 2.



i»

‘e <«

Y

-71-

0a.. Prop_gs:ltion: Suppose that the functions £ (+), introduced in (16), are
convex, and that the fuhétion r(+), defined in (19) is affine. Then, for

1 =21, 25000y the,;functions pi('), defined in (18), and the functions pi(-),
defined in (20), are convex. N

20b, Proposition: If {p:'l(-)};’o is a sequence of penalty functions for the

set 0,, and {p;(-)}: .o 15 a sequence of penalty functions for the set @

> ’ then

{p:;_( °)+p;(')}: o 18 & sequence of penalty functions for 2, N 0,. Also,

min {pj"(.), p;(-)};’:o is a sequence of penalty functions for 9, Ua,.

21, Remark: Exterior penalty functions can be used not only to transform a
.constrained optimization problem into a sequence of unconstrained minimizetion
problems, bﬁ‘& also into a more tractable sequence of constrained minimization
problems. For example, suppose thet we wish to minimize fo(z) subject to r(z) =0,
f(z)g 0 (r: ‘an -+ IR{’, f: R® - R") and the function r(+) is not affine. Then we
| cannot use any of the methods of feasible directions to be described later. Now,
suppose that {p, ( -)}:,;'.° .o 1s a sequence of penalty functions for the set {z:

r(z) = 0}, then, under suitable assumptions, we can use a feasible directions
mathod to solve the sequence of problems: min {fo(z_) + pi(z) | £(z) < 0} to
obtain a éolution of the original problem,

22, Proposition: Consider the problem min {fo(z) | r(z) =0, £(z) < 0} where
£: Pagt r: [Rn‘-HRm, £: B -+ &Y Letv{pi(-)};;o be any sequence of
venalty functions for the set {z: r(z) = 0}, satisfying the Definition (3) and
let z; be optimal for the problem: min {fo(z) + pi(z) ] £(z) < 0}. Then any

. : *
accurmlation point z of {z is optimal for the original problem,

@®
:!.} i=0
Interior Penalty Functions.

We shall ndw"cons:lder a different type of penalty functions for solving

the problem:
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23, ~ P: min {fo(z) | zeq}

where fO: an - iRl is a contimwous function and 0 1s a nonempty subset of !Rn.
We shall assume that Q = Q £ @, i.e., that Q equals the closure of its
interior, and that for every a real, the set {z: fo(z) < 0} is bounded. We

now define a sequence of penalty functions for Q.

24, Definition: A sequence {pi(o)};? o °f continuous real-valued functions

o
defined on @ (the interior of Q) is called a sequence of interior penalty

functions for Q, if for 1 =0, 1, 2y...5

’ o
25, 0< Pi-s—l(z) < pi(z) forall zeQ,
26, pi(z) 40 88 14
o * then
27. ifzjea for j =0, 1, 2, 25 42 e 3 / pi(zj)—o+coasj-tw.
Now consider the problems P:l defined below
. 0 o
28. Pi: min {f (Z) + Pi(Z) l Z E 9}, i = 0’ l, 2’o¢¢

29. Theorem: Let z, be optimal for Pi’ 'i = 0, Z!., 254009 defined in (28)*.

i
Then every accumilation point of the sequence {zi}; 20 is optimal for the problem
P defined in (23).

Proof: If for 1 =0, 1, 2,...y we let

ne

‘ o o
30. b, min {f (z) + pi(z) | z 0}

o ~ o
MLet 2, €% Then @, = {zeq| () + p;(2) < 2 fo(zb) + py(2z5)Y

e

~ o .
{z | fo(z) < ao}. Hence Q, is a compact subset of Q, and inf {fo(z) + pi'(z) |

z e-:-?z} = inf {fo(z) + pi(z) | = e?f} = min {fo(z) + pi(z) | 2z e?’z'}, since £°(-)

and p1(~) are contimuous.
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and set

30a. b = min {fo(z) | zca}

then we have

3. bo’-’-blz“‘?-bizbi-;-l'“?-'b .
Since the b, form a bounded, monotonically decreasing sequence, they mst

i
* * *
converge, i.e., by +b . Now, suppose that b # b, then from (31), b > b.

Since fo( «) is continuous, there exists a ball B, with center %, the optimal

point for P, such that for all z € B

*

3. fz) <v* - 20" - .

o=

o
Now take any z' € B N 2, then, since pi(z) -+ 0 as 1 + oy there exists an integer

k such that for all 1 > k,

33. p,(z") < T (® - 1)
and hence, for all 1 > k
3. by = (z) +p(z) < £2(2") +p,(2) <b - T (b -D),

* *
which contradicts our assumption that b, + b . Therefore, b =b.

i
O (0]

Now for £ =0, 1, 2y... f (zi) + pi(‘zi) <f (zo) + po(zo), and hence

zy € {z | fo(z)‘ < fo(zo) + po(zo)} which is bounded by assumption.

Let {zj}, Jexc {0, 1, 2,...} be any convergent subsequence of {z s with

o
i}i=0
* *
limit point z & Q and suppose that z is not an optimal point for P. Then

. .
f(z) > b, and the sequence {(f(zj) -b) + pj(zj)}, j € K, cannot converge to
zerd, which contradiets the fact that (b i b) » 0. Thus, all accurmlation

points of {zi} are optimal for P, This completes the proof



o fo

Tv,‘

»

~Th-

of the theorem., (Note also, that pj(zj) + 0, since f(zd) - b + pd(zj) +0

and z, * 2.)

J
35. Remark: To utilize penalty functions of the above type, we must have an

initial feasible solution in the interior of Q as a sterting point for the
unconstrained optimizatign algorithm tc; be used for the solution of the P:l’
Since fi(z) + Py (z) + +« as z approaches the boundary of @, the unconstrained
optimization algorithm will then generéte a sequence of points zJ, J =1 250009
which will all be in the interior of Q.
36. Remark: Suppose that Q = {z | fi(z) <0, i =1, 2,..., m}, where the fi(.‘)
are contimious functions such that

| (1) fi(z) £0 for all zefo),

(11) "the set {z | fi(z) =0, 1 =1, 2y..., m} is contained in the closure

of 8,

(iii) for 1 =0y, 1y 25400 7\1 > 0, and )\i 20838 i o then

>N

n
P, (2) = -\, 1 are penalty functions for Q.
i 1 fi(Z)
i=1l
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37. Remrk‘ Suppose that we wish to minimize f (z) subject to z ' I Q, and

i

iel
suppose that we have a Zq € m Qi’ Jc I. Then we may use interior penalty
ied

functions for the sets ni » 1 J, and exterior penalty functions for the remaining
Computational Aspects'

The use of penalty functions requires us to minimize a sequence of functions
of the form fo(z) + pi(z), z e®", However, as we have seen in the preceding
sections, the various unconstrained minimization methods which are available to
us, usually compute only local minima, and, in addition, take an infinite number
of steps to compute these local minima, If we insisted on using penalty function
methods in a literal sense, therefore, we could not even get past minimizing
fo (z) + po(z), z ean, in finite time, One must therefore use truncation
procedures in approximating the minims of fo (z) + pi(z) . Also, if one uses a

method on fo(z) + pi(z), which can only compute points z, such that vfo(gi) =

i
then one must also wonder as to the nature of the accumulation points of the z
sequence of ;i' We shall now propose a truncation procedure for use with penalty

functions and shall establish its properties for a few special cases.

Similar procedures can also be developed for use with interior penalty functions.

Thu§ s let us consider again our original problem,

38. / min {fo(z) | zec an}

TThe remaining results in this section do not appear to have been published before.
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Let ei- p(*)y 1 =0, 1, 2,...5 be a sequence of penalty functions (inner or
i

outer) for Q which we assume to be closed. We suppose that fo(-) and p(+) are
continucusly differentiable and that e, = fi- , €> 0. We now state a "first
order" type algorithm for "solving" (38).

39. Algorithm: Choose ¢ > 0, 2z e R".

Step 1: Compute

ne

%0, | h_(2) - [v0(2) + %

vp(z)]

Step 2: If ||he(2)|| > ¢s g0 to Step 3,

If ||he(z)|| <e, set ¢ = -g- and go to Step 1.

Step 3: Compute p(z) > O to be the smallest possible number such that

W, Pz + u(Z)he(Z)) + %p(z + u(Z)he(Z))

< fo(z + p.he(z)) + -:-;'- r(z + p.he(z)) for all u > O.

(or else use, the method for "choosing u(z) descrived in (II.1.18) or (II.1.32), i.e.,
Set n(z) = 23). '

Step 4: Set z =z + p.(z)he(z) and go to Step'1l.

We shall now show that in a mumber of important cases, this algorithm

will compute points z which satisfy necessary conditions of optimality for (38).

Case 1: Suppose that Q = {z | r(z) = 0}, where r: R" - [R"‘ is contimously
differentiable and the Jacobian matrix .a_gé_z_)_ has maximum rank for all z tRn.T

Consider the sequence of points z, constructed by the algoritmm (39), start-

i
ing at an initial point z. with p(z) = 1 r(z) 2. Within this sequence, we
o 2

TAc‘buaJJ.y, it is enough to meke the weaker assumption that _a;iz_zl has maximum
rank in an open set containing the sequence zg which the algorithm (39) generates.
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single out a subsequence of points z 3 at whiéh the algorithm reduced, in Step 2,
the current value of ¢ = ¢ 3 to a new (and smaller) value €541 For this sub-

sequence {2z J} assuming that it is infinite, we find that

2, I, Gl < e

and € +0as j+ = i,e., we find that
43, , ”hej(z:])" + 0,

Now, with p(z) = 3 [r(2)|%,

T
0 1 ar(z,)
Lk, hed(zd) = - vz + ~ "Eifl' r(z,)

_ *
Suppose now that z j + z , then, since a—;—z(—zl has maximum rank for all z € an, we

' *
0’ ioe., ‘2 EQ. Next,

*
conclude that r(z )

-1
T
1 ar(zj) ar(zj) dr(z,) 0
45, -e-:;r(zj) = - 32 3z —-——-‘Laz [hej + vf (zj) |

We therefore conclude from the fact that he (z J) -+ 0 and from the continuity of

J
) g vi%(z), that
\ - \-1
* #* \T *
s _ _|ax(z) ([ar(z) dr(z ) 0, % A
- elﬁ:o € w(zy) = dz dz 3z VE(2) =y
J

Thus’ in the limit, (h-ll-) gives

* \T
h-?o Vfo(z*) + _a_ziz__)_ w = 0 ’

JZ

*
i.e.s z € O and satisfies the necessary condition of optimality (I.2.1). There-
fore, if the sequence {zi} constructed by the Algoritim (39) for Case 1 remains in

a bound set, it will have subsequences of points {z ,j} which converge to points
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2' € q satisfying (7). This will always be the case if the set @ = {z | »(z) = 0}
itself is bounded. Generally, in order to ensure that the sequence {zi} stays
bounded requires some additional assumptions on fo(-) and r(°).
Case 2: Suppose that @ = {z | £(z) < O} where £: R” + R" is contimiously
differentiable, and the Jacobian matrix %‘_z@l has maximm rank for all z € an.
‘m
1 ,
Let us set p(z) = 3 Z (mex {0, £1(2)})2, or, setting J(z) = {j | £(2)
i=1 '
‘ 1l fi 2
>0, J {1, 25...5 m}}, we may write p(z)=-2- (£7(z))°. Now, for the
ied(z)
algorithm (39)

fi(z )
i .
: Vfl(zj)

18. B (z) = - vfo(zj)-l-

J

ie—J(zJ)

Again consider the subsequence {zj}, Jekc {0, 1, 2,...}, of [zi} at which € is

reduced to the new value ¢. Then

J+1°

49, he (zd),—» 0, jeKk

J

Suppose now that 24 z*, J € K, then from (48) and (49) it follows that £ (z*) <0

for all 1 & {1, 25...5 m} since otherwise he (Zj) +0, j =K, is impossible. Also,

J
since the vfi(z) are linearly independent for all z g" by assumption, we must

have
*. ,
50. v (z") + wlor'z") - o
1ed z*)
vhere 1~ = 1lim —__Le » J €K, existes and satisfies 1~ > O, By inspection of (50),
jre - J ‘ .

ie J(z%)
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* _
we see that the point z & Q satisfies the necessary conditions of optimality

(1.2.1).
Exercise: Find conditions which ensure that the Algorithm (39) will construct

compact sequences only.
Exercise: Under what conditions could the modified Newton-Rephson method be

utilized in an algorithm of the type (39)?
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2. A Method of Centers

The method of centers, which was introduced by Huard [l'f3], [B5] bridges the gap
between the penalty function methods presented in the preceeding section and the
methods of feasible directions to be presented in the next section. Depending
on one's point of view, the parti;:lﬂ.e.r version of the ‘method of centers which we
are abdut to present can be considered to be either a parameter free, interior
penalty function method, or else a parameter free feasible directions method,

Conslder again the problem
1. min {fo(Z) I fi(Z) _<_0, i-= 1, 2,000’ m}

whexre flz [Rn -+ tRl, i =0, 1,...5 mare continuously differentiable functions.

Suppose that we have & z, €0 2 {z | £1(2) £ 0, 1 = 1, 2,..., m} and that the set
z(zo) 4 {z |.f0(z) - fo(zo) < 0; fi(z) <0, i=1, 2y,.., m} is compact and has
an interior. The gyst of the method of centers is to pick Zqs the successor of
Zys to be a point wei_'l. in the interior of 3(20) (i.e., in the "center" of 3(20))
and then repeat the construction. When the "centering" of Zq is defined in terms
of giving a minimum to a suitably defined distance function, convergence to a
stationary point can be established [B5].

Here we present a version of the method of centers which is considered to be
the most successful one so far, and which can be esteblished by means of the
convergence theory presented in Theorem (I.3.1). Unfortunately, the original
heuristic ideas involved in the methods of centers will be lost in the process.

