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The emphasis in these notes is on unification. This unification manifests

itself in the use of a specific convergence theory, in the use of specific

necessary conditions of optimality, and in the unified treatment of algorithms

for discrete optimal control and for mathematical programming. For the sake of

making the presentation of a large number of algorithms easier within the time

and space available, the author has slightly modified a number of standard

algorithms so as to fit them better into a unified framework and has supplied

new proofs of convergence. In selecting algorithms to be discussed in these

notes, the author has given preference to methods which can be used both for

optimal control and for mathematical programming problems. Also preference has

been given to methods which can be discussed without introducing a great deal

of additional background material. As a result, dynamic programming, set approxi

mation and cutting plane methods, and the reduced gradient and convex simplex

methods were omitted.

The autnor's major contribution lies in the development and exploration

of the convergence theory presented, in exhibiting the relation between the type

of points different algorithms will compute for a given problem and in showing

how large families of feasible directions algorithms can be generated from

related and equivalent families of necessary conditions of optimality. The list

of references at the end of the notes includes only those papers and books which

were used by the author to some degree in the preparation of these notes. They

are by no means an exhaustive bibliography. A number of results in these notes

are presented without reference to other people's work. Some of these results

are part of the oral tradition, while others are claimed to be probably new.

The reason for hedging and saying "probably new" is that the author has found

on several occasions that results not known in the oral tradition in which he

participates were common knowledge elsewhere.
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NOTE TO READER

g-Procedures: Throughout these notes the reader will find algorithms including

1 1statements of the form: if..., set e = ^ e. The factor p is used quite often

in practice, however, the algorithms remain convergent if any scale factor

P €. (0,1) is used instead, i.e., the reader may replace r e by ?e in all such

statements. In fact, the 3 is easily seen to be a design parameter.

Notation and Numbering:

1) The symbols jj •1 and <.,.) are used to denote the euclidean norm and

the usual scalar product, respectively.

2) Components of vectors are always superscripted: e.g., z = (z , z ,

..., z )<= R ,elements of a sequence are always subscripted, e.g., z ,z.. ,zp, ....

3) We denote the interior of a set n by 8 and its boundary by 3-Q.

h) When referring to an equation within the same section, only the equation

number is used, e.g., (7); when referring to an equation in the same chapter

but in a different section, the section number and equation number are used,

e.g., (1.25); and when referring to an equation in a different chapter three

numbers are used, e.g., (I.3.I6), the first giving the chapter, the second

the section, and the last the equation.

When a section within the same chapter is referred to, the chapter number

is omitted.
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* I. PRELIMINARY RESULTS

•*

1. Optimal Control and Nonlinear Programming Problems

We shall present in these notes a number of algorithms for solving discrete

optimal control problems of the following kind.

1. Problem: Given a dynamical system described by the difference equation

2. xi+1 -x± = fjfa^u ), x± e[Rv, u± elR*1,

1 = 0, 1, 2,..., k-1 ,

find a control sequence 1£ = (Uq, U-,..., u. -) and a corresponding trajectory

X = (xq, x.,..., x.) which minimize the cost functional

k-1

3. \ fjx.,,^)^ fi(Xi'^
idO

subject to the constraints

s.(u.) < 0, i = 0, 1,..., k-1
'iv 1'

k. ;±(x±) = 0; h.^) < 0, i =0, 1,..., k

1 _ . mv . ^ l •. . ^v . m iwhere s : (R*1 •+ E , g.: |RV -4 E x, h.: {Rv -♦ IR . We refrain at this point fromI ill
loading down the problem statement with assumptions. The required differentiability

y assumptions are usually clear from the context of an algorithm. Other assumptions,

such as linearity or convexity, will be stated when necessary. g
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We shall now indicate the origin of discrete optimal control problems.

% Suppose that we have a differential dynamical system of the form

5. dtx(t) = ^(x(t), u(t), t), te[0,tf]

where x(t) e Rv is the state of the system at time t and u(t) e R*1 is the input

to the system at time t. Also suppose that we are given a performance functional

ho6. / f (x(t), u(t), t)dt

3"*-

^
fc

which we wish to minimize subject to x(0) e Xrt c Rv, x(tJ eX,cEv and
u ff

u(t) e U c R . In the form stated, this problem may be computationally intract

able, at least as far as available computers or meaningful execution times are

concerned. Thus one is forced to impose additional restrictions on the problem

to make is solvable. A fairly simple device is to restrict u(-) to the class of

piece-wise constant functions with at most k discontinuities. For example,

7. u(t) = u± for ts i £, (i+« £
i =0, 1,..., k-1, u. e U .

Then, if we let x±(t), i =0, 1,..., k-1, be the solution of (5) for

te [itf/k, (i+l)tf/k], satisfying x^it^k) =xi and corresponding to u(t) =u.
for te [itf/k, (i+DtjA), and set x±+1 =xjL((i+l)tf/k), we find that

(1+1)^
xi+l =xi + / *(x±(t), u±, t)dt ,

itfA
8.

i =0, 1,..., k-1 ,

which defines the functions f±(xi,ui) in (2). Similarly, with u(t) restricted
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as in (7), (6) becomes

k-1

9. V ^(VV
idO

(1+1)^
where f?(x.,u.) s / f (x.(t), u., t)dt. Thus, the additional restriction

1 from the form (5), (6) to the

of the lnpat u(t) by (7), results in a transformation of the optimal control problem/

form (1). It should be noted that (7) does not represent the only restriction on

u(t) which results In a discrete optimal control problem. Other possibilities

exist, with

10. u(t) = \ u^, t
1=0

1 =0, 1, •e*, It—1

possibly being the most common class.

The discrete optimal control problem (l) can be viewed as a nonlinear

programming problem of the form

11. min {f°(z) |f(z) < 0, r(z) =0} ,

where f°: (Rn -♦ (R1, f: (Rn -♦ IE?11, and r: Rn -♦ {Rl.

To transcribe the discrete optimal control problem into the form (ll), we

may proceed in one of two possible ways. The first is to set

z = (xq, x^,..., x^, Uq, u_,..., u, -) and to define

k-1

12. ^(z) SV t0±(x±9M±)
1=0

itf/k, (i+l)tf/k ,
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r(«)

ik.
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xi " *o " fo(xo'V

*k - Vi - fi-i(Vi'Vi'

So<V

8k(xk}

hl(xl>

V3^

L-l^

For the second transcription we set z= (Xq, Uq, u.^..., \_i)» and define

x. (x-iu) to be the solution of (2) at time i corresponding to the initial state

Xq and the control sequenceti = (uq, u^..., ^^J• Then, we define

k-1

15. f°(z) &y f^(xi(x0,-u), Uj
i=0

)
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Ifi. V

r(i)
gjCxj^C^.tO

S^V^,

17.

30(u0)

*(«)

L-l^-l5

There are two reasons for transcribing the optimal control problem into the

form (11). The first is that the form (11) is considerably simpler than the form

(1) and is conceptually simpler to handle. The second reason is that our awareness

of the equivalence between the problems (l) and (11) makes it possible for us to

utilize a large number of very .sophisticated nonlinear programming algorithms in

solving (1). Hence, whenever possible, we shall first explain an algorithm in

terms of the problem (11) and then particularize it for the form (l). This will

avoid the possibility of having simple ideas obscured by the very cumbersome

structure of (l).

We shall later see that for some algorithms, (15), (16), (17) give the only

usable transcription, whereas to apply other algorithms we may prefer to use (12),

(13), (Ik).
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2. Optimality Conditions

* The algorithms for solving the problem (l.ll) which we shall describe in the

3

*4

chapters to follow, are incapable of distinguishing between a local or a global

optimum. In fact, they can only be used to construct a convergent sequence of

points whose limit satisfies a particular optimality condition. We therefore pause

to state the most frequently used optimality conditions and to identify the cases

for which these conditions can be trivially satisfied. Obviously, whenever an

optimality condition is trivially satisfied, any algorithm which depends on it

becomes useless. The proofs of the theorems stated below can be found in [CI],

1. Theorem: If zis optimal for (l.ll), i.e., f(z) =min {f°(z) |f(z) < 0,

r(z) =0}, then there exist multipliers u. < 0, y. < 0,..., y,m< 0 and f, ty2,

.•., ty , not all zero, such that

m

2. y nW(5) +y ^vr1^) =0
i=0 1=1

and

3. u-r (z) =0 for i = 1, 2,..., m .

This theorem is due to F. John [Jl].
U. Corollary: If there exists avector he (Rn such that <vf1(z),h) > 0 for all

i * O 1 P 1
ie fl, 2,..., m} satisfying f (z) = 0, then (u , ^ , ijr ,..., %) / d.

/Suppose that the vectors vr*(z), 1 = 1> 2,..., £ are linearly independent,
5. Corollary:/ jf there exists a vector he (R** such that (^(zjjh) > 0 for all

is(l, 2,..., m} satisfying f (z) =0, and <vr (z),h> =0 for i = 1, 2,..., I,

then ]i < 0.