First, note that if ; is optimal for (1), then, by a trivial extension of

Corollaxry (I.2.6),

28, min (mex {(v2(2),h), ££(2) +  (vE (2),h), 1 =1, 2y..., m}) = O,
hes

where S is any set containing the origin in its interior.
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let S = {he®® | |hl] < 1} and let : B® + R be defined by
© £ et -
2b, Q(Z) = min (m {(Vf (Z),h}, (2) + < (Z),h>’ i= l’ 2,.0:, m})
hesS

* *
Thus, if z is optimal, then <p(z_) =0,

3. Remark: Note that cp(z) can be calculated by solving min ¢ subject to
0
[ o - (v (2),h) >0

L, J c - fi(Z) - (Vfi(Z),h) ?_0, i =1, 29400y

'l c1,

vhich is a linear programming problem. ILet (c(z), h(z)) denote a solution of (4),
then ¢(2) = 0(z). Whenever o(z) = O, and the optimal h is not unique, we shall
set h(z) =0,

Also note that ¢(<) is continuous becaué,e both £ (¢) and vfi (+) are contimuous
by assumption,for i =0, 1, 25..., m. |
5. Algorithm: Suppose we a.re‘given azy € Q.T
Step O0: Set z = Zq
Step 1: Solve (4) to obtain a vector h(z). If h(z) = O, stop, otherwise go to
Step 2.

Step 2: Campute r(z) to.be the smallest positive scalar such that

6. d(z+ u(z) h(z), z) = min d(z + ph(z), z) ,
>0
where
T. | a(z'yz) & max {£(z") - (@), £(2'), 1 =15 25..., m} .
T

To compute a z € Q we apply Algorithm (5) to the problem min{g’o - fi(z) > 0,
i=1, 2,..., m} for which we. construct an initial feasible solution (co ,zo) by
taking z arbitrary and °0 max{f (z )' ie{l, 2,..., m}}. Since 2 has an
interior, there will be a finite integer k such that Ok < 0 and zk € Q, where,
for § = 1, 2000 (oj,zj) are the successive pairs constructed by (5).
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Step 3: Set z = z + u(z) h(z) and go to Step 1.
Note that the function d(-,-) acts as a "distance" function and by minimizing it

we choose & point on the ray {z' l z' = z + ph(z), p > 0} which is "well centered"
in the set Q(z).

Theorem: Let z, Zy3 Zpre.s be & sequence generated by the algoritim (5), i.e.s
for i =1, 2540. zy is the ith velue assigned to z in Step 3. Then either the
séquence is finite, ending at z, and cp(zk) = 0, or else {Zi} is infinite and
every accunmlation point z* of {zi} satisfies ¢(z*) = 0,

Proof: It is easy to see that for any z € Q, if h(z) as computed in (4) is not
zero, then ¢(z) < O and there is a z' = z + ph(z) in the interior of ?l'(z) such
that d(z',2z) < 0. Hence, the sequence construction can only stop in Step 1, and
this can happen at z, = z, if end only if cp(z.k) = 0. Thus, the case of {zi}
finite is trivial,

Now let us. consider the case when {zi} is infinite., To prove this pa.rt; we
shall show that the assumptions of Theorem (1.3.1) are satisfied with T Q Q,
e(e) 4. fo('), a(+) defined by the Algoritim (5), and z € Q defined to be
desirable if and only if q;(z) =0, In fact, given a z* e Q such that q;(z*) < 0,
we only need to show that there exist an e* >0 and a 6* > O such that for all

*
z e Qsatisfying |z -z <¢e»
. - *
8. - Pa@) + L@ >80 .
* N
et ¢* = <p(z*) < 0 and let h(z ) bé computed as in (4), with z = z*. Since o(+)
is contimious, there exists an ¢ > O such that
* ' * ¥*,
9. 9(z) < /2 forall zeB(z, 2¢ ),
* * ” *
where B(z 5 2¢ ) & an {z]||lz-27 < 2e*}. Now, for all z € B(z 5 ¢ )» and
A>0,
. (0] (0] 0 F
10. £7(z + An(z)) = £ (2) + N{vE (z + En(2)), h(z))

where € e [0,1].
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* * *
Since (vfo(z), h(z)) g_cpA/a for all z eB(z_, 2¢ ) and since (vfo(-),' *) is
uniformly contimiocus on B(zf, 2e*) X S, and S is compact, there exists a

20 > 0 such that (see I.1.7)
*
1. £2(z + Ah(2)) - £2(2) < Ao /b
* * ) *
for all z e B(z , ¢ ) and for all A € [0,1"]. Now, since ¢(z) < ¢ /2, we mst
*
have, for all z € B(z , 2e*) and 1 =1, 25,009 my

12, £ (2) + (vE(2), h(2)) < 0 /2 .

Also, * *
/ since the fi(o), i=1, 2yeess my are uniformly contimous on B(z , 2¢ ) and

S is compact, there exists a )\1 > 0 such that (see I.4k.l)

13. e +m@) -2 @) < |0 /8 1= 2.y m

for all \ [0,);1] and z € B(z*, e*). Since the (vfl(n), ) are uniformly

2

* *
contimious on B(z , 2e») X S there exists a A\ > O such that (see I,k.7)

1k, K9t (z + An(2)), B(2)y - (v£i(2), B(2)y| < | 97/8]> 1 =1, 2,..., m,

for all z B(z*, e:*) and for all )\ [0,7\2]. Finally,
15, fi(z + Kh(Z)) = f’i(Z) + A (Vfi(z + ch(Z)’ h(Z)>, i-= 1y, 29000 My ; C [0,7\]-

1

0
Now let A =min {A", A7) xg}. Then, for any vector z + A h(z), z B(z%, e
we have,
16. | £(z + A (2) - £(2) < X,,fp*/B
and

- 17. fi(z + A 0(2) < max {cp%/S, Am :p%/8}, 1=1, 250005 m
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h < of N
elther because £+ (z) < cp*/ 4 and because/ (13); or because £'(z) > @ /4 and then

*  *
by reason of (12), (14) and (15). Consequently, for all ze B(z , ¢ ),
Pl

18 | L(a(z)) - £(2) < a( g
. - < d(a(z),2z) ¢ mex {~g— , %} <0

We now set 6*= -max {Nn %t, %-* } and the proof is completed.

19. Remark: When p.(i) is chosen so as to minimize fo(z + ph(z)) - fo(z) subject

to p > 0 and (z + ph(z)) € 2, the algorithm convergence properties remain the

same, It was stated in this form by Topkis and Veinott [T1l] and is then a

"feasible directions" algorithm of the type to be discussed in the .next section,
The application of this aléoritlnn to optimal control problems is essentially

the same as of the methods of feasible directions and will be discussed towards

the end of the next sec'bibn.



lqd

le R

-85-

3. Methods of Feasible Directions

In the particular version of the method of centers presented in the
preceeding section, we had to solve the linear programming problem (2.4) in
order to find a helf line, {z' | z' = z + ph(z), 1> 0}, on which the next
point was going to lie. This linear programming problem always had (m+l) linear
inequality constraints in addition to the constraints |hil < 1l. We shall now
consider a class of methods which were first introduced by Zontendijk [zk], as
well as some new modifications. The major difference between these methods and
the method of centers, presented in the preceeding section, lies in fact that
only a small part of the constrainte used in (2.4) are now required for solving
a problem of the form (é.h) to find a half line on which the next point will lie.
However, since 6nly part of the constraints are used in the computation of this
half line, it becomes necessary'to use "an g-proceedure” so as to keep tab on
the constraints which are not included. This e-procedure is known by the names
of "antizigzagging precaution" or "antijamming precaution".

Consider again the problem .

1. min {£2(z) | £(z) <0, i =1, 2,..., m}

where for i = O, 1,..;,‘m fi: mn -+ ml is continuously differentiable. We shall
assume that (1) hes e solution. As we have already indicated, this can be ensured
by requiring that for every a e lRl, the set {z | fo(z) < &} be compact, or else
by requiring that the set o & {z| fi(z) <0, 1 =1, 2,..., m} be compact, or that
the set {z | fo(z) - fp(zo) <0, fi(z) <0, i =1, 25..., m} is compact for a given
Zq € @ which is then used as a starting point.

We recall that in (I.2.8), the‘set Je(z) was defined for any ¢ > O and

Z Eié Q, by
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2. Je(z) = {0} U {i] fi(z) +e>0, ice{l, 25..., m}} ,

and that by (I1.2.6), if Z is optimal for (1), then

3. min max _ (v (2),h) =0 ,
hesS ie Jo(z)

where S 1s any subset of [Rn containing the origin in its interior.
. Definition: ILet S be some compact subset of [Rn containing the origin in

its interior. For € > O, we define (pe: Q- lRl as

¢ (z) = min max  (vE(z),h) -
€ hes ieJe(z)

5. Remsrk: It is not difficult to see that J‘e(z) and?pe(z) have the following
properties: Suppose z € Q is given. Then, ‘

5a. TFor a.ny e> ¢ Je(z) o Je.(z) and hence ae(z) Z'@e,(z);

5b, For any ¢ > O, there exists a p > O such that Je+p(z) = Js(z); ,

Sc. For esny ¢ > O, there exists a p > O such that Je(z') c Je(z) for all z' =
B(zp) & (2" €0 | [l2'~2] <.

To compute ae(z) we solve the problem
6. min {o | o « (v (2),h) 20 for 1&J ()3 hes).

The optimal pair ae(z), he(z) for (6) satisfies $e(z) = o'e(Z) -

max (Vi‘i(z), h (z)). 1In solving (6), we shall always set h (z) =0
ie Je(z) € . €

whenever ce(z) =0 , Note that s sensible choice for S

would be S = {h | Ihil <1}, or S =fh | lInll < 13. .
The aigori’thms we are about to present in the form of an i&ealized computer

program will £ind points % € @ such that §,(z) = O. Note that these algoritims

are parameterized by the particular choice for the set S, i.e., for each choice

of § we get a different algorithm,
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The procedure (7), below, is a minor variation of a method given by
Zontendi jk [zk4].
7. Algorithm: Suppose that a z, € ot and an EO > ¢' > 0 are given.

(See next page)

AN

AN

o i‘ihd a z, € Q, solve, using the Algoritim (7), the problem

min {o ] f'i(z) =g <0, 1:=1, 2...y m}, with initial feasible point (z', o')
where z' is arbitrary and o' = max {fi(z') | £ =12, 2,..., m}. Since the optimal
value 3 for this problem satisfies 3 <0, |
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Step 0: Set z = Z,
Step 1: Set e(z) .= S (We shall use the abbreviated notation ¢ = e(2).)

Step 2: Compute c-p-e(z) and hs(z) by solving (6)
Step 3: If ae(z) < -¢, set h(z) = he(z) and go to Step h.

If $€(z) > -cand ¢ < e¢', compute 60 (z).

If 50(2) = 0, set z = z and Stop.

[}

1f c?o(z) <0, set e = ¢/2 and go to Step 2.

it ae(z) > -¢ aﬁd e> e's set ¢ = ¢/2 and go to Step 2.
Step 4: Compute A (z) > O such that
8. AMz) = max [A | £(z + oh(z)) <O for all o e [051]
and i =1, 2,..., m} .

Step 5: Compute u(z) & [0,\(z)] to be the smallest value in that interval such

that

9. (2 + w(2)h(2)) = min {2(z + wh(z)) | » e OA(2)]} .

Step 6: Set z = z + u(2) h(z) and go to Step 1.

10, Theorem: Iet 249 Zl’ 22,..., be a sequence in Q constructed by the
algorithfn (7)s i.c., Zqs> Zpseess BT the consecutive values assigned to z in
Step 3 or Step 6. Then, either the sequence {zi} is finite and ij:s last élement,
say z., satisfies Ep'o(zk) = 0 or else {zi} is infinite and every accumilation
point % in {z;} satisfies E;o(?:) =0, |

Proof: Obviously, the algorithm (7) defines a map a: O - Q. We shall show

that this map together with the map -fo( o) (-fo(-) taking the place of c(-) and Q the
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place of T). satisfy the assumptions of Theorem (I.3.1). For the purpose of
applying Theorem (I.3.1) we shall agree to call a point z € Q desirable if
9 (2) = 0.

First we must show that the characterization (I.3.2) is satisfied. Thus,

suppose that z, & @ satisfies (po(zo) = 0. 'Then, since for all € > 05 Jeo(zo) o)

Jo(zo), we must hajre -€g <‘tpo(zo) < cpeo(zo). Hence, after a finite mumber of
halvings of € in Step 3, the algorithm will find that $o(zo) = 0 and will set
zo = Zys i.e.y a(zo) = z5. This is in agreement with (1.3.2).

Now, given s point Zq € Qs the algorithm can only construct a new point

zl' such that fo(zl) < £° (zo) . Hence, suppose that the algorithm sets z, = z

1 0
(i.e., 2y = Zy in Step 3 or Step 6)., If 2, Was reset to z, in Step 3, cpo(zo) = 0,
Suppose z, was reset to z, in Step 6, i.e., u(zo)h(zo) = 0.- Then this implies

+ - . - . e
that h(zo)= 0 and hence that cpeo(zo) =0, i.e., that <peo(zo) > -¢5: a condition

in Step 3 which does not permit a continuation to Step 6. Thus ZO can only be

reset to the value z, in Step 3 and then it satisfies ao(zo) =0,
We shall now show that Condition (I.3.3) is satisfied. Let z, € Q be any

proint such that '(Eo(zo) < 0. Then, from (9) and (I.k.7),

0, ' 0 A :
11, £ (z0 + p.(zo)h(zo)) - f (zo) =-85<0.
It now follows from (5¢) that there must exist a p' > O such that

, 1 4
12, Jeo(z) C‘:Je (zo) for all z EB(ZO, p') >

°
where B(zys p') 8¢z | ze€ 0, ||z=zy]l < p'} and €o is the value of ¢ used in Step 2
in computing the h(zo) which is then used in Steps 4, 5, and 6 (i.e., .it is the
last value of ¢ used in conjunction with the given z = zo) . Letm: R" lRl be

defined by

tre h(zq) £ 0, then by construction Eﬁeo(zo) < g < 0, (see (5)). Tt now follows .
from (I.4.1) and (T.4.7) that n(zy) £ 0. :
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13. m(z) = min  mex (v (z) ;b

hes ieJeo(zo)

Then m(+) is continuous (see (I.k.18)) and there is a p" > O such that

1k. [m(z) - aeo(zo) | < 30/2 for all z & B(zo, p'") .

Let p = min {p', p"}, then, because of (12) and (14) and the fact that c'pe (zo) <
- 0
-eys we have, for 8ll z B(zo, p), that

15. Ep?eo(Z)_s m(z) < -¢5/2 .

But Jeo/z(z) c Jeo(z), and hence, for all z & B(zo, p)» we have

16. G, j22) $%, () < ¢ .

We therefore conclude that for all z B(zo » p) the algorithm (7) will use a
value ¢(z) > eo/2 in computing the h(z) in Step 2 for use in Steﬁs 4, 5 and 6, i.e.,
for all z B(zo, p) and for all i EJe(z) (z), (vfi(z), h(z)) < -30/2.

Now, for any z € B(zo, p) and 1 =0, 1y 25...5 My We have, by the mean value

theorem, that
17. £z +ah(2)) = £(z) + 2 (F2 + Ch(z)s h(z))

vhere { & [O,A]. Since the functions (Vfl(-‘), *yy 1 =0, 1, 25..., My are uniformly
isee (1.2.7)
continuous on the compact set B(zo, p) X S, there exists a A~ > Olsuch that for

all z & B(zo, p/2), and for all i e {0, 1, 2,..., m},
8. [K£t(z # ca(z)), n(2)y - (or'(2), h(2)Y| < o/t 5

forallf € [0,)\1]. Similarly, since the functions £ (¢) a(,re u?lfonn.;.;)r contimuous
' see (I.L.1
on B(zo, p) and since S is compact, there exists a 7\2 > 0lsuch that for all z

B(Zo’ p/2) and for all i e{l, 254009 m},
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19. : ‘|i:i(z + ¢h(z)) - fi(z)] < e0/2 s

for all ( ¢ [O,x2]. Now, for each z B(zo, p/2) and for each i E‘Je(z)(z),

Az

-r
e(z; )

(vfi(z),h(z)) 5‘-e0/2, and for each z B(zo, p/2) and for cach i € J

b

o .
fi(z).g -50/2. Hence, setting Am = min {xl,x“}, we have, for any 7 & B(zo, 6/?2)

Z

30a. fi(z + )\mh(z)) - fi(z) < Ameo/h for all i e Je( )(z) 3
30b. 'z 4+ A 0(2)) €0 forails &T (2 .

Since for all z e;B(zo, p/2) we must have u(z) Z.Am’ we are led to the

conclusion that

21, -fp(z + u(z)h(z)) - (-fo(z)) Z.Ame/h, for all z e;B(zO, 0/2) ,

i.e., that céndition (1I.3.3) is saéisfied. This completes our proof.

We have already observed that by setting S = {h emnl [hil < 1}, we can
compute aé(z)(z) and h(z) Sy solving a lincar programming problem, i.e., these
quantities are obtainable by finite step procedures. Thus, the weak link in the
algorithm (7) seems to be the requirement of solving exactly equations of the
form fi(z0 + Ah(zo)) = 0 for X(zo) and of minimizing the function fo(-) along the

linear segment.{z| z

Zg + p.h(zo), r e [0, )\(zo)]}.' Neither of these operations
can be performed in a finite number of steps, The following propositions are
obvious in the light of Theorem (I.3.16) and show to what extent these operations
may be approximated without affecting the convergence properties of the algoritim
(7). The reader should have no difficulty in adapting them also for algorithm

results in
(2.5) in which the requirement of minimizing d(z',2) exactly / the gamc zort

?Ee(z )(z‘) denotes the complemgnt of Je(z )(z ) in {0, 1, 2,..., m} .

\
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"of difficulty.

22. Proposition: Suppose that in Step 6 of the Algorithm (7) z, is reset to

z, + noh(zo), where, for a fixed pe (0,1], Mo satisfies

23, (2(z)) - £2(zy + uohlz))) > B(E(30) - £z, + wlzn)n(zy))

vhere n(zo) is defined as in ("9). _Then Theorem (10) remains valid. (c.f. (II.1.15)).
2L, Proposition: Suppose thaf the functions fi(-) are convex, and that 'the sets
{2 ] fi(z) < 0] are compact for £ =0, 1,..., my and that Steps 4 and 5 of the
Algorithm (7) are replaced by the Steps 4', 5' belorw..r Then Theorem (10) still

remains valid.

Step 4': Assume an a & (0,1/2) is given. Compute )\i >0,1i=0,1,..., my to

satisfy
25;. (1-0\° (vt (2),h(z)) < £z + 1%n(2)) - £(2)
< aX’ (v (2),h(2)) ;
25b. - aY) (vfi(Z),h(z)) < ‘fi(z +3n(2) - £2(2) < -fi(z)
for 1 £0, ie Je(z),
25¢c. -2 < £1(z + aln(z)) < 0, forie Ee(z) .

Step 5': Set u(z) = min {AO, hl,..'., lm}.

26. Proposition: Suppose that a p> 0, a Be (0,1) and an a € (0,1) are given,
and suppose that Steps & and 5 of Algoritmm (7) are replaced by the Steps 4", 5"
below. .Then Theorem (10) remains valid.

Step 4": Compute the smallest integer k > O such that

27a. £(z + B5n(2)) - ©°(2) - 8% Av(2),n(z)y < o't

s

27bo ‘ ‘ fi(z + kah<2)) SO for i = 1’ 2,..., m .

Step 5": Set p,(/z)‘ = ka .

TThe reader should compare this procedure with (II.1.18).
'”fak is B to the power k. o
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The introduction of ¢ into the Algorithm (7) ensures that for each non-
optimal zy € Qs there exists a p > 0 ar:;la Km > 0 such "bhat for all z € Q,
“z-zo” < p, we have z + A\h(z) € Q for’h e [O,Xm], i.e., it ensures a minimal
step size about each non-optimal Zy € Q. This effect was used in the proof of
Theorem (10) .

A second important, but not entirely independent, effect of using e in N
is to ensure that we do not solve systems of simultaneous equations of the form
fi(z) = 0, 1 & I, for points on the intersection of surfaces when these points
are nét optimal. The solution of such a system of nonlinear equations by
gradient methods requires an infinite mumber of operations and hence solution
points would become comrerg/ence points of a sequence Zys Zy> Zpreses constructed
by an algorithm not using an e-procedure. Thus, an algorithm would jam (or zig-
zag) without "the antijamming precautions' defined by the use of ¢ in the
algorithm (7). |

tquality Constraints.

We shall now indicate how the exterior penalty function method (1.39) can

be combined with the method of feasible directions to solve problems of the form
28. | min {-:t‘o(z) | £(z) € 0, r(z) =0}

where fO: R" - ERJ', f: R [Rm, r: (Rn - [R'f’ are continuously differentiable.

We shall assume that the matrices —B-%El and §.;iz5)_ are of meximum rank for all
z in a "sufficiently large" open set containing the set {z | £(z) £0, r(z) = 0}.
We shall also assume that the set {z | £(z) S 0} has an interior.

To solve (28), we can apply Algorithm (7) (or one of its modifications) to

the problem

| 1
29. min {£(z) + 507 [r@IF | £1(2) <0, 1 =1, 250005 m} .

where ¢" > O and is driven to zero by modifying the Algorithm (7) as follows.

AN

?
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-We assume that we start with ¢" > € > e's with ¢" fairly large, and that»we have

azy €90 4 {z | £ (2) <0, 1i=1, 2,..., m}. We also introduce scale factors

B! B" c (0,1)
0. ‘ggorithm:f

Step O:
Step 1:
Step 2:

Step 6:

Set z = zo

Set ¢(z) = ¢, (e(z) = ¢).

Compute ae(z), he(z) by solving (6) with
fo(z) + '53:"7 ||x(z) ”2 taking the place of fo(z).

If ae(z) < -g5 set h(z) = he(z) and go to Step k.

If 'c;e(z) > -¢s and € <¢', set ¢' = B'-' ev', J" = B"e" and go te Ttep 1.
If c'p?c('z)) -¢; and ¢ > ¢', set ¢ = ¢/2 and go to Step 2.

Compute A(z) > O such that

A(z) = max {n | (2 + oh(z)) <O for all d e [0,A] and i = 1, 2,..., m}.

(05 A (2))
Compute n(z) € [0,A(z)] to be the smallest value in the interval / such that

£2u(z + u(2)h(z)) - min (£20(z + Wh(2)), e O, (2)]) ,
fgn(z) 4 @ + 5%: llr (=) ||?

Set z = z +.u(2)h(z) and go to Step 1.

‘somewhat

We may proceed [ as for the Algorithm (1.39) to establish that the sequence of

roints {z,}, computed by the above algorithm, may have at least one subsequence which

converges to a :éoint P satisfying the necessary condition of optimality (see (I.2.3)J,

*This method does not seem to have been published before.
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o - . Ay T a\T
3k, o (z) + %5‘)- ¢+ -@%ﬁ L= 0
35, B <05 (mf(z)) =0 .

Tt is also possible to introduce some elements of the modified Newton-
Raphson method3into feasible dﬁyeetions algoritims. The manner in which this can
be donevwili be sketched outftowéidsvthe end of the next section, and will then

be discussed in detail in Section 5.
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Lk, Further Applications to ggtimal Control

We shall now show, by means of two examples, how the Algorithms (2.5),
(3.7) and (3.30) (and their modifications) can be applied to certain classes of

optimal control problems.

Case 1: Consider the optimal control problem,

\ , k-1
. . 0
1. minimize Z i‘i (xi,ui)
i=0

subject to

2. | Xgq = Xy = fi(xi,ui), i =0, 1y.u0.y k-1,

with X; € Rv, ﬁi =3 Rl res‘c;ric’ced as follows

3a. X, =‘0’ qj(xk) <0 for J =1, 250009 My
3b. | <1, 1= 05 1seees k-1 .
Setting z = (4,5 Wys...5 W _;), this problem becomes

0, i
h. min {f (z) | T7(2) <0, i =1, 2500u, m3

Iuj| Sl, J = 0, l’-.., k"]} 3

where
k-1
5. ‘ PL(2) = P, (2)yu) » 1=1,2 m
R ‘ = i i > i 2 = 49 $e0ee)
i=0
6. f(z) = () ,
and xi(z), i1 =0, 1, 254..5 are determined by xo(z) = ;TJ and

r(. xi+:l(Z) - Xi(Z) = fi(xi(Z),ui), 1= 0, 1, 2’..., k-1 .




(-

The problem (L) is in standard form for the Algoritim (3.7), since
|u | < 1 is equivalent to the pair of inequalities u, -1<0, -1 - u, <0,
provided we assume that ol {z | fl(z) <0 i=1, 25,.., m3 |u | <1, J =0,1,...5k- 1}

has an interior.

Thus, the only thing that remains to be done is to see how to utilize the
dynamical. structure of (7) in the calculation of the various required derivatives
for (3.7). We note that we have already developed a procedure for caleculating
vfo(z) in Section II.5 to which the reader is referred. To calculate Vf:L (z),

ief{l, 2,..., m}, we note that

8. | | .vfi(z) = a?;(Z) ' ti(xk(z))

Hence, for i = 1, 2y.e05 m,

9. Qf—z-%l (a;l;;z} ) vqi(xk(Z))>, 3 =0y 1yuusy k-1
But by (II.5.8),

0. 'a‘:%d&)“ - afj(xgij)’ui)

where‘&k’ 41 is a vy x v matrix ealculated from

af, (x, (2) uy)
-3 - id i 3 8
®ih1,941 " H,50 3% 1,§+17 Y341, §+1

11. = I (the identity matrix),

i = j""‘l’ j+2,oo., k)

Thus, from (9) and (10), for i =1, 25.0es My and J = 0y 1y 25..0s k-1,

af (x (z) :u ) ‘

aft(z) T 1

12, g = ¢ 3“.—, » B 5 VO (5 (2)))

Referring to the development in Section II.5 we now see that the —a—gl—(ﬁl can
: : J

be calculated as follows for a given z. First calculate the xj(z) s J =0, 1,
25,045 ky, using (7), with xo(z) = ;{O' Next, for 1 = 1, 2,..., m, calculate the

vectors p‘l,i’ pi+1,1""’pk,i’ in fRV" from
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Bfi(xjiz), uj) T

i

' T i
This yields Pyy = Qk,,j vq (xk(z)) and hence, for i =1, 2,..., my and j = 0, 1,
2’0.0; k-l, ) '

1, o (z) _ (afj(x(z)’uj)

Buj - auj ’ p(,j-;-l) i)

Thus, at no time do we really need to manipulate particularly large arrays in
calculating the desired derivatives. Next we note that the linearity of the
inequalities |uj| < 1, which must be satisfied by the u;s can also be exploited.
Thus, to calculate cT:'e(z), we must solve by (3.6) (with 8 = {h | |hil <1}), i.e.,

we must solve

15. : minimize ¢
subject to
' such that i'i(z) + > O;T
15a. c - (v:{‘i(z),h) > 0, fori=0and all ie{l, 2,..., m}/
156, ° o -n >0 for all § such that uy - 1+ 2 0
15¢. c+h >0 for all J such that -u, -1+ ¢> 0
15d. lhj| _<_ l’ j = 0’ 1,..0’ k‘lo

‘Algorithm (2.5) may be used in a similar manner.

To solve problem (15) efficiently, one should use generalized upper boundary
techniques (Sec. [IV]). With these techniques one would have to invert matrices
whose dimension is governed by the number of inequalities in (15a) only..
Alternatively, one may compute a feasible direction h at z by solving
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16, Minimize ¢ subject to

l6a. ‘ c - (Vfi(Z) ,h) ->- 0 for i =0 and all i (=4 {1,ooo’m}

such that f(z) + ¢ >0
16b. >0 foran 3 such that u-l+ €3 0
16c. 1 >0 foran j such that -u,-1 + ¢ > 0
164. 9] <1, 3 =0, 1,.., k-1

The justification for (16) can be obtained as follows: Consider for the
moment problem (3.1) and let JA (z) ¢ J (z) end JN(z) c J (z) be such that

. J‘A(z) u J‘N(z) = J (z) and for all ie J (2), fi(z) be affine.