• The two corollaries are special cases of the Kuhn-Tucker conditions [KVl.
* 6. Corollary: If z is optimal for (ll) and r(«) =0, then

i/*7. min max (vf (z),h> = 0

he s is JQ(z)

where S is any subset of R containing the origin in its interior, and for any

a> 0and any z<= (V |f^z1) <0, i-. 1, 2,..., m).
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8. Ja(z) ={0} u{i |f*(z) +a> 0, le {1, 2,..., m}} .
(A form of this condition was probably first published by Zoutendijk [Z3].)

Proof: Suppose (7) is false. Then there exists a 6 > 0 and a vector h e S such

that

9. <v**(z),h*> <-6* for all ieJQ(z)

Taking the scalar product of h with both sides of (2) (in which we must set

i *
Vr (z) = 0, 1 =1, 2,..., m, since r(«) = 0), we now get a contradiction.

10. Remark: For the case r(«) =0, Theorem (l) can be deduced from Corollary (6),

i.e., when r(«) =0, these two conditions are equivalent.

11. Proposition: Suppose that the set Q- [z |f^z) < 0, i =1, 2,..., m} has no

interior and that r(0 =0. Then (2), (3), and hence also (6) can be satisfied for

every z e (i (i.e., this condition is trivial when fl has no interior).

Proof: Suppose that for some ie(l, 2,..., m}, {z |f^z) < 0} consists of only
. . * r *, _i/ *v i -i

one point, z . Then ft = [z } and vt(z ) = 0. We may therefore set y, = -1, ]id= 0,

j/ i, j =1, 2,..., m and satisfy (2) and (3). Now, suppose that {z |f^z) < 0,

ie I}, Ic [1, 2,..., m} has an interior, but that {z | f (z) < 0, is I U {j}}

where j e {1, 2,..., m], does not have an interior. Then, any point z in fi is

optimal for the problem

11a. min {f°*(z) |f^z) <0, iel]

and satisfies f^(z*) =0. Furthermore, by (l), we get for (lla), that there exist
i i

multipliers u° < 0 and p. < 0, i e I, not all zero, such that

(lib) liW) +V uW) =0,
iel

(lie) uVtz*) sOjiel,

Setting all other y. = 0, we find that we satisfy (2) and (3) by means of the above

multipliers.



*/
9

-8-

12. Theorem: Suppose that r(') is affine and that the functions ^(Oj i =0, 1,

..., m, are convex. If z satisfies r(z) =0, f^z) < 0 for i =1, 2,..., m, and
TO tn T. O !

there exist multipliers ]i < 0, y, <0,...,]i < 0 and ty , \jf ,..., i|r , such that

m t

13. -vf°(z) +y nVr«) +y ^^(z) =o,
i=l i=l

i i a
u- f (z) = 0 for i = 1, 2,..., m ,

then z is optimal for (l.ll) (see [KU]).

Proof: Let ft1 = {z | f^z) < 0, i =1, 2,..., m, r^z) =0, i =1, 2,..., 1}.

Then, since the r (•) are affine, for any z e ft1, (vr (z), z - z) =0 and hence,

hy (13) j for any z e fl1

m

13a. <Vf (z), z - z> = \ ]i <Vf (z), z - z>

i=l

Now, since the f-H*) are convex, we have, for any ze &1 and ie(i | f (z) =0,

ie(l, 2,..., m}},

13b. (vf^z), z-z) < f^z) <0 .

Making use of (13), (13a), and (13b), we obtain

13c f°(z) < f°(z) -(Vf°(z), z-z)

m

z - z)

i=l

m

=f°(Z) -y v.* (^(z)

<f°(z) .

Thus, z is optimal.

When applied to the discrete optimal control problem (l.l), the above

conditions may assume a highly structured form. We now illustrate this by
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considering a special case.

Ik. Theorem: Suppose that g-^') =g2(#) = ... =Sk.]/*) =^(O =h2^ =
A A A

... = h. .(•) =0 for problem (l.l). If the control sequence U-, u_,..., u. _

and the corresponding trajectory Xq, x-»..., x. (i.e., the x^, u^ satisfy (1.2)) are

optimal for the problem (l.l), then there exist a scalar multiplier p < 0 and

vector multipliers pQ, p^ P2>...> Pk> *0, j^, uq < 0,..., \i^ «g 0, %Q < 0,

§. < 0, not all zero, such that

/af (i ,u)\T /af°(x ,i)^T
15- Pi -*i+i =[ ^ j Pi+1" \^T

i =0, 1,..., k-1

3^) \T (**0(xJ V
16- *o =l-SE^-j "o+ \ 9x0

ox. J \ ax. 117- Pk= I-aiT-J *kk / \ ° k

18. p° x * i + \ P.,., + ]- I u. = 0\ au± y ^ ou± y *l+1 ^ oUi » ^

19. <50, ^(xq)) = <§k, h^)) = 0

(s^u^,), )i±) =0 for 1 =0, 1, 2,..., k-1 .20.

i

To obtain Theorem (Ik) from Theorem (l), we proceed as follows. First, we

note that (2) is equivalent to the statement that vL(z) = 0, where L(z) = u- f (z)

+ <|i, f(z)> + <ijr, r(z)>. Then we transcribe the problem (l.l) into the form (l.ll)

using the formulas (1.12), (1.13) and (1.1*0 >and set v =p°, u=(5Q, £., nQ, ^i.,

"" **k-l^5 ^ = ^P1J p2' •••' Pk' "b* *k^' Hence,
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k-1

L(z)« p° y $(x±>\) +
idO

k-1

+

+

y <pi+i» xi+i - xi •^v^

k-1

i=dO

Now computing 2g&. , ±=0, 1,..., kand 2£J5l , 1. 0, 1,..., k-1, and
1 *

setting these equal to zero we obtain (15) > (16) >(17) and (18).

2i. Remark: One may sometimes wish to eliminate the u^ in (18) and (20). This

can be done by substituting for (18) the condition

23. <P° HSHj +(-S^j Pi+1'6U> "
for all 6u such that

/ds.(u)\

3. Convergence Conditions

The convergence theorems to be presented in this text can be thought of

as being extensions of lyapunov Second Method for dynamical systems described

by difference equations. Prototypes of convergence results stated in the

particular form used in the text can be found in Polyak [P5] and in Zangwlll



1
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[Z3], CZl]; related ideas appear in the works of Varaiya [V3]> Levitin and

Polyak [12], Topkis and Veinott [Tl], Hurt [HU], and in less explicit form in

Arrow, Hurwiz, Uzawa [AL]> Zantendijk [Z^], and Zukhovitokii, Polyak and

Princk [Z5]. (The author was unawar of Polyak's work, which is closest to the

authors1 at the time [Pl]> [P2] and [P3] were written.)

To establish that an algorithm converges and to explore the extent to which

it can be perturbed without affecting its convergence, we shall mostly use the

following results, which were first stated by Polak in [P3], [P2], [PI],
that

Suppose'we have a closed set T c IR which contains desirable points. These

points may be desirable because they are optimal for some optimization problem, or
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because some optimality condition is satisfied at these points for some optimiza

tion problem, or because some function vanishes at these points, etc. Now, suppose

that we propose to find desirable points in T by means of a search function

a: T -* T and of a stop function c: T -* IR .

1. Theorem: Suppose that,

(i) z e T is desirable if and only if

A A

2. c(a(z)) < c(z) ;

(ii) c(#) is either continuous at all nondesirable zsTor else c(z) is

bounded from above for z s T;

(iii) For every z e T which is not desirable, there exist an £(z) > 0 and a

6(z) > 0 such that

3. c(a(z')) - c(z') > 6(z)

for all z1 s T such that ||z - z'|| < C(z).

If the sequence z.e T, i =0, 1, 2,..., is constructed according to

k. zi+1 =a(z±), i =0, 1, 2,...,

and construction stops only if for some integer j*c(z. ,) < c(z.),(i.e.,
0+1 — j

c(z.,_) > c(z.) for i =0, 1, 2,,..) then either fz.} is finite and its last
l+J. 1 x

element is desirable, or else it is infinite and every accumulation point of {z.}

is desirable.

Proof: The case of {z.} finite is obvious. Hence, suppose that {z.} is infinite

and that zi -♦ z for ie Kc (0, 1, 2,...}, with z not desirable. Then there
-ft -ft

exist C > 0 and 6 > 0 and a k e K such that for all i > k, i e K

5. ||z. -z*|| <e*

and

6. c(zi+i^ " c(zi^ - 6 •
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Thus, for any two consecutive points z^9 zi+., i, (i+j) e K, i> k, of the

subsequence we must have

v 7. c(zi+j) -cCj) = (c(«1+J) -otz^J) +Wz^ -c(zi+;._2)

... + (c(zi+1) -c(zi)) > 6

Now, for ieK, the monotonically increasing sequence c(zi), i =0, 1, 2,...,

must converge either because c(0 is continuous at z or because c(z) is bounded

from above on T. But this is contradicted by (7) and hence we are done.

In the preceeding development we had assumed that the relation between

successive points, z±9 z±+±9 i=0, 1, 2,..., constructed in the search for a

desirable point in T, was functional, i.e., that zi+1 = a(z±). In practice,

however, it is usually impossible to compute a(zi) with arbitrary accuracy in

finite time, and one therefore accepts apoint zi+1 lying in an approximation

set, iL(z.), to a(z±). The parameter 6(6 > 0) is used to express the precision

with which z. - approximates a(z.); it depends on z. and is usually driven to
i+l i i

zero as z. converges to a desirable point. Under these circumstances we have the
l

following convergence condition.