17. Definition: <For ¢ > 0, let 7 : @ - R defined by
N(2) = Min {o]o - (vt (z),m) > 0, 1 e T(z)3 - (I (2)sh) > 0, 1€ T(z); he s,
It is now easy to show that

() 'ne(z) sae(z) <0 for alle> O

(b) If z is optimal for (3.1), then no(z) =0,

(c) Can use N_(+) instead of g (+) in Algorithm (3.7) without upsetting the
convergence properties of the algorithm. :

Case ”: Consider the following simple; problem:

k-1

1
18. minimize 5 Z (||xi-xi ” +u
i=0

TWe munmber the components of h in the same manner as the componentn of the control

sequence 2z, i.e., h : (h s h%ueus B5Y,
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with the boundary conditions Xy = Xy 3 X =X 5 and the u [-1,+1] for
i = 0’ 1’ 2,..0’ k-lo

_Assuming that this problem is "nondegenerate," i.e., that pO = =1, the
necessary conditions of optimality stated in (I.2.14) become for this problem:

a a ] a PS ~
if wys Wyseees Wy 5 and X Xy 90005 X, are optimal for (18), (18a), then,

19, | S‘cﬁl = Axg +bu;, 1=0,1,..., k-1,
. o . e oa
Os X0 = X2 ¥ = X

-~ " -~
and there exist multiplier vectors D;s Pyseees Py in RY, satisfying
a T » ~ *.
1. ) Pi = A Pi+l - (xi“xi ), i=0, 1, 250009 k-1
such that (from (I.2.17)),
. ‘ A . ’
22. u, = sat (p1+1, by, i-= 9, lyeeey k-1 .

Substituting from (22) into (19), we obtain

A

23. : X509 = Axi + b sat (pi+1, b)

~ L]

Thus, to find the .optimal control sequence, Uys Uyseess G‘k-l’, together with optimal
trajectory,;co, ;cl,... ’ ;Qlc-l’ we must solve (23) and (21) (and use (22)) with the
mixed boundary conditions Xy = xo*, X = xk*. Now, in (23), sat {P;,q> D) is not
contimiously differentiable in p:l +1 and hence we cannot apply the modified Newton-
Raphson method (II.3.2) to this problem (c.f. Section II.5).

However, we can apply Algorithm (3.30), as follows. We construct a penalized

cost function, with z = '(uo, ul,..;; uk—l)’ and ¢" > 0 1afge,
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k-1 k-1
o, TONE Z Iy () = %, + Z 0?4 she [l (2) - 0P
' i=1 i-0

Then, we apply Algorithm (3.30) to min {fzn(z) | Jugl €35 1 =0, 15 250005 k-1}.

To evaluate ;e(z), for a given z, we solve the linear program,

25. minimize o
subject to '
‘ 0
25a. o - (vf_u(z),h) > O
250, o -h) >0 forall j such thatuy -1+ ¢>0
25c. o +hl>0 for all j such that -u; - 1+ ¢2 O

25a. nYl <1, 550, 15 25005 k-1

where we calculate vfgn(z) as indicated in (II.5).

An Fxtension of Algorithm (3.7)*

In computing ae(z) by (15) or by (25) we may often find that the
inequalitics (15b), (15¢) (or (25b) and (25c¢)) can be quite numerous and may
therefore have an appreciable. effect oﬁ the computafion time, even if special
linear programming codes arc used (such as described in [V1, V2].

We shall now present a few modifications of the Algorithm (3.7) which are more

suitable for use with optimal control problems. Consider again the problem

26. min {£°(z) | £1(2) <0, 1 =1, 2,..., m)

where the fl(°), i=0,1..., m are continuously differentiable functions from

mn into ml.
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27. Definition: For ¢ > 0, let E};ez Q-+ [Rl (o 4 {z | fl(z) <0, i=1,25...,m})

be defined by

min {(v£°(z),h) | (vf (z)sh) + e <O

[}

28. | :?)e(z)
for 1 £0,1¢e I (2); nes)

where S is any compact set containing the origin in its interior. (This function was
first used in [Z5])) .
29. Proposition: OSupposc that for every z € Q there exists a vector h e P such

. that (vf (z),h) <0 for alli £0, ie Jo(z). Then, for sny z € Q, E;';O(Z) : 0

if and only if ao(z) = 0.

Proof: We give a proof by contrapositi&n.

=——=> Supposc that for some z € Q, $O(z) < 0, then by inspection, Q)O(z) <0,
ic€.s éo(z) -0 ﬁ;o(Z) = 0.

<&——— Now suppose that for some z € Q, (?)O(z) < 0, with &;O(z) = (vfo(z) ,171).
Then (Vfo(z,\ ,fl)_ <0, (vfi(z} ,;1) <0, ie Jo(z), i £0 andg hes. Lé't heR’ be
such that (vfi(z);h) < 0. Then, since S has an interior, there exist a )\1 > 0
such that B 222(R + %) e 5 and (vt (2),B) <0 for i & J (2), i.e.s

:{;O(Z) <0 :.?50(2) < 0, which is equivalent to the statement that c_po(z) =0
:::-.-)Ef;o(z) = 0, This completes our proof.

Thus, under the assumptions stated in (29), finding points z € Q vhich
satisfy (I)O(Z) = O secems to be about as good an idea as finding points z € Q which
satisfy $O(z) = 0. However, for optimal control problems such as the ones wc
have examined in this ééctién,- c?;e(z) is much casier to computé than ae(z) . For

example, for the problem considered in Case I, to compute c?)e(z) we solve

3. ‘ | min (v (z),h)
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subject to

30a. (vfl(z),h) +e<0 forallief(l, 2,..., m}
such that £5(z) +€> 0 ;
30b. -h) + ¢ <0 for all j & {0, 1, 2,..., k-1} such that
-uy - l+e > 0
30c. . hi+e50 for a1l j e {0y 1y...5 k~1} such that uj-l+e_>_0 3
30d. W] <1, §=0,1, 2,000, k1.

Now the only inequalities wﬁich determine the dimension of the métrices to be
inverted when solving (30) by means of the simpler algorithm are (30a), x-;'hich
usually are few in number. Hence &;e(z) is easier to compute for this case than
@e(z)e
31. Theorem: Consider the problem (26). Suppose that for every z € Q there
exists a vector h € R® such that (vfi(z) »h) <0 for all i £0, i e Jo(z) . Then
the function (}e(.) in Algorithm (3.7) without effecting the convergence properties
of (3.7), i.e., Theorem (3.10) remains valid.

We leave the proof of this theorem as an exercise for the reader who will
find in the second half of thé next section a few helpful results.

We observe that we can also modify Algorithm (2.5) to make its application
to optimal control problems easier, as follows.

32. Definition: Consider the problem (26). Let g: Q -+ [Rl be defined by
~ . 0 i i
@(z) = min {{vf (2),h) | £ (2) + (vf (z),h) <O

i=1 2,..., m; hes} ;

where.S is any compact set containing the origin in its interior.
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33. Proposition: Suppose that for every z € Q there exists an h € S such that
(vfi(z),h) <O for all i }LVO, i eJo(z). Then, for any z c Q, &(z) =0 if and
only if @(z) = 0, where ¢(+) was defined in (2.2b).

'i‘he proof of this proposition is similar to that of { 29) and will thrrefore
be omitted.
3k, Thebrem{ Suppose that for every z € @ there exists an h € S such that
(vfi(z},h) <O forallifo,ie Jo(z). Then the function c“p(.) in
Algorithm (2.5) without affectiﬁg its convergence properties, i.e., Theorem (2.8)
remains validi.

We again leave the proof of this theérem as an exericse for the reader and
again suggevst that he read the next section before attempting to carry out the
proof.

For the problem considered in Case T gp(z) is computed by solving
. 0 ,
35. , min (vf (z),h)

subject to

35a. o) (vfi(z),h) <0, i=1,2,..05m
350. u, ~1+md <0, § -0, 1., k-1

35c. “ug -1 - n <0, § =0, 1yeus k-1
35d. |‘hj] <1, § =0, 1,..., k-1

Again it can be seen that this is easier to solve by means of the cimplex

algorithm then the problem whose solution yields (p( 7).
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A "Second Order" Extension of Algoritim (3.7).

It is interesting to observe that some ideas of the modified Newton-Raphson
méthod can slso be injected into the method of feasible directions. Consider
agein the problem min {fo (z) | z e !Rn} . Then, the direction h(zo) given by the

)

Newton-Raphson method at Z is the one which is obtained by minimizing the
quadratic approximation
: o ‘
0 1 2% (2,)
36. (v€(25)0) + 3 (B ——— b
2
oz
to fo(z) - fo(zo) (with h = z-zo) at z,. Indeed, taking the gradient of (36) with

respect to h and setting it cqual to zero, we obtain
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0 Bafo(zo)
36, _ vt (z)) + —5— h = 0
9z
2L\
so that h(zy) = - — vf (z) solves (36). Let us now return to the

0z
2.0
problem (3.1), and assume that £°(-) is comvex, and that §—£~éﬁl >A>0 for
d2

all z in a "sufficiently large" open set in R™.
38, Definition: Let H(z) be an n x n'positive definite matrix whose elements are

contimous functions of z. For ¢ > 0, we define the function ?65: Q- Rl as

%, (2) - min ((vf2(2) sy + (,H(2)h) ner’, (vt (2),hy + ¢ <O for

i#O,ieJJ@}

39. Proposition: Suppose that for every z & @ there exists a vector h & R
such that (vfi(z) sh) <0 for all i £0, ie Jo(z) . Then 'Eﬁo(z) = 0 if and only if
EO(ZE = 0, for every z € Q.
Tlle p"roof of this proposition will be given in the next section.
40, Theorem: Suppose that for every z. & Q there exists a vector he R

3 : 232£° (2)
such that (vf (z),h) <O for all i £0, ie Jo(z). If === > 0 and is
oz

continuous for all z € R® (or a "sufficiently large" open subset of R, and

2.0
H(z) = _3___%5)_ in(38) , then the convergence properties of the Agorithm (3.7)
vz -

are preserved when the function ?p'e(°) is used instead of 56('), i.e., Theorem
(3.10) remains valid for Algorithm (3.7) modified by the substitution of 'c;e(')
for 5 (¢). (This theorem can be proved by following the steps in the proof

of Theorem (3.10) and making use of the lower semicontinuity of q; (+). That 736( -
is lower semicontinmuous will be established in the next section).

It may be expected that when Algoritm (3.7) uses ge(.) it will converge
faster ’chen when it uses c-ée(-) or $e(') as far as the number of iter-
ations is. concerned. However, ‘ea.ch iteration takes more effort to perform, since
second pa.rtlal derlva:blves must be calculated and since a quadratic programming

problem is ha.rder to solve than a linear programming problem.\
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In application to cohtrol problems, the above indicated modification of
Agorithm (3.7) kmay be particularly attractive for use on minimum energy

problems of the type,

' k-1
A ! 2
k1. min 3 Z (uy)
i-0
subject to
- - ' Vv k
hle. Xgpg =% = fi(.xi’ui)’ x; €ER%, u; €R
""J-bo lu;?-l S 1, i =>0’ 1,,.0, k"l,
h-lC'. qj(JQk) _<_ O’ j = 1, 2,.-.,' m .

In this case, with z = (uo, ul,, u.k_l),'we see that fo(z) = -;-‘ {(z,2z) and (38)

~ A min 1
gives ¢(z) =/{(z,h} +5 (h,h) l (vfi(z) sh) + ¢ <0 for all i e {1, 2,..., m} such
that £7(z) + ¢ > 05 h) + ¢ <O for all j & {0, 1,..., k-1} such that u - 140

and -h’ + ¢ <O for all j € {0, 1,..., k-1} such that “us - 1+ ¢ >0},
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5. A Second lLook At Feasible Directions Algorithms 1

" In the last three sections, a method of centers as well as a class of
methods of feasible direc't;ions were presented as algorithms for finding é zero
of the functions ¢(-), 50(') c;(-), %-), 30(-) which are zero at all optimal

points of the problem

1. | min {£2(z) | £5(2) <0, i =1, 25u.us m}

where the Ifi: [Rn -+ [Rl, i=0, l,.;., m, are continuously differentiable functions.
We shall now show both how the family of such functions and of the resulting
minimization algorithms can be extended further. Since we are about to run out

of bars and tildas which we have been plac':ing on ¢, we shall change our notation
slightly.
2. Theorem: For ¢ > 0 and z € Q Q— {z ] £ (z) <0, i =1, 2,,..5.m}, let Je(z) be

/

defined as in (3.2) (i.e., Je(z) ={0} u{i | (z) + ¢ >0, i€{1l, 25...5 m}});
let Ho, ﬁl""’ Hm be arbitrary n x n positive semidefinite matrices; let S be a
compact subset of R® containing the origin in its interior, and let cpl( ) cpi(‘) s

:93 (+) and (p:( *), mapping R" into lRl, be defined as follows:

3. o (z) = min  (nax (v (2),hy 3 £5(2) + (VL (2)sh)s 1 = 1, 2550 m})
b, ¢>(z) = min TmAxX (v (2) sy
€ hesS ie Je(z)
5. : (p3(z) = min (max {(Vfo(z) »h) + (h, Hoh> H
he s
f'{(z) '+ ‘(Vfi(z),h) + {(h, Hih>’ i=1y 250005 m})
6. (p,;(z) = min max ((vi‘i(z) sh) + (h, Hih)) .

he s 1eJG(Z)

fEDcc‘ept ds stated, the results in this section appear to be new.
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Then, for any z € Q, cpl(z) = 0¢=>cpg(z) = O@qﬁ(z) = o<=>q,g(z) =0t

(Note that by (I.3.6) cpg('i) = O for all z which are optimal for (1). Hence, by
this theorem we have that if z is optimal for (1), then (pl(;) = cpg(;) = <p3(§) =
cpg(g) = 0).
Proof: (We give a proof by cohfraposition)

(1) ¢*(2) = 0&=>g5(2) = 0.