8. Theorem: Suppose we are given a search function a: T -» T and a stop rule

c: T -♦ R1 which satisfy the conditions of Theorem (l) and, in addition, suppose

that c(°) is continuous.

For any z e T, let

i 9. ife(«> ={z'eT |||z« -a(»)|| <£}

Consider the following algorithm:
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for every 1e K, 1> k'and every ye ^[Zj]

* 13# c(y) -c(z±) >e»

and therefore for ieK, 1 > k'

Ik. c(zi+1) -cdjlit'

Consequently, if i, i+j are two consecutive indices in K, with i> k*,

15. c(Zi+j) -c(Zi) =[c(zi+;)) -cCz^] +... +[c(zi+1) -c(Zi)] >C

and hence, c(z.), ieK cannot converge to c(z ), which contradicts the continuity

of c(#)» Therefore z must be a desirable point and the theorem is proved.

The approximations to a(z) defined by (9) are not the only ones which can be

used in a convergent algorithm for computing desirable points in T. For example,

we can use approximations of the form A(z) = {z' e T | c(z') - c(z) > p(c(a(z)) -

c(z)}, where p> 0 is fixed. The following theorem applies to this case as well

as to a number of other schemes which we shall later encounter.

16. Theorem: Let A(») be a map from T into the set of all subsets of T, and let

c: T •» IR1 be a stopping rule which is either continuous at all nondesirable points

in T or else c(z) is bounded from above for z e T. Suppose that z e T is desirable

if and only if

17# c(z') - c(z) < 0 for at least one z1 e A(z) ,

and that for every nondesirable ze T there exist an e(z) > 0 and a 6(z) > 0 such

that

18. c(z") - c(z') > 6to

for allz'eT such that Hz1 - z|| < C(z) and for all z" e A(z»).

*»/
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If the sequence z. e T, i =0, 1, 2,..., is constructed to satisfy

z.,, e A(z.) i =0, 1, 2,...
19. i+1 i

c(zi+1) > c(zjL) 1=0, 1, 2,...

and construction stops only if for some integer j, c(z ^) < c(z.), then, either

{z.} is finite and its last element is desirable or else it is infinite and every

accumulation point of {z.} is desirable.

The proof of this theorem follows the same steps as the proof of Theorem (1)

and hence is omitted.

20• JfrMwr^- The reader must be careful not to read more into the statements of

the convergence theorems presented in this section than they say. Note that these

Theorems state only that if a convergent subsequence exists, then its limit point

will be desirable. To ensure that convergent subsequences will exist, one must

make some additional assumptions. For example, one may assume that T is compact,

or else that for every real a the set (z e T |c(z) < c(a0)} is compact, either

being sufficient to ensure the existence of convergent subsequences.

To conclude, we shall state a theorem which combines and generalizes the

results contained in Theorems (8) and (l£). The theorem given below will be

particularly useful in proving the convergence of algorithms which use finite

difference approximations to derivatives.

21. Theorem: Let A(*,-) be amap from R+ xT into the set of all subsets of T.

Let c: T -♦ tR be a (stopping rule) function which is either continuous at all

nondesirable z e T or else c(z) is bounded from above on T.

Suppose that (i) z e T is desirable if and only if

22. c(z») - c(z) > 0 £o.r aUl esJt' <* A(<^ «=> a(. ,z)

(ii) for every non-desirable ze-T there exist an eto > 0, a6(z) >0and a
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y(z) > 0 such that

23. c(z") - c(z') >6(z)

for all z' e T, ||z* - z|| < £(z), and all z" e A(y, z'), 0 < y < y(z). Now consider

the following algorithm:

2k* Algorithm: Suppose that an CQ > 0 and a zQ e T are given.

Step 0: Set z = zQ

Step 1: Set 6 - CQ

Step 2: Compute ays A(£, z)

Step 3' If c(y) - c(z) > G set z = y and go to Step 1

If c(y) - c(z) < C set C = e/2 and go to Step 2.

Let z-> z ,... be the successive values assigned to z in Step 3. Then either the

sequence {z.} is finite and its last element Is desirable, or else it is infinite

and every accumulation point of {z.} is desirable.

The proof of this theorem is a minor modification of the proof of Theorem (8)

and is therefore omitted. The preceeding three convergence theorems are easily

seen to be convenient special cases of Theorem (21), which correspond to A(«,*)

being of a special form, as in (8), to A(»,») being independent of e as in (16),

and to A(*,0 being independent of c and A(c,z) consisting of a unique point, as

in (1). We now turn our attention to the object of our primary interest:

optimization algorithms.
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k» A Few Useful Properties of Continuous Functions

Throughout this text we shall make repeated use of a few properties of

continuous functions. We shall summarize these properties in this section for

further reference.

i n 1
1. Proposition: Suppose that r (•) is a continuous function from |R into IF

and S is a compact subset of (R . Then for each z e [R , and for each 6 > 0

there exists an c > 0 and a X > 0 such that for aUL ze B(z ,e ) - [z |

||z-z || < e } and for all. heS,

2. ^(z +Xh) -f^z) |<6 for all \e[0,Xj.
•X- r» i

Proof: Let e > 0 be arbitrary, but finite and let z e JR . Then f (•) is

uniformly continuous on the compact ball B(z , g) ={z | ||z-z || < e} and hence

there exists an e* > 0 such that

3. I^to -f^z')! <6

•x -x-

for all z, z' e B(z , g) satisfying Hz-z'H < g*. Let g = min {g% e/2], and

let M=max {||h|| | heS], If we set X^ = € /M, then for all h e S and for all
•x- -x-

z e-B(z , g ),

*w ||Xh|| <g* for all Xs [0,Xj
•X" -X-

5. (z + Xh) e B(z, e ) c B(z , e) for all X e [0,X ]
m

and therefore, because of (3), for all z e B(z , e ) and for all heS,

6. (f^z +Xh) -f^z) | <5 for all \e P>»\„] •

7. Proposition: Suppose that f (•) is a continuously differentiable function

from [R into {R and S is a compact subset of {Rn. Then for each z e JR and for
•x

each 6 > 0 there exists an g > 0 and a X > 0 such that for all
m
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z e B(z , g ) = {z | ||z-z || < g } and for all heS

8. ((v^fz +£h),h> - <7f1(z),h>| <6 for all £e [0,Xm] .

* n
Proof: Let g > 0 be arbitrary, but finite and let z e (R . Then the function

(vf (•)> *)> from DR x IR into (R , is uniformly continuous on B(z , g) x S

and hence there exists an g1 > 0 such that

9. Kvf^z'^h') -(yf^to,^! <5

for all (z,h), (z'Ja?) e B(z , g) x S satisfying ||z»-z|j < g', ||li'-li|j < gf. Now,

let g = (V, g/2} and let M=max {||h|| | heS}. If we set Xjn = e*M then f°r
•x- *x

all h e S and for all z e B(z , g ),

10. ||Ch|| <e* for allCe [0,xj
*11. (z + Ch) e B(z, g ) c B(z , g) for all £ s [0,Xm]

•X -x

and hence because of (9) > for all z e B(z , g ) and for all heS,

12. |<Vfi(z +Cn),h> -<vfi(z),h> |<6 for all Qe[0,Xm] .

13. Proposition: Suppose that for i =0, 1,..., m the functions f1: JRn -* |R
n 1

are continuous. Then the function M: {R -* IR defined by

Ik. M(z) =max [f^z)|ie{0, 1,..., m}}

is also continuous.

* n /
Proof: Let z e|R and 6 > 0 be arbitrary, then there exists an g > 0 (possibly

j£ o « . «.
depending on z ) such that for all zeB(z,g)£{z| ||z-z || < g}

15. f^fz*) -6< f^z) < f^z*) + 6, i =0, 1,..., m.
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Hence,

* 16a. ^to < M(z*) +6, i=0, 1,..., m,

and

16b. f (z ) - 6 < M(z), i = 0, 1,..., m.

Taking the maximum over i in (l6a,b), we get

•X "X

17. M(z ) - 6 < M(z) < M(z ) +6

and hence M(») is continuous.
n n ' T

18. Proposition: Let \jr(•, -) be a continuous function from IR x IR into IR and

let S be a compact subset of {Rn. Then the function m: IR -• IR , defined by

19. m(z) = min {^(z,h) |h e S],

is also continuous.

Proof: Let z*efRn be arbitrary. We shall show that m(*) is continuous at z .

Let g > 0 be arbitrary, and let B(z , e) = [z| ||z-z || < g}. Then \jf(«,0 is

uniformly continuous on B(z , g) x S, and, given any 6 > 0, there exists an

g1 > 0 such that

20. |\{r(z,h) - ^(zSh*)! < 6

for aXl (z,h), (z',hf) e B(z*,g) xS satisfying Hz-z'H < g1, Hh-h^l < g'. Let

g = min {g ,gj, then

21. i|r(z,h) -6 < il»fz*,h) < 1f(z,h) +6
* -x

a 0 » the interior of B(z ,g ).
for all heS and all zeB(z*, g )/ From (21) we now get, by minimizing the

^ appropriate terms over h e S,

22a. m(z) - 6 < ty(z ,h) for all h e S

22b. m(z ) < ^f(z,h) +6 for all h e S .

n. n n2
+This proposition is obviously valid for ty: IR X IR > continuous, Sc OR compact,
and m(x) = min {^(x,y) |y e S}. We shall only need the form (18).
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Again minimizing over he S we now obtain from (22),

23. |m(z) -m(z)| <6

which shows that m(») is continuous.
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II. UNCONSTRAINED MINIMIZATION AND BOUNDARY VALUE PROBLEMS

1. Minimization: General Theory

We shall now consider the problem:

1. min tf°(z) |z<=[Rn} ,

where f°: (R11 -HR1 is a continuously differentiable function with the property

that the set

2. {z |f°(z) <a}

1 t
is bounded for every a e IR .

A large number of algorithms for solving (1) fall into the following

category. For every ze IRn, let D(z) be an nX n, positive definite (> 0) matrix

whose elements are continuous functions of z. Let

3. h(z) i -D(z)vf°(z)

and let

k. a(z) = z + u(z) h(z) ,

where y.(z) > 0 is the smallest positive scalar such that

5. f°(z +u(z) h(z)) < f°(z +uh(z)), u>0.

n 0
Note that for every z elR such that vf (z) = 0, a(z) = z. Hence, the search

function a(0 defined in (k) and (5) can only serve for finding stationary points

which are not local maxima. When the function r (•) is convex these stationary

This property ensures that every sequence {x.} in tt* , satisfying

r CO < f (Xq), is compact and hence has accumulation points.

Algorithms of this type are variations of the method of steepest descent probably
first used by Cauchy [C2] and have been in use for a very long time. For an
alternative discussion see Topkis and Veinott [Tl] or Zangwill [Zl].
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0/ \
points will be the actual minima of f (•).

6. Theorem: Let zQ e= (R11 be arbitrary. Suppose that the sequence z±9 1=0, 1,

2,..., was constructed according to

7. z. ^ =a(z^, i=0, 1, 2,...,

8. ^i+l* Kf°(zi)j i =°» X» 2,'-°

where a(0 is defined by to and (5)» and construction stops only if f (zi+1) >

f°(z.). Then either the sequence {z^ is finite, terminating at z^ with
vf°(zv) =0, or else it is infinite and every accumulation point z of [z/\

0, *\
satisfies vf (z ) =0.

Proof: We shall show that the assumptions of Theorem (1.3.1) are satisfied for

c = -f°, and ze Rn defined to be desirable if and only if Vf (z) =0. Obviously,

a(z) =zfor every ze(Rn such that vf°(z) =0. Now, if z^ eRn is such that
Vf°(zk) /0, then <vf°(zk), D(zk) Vf°(zk)> =6k >0, and since vf°(0 is
continuous, there exists an gk > 0 such that for all 0 < u< gfc,

9. f°(zk +uh^)) = f°(zk) +u(vf0^ +§h(zk)), h(zk)>

< f°(zk) -V^k/2 ,

where ?s [0,u]. Consequently, utok) > gfc and f M\)) < * (zk)> i-e-> the

computation stops if and only if vf0^) =0, so that condition (i) of Theorem (1.3.1)
is satisfied.

Now, let z e IRn be such that Vf (z ) ^ 0. Then u(z )> 0 and we define

©: P -* IR by

10. 0(z) = f°(z) - f°(z +u/z*) h(z)) .

By inspection, ©(•) is a continuous function and

H. 0(z*) =f°(z*) -f°(z* +n(z*) h(z*)) = 0*> 0.
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Since ©(•) is continuous, there exists an g > 0 such that

12. |©(z) -©(z*)| <©*/2 ,

i.e., such that

13. ©to > ©*/2

for all z e {z | ||z ^ z || < g }.

But

Ik. f°(z) -f°(z +u(z) h(z)) > ©(z)

and hence, setting 6(z ) = ©/2, g(z ) = g , we find that assumption (iii) of

Theorem (1.3.1) is satisfied and we are done. (Assumption (ii) is satisfied

since f (•) is continuous.)

The search function a(0 defined by (k) and (5) cannot be calculated in a

finite number of operations because of the one-dimensional minimization indicated

in (5). We now give a modification of the algorithm (7), (8) which sheds light

on the extent to which the minimization in (5) can be relaxed without affecting

the convergence properties of the resulting algorithm.

15. Corollary: Suppose that we construct a sequence {z.} in IR11 such that

16. z
1+1

» zi + Xih(zj[), \±> 0, 1=0,1,2,...,

*

and, for a fixed X > 0,

17. f°(z±) -f°(zi+1) > X*(f0(Zi) -f°(a(Zi))) ,

£ where h(») and a(-) are defined as in (3), and to and (5), respectively. Then

either {z±} is finite and its last element, 2^, satisfies vf°(zk) =0, or {z.} is
infinite and every accumulation point z of {z.} satisfies vf (z ) = 0.
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We omit a proof of this corollary since it follows directly from Theorem

(1.3.16) • The computational importance of this corollary lies in the fact that if

X > 0 is chosen to be extremely small, then, in all probability, just about any

coarse minimization of f (z. + Xh(z.)), X > 0, will result in a X. satisfying

(17) and hence in a convergent scheme. (However, the rate of convergence may

be affected adversely.)

We now give an algorithm for solving (1) which does not require us to

perform a one-dimensional minimization and yet can be proved to converge in the

sense of Theorem (I.3.I6).

18. Theorem: Suppose that we are given an a e (0, -) and that the sequence {z.}

in (R is constructed to satisfy, for 1 =0, 1, 2,...,

19. z±+1 = z± +X^) ,

20. Xi(i-a) <vf0(Zi), h(2i)> < f°(Zl +Xih(zi)) -f°(Zi)

< \± a(vf0^), h(Zi)> +
and

21. f°(zi+1) < f°(Zl) ,

(see Fig. 1), where h(*) is defined as in (3). Then, either {z.} is finite

and its last element, z.9 satisfies vf (zk) =0, or {z } is infinite and every
# 0 *

accumulation point z of {z.} satisfies vf (z ) =0.

Proof: Note that if Vf°(zi) =0, then zi+1 =z± and that if Vf°(zjL) ^0, then
zi+1 / z^ and f (z^+1) < f (z^,), by simple geometric reasoning. Thus, if the

construction of the sequence stops at 2L, (because f (z. -) = f (zk)), then

Vf (z^) s0. For the case where (z.) is infinite, we shall show that the

assumptions of Theorem (1.3.16) are satisfied for c = -f and, for A(«) defined by

t
A step-size rule of this type was probably first used by Goldstein and Price
[G2].
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22. A(z) = {zf = z + Xh(z) |X> 0 and

X(l-a) <vf°(z), h(z)> < f°(zf) -f°(z) < Xa<vf°(z), h(z)> .

For every X e R and every z e IR , let ^(X>z) be defined by

23. *(X;z) =i (f°(z +Xh(z)) -f°(z)) - (l-a) <vf°(z), h(z)>}.

Let p(z) > 0 be the smallest positive root of the equation t|r(X;z) =0. Then the

procedure defined by (19), (20) and (21) will always set Xi > p(z.). Now note

that for every ze IR such that vf (z) ^ 0, ^(X;z) < 0 for all X e [0, p(z)];

that $(0,z) = + a <vf (z), h(z)>; and that \|r(«;#) is jointly continuous in X

and z.

Let z.e IR be such that Vf (z.) ^ 0 and let

2k. p± =max CtCx;zi) |Xe[0, |p^)]} .

Then pi < 0, and there exists an g* > 0 such that for all ze {z | ||z - z.|| < e'}

and Xs[0, |p(z±)],

25. rJf(X;z) < ^/2 .

Since (vf (•)» n(»)> is continuous, there exists an g" > 0 such that

26. <Vf°(z), h(z)>< | (Vf°(zi), h(z±)> &Y±/2 < 0,

for all z e (z | ||z - zi|| < g"}. Let g =min {g1, g"}, then for all

z e [z | ||z - z.|| < g}, the algorithm chooses a X > p(z.)/2 such that
j. z — 1

9
A / \

27. f°(z +xz h(z)) - f°(z) <aX2 <vf°(z), h(z)> <a ^- <vf°(z), h(z)>

<a -2- T < o .
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p(zi) Yi
Setting e(z.) « g and 6(z.) = - a f =• , we find that the assumptions of

* Theorem (1.3.16) are satisfied.

#
28. Remark: The following is a simple method for finding a X. > 0 which

+

satisfies (20) for a given z.. Select a suitable step length, p > 0. Let

29. g(X;z) =f°(z + Xh(z)) -f°(z) -Xa <vf°(z), h(z)> .

For j =0, 1, 2,..., compute ©(jp; z.), stopping the calculation for the first

j> 0 such that ©(jp; z.) > 0. If X. = jp satisfies (20) we are done. If not

there is a X, in [(j-l)p, jp] which satisfies (20) and it can be found by

consecutive halvings of subintervals of [(j-l)p, jp] in an obvious manner. A

faster method would be to divide subintervals of [(j-l)p, jp] into thirds.