* * ., ¥, . *
—> Suppose that for some z & Q, gpg(z ) = mex (vfl(z )sh') <0, Then,

ieJo(z )

since the origin is in the interior of S, there exists a )\* > 0 such that for all
* * * 3 %* 3
e (0, A7 Ab" & 8 and, in adaition, max {A (VEO(z),h'ys £(27) + A (vE (2 ),h ),
$ =1, 2,..., m} <O, vhich implies that ¢ (z") <0, i.e., gi(z) = 0=—=>gk(z) = O.
* * L * i, * i *
&—— Suppose that cpl(z ) = max {(vfi(z Ysh )3 (z) + (vfl(z*) sh), i =1, 2
o ¥ i, % % R *
.sey m} < O. Then q)o(z ) < max (vfl(z sh') <0, i.e., qu(z ) = 0—>
ie Jo(z )

1, * ‘
9o (z) =0.
1 3 * 3, *

(11) o (2) = 0> (2) = 0, == Suppose that for some z €Q, o (z) <0,

' * * *
then, by inspection, qpl(z ) <0, i.e., cpl(z ) =0 ==>q>3(z ) = 0.
. * * % i, * * *
&——=Now suppose that cpl(z ) = max {(vfo(z Yoh'y; £5(z ) + (vfi(z Ysh), i=1,
2yeeey M} <0, Then, because the origin is in the interior of S, there exists a
* *
)\* > 0 such that for all A € (0, A ], Ah € S and, in addition, (because when ) is
, 3, * 0, ® _*
very small the linear terms dominate the quadratic ones), ¢~(z ) < max {A (vf (z ),h )
* * * * % * *
+?\2 (h, Hoh>; fi(z ) + A (Vfi(z )sh') + )\2 (h, Hih Ys 1 =1, 25...5 m} <O,
* *
i.e.y <p3(z ) = 0=:><p1(z ) =0,
)
(11i) To complete the proof we must show that (pg (z) = 06— (p(; (z) =G, We
omit this part of the proof since it is essentlally the same as (11) above,
7. Theorem: Suppose that the functions £ () in (1) are twice continuously
A ' : 2 i
differentiable. For i =0, 1, 25.e0s my let H; = 5 Lila-(-z-‘l if
oZ

2
é——%ii)- >0 for all z € Q, and let Hi = 0 (the zero matrix) otherwise. Then the
02

function q)3(‘) may be used instead of the function cpl(~) in Algorithm (2.5) and

the function (pi(O) may be used instead of the function cpi(-) in Algorithm

TA: B denotes "A implies B". A<—>B denotes "A implies B and B implies A",
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(3.7) without affecting the coﬁvergence properties of these algorithms, i.e.,
Theorems (2.8) and (3.10) remain valid with these substitutions. (At this point
the reader is advised to re-read carefully (2.5) and (3.7) as well as the proofs

of (2.8) and (3.10)).

Proof: To establish this theorem we only need to observe two facts.

(1) By Section 1I.4, the functions cp3(o) and m(-), with

(where ¢, > O is

o 0

heS ieJ (z)

as given in (3.7)), z € Q, are continuous;

(i1) Since ]Ii >0 for i =0, 1,..., my for every z € 0, and every h e S
(vfi(z) shy < (vfi(z) sh) + (h, H;h). The reader can now complete the proof
by using these facts to modify slightly the proofs of Theorems (2,8) and (3.10),

respectively.

The use of the functions °P3(’,) and of cpl;(-) in a feasible directions
algorithm introduces information about the second-order properties of the
functions fi(-), i=0,1, 2,,4.5 my and may therefore be expected to result in
accelerated computation, as far as the number of iterations' is concerned.
However, this advantage is off set (if not totally obliterated) by the fact that
to compute (93(2) or cpl;(z) one must solve a minimization problem with linear cost
and quadrative constraints, which is not amenable to finite step procedures.
Thus we are led to two other accelerated versions of Algorithms (2.5) and (3.7)
(one of which was alrcady sketched out in Seetion k)
which only require us to solve quadratic programming problems that are a.menable to
finite step solution. We begin with a few preliminaries.

8. Definition: Let HO be a positive definite n X n matrix., Then, for every

z € Q we define gpst O—»[Rlby

9. 9°(2) = min {(v°(2),h) + (h, B | £(2) + (v (2),h) <O

i = 1, 2,..., RI}T

1'A feasible directions algorithm based on this function was presented by
Topkis and Veinott in [Tl], without proof of convergence.
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Also, for every z € Q and every ¢ > 0, we define

10. cpi(z) = min {'<vf°}(z),h) + (h, Hyh) | (V:E‘i(z),h) +e<0
‘for i eJc(z) s 1 £0) .

11, Theorem: Suppose that for every z'  Q there is a vector h' R" such that
(vf (z"),h'y <0 for all i € J, (z')/ fléhgn, for every z & Q, cps(z) = 00—

(z) = 0@@ (z) =0,
Proof: (i) ‘cp"(z) = O¢==><pl(z) - 0, =——> Suppose that for some 2 e Q s
¢5(z") <O, then by Theorem (2), >(z') <0, with Hy as sbove and all other
H; = 0. Hence st(z*) <0, i, s cps(z*) =0 =$<pl(z*) =0,
c:Now suppose that for some z eq 5(z ) = (vf (z ),h) + (h s Hoh) <0,
(where h* satisfies the constraints in (9(§
Then there exists a \'> O and a A, >0 such that x(h +\'h') € S for all
e [0, A, anah(v£2(z ) »(n* + A'm)Y + 22" + A'h'), Ho(h +1'h")) <0,
#(2%) + A (uEH(z), (B +A™")Y <0, 1 =1, 2,...p m, Tor all A & (0, A s
and hence cpl(z*) <0, i.e., cpl(z*) = 0=>cp5(z*) =0,

(ii) cpg(z)- = Oﬁcpl(z) = 0. By Theorem (2) we may prove instead that
(pO(Z) - o(:=><po(z) = 0, with Hy =0 for i = 1, 2,..., m. ——> Suppose that
for some z e N, cpo(z*)< 0, then, by inspection, <po(z ) <0, i.e., cpo(z ) =0
==>cpo(z ) =0,

&——Now suppose that _(pg(z*) = (vfo(z*) ,h*) + (h*, H()h*) < 0. Then there exist

a\A'>0anda Ay > 0 such that )\(h* +2A'h') €8 for all \ € J\m], aﬁd

Ao (2, @ +amny + 22w 4 A, By +am) <o, Mgt (z"), (0 + At

<0 forie Jo(z*) and therefore cpg(z*) <0, i.e., cpg(z*) M (pg(z*) =0,
Thus, under the assumptions stated, finding a zero of cps(-) or of cpg(') seems

to be about as good an idea as finding a zero of cpl(o) or cpg(') or cp3(~) or cpg(')

and, from what has been said at the end of the preceeding section, an algorithm

for finding a zero of (ps( ) or of cpo( ) may possibly be somewhat faster than the
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algorithms we have already considered for finding a zero of (pl(-) or of (pg ().
However, to show that we may substitute cps( .) for q)l( +) in Algorithm (2.5) or

q)g( .) for cpi( +) in Algorithm (3.7) we must exhibit some additional properties

of these two new functions.

We digress for a moment to establish a general result.
12, Theorem: Iet w( -,')v be a continuous function from an X an into lRl. For every

z e R let Q(z) be a subset of R" and suppose that

13, , Yy(z) = min {y(h,z) | b e a(z)}

* *
is well defined. Suppose that h e Q{z ) is arbitrary. IT
for any e¢ > O,

(15 For every h'e Q(z*), %(h*, e) £, where/B(h*, e) =f{he Q(z*) [

.t
ih-n |l < e}s
~ o, * . * ~
{ii) TFor every h e Q(z ) there exists an ¢ > O such that h = Q(z) for all
. ¥ * * . .
ze{z ]| |lz-z | <e}. Then, for every z eR" and every § > O there existc an

E > 0 such that

1k, , -q?(z) < Ty_(z*) +6 forall ze({z l Hz-z*“ < 2}

that is, ¢(+) is lower semi-continuous.

* n C e * *
Proof: Let z e R be arbitrary and suppose that §(z ) = y(h ,z.), h € a(z ).
for any 6§ > O
Since §(+5+) is continuoug/ there exists an ¢ > 0 such that

—_ %
15. y(hyz) < y(z') +6

* ~ * ~e ~ [o] * .
for all ||z-z || <€ » ||h-h || <’€. Now choose an h € B(h , ¢), then, by hypothesis,

. X ~ * ¥* ~ . ~ %,
there is an ¢ > O such that h € Q(z) for all ||z-z || < ¢ . Iet ¢ = min {e, ¢ }.

~ X al \
Then h & Q(2) for all ||z-z || < ¢ and

)
<e} .

16, . 'v;(z) < \y(z,'}:) SE(Z*) +8 for all ze {z | ”z-z*ii

This completes our proof.

, ; o}
1h’\i!e denote the interior of a set A by A.
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We now return to our functions st(') and cpg(~) .
17. Corollary: Suppose that for every z' € Q there exists a vector h' [Rn such
that (Vfi(z'),h') <0 foralli £0,ie Jo(z'). Then the convex set
{n | fi(z') + (v:f.‘i(z*‘),h)*sO, i =1, 2,..., m} hac an interior and the function

-
> . . .
¢ (+) is lower semi-contimous.

18, Corollary: Suppose that for some €g > 0 and for every z' = Q there exists a
vector h' € R" such that (vf (z'),h") <0 for all 1 £ 0, i€ J_(2'). Then
(0]

the convex set {h | (vfi(z’),h) +e¢ <0,if0,ie Je(z')} has an interior for
all ¢ € [0, eo], and for any z* e O the function

T(z) 2 min {(vfo(z),h) + (h, Hyh) | (vfi(z),h) +e<0,if0,ie Jg(z*)} is
lower semicontinuous for all ¢ € [O, eO].

Both of theée corollaries are easy to establish by showﬁ.ng that the assurmp-
tions of Theorem ..(12) are satisfied and their proof will therefore be omitted.

In the definition of functions <p5( «) and (pg(°) , the vector h is not
restricted to a compact set. We shall now show that whenever z lies in a compact
set about a z* e Q, the minimizing h, vhich is used 'l';o obtain the value cps(z) or
q;g(z) , also lies in a compact set. |
19. Theorem: Suppose that the assumptions stated in Corollary (17) are satisfied.

*
let 2 €Q, let § > 0 and let ¢ > O be such that

20, q)s(z) 5({)5(2*) + 6

* *
for all z evB(z‘, e) a {ze | |z-2 | <e}. If fo(—) is twice contimuously
L
2
S *
¢ (2) = (vf‘o(z),h) + (h, Ho(z)h)', for z € B(z , ¢), then h is bounded.

. ' o .
differentiable, Ho(z) = aafo(z)/az > 0 and h satisfies (9), i.e.,

. *
Mroof: Since Ho(z) > 0 and is uniformly continuous on B(z , ¢), there exicts a

- *
AL > 0 such thot (b, Tyh) > A thl? for a1l z& B(z , g) and h & R'. Alno, since

o . . X . 2
v (2) is uniformly contimuous on B(z , g), there oxists o A7 > O such that
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1<% (z) by <A |jn]] for 211 z e B(z s¢) and h e R, Hence

o1, U, ol @®@m @ <6 + o)

ZEB(Z,S)

is a bounded set whose closure is compact and contains every h such that
<ps(z) - (v‘fo(z),h) + {h, Ho(z)h), 7 e B(z*, ¢). This completes our proof.
We now state without proof a similar result for :pg(-) .
20, Theorem:l Suppose that the assumptions of Corollary (18) are satizfied and

*
that g is defined as in (18)., let z € Q, let § > 0, let ¢ = o, '50], and let

23. CF(z) 2 min ((v°(2),h) + (n, By |

i *

| ' 2.0 '
0 . - ~
If £(+) is twice contimuously differentiable, Hy = % é—-f-éﬁ >0 and ¢ > 0 is
. 2 3z
such that

~ ~, % )
2h. m(z) <m(z ) + 6 T
* o~
for all z € B(z', ¢), then the closure of the set v

2s5. U {n | (vi'o(z),h> + (h, Hy(z)h) <m(z) +8)

*
ZEB(Z,"S’)

is compact.

With the above results established the following theorem is readily proved
by essentially repeating the proofs of Theorems (2.8) and (3.10), It is therefore
stated without proof.

26, Theorem: Supposc that the function fo(') is twice continuously differentiable

) 2.0
and that é—-f—ég)—>0i‘or all z € Q,
3z
(i) If the assumptions of Corollary (17) are satisfied, then <p5( ) can be
substituted for cpl( «) in Algorithm (2.5) without affecting its convergence

properties as stated in (2.8).
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(i) If the assumptions of Corollary (18) are satisfied, then wg(-) can be

substituted for ¢§(') in Algorithm (3.7) without affecting its convergence

properties, as stated in (3.10).

This concludes our discussion of the methods of feasible directions.
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6. Gradient Projection Methods -

We conclude this chapter with several gradient prbjection methods. The
first class of such methods to be considered consists of modifications of Rosen's
gradient projection method [R1], {P1] and are designed for solving problems of

the form

1. . minimize {fo(z) | fl(z) <0, i =1, 250005 m}

wher the constraint set @ = {z ] fi(z) <0,1i=1, 2y..., m} is a convex polytope
with interior and fp(-) is convex. (Actually, these methods are also applicable
to the case when © has no interior. However, this requires that one regtrict
oneself to the linear manifold containing Q, and this adds to the complexity of
the formulas to be derived. Since these are already quite complex, we shall
leave to the reader the extension of the results presented below to the case wben
Q has no interior.)

For the Rosen type methods we shall assume that the cost function fo(~) is

convex and that the functions fi(~), i=1, 2,...5, my are of the form

. i i
2. : £(2) = (£5,2) - b,

with fi € R" and bi e lRl. We shall assume that the set Q a {z | fi(z) <0,
i=1, 2y...s m} has an interior,

3. Definition: ¥Yor every z € Q and € > 0, let

1(2) = {1 ] (£,2) - b+ e> 0, ie€(l, 25.0., m}} .