30. Remark: The proof of Theorem (18) indicates that a sequence {z.} in R ,

constructed to satisfy

31. z±+1 = z± + X± h(z±), 1=0, 1, 2,...

with \. computed as shown below, has the same convergence properties as the

sequence {z.} constructed in (18).

32. Algorithm for X*: Choose a step size p > 0 and an a e (0, l). Let

33. ©(X;z) =f°(z + Xh(z)) -f°(z) -X(l-a) <vf°(z), h(z)> ,

where h(z) is as defined in (3).

Step 1: Set X = p.

Step 2: Compute ©(X;z.).

Step 3: If ©(X;z±) < 0, set Xi = X.

If ©(X;z.) > ©, set X= I and go to Step 2.

+

It is an obvious adaptation of the regula falsi method for finding a root.
*

This procedure was suggested to the author by M. G. Meyer.



-28-

Note that (31) and (32) now define an (ordinary) function a: IR -♦ IR .

To conclude this section, we indicate a somewhat more general class of

algorithms which is used less frequently.

Let h(X;z) be a continuous function from IR X E into B such that for every

n 0
z e IR satisfying vf to £ °>

3k. <Vf°(z), h(0;z)> < 0 ,

then the search function a: [R -* IR defined by

35. a(z) = z +h(x(z);z)

36. f°(z + h(x(z) ;z)) = min f°(z + h(x;z))

can be used to compute points z e Rn, satisfying vf (z ) =0, as cluster points

of a sequence £z.} constructed to satisfy

37. zi+1 - a(«±)

38. ^^i+i5 <f0(zi} *

The proof of this should be obvious by now, as well as the various ways in

which the minimization in (36) can be relaxed.

2* Boundary Value Problems: General Theory

We now address ourselves to the problem of finding a vector z e IR such that

g(z) =0, where g: IR -+ [R is a continuously differentiable function. Obviously

we can convert it to the form

1. min{f°(z) &||g(z)||2 jze(Rn}

and apply to it any one of the general algorithms described in the previous sub

section. For example, let a(z) be defined by (l.k) and (1.5) for some continuous
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n X n matrix D(z) > 0, i.e.,

2. a(z) =z-vM D(z) (^") g(z) =*+*(*) h(z)

with u(z) > 0 being the smallest positive real such that

3. ||g(a(z))||2 < ||g(z +Tih(z))||2 , forallu^O

As we have already pointed out, this search function can be used only to

Tfind points z such that h(z)« -D(z) (dg(z)/dz) g(z) = 0. Since D(z) > 0 is non-
m

singular, h(z) = 0 if and only if (3g(z)/dz) g(z) = 0. Now suppose that dg(z)/dz

has maximum rank for all z e IR such that g(z) ^ 0. Then the algorithm,

z. . = a(z.), f (z. -) < f (z.), i =0, 1, 2,..., will indeed compute sequences

{z.} in [R whose accumulation points z satisfyg(z )= 0. This conclusion also

remains valid for the other algorithms discussed in the preceeding section. Note

that the assumption that (dg(z)/dz) has maximum rank at all z sE for which

g(z) £ 0, produces the same effect for the problem (1) as did the assumption of

convexity of f (•) for the problem (l.l), i.e., the algorithms presented will

compute points z such that g(z ) = 0 (or such that f (z ) < f (z) for all

z g R .

Now let us consider the following problem,

lk. min (f°(z) |r(z) =0)

where f : IR -♦ IR and r: IR -* IR are continuously differentiable functions.

» For this case, Theorem (1.2.1) indicates that if z e Rn is optimal, then there

exist multipliers ty , $ ,..., f , not all zero, such that

I

5. *° Vf°(z) + V t1 vr^z) = 0
i=l
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(Note that the condition u = \|r < 0 in (1.2.1) looses its significance when

there are no inequality constraints and is therefore omitted). We can use

algorithms in the class described previously to find points zeEn satisfying (5),

for some ^ , ^ ,..., \Jr not all zero, as follows.

There are two possibilities. Either we must set ty = 0 in (5) or not. If

we must set $ =0, then, setting $=(f1, ^2,..., $*),£ = (z,ifr) and defining
g: DRn X IR* -♦IR11 XIR* by

6*. g(c) = /V J1 vrA(z)
i=l

r(z)

try to

we can'compute points £ satisfying g(£) =0 as previously explained.
0 / 0

If \jf £ 0, then we may set iff = -1 and define

7. g(C) = /V f vr^z) -vf°(z)\ •

r(z)

Suppose that for all z such that r(z) =0, the vectors vr^z), i= 1, 2,

..., l9 are linearly independent. Then g(^) = 0, with g defined by (6), cannot

have a solution. However, g(c) = 0, with g defined by (7), may have a solution.

If one does not know whether the vectors vr (z) are linearly independent or not

at all points z satisfying r(z) = 0, one may try to solve g(^) »0 with g(.)

defined by (7) and switch to the formula given by (6) if ||g(£)||2 does not converge

to zero but to a positive value.

8. Remark: Suppose that for all z<= |Rn such that r(z) =0, the vectors vr^z),

i =1, 2,..., t9 are linearly dependent. Then for any z satisfying r(z) =0, we
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can satisfy (5) with \jr =0, i.e., in this case condition (5) is trivial and, in

all likelihood our computations will only produce a non-optimal point z satisfying

r(z) a 0, which could have been obtained more easily by solving r(z) = 0 directly.

9. Remark: Consider now the problem

10. min ff°(z) |r*to =0, 1=1, 2,..., I ,

f (z) < 0, 1 = 1, 2,..., m} , z e IR ,

first defined in (l.l.11), and suppose that all the functions in (10) are

continuously differentiable. This problem can be converted to the form to as

follows. For i =1, 2,..., m, let

11. r*+i(z) = (maxfO, f*(z)})2 .

Then r*+i(z) =0 if and only if f^z) < 0, i=1, 2,..., m, and therefore (10) is

equivalent to

12. min {f°(z) |r*(z) =0, 1*1, 2,..., l+m)

1However, for any z such that r (z) =0, i =1, 2,..., -t+m> and which is in

the interior of the set {z |f*(z) <0, i=1, 2,..., m}, we find that vr (z) =0,

for i = -frfl, -M-2,..., */+m. Thus, for all such z, the condition (5) is trivially

satisfied, and hence the form (12) is an unproductive transcription of (10) as

far as obtaining solutions to (10) is concerned.

3. quasi-Newton Methods which are presented

We shall now consider a few specific algorithms'in the class/in the preceeding

two sections. These methods are primarily characterized by the particular choice

of the matrix D(z) in (1.3). The step length ()i(z) or \±) to be used can be

determined according to any one of the rules previously indicated: (1.5)» (1.20),

or (1.32).
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i.e., min[f°(z) |zge")

1. Steepest Descent Method: For the problem (1.1)1, this method sets D(z) = I,

the identity matrix, so that

h(z) = -Vf°(z) .
This algorithm is credited to Cauchy [C2], and more recently to Curry [C5].

2. Modified Newton-Raphson Method: For the problem (l.l), this method sets

2 0 2 —1
D(z) = (a f (z)/dz ) (assuming that this inverse matrix exists and that it is

continuous and positive definite), so that,

3. h(z)= -i^f-Y1 A) .
Consequently this method can only be used to solve the problem (1.1) when f (•)

is strictly convex. This algorithm was also described by McCormack and Zangwill
[Ml], and again by Zangwill in [Zl].t 0

To solve problems of the form g(z) =0, or vf to = 0, assuming that

(dg(z)/dz) ,i(d. f (z)/dz )" , exists, the modified Newton-Raphson method^sets

or T

or

^.I^.)-1/^1^5.

respectively, Oius defined, D(z) is positive definite and, for the problem

g(z) = 0,

6. h(z) =-D(z)(|j |l|g(z)||2)T

- -d(z) (^r «<*>

+

For the best classical treatment of the Newton-Raphson method, see Kantorovich [K2].
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0 Y\while for the problem min {f to | z e ffr},

7. h(z) , -D(z) [|j | ||vf°(z)||2»T

..D(l). [^M)T vfo(2)

VfU(z) .

In this case the step length is again set as in (5), (20) or (32), but with

|||g(z)||or ||]vf°to|| taking the place of f°(z).
8. Remark: In Section II.2 we pointed out that the assumption that f (•) is

convex ensured that the algorithms would compute points z such that f (z ) <

0 n
f (z) for all z e (R . Note that for the modifications of the Newton-Raphson

method, the assumption that f (•) is strictly convex, must be made to ensure

the same results.

—l p o pi
The computation of (dg(z)/dz) or (d f (z)/dz )" can be quite expensive.

Hence one may wish to use the matrix (dg(z.)/dz)~ (or (d2f (zj/dz2)"1) for

j =s i, 1+1,.,., i+k steps, say, and then recompute it again. It is easy to show

that this will also result in a convergent algorithm for solving

min {| ||g(z)||2 |zsEn], or (min {| ||vf°(z)||2 |zelRn}, provided there exists an
a> 0 such that

>-l

9.

for all

10.

or

11.

(wr (ic-rl >..

2,.»«{«1 ll«(«>lrsli«0b>ln;

3z2
> a
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f or all

12. Z€={z | ||vf°(z)||2 < ||vf°(z0)||2} .

In fact, one can generalize the above observation even further, as follows.

13. Theorem: Consider the problem

Ik. min {f°(z) |zeIRn}

O n 1
where f : IR -♦ (R is continuously differentiable.

Suppose that the sequence z. e (Rn, i =0, 1, 2,..., is constructed to

satisfy

15. zi+1 = z± +X^

16. f°(zi+1) <f°(Zi) ,

with the h^ £ 0 chosen so as to satisfy

IT- -<vf°(zi),hi> >pH^Cz^H HhJ ,

for some fixed p > 0, and with the X. > 0 chosen either to be the smallest

real satisfying

18. f°(zi +\±h±) =min t°(z± +Xh±), X>0 ,

or else to satisfy

19. X±(l-a) <vf°(zi), h±) < f°(Zi +x^) -f0(Zi)

< \±a <vf°(zi), h±> ,

for some ae (0, ^). Then either the sequence {z^ is finite and its last

element z^ satisfies vf (z,) =0 or else it is infinite and every accumulation
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point z* of {z^ satisfies vf°(z*) =0.+
This theorem can be proved by making use of Theorem (1.3.16) and of the

continuity properties of f (•)• Theorem (13) bears not only on some of the

modified Newton-Raphson methods sketched out above, but also on conjugate

gradient methods which we shall discuss in the next section.

2°. Remark: The modified Newton-Raphson methods described in this section

differ from the classical form in one important respect. They require one

additional operation — the computation of p,(z.) or X. — to obtain z. . from

z. • Although this means that these methods involve more work, their convergence

is not limited to a small region about the desirable points, which is the case

with the classical form of the Newton-Raphson method. As far as rate of

convergence is concerned, it is not difficult to see that with the modified

Newton-Raphson methods f (z.) -♦ f (z), or ||g(zi)|| •♦ 0, as i •» », at a rate at

least as fast as when the classical form is used.

'The convergence properties of the sequence {z.} are unaffected by whether one

always uses (19) 9 or always (20), or whether one alternates between them in any
manner, to compute Xi#
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k. Conjugate Gradient Methods

Although the rate of convergence of the quasi-Newton methods is quite

satisfactory, they require the calculation of second partial derivatives as well

2 0 2
as the inversion of possibly large matrices o f (z)/dz in the minimization of

f to, z c IR . We shall now describe a class of methods which require the

computation of only the gradient of f (z) and whose convergence rates are never

theless considerably superior to that of the method of steepest descent, though

not quite as good as those of some of the quasi-Newton methods.

These methods are called conjugate gradient methods and they all have in

coBBton the feature that they require at most n steps to solve the problem

1. min {(z, Hz) |ze IRn} ,

where H is an n X n positive definite symmetric matrix. Consider for the moment

the problem min {f (z) | ze tET} and suppose that f (•) is twice continuously

differentiable. Let z be an optimal point for this problem, then Vf (z) =0 and

for 6z small, i.e., for z = z + 6z in a small ball about z, we have

2. f°(z) -f°(z) £ <6z, H(z) 6z> ,

/*\ 2 0 / v * 2
where H(z) = o f (z)/0z . Thus, it is heuristically clear that any method which

is efficient in solving the problem (l), very likely, will also be efficient in

solving the problem min {f (z) | ze(R }, provided it is convergent for this
POP

problem, and provided, of course, that d f (z)/dz is positive definite in a

neighborhood of the optimal points z.

We begin the description of these methods by a discussion of a biorthogonaliza-

+ . ntion process. 'Suppose that we wish to construct two sequences in R , gg, g^...,

gc- and hQ, h_,..., h ^9 such that

*We follow here the presentation of Hestenes [H2], see also [HL].
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3. <gi,gj> = ° for all i^j
and

k. (h^Hh > =0 for all i^ j

where H is an n X n positive definite, symmetric matrix. We can do this by means

of the Gramm-Schmidt orthogonalization method as follows.

Let fiL be arbitrary. Set L s t, Now, let

<g0>80>
Ua- gl "^ +Xo aV with X0 =* <gQ,Hh0> '

which ensures that <gQ,g1> =0. Next, set

<Ha(),g1>
kb. h- = g- + v« h«, withhl = gl + Y0 V with Y0

This process can obviously be continued as follows:

*c. g2 = ^20 ^ + gl + Xl ^V h2 =g2 +Ylhl + a20 h0 >

where X1> B^ are chosen to make <gQ,g2> =(g-^gg) =0, and yl9 a are chosen

to make (1^, Hh2) - (h.^ Hh2> =0, and so forth, until for some m< n, g= h =0.

The interesting thing about this construction is that the coefficients B^. and c^,

etc., are zero, as we now show.

5. Theorem: Suppose that for i =0, 1, 2,...,

6- gi+l =gi +Xi ^i' hi+l -gi+l +Yi V % "h0
with

7.
<gi>gi> _ <Hhi>gi+l>

ki ="<gj Hh±> Yi " " <Hh^, h\> •
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where H is an n X n symmetric positive definite matrix. Then, for i, j =0, 1,

2,••.,

8. <gi,gj> =6i;j ||gi||2 and (h^ Hh^) =6±. \\h±\\l
where 6,, is the Kronecker delta.

Proof: We give a proof by induction. By construction, (g^g,) = (g^Hh.) = 0.

Now, suppose that for some integer k, 0 < k < n-1

8a. Oi^Hhj) =<gi>gj> =0 for all i^ j, i, j< k

and let i e {1, 2,..., k-1}, then

8b. <<Wgi> = <Sfe + Xfc »y %>

- Xk <Hly gi>

= Xk <Hhk' (hi "Vi_i \.x)> = o •

Also, <g. , gjj.-,) = 0 by the choice of X. and

8c. <gk+a, ^ = (^ + Xk My Sq)

= Xk<Hhk, e^) =0 (^ =hQ).

Similarly, (h, -> Hh.) = 0 by construction of y . Hence, let i e {0, 1, 2,

..., k-1}, then

8d. (>W*1> " <«ML +Yk V ^

- <ek+i« h (6i+i * gi}> = ° ♦
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i.e., if (8a) is true for k it is also true for k+1. But it is true for k = 0,

hence it is true for k = 0, 1, 2,... which completes our proof.

For the vectors constructed above, it is easy to show that the following

hold:

9. <hi,gk^ = ° for all ie {0, 1, 2,..., k-1}

<**!' gi+l> <gi+l> gi+l>
10# Yi =" (1%, h^ " <g±, gi>

^gi+r gi-kl) +*gi+l' gi^
(g±>8±)

1 =0, 1, • •., n-1.

<gi'gi> <hi> gi>
11' Xi * " <g±> Hh^ " <h±, Hh^

To establish (9)* we note that for 0 < i < k,

Ha. (1^, g^ = <h±, gi+1>
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Now, <hQ, g.,) =0 since b^ = gQ. Suppose therefore that (h., g. ) =0

for all i e [0, 1,..., k-1}, with k < n-1. We shall show that it must then also

be true for i = k.

- <V «*> + \ <v "V

= <8k' 8fc +*k-l Vl> +\ <Hhk' V

= <V «k> + \ <Hhk» V • °

To establish 10, we proceed as follows.

<Hhi, gi+1> X^ <gi+l " gi* gi+l>
nC' " <Bh4, h4>

i' ~i' ~7<gi+1,- gi5 h±>
l

{gi+l* gi+l^

<gi+1> g1+1>

<gi' gi +Vl ni-i>

<gi+l' gi+l>
<gi' gi>

<gi+1, gi+1> t <gi+1> gi>
<gi> gi>

i, To establish (11), we observe that

(&±> g±> (h± -yi-;L hi-;L, g^) (h±9 g±>
lid. <g±, Hhj> (h± -Yi-1 h^, Hh^ <h±, Hh^
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Now, suppose that we wish to minimize f (z) s (z, Hz), where H is an

n x n symmetric positive definite matrix, starting with a given zQ. Suppose that we

construct z.,, Zp,... according to

^ Zi+1 =Zi +Xi hi* i-0, 1, 2,...

hi+i ="Hzi+i+ y± V no= - *V i = °>l9 2>-~

with y. chosen so that <h., Hh.+1> «0 and Xi chosen so as to minimize f (z±+ X^)

for X>0, i.e., since vf°(z) =Hz, \± must satisfy <h±, Hzi+1> =0.
Hence,

13- Xi "• <h±, ^ ' Yi = + (Hh^ty

Now, let g. = - vf (z.) = - Hz., then, for i =0, 1, 2,..., n-1, the vectors

gi, h± satisfy (6) and (7) (see (10), (11)). Also, since (by (9)) <ly g±) =0
for all 0 < j < i, and since i = 0, 1, 2,..., & s Hz =0 for some m < n.

Consequently z =0, which is the desired solution,
m

There are two convergent adaptations of the above procedure to problems of

the form min {f (z) | zs Er}.