4, Assg_ng_ tion: We shall suppose that there exists an e* > O such that for
every 2z € Q and ¢ € [0, e*] the vectors fi’ ie Ie(z) are linearly independent.
(This assumption can be removed at the expense of increased complexity in the
algoritims to be presented, which must then include a scan over all or most

possible constructions of a new direction).
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, *

5. Definition: TFor every ¢ € [0, ¢ ] and every z & Q let
A

6. FIe(z) = (fi)iele(z)

be a matrix whose columns are f,, ie Ie (z) (ordered linearly on i). Let PI (z)
be the matrix which projects "[Rn onto the subspace spanned by the vectors fi’

eI ( let Pr
1513 z), and le PIe(Z

)T be the matrix which projects IRn onto the subspace
orthogonal to all the f., ie Ie(z), i.e.)

T -1 T tt
[ 1) = I (2) (FIe(z) ercz)) 1 (2)

LI}

8 vr
. "I (2) T-Fr () -
€ €

. L .
(Note that matrices PI (z)° PI (z) are symmetric and positive semidefinite.)
€ €

. *
Consequently, for every z € Q and every ¢ € [0, ¢ ] we have

L | . L c
o W) = By () VD) 4y () V) = By (S () + 7y () 9 (2)
where
| T ] -l T 0
10. Ee(Z) = (FIG(Z) }‘Te(z)) F:[c(?) vt (z) o

Hhen Ie(z) is empty, we shall assume that P (2) is the zero matrix and that

I (2
L : 3 . * 3 3 e
PIa (z) s the identity matrix.

Myote that for (Fg (z) F. (z)) 1 o exist éssumption (4) must be satisfied.
' > e

Thus, when (4) does not hold, one is forced to use combinatorial methods for
reducing Ie(z) . .



-117-

Tt now follows directly from (I.2.1) and (I.2.13) that z is optimal if and

only if

. L 0 ,a
1la. ‘ PIO(;) vE (Z) = 0 ’
and
b, | £,(2) 5 o .

We make one more observation before stating an algorithm. Consider the
L

L
expansion (9) and let j e Ie(z). Then, from (9) (since PI (2)~371 (2) =
L € €
@) |
L O, v .3 1 1 0
12, Pooy_s VE (2) =€3(2) B_ .\ . f + P VE (z)
I (2)-3 € Ie(z>) i3 1 (2) ?
and, since (12) is a decomposition into orthogonal components,
4 0 2 j 2 gt 2 L 0
13. Iy (zy-5 7€ @I° = (€207 |IF; (23555l + ||PI€(z)vf (2) |2
€ €
Finally note that
‘ 4 - L
1k, (fj, PI (Z)“j Vfo(Z)> = 52(2) (fj’ T (Z)"‘j fj) o
€ . e

- *_ *
15. Algorithm: Suppose we are given an € € (0, € ), with ¢ as in (4), an

| 4
et e (0, eo) end a z, ea

Step 0: Tet z = zo
Step 1: Set g(z) = €o* (We shall use the abbreviated notation e

Step 2: Compute

e(2)) .

16. | h (z2) = )Vfo(z) )

P.L
Ie(z
Stég 3: If Hhe(z) ”2 > e, set h(z) = -he(z) and go to Step 6.

If ][he(z)ne < ¢ and ¢ < €', compute hy(z) (as in (16)) an‘d €y(2) (as in
(10)).
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If [Iho(z)”?‘ = 0 and 50(2) <0, set z = z and stop
(z is optimal)., Otherwise, set h(z) = -he(z) and

go to Step k.

CIf ”he(z)”"2 < ¢ and el> e's g0 to Step L.
Step 4: Compute ge(Z) (as in (10)).
If ge(z) £ 0, set h(z) = -he(z) and go to Step 5.

If §e(z) £ 0, compute

- 1 0
7. . B (z) - PIe(Z) L3 VE (2)
such that
| | - . L 0
18. h (z)] = max P . vE ()] .
” e ” j_ - Ie(z) " Ie(z) -1
gl(z) > 0

Set n(z) = -'-'ﬁe(z) and go to Step 5.

Step 5: If ||h(z)”2 < & set ¢ = ¢/2 and go to Step 2.
I:E'J“h(z)uz > e, go to Step 6.

Step 6: Compute u(z) > O to be the smallest scalar satisfying
>0,

19. fo{z +‘ p.‘(z) h(z)) = min {fo(z’-!- ph(z)) |/‘(z + ph(z)) € 9}

Step 7: Set z = z + u(2) h(z) and go to Step 1.

20, Theorem: Iet Zqys zl, / 22,.‘;‘.'.', be a sequence.in Q constructed by the
Algorithm (15), i.e., 'zl, Zyseees BTE the consecutive valp.es assignedvto z in
Step 7. Then, either {zi} is finite and its last element is optimal, or else
{2} is infinite and every accumilation point of {2} is optimal. (When £+) is

strictly convex, the problem has a unique optimal solution Z and then z; %.)
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Proof: We shall again make use of Theorem (I.3.1) under the assumption that
- . 0 .

T =Q, A: Q- Q is defined by the Algoritim (15), ¢(+) = -f (+) and z € @

L 0 ,~ ~ <
is defined to be desirable if PIO (;) vf (z) =0 and _go(z) = 0., We begin by

showing that the characterization (1.3.2) is satisfiede. Esizgpg:]e that Z is
bl
<
optimal, Then ho(zo) =0 and §0(Zo) 0., Now, for any/ Ie(zo) > I,(zy)

and the vectors f,, ie Ie(zo) are linearly independent, hence for any ¢ € [O,Zo],

a1, §e(zo) = Eo(z,) So
and
22, I ()l = Izl = o .

Consequently, after a finite number of halvings of ¢ in Step 5, the algorithm
wi].‘l. stop in Step 3, resetting z to its original value, This satisfies (I.3.2).
By construction, if the algorithm stops and sets z = z in Step 3 then z is
optimal. This is the only possible condition for setting z = z, since it is not
possible to have n(z) h(z) = O in Step 7 for the following reasons. First, h(z)
= 0 cannot occur in Step 7 because of the logic in Step 5. Second, from the
results in Section I.k, it follows that if h(z) £ O, then u(z) £ 0, since for all
ie1(2), (h(2),£,) <0 and (v£°(2), h(z)) = - [In(z)|? <o,

We must now show that (I.3.3) is satisfied, i.e., that if z) & Q is not

desirable, - -
then there exists a p > 0 and § > 0 such that

23. | - Pl ru nE) + L@ >3

for all z € B(zys p) 2 {z €0 | [lz-z]| <5 }. Let egbe the last value of e(z,)

(i.e., the value of e(z,) used in the calculation of h(zy)in Step 3 or Step 4 for 7%, .

Then, either

ok, , I P> e »
' o (0} €

or else

25. B I > e -

N



Suppose (éh)"'took place, i.e., that h(zo) = -heo(zo) . Then there exists a

p' > 0 such that

26. ”P‘; (z,) Vfo(2)||2_>_ /2 for a,ll z € B(zy, p') .

Iet p" > O be such that Ieo(z) c Ie (zo) for all z eB(zO, p") and let p =
: (0]

min {ﬁ', p"}. Then, for every z € B(zo, p) aﬁd every a [0, eo],
2. Iy @Iz E () @Iz () @Iz e/
(0 € € 0
We therefore conclude that if (24) took place, then for all z & B(zo, p)s the
algorithm will use a final value of ¢(z) > 30/2.
Now suppose that (25) took place, i.e., that h(zo) = :ﬁe (zo). Then,

: 0]
either "heo-'(zo)” > 0 or nheo(zo)” =0 .

Suppose that ||[h_ (z.)]| = 6" > 0. ILet p" > O be such that I_ (z) € I_(z,)
& © €0 & ©

for all z B(zo, p"). Then there exists a p € (0, p"], such that for every
z e B(zo, ?) and for every a e [0, €0ls

- 1 L
28, B > 1177 () O] e N O
. Qo

L

> ||® NP8/,
I (z,)
e ©

and hence for every z € B(zo, p), the algorithm will set e(z) > [6'/2] > 0.}

\

Now suppose that ||h60‘zo)|| = 0, Then, vfo(zq) = gio(zo) £
ie Ieo(zo)

+ k

Suppose k is nn integer such that E‘O/?k"'l <s'/2 < é‘o/? ', then we define

[61/2] = 5/
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are unique since the fi s
0

Now let

and in this representation the coefficients g:

iel (z.) are 1iri§arly independent.
€ 0
L
5, = min {|[F] v (z)|f] 1 I%(zo), ||1>J£ vt (z,) P> 0}

29. —.and

6‘_- = min { i. (z ) “P.;"i Vfo (zo)nzl Ic Ieo(zo), ”P; V_fo(zo) “2= 0} .

Obviously, &, > 0 and 8, > 0. Let 6" = min {eo, 61, 62}, and, again, let

p" > 0 be such thfa.t Ieo(z) c Ie (zo) for all z € B(zo,

. , 0
considering all possible subsets I of Ieo(z) and then all possible subsets I of

There exists a p € (0, p"] such that for

p"). Therefore by first

I, (z )suchthatg (z)>0fori I.
€
every z € B(zo, o) and for every a € [0, e5]s either

% ) @Iz

. or

i eI (z) ”P o(Z) -1 vs° (z)" 2 8"/2 .
Eq (Z) >0

We therefore conclude that if (25) took place, then for all z B(z,) R p) ’

the algorithm will use a final value of ¢(z) > 05 "/2] > o.

Now, for every z € B(zo, p)or for all z B(zo, 6)), vhichever is

prropriate to consider), and for all i € Ie (z) (z), we have (£;5 h(z}) €0

(see (1&)', (17)) » and so, as far as these constraints are concerned, one can

displace oneself an arbitrary amount in the direction h(z) from z m.thcmt

constraint nola.t:.on. Since for every z € B(zO » p) and for all i €I e(z)’

{ isz) + b, -¢(z) < - [6*/2] (or - [6"/2] as the case may be) we now conclude
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(as in the case of the feasible directions algorithm) that there exists a Ay > O
such that z + Ah(z)/||n(z)|| € @ for all A & [0, A ] and z & B(zy, p).

Next, we note that (vfo(z), h(z)) < -eo/2 (or - {6'/2] or - [$"/2]) for all
z € B(z,, p) (or z & B(z,, P orze B(z; p)) and thot there existc a y such
that jjh(z)|| <y for all z € R(zo, p) (or z & T’»(zo, p) or z & B(zo, o)), Tt now
follows from the results presented in Jection (I.h) thet (23) is seatisfied for 211
z e n(z(), o/?) (or z € H(zo, ?/2) or z & P.(zo, 6/?)) for some fixed 5 » O, “hic
completes our proof.

since @f°(z),h(2)) - - ﬂh(z)”z, one may wish to accelerate the Algorithm
(15) by increasing Hh(z)”2 as much-as possible at each step. The following
acceleration procédure is very easily seen as not affecting the convergence
properties of the Algorithm (15). (To account for it we need to modify the proof
of Theorem (20) only very slightly).

Step 1': (Acceleration procedure, to be inserted between Step 1 and Step 2 of
otep -

(15)) :
Compute ge(Z), he(Z) 'ﬁe(Z), (as in (10), (16), (17)).

If ge(z) < 0, go to Step 3.

If ge(z) £ 0 and HEC(Z)H > 2|lhe(zo)”, set h(z) = 'ﬁe(z) and go
to Step 5.
Tf ge(z) £ 0 and nhe(z)” < ?.Hhe(z) s go to Step 3.
This concludes our discussion of straightforward gradient projection methods.
. projection
e shall ne:;t discuss methods which are a cross between gradient!/methods and
methods of feasible directions.
We recall that in the Algorithm (3.7), to obtain a "feasible direction"
h(z), we had to solve a minimization problem. In the Algorithm (15) this process

was replaced by the computation of a projection operator which, sometimes, may be
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easier to calculate. ﬁowever, algorithm (15) is only applicable to problems
with linear inequality constraints. We shall now present a modification of (15)
which applies to_more general situations! We shall suppose from now on that all
the functions i‘i, i=0,1, 25,005 m in (1) are convex and that the set

e =1{z] fi(z) <0, i=0,1, 2y..., m} has an interior.

- 32. Assumption: We shall suppose that there exists an e* > 0 such that for
every ¢ € [0, e*] and z € Q, the vectors vf:L (z2), i e Ie(z) are linearly
independent (where Ie(z) was defined in (3)).

We retain the notation introduced previously in this section with the
following, rather obvious modification. For every ¢ € [0, e*] and z € Q we shall

let

33. FIe(z) = (Vfl(z))ie Ie(z)

be a matrix whose columns are the Ve (z), ie Ie(z) (ordered linearly on i). The

L
projection matrices PI (z)° PI (2) will still be defined by (7) and (8),
: € €

respectively, with the matrix FI' (z) POV defined by (33), etc.
€ an
- * *
34, Algorithm: Suppose we are given/ € € (0, ¢ ] with ¢ as in (32), an
, -
el e (0,80) and a z, € Q.

Step 0: Set z = Zye

Step 1: Set ¢(z) = €ge (We shall use the abbreviated notation ¢ = e(z)).

Step 2: Compute

sk 0
350 he(Z) = PIC(Z) vt (Z) .
Step 3: If ]lhe(z) ||2 > ¢ set h(z) = -h_(z) and go to Step 6.

If llhe(z)|!2 <€, and ¢ g ', compute hy(z,) (with ¢ =0 as in (35)) and
£,(2) (s in (10)).

The prototype of Algorithm (34) was published without proof of convergence in [K1],
while the form (34) together with the proof of convergence was published in [P1].
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Ir ho(z) = 0 and §o(z) <0, setz = z and stoi). (z is
optimal). Otherwise set h(z) = -hg(z) and go to Step L.
_ It IIh(_:(z)"2 <eand ¢ > €', go to Step k.
Step 4: Compute ge(z) .
If ge(z') <0, set h(z) = -he(z) and go to Step 5.

If ge(z) £ 0, compute

, _ n o
36. . he(Z)‘ = PIQ(ZO) "j vt (Z)
" such that
- L 0
37. B ()] - T 17y ()5 @
5:(2) >0

Set h(z) = -'ﬁe(z) and go to Step 5.

| Step 5: If ||h(z) ||2 < ¢, set ¢ = ¢/2 and go to Step 2.
1£ |[n(2)]|° > €5 go to Step 6.