Ik. Assumption: For the purpose of the conjugate gradient algorithms we are about

to describe, we shall assume (in addition to requirement stated in Section II. 1) that

the set {z |f°(z) <f(zQ)} is bounded, that f(•) is twice continuously
differentiable, and that there exist 6n > 63^ > 0 such that for all x, zei [z |f (z)

<f°(z0)},
.2.0•iHI2 <<x,(^I)x> < 6n||x||2 .
bz

15. Fletcher-Reeves Algorithm [FV1:

n 0(i) Take zQ e ffr to be a good guess at the minimum of f (z).

(ii) For i = 1, 2, 3»..o compute z±9 h±9 g±9 according to the rule
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\«L " Zi +Xihi
16. = - Vf°(ZJ

hi+l = 6i+l +Yihi' ^ =80 '
V

where X. is the smallest positive X such that

17. f0^ +\± h±) < f°(zjL +Xh^ X>0, i =0, 1, 2,... .

(which implies that <vf (zi + X^^ 1^), h±) = <gi+1> ni) = °)» and

18. Yi = (g^fg^1 > i=0> 1> 2,...

Sequences {z.} constructed by this algorithm can be proved to converge to

* 0/ *\
points z such that vf (z ) =0. However, to prove convergence requires a more

complicated convergence theorem than the ones described in Section 1.3. On the

other hand, the following simple modification of (15) can be readily treated by

means of the convergence results already established.

19. Polak-RLbiere Algorithm |T^1:

n 0(i) Take zQ e(T to be a good guess at the minimum of f (z).

(ii) For i =1, 2, 3,..., compute z. according to (16) and (17)> hut with

/ gr — ff • ff \

20. y± = *g^ gj> > *=°> l9 2>~

We shall now prove the convergence of (19).

21. Theorem: If z0, z., zp,..., is a sequence in $C constructed according to

(19), then there exists an a > 0 such that

22. - <gi, h±> > ojlqll \\h±\\ ,
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and either {z.] is a finite sequence, terminating at z^ with vf (z^) = gj^ =0,

or else every accumulation point z of [z.J satisfies vf (z ) =0.

Proof; We only need to prove (22) since the second assertion then follows from

2Q p/and let S^Z) s~7f^z)!Eheorem (3*13) . Let H(z) s3f (z)/dz / Expanding -g(z) about any point z±9
i =0, 1, 2,..., in the sequence generated by the algorithm, we find that

23. -gi+1 = -g(zi+1) = -g(z± + X± h±)

1

="gi +h [J H(zi +cxi hi)dc hi

Since <hi,g*.-,) «= 0, we get

<hi> gi> <gi> gi>2k. \±
(h±, E±h±) <h±, H.^)

where

Note that for all ze ffp, d^ Hz||2 < <z, %z> < 8n ||z||2. Now, from (20) and (23)
and (2k)9 we get that

25.

so that

<gi+l' Hi hi> . <gi> %>
i <gi» g±> ^h ^ hj

<gi+l^ Hi hi>
<hi, H±, h±>

%Jl ' HHjl ' 11^11 l|gi+1ll 6n
1 6Jlh.ll2 ihii 6

1"~i" 1
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Now,

27. I|hi+1ll < Il6i+1ll + |y4I ll\ll

which, because of (26 ), becomes

28. ||hi+1H <||gi+1|| |l+|j
But

29. <hi+1> gi+1> = <gi+1 +Vi V gi+1> = <ei+1, gi+1>

Hence,

.2
<h^i> 8^n>*> **', i+1, "gi+i" lisi+ill^ "VlH "gi+lll " KJ •llgi+ill =J^Jj|

^i+1'

llgi+ill(1+*„V

(»k)

which is the desired result.

We conclude this section with the Fletcher-Powell [F3] version of the

Davidon jj)2] algorithm. This is a very efficient conjugate directions algorithm

which approximates the Newton-Raphson method but whose application to control

problems is limited by the fact that the dimension of control problems

produces unreasonably large core storage requirements.

31. Davidon-Fletcher-Powell Algorithm:

(i) Let B^ bI, the nxnidentity matrix. Take zQ to be agood guess at the
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0, V
minimum of f (z).

(ii) For i =1, 2,... compute z., H. according to the rule

zi+i - V xiHi gi
32.

AZjXAZj K± Agi><Hi ^
Hi+1 =Hi " <Az±, Lg±) ~ {&g±9 H± &g±)

where Xi > 0 is the smallest positive real such that

33. f°(zi+l) ^f°(2i +xHi gi^ for all X>0 .

In (32) ,bx± -zi+1 -z±, g± =-vf (zi), Agj. =gi+1 -g±, and, for ye|Rn,
x )< y is a dyad, i.e., an nX n matrix whose if®* element is xV3.

3k» Lemma: For i =0, 1, 2,..., the matrices H. are symmetric and positive

definite.

Proof: For i = 0, K^ = I, a symmetric positive definite matrix. By (32) , H.

is symmetric if H. is symmetric, hence we only need to prove that the H. are

positive definite. We give a proof by induction. Suppose H. > 0. Then, for

any nonzero vector z e JRn,

<z, Az >2 <z, H Ag,>235. <z, Hi+1 z> . <z, h z> - ^—Ly - ^ ^ ^

Since ^ > 0, HJ' is a well defined symmetric positive definite

let p=H£' z and let q=HJ'2 Ag^ Then (35) becomes

36. <z, %+. z> =<p>p><q>q> -<p,q>2 . gli^l
^+1 ' <q»q> <Azi, Ag±>

P P

>pm<i><i> = iipj' " "

2

Applying Schwartz's inequality we obtain <P,p><q,q> =||p|| ||q|| > <p,q>2, and
hence

<z, Az >'
37. <Z, H. . Z> > - 7- -i_-. -i+1 ' - (Az^Aq^

Now, since (bz± gi+1> =0,



38. - <Az±, Agj,) = - <Az±, gi+1> + <Az±, g±>

= + <az±, g±>

= Xi<Hi gi, g±> > 0

and hence,

39. <z, Hi+1 z) > 0 .

Now suppose that z ^ 0 but <z, H. _ z) =0. Then, from (36) and (38), we must

have that

(i) <z, Az±> =0 and

(ii) <p,p)<q,q> = (p,q> .

But (ii) implies that p =aq, for some a real, i.e., that z = a Ag^ and hence

by (i) we should have that (Ag^> Az.) =0, which contradicts (38). Therefore

H... > 0, which completes our proof.
i+1 the

kO. Theorem: For i =0, 1, 2,..., let >in > 0 be / largest eigenvalue of H.

and let )i. > 0 the smallest eigenvalue of H.. Suppose that there exist real

M and m such that ^ < M and ^ > m for i =0, 1, 2,... Then, either the sequence

[zi] generated by (32) and (33) is finite, terminating at z., with Vf (z.). =0,

or else {z.} is infinite and every accumulation point z of {z.} satisfies

Vf°(z*) =0.

This theorem also follows directly from Theorem (3.13) and we therefore

omit its proof, (it was also presented by Daniel [Dl]).
no 0

kl» Remarks At present there are/ known assumptions on f (•) which guarantee

that the sequence of matrices 1^ generated by(32) and (33) will have eigenvalues

bounded both from below and from above. In current practice, the sequence H. is

restarted periodically from H- = I, to prevent the eigenvalues of H. from
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becomlng excessively spread out. When the sequence H. is constructed using (32)

and(33) > with the additional feature that U± is set equal to 1^ for i = 0,

k, 2k,..., it follows directly from Theorem (3.13) that every accumulation point

# 0 *
z of {z.} will satisfy Vf (z ) = 0.

In conclusion, we wish to point out that there exist a large number of

variants of the methods presented in this section, all of which are heuristically

derived, and whose computational merits are briefly discussed in a survey paper

by M.J.D.Powell [B6]» to which the interested reader is referred.

5. Applications to Optimal Control

As we have already seen in Chapter I, discrete optimal control problems

are mathematical programming problems — usually of large dimension. Therefore

all the algorithms discussed so far are, at least in principle, applicable to

these problems. In this section we shall discuss how the immense structure of

the optimal control problem can be utilized to produce simplifications in the

calculation of the vector h(z), without which our task may well be hopeless. In

general, these simplifications will consist of substituting a sequence of "low

dimensional" operations for a single "high dimensional" operation.

We begin by considering the free end optimal control problem:

k-1

1. min y f^x..,^) +cptx^,), x± e= (Rv, u± e(R^ ,
i=0

subject to

2. xi+1 - x± =f^x^u^,) i =0, 1,..., k-1 with xQ =xQ

Ihis form of problem usually arises when penalty functions, to be discussed

later, are used to cope with inequality constraints on the states x. and on the

controls u..
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Since Xq =s x-. is given, the x., i =1, 2,..., k, are uniquely determined by

the sequence z = (Uq, u_,..., u. ,) and (2), i.e., x. = xi(z). Therefore (1) is

a problem of the form

O n

3. min f (z), z e |R (n = kn)

where

k-1

k. f°(z) =Y fi(xi(z)» u±) +^(Vz))
i=0

In what follows, when we write x., we mean x. (z).
0

We now show a method for computing vf (z). Note that

5. ^o(z)t a agfcQ. . /af°(z) , af°(z) • ... , af°(z)V

and that for i =0, 1, 2,..., k-1,

' ^ " afjCx^Uj) ax,j (z)6 a£M afj(vV + v

+

axd au±
j=i+l

dcp^) dxk(z)

l

Now, for k > j > i, and i =0, 1, 2,..., k, let $ . . be an n x n matrix
— — 0,1

satisfying &. 4 = I, the identity matrix, and
1,1

dfj(Xj,Uj)
7- $j+i,i" *j,i= —dx~~— *j,i' d sl» i+1>---> fc-1 •

j

Then

dx.(z) af.,(x.,u.)