Step 6: Set K_(z) - I_(z) when h(z) = -h (2) and set K (2) = I (») ~37 when n(z)

—

-he (z). Compute

38, v(z) £ B(z) n(z) + F (2) (F;E (2)7x (Z)) T
€ € e

in [1,03)
where t = ~¢(1, 1,..., 1) and B(2z) > 1 is the smallest positive scalar/such that

39. “ (vfk(Z), v(z)) < ¢

for k =0 when h(z) = -he(z) and for k = 0, jT when h(z) = -'ﬁe(z).

Step 7: Compute \(z) > O such that

4o, A(z) = max {A | fi(z +¢v(z)) <0, €0, ], i=1,2,..., m} .

*The index j is the one which was used to construct Be(z) s i.e., ﬁ-e(z) =

L 0
PIe(z) - vf (Z)o
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Step 8: 'Cbmpufe 1(z) to be the smallest value sa,tisfying
41, fo(z + u(2) v(2)) = min '{’fo(z +uw(z)) | ne [0, A (2)]} .

Step 9: " Set z = z + u(z) v(z) and go to Step 1.

Lo, M ’:Note fha‘b the above algorithm differs from the Algorithm (15) only
in the operations defined in Stép 6.

02 297 Zpreeed be a sequence in Q constructed by the
Agorittm (34), i.e., Zys Zyreees BTE the consecutive values assigned to z in
Step"{. Then elither {zi} is finite and its last element is optimel, or else {zi}
is infinite and every accumulation point of {zi} is optimal. (When either fo(-)
is strictly convex or @ is strictly convex, or both, there is a unique optimal
solution for the probiem (1), and hence & unique accumlation point for the
sequence {zi}, when infinite).

Proof: Again, we shall simply show that the assumptions of Theorem (I.3.1)

are satisfied for c¢(-) = -fo(-), T =Q, a(s) defined by (3k4), and 2 defined to be
desirable if P'II'O

condition (I.3.2) is satisfied since in this case it is identical to the one

3) vt2(2) = 0 and £(2) <O. We omit a demonstration that

given for Algorithm (15) in the proof of Theorem (20).
We shall now show that for every non-optimal Z, e Q, there exist a ; >0

and & § > O such that
0 0] - -
W - (£ (z +n(z) v(z)) +£(2)) 28 for all  z € B(zy, p) -
First, proceeding exactly as in the proof of Theorem (20), and, in addition,
using the fact that the f‘i(-) are contimiously differentiable, we can show that

ifz,€Q1s not optimal, then there exists a p > O and a § > O such that for

all z € B(zys p)

45, In(z)ll > 8/2 > o ,
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i.e.5 €(2) 2 [6/2], for a1l z & B(z,s p). Next, we find that, by (39), for all
z e B(zo, p)

46. (vi°(2)5 v(2)) < -e(z) < -[6/2]
and, if Ké(z) (:;) £ Iey(z) (z) (say Ke(z) (2) = Ie(z) (z) - ,j'), theﬁ, also,
e (v (), (2)) < -e(2) < -[6/2]

Furthermore, by construction, for all i EKe(z) (2), z & B(zo, p)
48, (v (2), v(2)) = -a(2) < -[6/2] .

Finally, an inspection of (38), (39), (16) and (17) indicates that there exists

ap e (0, p] and an Me (0, =) such that |[v(z)|| < M for all z & B(z,, p). Making
use of the results in Section I.4t, in a manner similar to the one used in the
proof of (3.10) 5. We can now readily show that for all z B(zo, p) there exists

a § > O such that (4k4) is satisfied.

49. Remark: The acceleration Step 1' proposed for Algorithm (15) can also be

utilized in the present algorithm.
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IV. CONVEX OPTIMAL CONTROL PROBLEMS

1. A Further Extension of the Methods of Feasible Directions

This Chapter will be devoted to discrete optimal control problems which

transcribe into mathematical programming problems of the form

1. minimize {£°(z) | £(z) £0, i =1, 2,..., m, Rz - b = 0}

where the fi » 1 =0, 1,..., my are convex, continuously differentiable functions
“such that the set Q = {2z ] fi(z) <0, i=1, 2,,..5 m} has an interion, R is an
LX nmatrix and b & K°. Examining (I.1.13), (I.1.14), (I.1.15), we find that
the above may hold, if the dynamics of the system (I.l.2) are linear, the cost
functions fg(-,-) in (I.1.3) are convex both in the control and in the state
variables, and all the inequality constraints are convex and all the equality
constraints are affine.

The methods of feasible directions presented in Section III.3 can also be
used for solving (1), after a minor modification which is the consequence of the

fact that z is optimal for (1) if and only if

2. min max (vfi(%),h) =0
hes' ie Jo(z)

vhere JO(Q) is defined as in (I.2.8) and S' = S N N, where S is any set in R"

containing the origin in its interior and N = {2z | Rz = 0} is the null space of

R. The condition (2) can be obtained as a trivial extension of the results
presented in Sectioﬁ I.2. |

Thus, all we need to do to apply the method of feasible directions (III.3.7)
(or its modifications which were discussed in Section III.3)) to (1) is to

change the definition of ae (z) as follows,
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3. ¢ (z) = min max <vfi(Z),h>

€ he s! ieJe(z

Where Je(z) is defined as in (I.2.8). Typically, to compute c?e(z), we now solve

(with S = {h | ]hil <1})
ha,. A min o

subject to

Wb, (vi (2 - < 0, ied(z)
heo - Rh = O

i
hd. ‘h l _<_ l, i = l’ 2’000, n .

|

As an example of an optimal control problem in this class, consider the

problem,
k-1
.1 2 2 ) 1
5a. min 3 E (”xi Xg | +ui) x; €R, u; €R
i=0
subject to
Sb. Xi+l = Axi +bui, i k=g 0, 1’..., k‘l
S¢ x. =x3 Cx -d=0; Jx) <0,  §=1,2 m
. i Xk = U5 Q X,/ =V = L1y €3e0ey My

‘uil _<_ l, i = l’ 2,...’ k."l ;

where the q']: Rn - Rl are convex functions, C is a4 x v matrix and d € [R"‘.
Setting z = (uo, Uyseoes uk-l)’ we find that xiv(z), the solution of (5b)

* .
for x, = X, and (uo, Uiseees uk-l) = 2z, is given by



XY

i-1
i * i-j-1
6. xi(z) = Ax, +ZA buJ.
j=0
ox, (2) i-3-1
(Note that 5 = A b). Problem (5) therefore becomes,
J
k-1
. 1 ¥*2 2
Ta. minimize 3 jg: (1% (2) - %4 =+ v
i=0
subject to
To. [uil <1,i=0,1 2..05 k-1 .
Te. ka(z) -d = 0, qJ(xk_(z)) <0, J=1, 25.cey m .
. . .th . .
For i =0, 1, 2,...5 k-1, let Ri be a v x k matrix whose J column is rij’ with
i-j-1 . . . . .
ri(,j+l) 4 AYTI™* b for j =0, 1,...5 i-1, and rij é—o for j = 1+;|., i42y...5 K.
*
Then, by (6), xi(z) = Aixo + R;25 and hence (7) can be rewritten as
*
k-1 - X
8a. min £°(z) 2 % ZE: la*x{ + Riz"2 + % {z,2)
' i=0
subject to
k % } _ 3 8 Jok o *
8b. C(Axo-%-Rk z) -d = 0, £(z) = q“(A Xy + Ry z) <0,
J = 1, 2,000’ m Py
8ec. Couyl €1 1201000, k1,

ic€.y fp(z) is convex, the inequality constraints £J(z) are convex, and the

equality constraints are affine.
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2. Decomposition Algorithms

We shall now present two dual methods for a class of optimal control
problems. Duel methods differ from primal methods, such as the methods of feasible
directions, in that they depend on the optimality condition (I.2.1) rather than
on the equivalent form (I.2.7). Dual methods iterate not only on the vector z
but also on the multiplier vectors ¢ and § in order to find a set of vectors
which satisfy (I.2.1). As we shall see, the dual methods to be presented decom-
pose an optimal control problem into a sequence (usually infinite) of considerably
easier subproblems,

A typical example of an optimal control problem which is particularly

suitable for solution by dual methods is the following one.

k-1
N | *,2 2 v 1
la. min 3 (”xi-xi Ip+ %) x; ERY, v, R
i=0
subject to
1b. X309 = Axg +bu, 1=0,1,2..., k-1 ,
* ! * 2
le. X = Xyosalg) = Slx -x " -vy<0, v>o0;
Q
1d. [u;] <1 for i =0, 1, 2,..., k-1,

P is a v X v symmetric positive semi-definite matrix and |]x”12, = (x,Px), and -

Q is a y X v symeetric positive definite matrix.

*
Now let z = (uo, Upseees uk—l) then for x, = Xy »

2. xi'-'-'di"' RZ, i=l, 2’ooo,k

i
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i * .th . _ pi-3-
where d; = A %, end R, is a v X k matrix whose jJ  column is ri;j‘ Ti(441) = A lb,

for j =0y 15...5 i-1 and ryy =0 for j = i+l, i+2,...5 K.
*
" Let C () c RY be the set of states reachable by (1b) at time k, from Xy 3

with cost not exceeding « (a > 0) and using controls satisfying ]uil <1, i.e.

3. Cla) = {xelel x =4 +R_ 2 ]uj|<l;
*
k-1 /-xi
1 Z la"+ ms#)2 4w 2| < a}
i=0

Since the set o & {x | a(x) <0} is compact and strictly convex and since
the set C (@) is also convex, we can view problem (1) as that of finding an

a> 0, and a control sequence 2 = (;10, ﬁl,..., :Jk-l) such that

hao & = min[a_>_0l C/(a)nﬂ£¢},

Lb. x 2 +r2)e C@®na .

Since the set @ is strictly convex, C(&) N Q consists of exactly one point,
xk.

As we shall later see, the optimal control sequence z = (ﬁo, G‘l”“’ Gk-l)
for the optimal control problem (1) is easy to compute if we first determine the
o satisfying (4a), the ;:k satisfying(ib), and a unit vector s € R¥ which is normal
to a hyperplane separating @ from C(G). Consequently, Problem (1) may be con-
sidered to be a particular case of the geometric problem which we shall now state.

In order to motivate the various assumptions which we are about to make, we

note that for every o> O, in our example problem (1),

5. C (a) {x=qa + szl z = (U Uyseees W) IuJ.I < 1}

-xi

k-1
N {x=d +Rz| z=(u, Upseews W 4)s -;‘- Z “di'/"Riz"f’ + ui2 < a}
i=0
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i.e., C (o) is the intersection of a fixed convex polytope K and of a hyper-
lipsoid £(d) which grows monotonically and continuously with a.

‘ +
€. The Geometric Problem: We are given a map C.(+) from R into the set of .

all subsets of RV such that .
every o> 0 3 f\
(i) for every a > 0, C () is a compact, convex set which has an interior for
(11) C (+) is continuous in the Hausdorff metric;f
d(iii) For cvery a> 0, C () = %(@) N K, where K is a convex polytope with interior,

and,
for every a> 0, (o) is a strictly convex set. We also assume that if 0 < ozl < oz2,
then E(al) is contained in the interior of '2(0!2) .

compac
/

We are also given a’set Q, which either consists of a unique point or else

~ ~
is strictly convex, and are required to find an @ > 0, a vector x € Q, and a2 unit

vector E (S !RV such that

Ta. & = mn{a| C@nNa#d a>0};
. (= C@nas

Te. (x - % §) <0 forallxeq ;

7d. (x - % 8)>0 forall xe C(@ .

8. Assumption: To ensure the existence of a solution and to avoid having to
discuss the degecnerate case when QN K_consists of a single point, we shall assume

o o
that for some a € (0,o), @ has points in () N X, where K is the interior of the

polytope K.

Tciven two compact sets A, B in R" a(A,B) the Hansdorff distance between these

two sets,is defined by d = max {dy,d,}, where 4, = max min ||x-y]| and
xeA ye B

d, = max min |}x-y|[. '

© yeB xe€A



L)

..133-

9. Proposition: Let & be defined by (1), then for every

0<a <a, <a, Cla) £ Clay).

Proof: If for any & @, € (0,81, & # 0y Cley) = C(0y)5 then because of (1)
in (6), C(ay) = K, which is impossible, since Cloy) C() ana C(a) £ Kby (8.

10. Definition: ILet S = {s e B'| [|s||

1}, and let v: § - Q be the map

~defined by

11. (x - v(s), s)y <0 forallxeQ

(Note that v(+) is a continuous map.)
12. Definition: ILet & be defined as in (7b) . We shall say that a vector
seS is optimal for the problem (6) if X 4 v(g) satisfies (7a), and s together

with ;c 4 v(g) satisfy (7c) and (7d), i.e., {v('s:)} = C(d) n Q and

(x -v(g), ;) < 0 forallxe

{x - v(;), sy > 0 forallxe C(&)
Thus, we say that sesis optimal if it defines a hyperplane which separates
a from (.(Q).

To define an algorithm, we shall need the following sets and maps.

13. Definition: .For every s € S let P(s) denote the hyperplane
P(s) = {xeR’ | (x - v(s)ss) =0}
(Note that,P(s) is a support hyperplane to Q at v(s), with outward normal s.)
14, Definition: Let T — S be defined by
T = {ses | (x-v(s)ys) >0 forallxe C(0)} ,
i.e., if s & T then P(s) separates ( (0) from Q. Tt is not difficult to see that

if ?s e S is optimal, then g e T, and therefore we can restrict our search for an

optimal s to the subset T of S.
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15. Definition: Let c¢: T IRl be defined by

c(s) = min{a | C(a) n P(s) g, a> 0}

Note that c(*) is well defined. For suppose that C(a) nP(s) =@ for 211
a> 0, Then, since C ) c C(a) for all a> 0, P(s) must separate (o),
from Q, for all @ > O, in contradiction of our assumption that @ has points in
C (6) for some a> O.

16. Definition: Tet w: T =+ R’ be defined by

{w(s)} = Clc(s)) n P(s)

We have already concluded that for every s &€ T, c(s) is well defined and
nence C (c(s)) n P(s) £ @. Now suppose that for some s = T, C (c(s)) n Bls)

contains two points Wy ;é w Then, since it is convex, it must also contain the

o
line segment {w | Awy + (1-2) Vo A € [0,1]}. But z(e(s)) is strictly convex and
hence we conclude that P(s) must be a support hyperplane to K. However, this is
not possible since Q has points in the interior of K. iherefore w(.) is well
defined.

17. Definition: For any two ve'ctorslx, ye RY, let %(x,y) denote the operator

which projects RY, orthogonally, onto the ‘subspace spanned by x, y. Let

p: RVx RV~ R' be defincd by
17a. ©  p(xy) = min {a | 7Gxy (C (@) 0 x(xy)(Q) /6, a> o}f

18. Definition: Let A(:) be a search function from T into the set of all subsets

of T, defined by

18a. A(s) c o(s) é{s' €T | s' =As +p@(s) - v(s)), A p & (o4 }

fI’t is not difficult to see that for any two x,y e R” which are linearly independent

p(x,y) =max {c(s) | s €F(xy) s €T | s =rx +uy As b & (-op4)1].
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18b. e(s') = p(s, w(s) - v(s)) .

The various functions defined above are illustrated in Fig. 2.

19. A Decomposition Algorithm:’

Step 1: Find a point 8o € T.

Step 2: Compute a point s' in A(so) .
Step 3: If c(s') = c(so), stop; s, is optimal. Otherwise set

Sy = s' and go to Step 2.

20. Theorem: Let Sg> 593 Spreees be any sequence in T constructed by the
Algorithm (19) (i.e., §17 Sp3...5 are the consecutive values assigned to Sq in
Step 3). Then either the sequence {s i} is finite and its last element is
optimal, or it is infinite and every cluster point s in {si} is optimal.
Froof: To prove Theorem (20), we shall simply show that the assumptions of
Theorem (I.3.16) are satisfied by the maps A(-) and e(¢), above, with s e T
defined to be desirable if c(s') < c(s) for all s' € A(s). First, note that
(1.3.17) is satisfied by the maps c(-) and A(), defined in (15), ana (18),
respectively. Hénce, if thg sequence {s i} generated by the Algorithm (19) is
finite, its last element must be optimal.

We shall now show that the maps c(-) and A(+), under discussion, satisfy

(I.3.18), Clearly, to show this it will suffice to show that the maps c(+) and
1

c(+) are contimiocus at all nonoptimsl s & T, where c: T + R is defined by

o1. c(s) = p(s, w(s) - v(s))

Continuity of c(:): Let s be any point in the interior of T and let § be any

mmber in [0, c¢(s)]. Then the sets (C.(c(s)-5) and P(s) are strictly

/

TThis algorithm has evolved from the work of Krassovskii [X3], Neustadt [N1],
Eaton [E1l] and Polak and Deparis [P3]. The above version was presented by
Polak in [P2].
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separated. Let w' e P(s) and v' e C (c(s)-8) be such that

22. w'-w"]] = min{|x-vll | xe B(s) , ye C(c(s)-8)}

Let w = (w' + w")/2. Then, by uniform continuity of {* -w, *) on Q x S, it
follows that there exists an e¢' > O such that for all s' € T, satisfying
lls*-s|| < e'» the hyperplane P(w,s') & {x € R¥| (x - w, s') = O} separates

\1, (c(s)-8) from 9, and hence

23. c(s") >c(s) -6 forall s'eT, [s'-s|| <e'
Similarly, we can show that there exists an ¢" > O such that

k. c(s') <c(s) +6 forall s'eT, |s'-sl|<e"

Tet ¢ = min {e',e"}> theg

25. le(s?) - c(s)] <6 foralls'eT, [s'-s|| <e

which proves the continuity of c(+) at all points in the interior of T. Since
an accumlation point of {si} cannot be on 3T, the boundary of T, because e(s) =0
for all s €3T and s; € {s € T | e(s) > c(sl) > 0}, we need not consider the
behavior of c(*) on the boundary of T.
Continuity of ?:l_-l: First, by an argument similar to the one above, it can be
shown that the map p(+,+) defined by (17a) is continuous at every pair of linearly
independent vectors (x,y). Now, whenever s is not optimal, the vector w(s) -
v(s) £ 0 and is orthogonal to s. Hence, c(*) is continuous at every non-optimal
se T if w(*) is continuous at every non-optimal s € T (recall that v(:) is
continuous on S).

Let s & T be non-optimal and let {si} be any sequence in T converging to s.¥
Then, setting c; = c(si)’ we have that c; - e & c(s*) and c (ci) -+ C(c*), by

*
continuity of c(+) and of C(‘) . Now, let w be an accunmulation point of
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*
{w(si)}, i.e. w(si) +w forieKc {0, 1, 2,...}. Then w(si) e c (ci), and

* *
therefore w & C,(c ). Also, since w(si) e P(Si)’

26, (w(si) —v(si), s = 0 for i.=0,1, 25...

* * *
Consequently, since s, * 5 v(si) +v(s ), and w(si) +w for i € K, ve must

* ¥*. * *
have {(w - v(s )ss ) =0, i.e., w € P(s*). Thus,

o7. e Cles™) nps)

* * * * *,
But ((c) N P(s’) consists of only one point w(s ). Consequently, w = w(s )
*
and w(+) is continuous at s . This completes our proof.
We shall now see what is involved in applying Algorithm (19) to the

problem (1) R First, given a vector s € S, we compute v(s) from the fact that

28. va(v(s)) = Asy, A >0,
Thus,
29. va(v(s)) = Q@(s) - x ) = As, A>0

* -

Hence (v(s) - x ) = AQ 1g and we therefore compute A > O from
1 -1

30. SOQ s A8y -y = O

i.e.5 A = +(2y/(ss Q-ls))l/z. .‘I'h'us

* 1 2

v(s) =x  + (&/ss Q 1sy) /
Whlch presents no serious problems in computing.

Next, to compute a point So € T we may proceed as follows. From (5), {dv}

( (0) and from (1c) x.k e Q. DNow, let us compute a A & [0,1] such that

TNote that when Q consists of one point only, i.e., @ = {;ck}, v(s) = ;ck'for all
s & T and hence presents no difficulties in evaluation.
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- *

alX x, + (1-X) dk) = 0 by solving the quadratic equation

2. 2R - AN AR - AN -y = 0

i.e.y

33. (102 = ay/x - a e

_ % the boundary of Q,v = v
Then x = (A X, *+ (1-de) e 30,/ and ﬂ%ﬁ%ﬂe T, hence, set s, = nggé—g-n .

Now, to compute c(s) and w(s) for a given s € T, we must solve (with

z =.(u0’ Uyseees uk-l))

Lt

k-1
2 2
3k, min lla + RiZ”P + u,
i=0
subject to
3ka. _ ((dk + Ry z) - v(s), s) =0
3h‘b- |uil S l’ i = O, l, 2,..., k"l.

We note that (34) is a quadratic progra§ming problem solvable by finite step
' also

procedures (such as Wolfe's [Wl]). Weanote that a special case of (34) arises

n (34)
when the matrix P = O'.';1 In this case the necessary and sufficient conditions

developed in Section I.2 show that the optimal z = (uo, ul,..., uk—l) is given by

350 ui = Sat <rk(i+1)’ RS) i = O, 1,.--, k‘l
rk}i+l) Kei-1 n
vhere = A b for i =0, 1y...5 k-1,and A > O is easily determined

from the following piecewise linear equation.

k
36. (d, + :E: sat(A (ry;98) Tyq - v(s), s)
i=1

]
o
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which is obtained from the fact that
k-1

37. w(s) = d, + Z sat({ <rk(i+1)’ s)) Ty (341) e P(s) .
‘ i0

1 ~ 2
Yy - =
Then c(s) = 5 E u.,” .

Thus, so far, we have encountered no difficulties. liow, while it is quite
clear that a point s' € A(s) cannot be computed exactly, it is clear from
Theorem {I.3.16) and the discussion which preceeds it, that if we carry out no
more than a very coarse search along the arc o(s) for a point which maximizes
c(s"), s' € o(s), we should, with reasonable certainity, find a point s' & o(s)
satisfying c(s') - c(s) > B(c(s) - c(s)) for some fixed but very small B> O,
and hence obtain convergence. Experiments carried out by the author bear out this
heuristic conclusion.

The problem becomes considerably less tractable when the set Q is described
by several inequalities, since now we can compute neither v(s) nor a point s' = A(s),
in a finite number of steps. Theorem (I.3.21), however, leads us to the following
heuristic development whiéh is one of several that are possible, First we must

introduce a set to approximate v(s) for s & T. Thus, suppose that
380 Q = {XEIRV I ql(X)So,i=l’ 2,..., m}

where the ql: R+ Rl are continuously differentiable, strictly convex mnctions,
and by our assumption © is compact and strictly convex (or else Q = {;ck} is a point
for all s T).

R” + R' be defined by

in which case v(s) = “k
39. Definition: Let p:

m
398. 30 - Z (max {05 a*()])2
i=0D



\i@

-140-

Let > 0, B> O be given scale factors, let ¢ > O and let

M. V() = (xer’| I Koo + 5z B <ae)

Note that if @ is chosen to be zero, then Ve(s) contains exactly one point
X e(s),which minimizes the strictly convex function (x,s) + Elé p(x) over RV.

From (IIT1.1.10) we see that xe(s) mst satisfy xe(s) + v(s) as ¢ + 0 and

kO. - (xe(S),S) <—(v(s)ss)
i.eo,
41. (xe(s) - v(s)ss) >0 .

Thus, xe(s) is separated from Q by the hyperplane P(s) passing through v(s) and
therefore, if we define the hyperplane,

ho, P(x,s) = {x" | (x'-x,s) =0}

either goran P(x_(5),8) = {v(s)}
then @ lies to one side of P(x_(s),s), i. e.,An n P(x (s),s) =/ for all ¢ 5 0, and

seS.
We now extend our functions c(+) and w(*).
43, Definition: Let U' ¢ RV x S be such that for every (s,x) € U' there exists

an @ > O such that C (@) n P(x,s) £ ¢. We define the map T U 4 RE as

43a. T(x,8) =min {a | C(a) N P(x,s) £ @

bk, Definition: Let U c U' be such that for every (x,s) € U, C (S(x,s)) N P(x,s)

consists of a unique point. Then we define W: U + RV as

Yha, {W(x,8)} = C(Z{(x,s)) N P(x,s) .
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45, Decomposition Algorithm with e-Procedure

for (39b)
Suppose that an EO > 0, and scale factorsa> O, > O"and an So € T are
given.
Step 0: Set s = Sq-
Step 1: Set e = €ye

Step 2: Compute a point ve(s) e Ve(s) (as defined in 39b).
Step 3: Compute ?(ve(s),s), 'ﬁ(ve(s),s) and the curve 'E(ve(s),s) which is the

intersection of T with the two-dimensional subspace spanned by s and
w s) - s).
W(ve(S), ) ve( )

Step : For each s' €49 (ve(s),s), compute a vector ve(s’) in Vc(s') and then

find a vector s, e'&'(ve(s) ,s) such that

h6. ?:'(ve(sl),sl) = max {?:"(ve(s'),s') | s* E'&'(ve(s),s)}

s1 and go to Step 1.

¢/2 and go to Step 2.

Step 5: If 'E'(ve(sl),sl) ;-'E'(ve(s),s) > ¢, set s

1l

If ?:'(ve(sl),sl) - ?:"(ve(s),s) < g, set ¢

47. Theorcm: Suppose that a = 0. ILet {si} be any infinite sequence in T
constructed by the Algorithm (45) (i.e., Sys Spree.s aTE the consecutive values

assigned to s

o in Step 5), then any cluster point of {s i} is optimal.

We omit a proof of this theorem since it can easily be established by using
Theorem (I.3.21).

In practice, Algorithm (h45) cannot be applied with & = O, since the computa-
tion of ve(s) 4 xe(s) cannot, in general, be performed by a finite step
procedure. Nor can the point S99 defined in Step 4, be computed by a finite step
procedure. Thus, in practice, one must choose &> O and use some finite search

over the curve 'c}'(ve »8) for a point s+ For example, one may examine the points,

(s + %g)/us + % g||, where J is some positive integer, i =0, 1,..., j, and
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E = va:(Ve(S) »S) - ve(s)), with p € (0,1]. Although with & > O and an approximate
evaluation of s in Step 4, it does not seem possible to establish mathematically
the convergence of Algorithm (45), there is a certain amount of experimental
evidence to support a claim that the convergence of Algorithm (%5) is usually not
affected by these approximations.

To conclude this section we shall describe one more algorithm for solving the

Barr and Gilvert [B2], [B3] and used as a subprocedure algorithm

Geometric Problem (6). This algorithm was first introduced bthrank and Wolfe [F5] due %o
and rediscovered independently by Gilbert [G1] in conjunction with the solution

of optimal control problems.

"8, Definition: For every se& T, let y(s) € C (c(s)) be such that

ly(s) = v(s)|| = min {fly -v(s)|| | v e C(c(s))}

h9, Proposition: The map function y: T -+ RY defined by (48) is continuous.

50. Barr-Gilbert Algorithm [B2]. Suppose @ = {v} (i.e., © consists of a unique point)

and suppose that an Sq € T is given.
Step 1: Set s = Sqe |

Step 2: Compute c(s), y(s).

Step 3: Set s = (y(s) - v)/||(y(s) - vl

Since c(*) and y(*) are continuous, it is easy to establish by means of Theorem
(I.3.1) that if {si} is a sequence constructed by the Algorithm (50), then every
cluster point of {Si} is optimal, and that w(si) -+ v and c(si) Y c*, with

¢ = min {a]|ve C(), a>0}.

In order to apply this algorithm to a control problem with Q bigger than one
point, Gilbert introduces new sets E(a) = C(a) - 9, which can be used ins‘tead
of ((a), and /letv =0 in (50). To see the details of how this is done, as
well as how one may approximate the computation of y(s), the reader should look
up (613, [B2], [B3].
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This concludes our discussion of decomposition algorithms for optimal contfol

problems.
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