8- i&r - $j,i+i oj >for *-i+i>i+2—k

= 0 for j = 1, 2,..., i.

+ 0 df^fz}
Note that vf (z) is a column vector, but —=-*-*• is a 1 x n Jacobian matrix, i.e.,

a row vector.
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Hence, for i =0, 1, 2,..., k-1,

9- -55T - ou, + 2, sxd ^i+1 *ui
vj=i+i '

Since we are in the habit of working only with column vectors, we transpose (9)

to get

0=i+l
». ilf) =1-iT] + r*n i£ £«!-*:

Now, for i =1, 2,...» k» let Pj^ be the solution of

u- Pi-pi+i = 1 5f pi+i+ \—a^ '

/atpC^) T

Then

f^MT ^ ., K<v»/T». Pi - it hd ♦ x $^ r*
and

«. i^)t • %f. pm •*
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Thus, to compute Vf°(z), we first solve (11) to obtain the vectors p-^.Pg*...* \
and then use (13) to complete the evaluation.

With the procedure for computing vf (z) developed, it should now be obvious

how one can use the method of steepest descent (3«l)» or any one of the

conjugate gradient methods (k.15), (^.19) > (^.3l)> for solving (l).

We shall now show how to apply the modified Newton-Raphson method (3*2) to

an optimal control boundary value problem. Note that the procedure we are about

to develop also applies to the solution of problems of the form (l) • Consider

the problem

K-JL

Ik. min \ fi(xi»V +^V' xi €rV» ui s^

subject to

15. xi+1 -x± = fi(xi,ui), i=0, 1,..., k-1

where Xq and Sj-faO =° (s^* DRV -» |R) are given. We assume that all the

derivatives we shall use are continuous in all their arguments.

As we recall, the modified Newton-Raphson Method can be used to obtain a

A A A A A

control sequence iu, u_,..., u. _, and a corresponding trajectory Xq, x.,

..., x. satisfying the necessary conditions of optimality for (Ik), (15),
A A A

developed in Section 1.2, i.e., it can be used to find vectors x0, x.,..., x. ,
A * * AAA

Uq, u-j,..., u. ., and multiplier vectors p.,, Pp,..., p. , * such that

16. x±+1 -xi - fjL(xi,ui) = 0 for i =0, 1,..., k-1 ;

17. g^) =0

^ Pi -pi+i - pi^-j pi+i + \-^t/ =°
for i =1, 2,..., k-1 ;
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/af°(x.,u.)\T ^ifvVf

for i =0, 1,..., k-1.

Note: We have assumed that the problem (1*0, (15) is not "degenerate", i.e.,

that the multiplier of (df, (x.,u.)/dx^ in (18) is -1 and not zero.

Let z= (x1, Xg,..., x^, plf P2,..., pfc, tf, uQ, u^,..., ^.^j *hen (l6)> (17) >

(18), (19) and (20) define amap r: R1™ x^ XR*X ^-» R^ XElx iR(k"l)v
X (Rv x ffT , i.e., if we set n = 2kv + t + kji, then



-52-

r: Rn •+ Rn. We wish to find a ze \^ such that r(z) =0.
that

As we recall from (3.7),lh(z), the "direction" of motion for the modified

Newton-Raphson method, is given by

>-l

21. h(z) • - fe4 r(z) .

-1(We obviously assume that (dr(z)/dz)~ exists.) Hence h(z) is the solution to

the equation

22. §|isl h(z) = r(z) .
oz

With r(z) defined as above, and h(z) = (bx^9 6x2,..., 6^, 6P1? 6P2>--o

61^, 6*9 6UQ, 6^,..., Su^^), (22) can be expanded using (16), (17), (18)

and (19). Thus, from (16) we get

23.

df.^X.jU.) af^x.jU.)
6xi+1 - 6Xi = ——- 5Xi +—— 6u± - v±, i - 0, 1, 2,..., k-1 ,

where 6Xq =0 and

2k.

from (18),

25 6P± - 6Pi+1

vi =xi+l " xi * f±^±^ 5

afi(xi,ui)
hx[

ax,

Jl.
au.

6pi+i

ax,

af^x.^)
%x~.

i+1

'i+1

6x.

6u,

o2f?(x.,u)\T U2t°(x,,u±)\T
MrH 6xi • al k )6ui

ax. fci w"i

for i = 1, 2,..., k-1, where

- w
i »
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^(VV^
26. wi = pi " pi+l

afjfxj.Uj)
ax. pi+i + ax,

From (19) we get

27.

where

28. *k " pk " 3xk
It +

3xk \\ axk
It -

/ \T

i3x* /

^r 1

From (20) we get, for i =0, 1, 2,..., k-1,

29.

where

30.

P O \Ta^x^r1
axi ui 6x,

a2^,^)^
6u,

au,

(af^^T
\ 9ui i au. jj

rfaf^u^T
ax. i+1 au.

au, 6pi+i " *i =° >

af°(xi,ui) ^T /afi(xi,ui)'T
au, au. 'i+1

«xk-yk= 0

'i+i
6u,
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From (29), for i =0, 1, 2,..., k-1, 6u. can be solved for in terms of bx± and

6p4 ,. Since (29) is linear in the variational arguments (i.e., the 6x±, bV±> and

6u,), the expressions for the 6u, will be linear in their arguments

(6x,, 6p, ,)• Substituting for 6u, into (23) and (25), we now have to solve
i i+1 1

a boundary value problem of the form below to complete our calculations of h(z) =

6z.

31a. 6xi+l = Ai6xi + Bi6pi+1 "vi i =0, 1, 2,..., k-1

31b. bv± - c±f>x± + Di6pi+i "wi i =1, 2,..., k-1

31c. 6XQ - 0, Gk 6Xk +gk =0, 6pk =g£ 63C +\ bx^ +yfc

We may now proceed in one of several ways to solve (31) for 6x.,

i. « 1, 2,..., k, 6Pi> i = 0, 1,..., k, and 6*. ^e most straightforward one is

to simply set up (31) as a combined array and try to invert the matrix on the

left, i.e.,
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V^6x0

k-1

(32)

Obviously, this is an enormous matrix in any practical situation, and'cannot

be solved (and even, possibly, stored in core) without a certain amount of cunning

which takes its structure into consideration.

In what follows we shall assume that the inverse matrices used do indeed exist,

and shall develop a method for solving (32) which exploits its structure to the

fullest extent. When these inverses do not exist, it obviously becomes much

harder to utilize the structure of (32) in its solution.

Now, for i a k-1, we have from (31) that

33. 6pk-l = Ck-1 6xk-l + Dk-1 6pk " Vl

If we treat, for the time being, 6p. as a known constant, we see that

3*. 6pk-l - *k-l 6xk-l + "k-1

Where K^ =C^ and h^ =Dk-1 6Pfe - wk-1. Hence let us suppose that for

3* = i+1, . '••
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35- 6pi+l = Ki+1 6xi+l + Ki+1

and find the corresponding expression for 6p.. From (31a) and (35)

36. 6xi+1 = Ai6xi + BiKi+1 6xi+1 + Bi^+1. r±

Solving for x, -, we get

36b. 6xi+1 =(I -W^)'1 \.A±6x± +B±k±+1 -T±] .

Substituting from (35) for 6Pi+1 in (31b), we get,

37. 8Pi = Ci6xi +DiKi+1(l -BjK^)'1 [Ai6xi +B^^ +v±] +Dftrt -»j

+ [Di+Vi+l^-Vi+l)"1^^!

i.e., we find that

38. 6pi = Ki6xi + k^ 9

where for i = k-1,..., 1, K, and n, satisfy

39. K± = COi+DiK^d-Bi^)-1^]

*• \ - V1 +W1 - VW"1 V *i+l

• 'Art*1-VW"1 *i" *i

Since (35) is true for j = k-1 (i.e., for i = k-2), we conclude by induction

that it must also be true for j « k-2, k-3,..., 1. Note that we still must give

boundary conditions for (39) and (kO) . Since K. , = CL .., we set K- = 0, hence

from (35), ^ =%•
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To solve (31) with the boundary conditions given, we compute the K^,

i=k-1, k-2,..., 1, from (39) ,with ^ =0. Then, from (39) >we compute n^

in the form

M. Hi = Fi6pk + ?i* i = k-1, k-2,..., 1 ,

(actually, we only compute the matrices F, and the vectors %^). Substituting

f*om (kl) into (36a), and using the fact that 6Xq =0, we obtain 6^ in the form

k2. bx^ o E6l^ + ? .

Now making use of the boundary conditions (31c) for 6^ and 6Pk> we obtain,

k3. Gk 6^ «Gk(l -E^r^E Gk 6rt +Eyk +§) =g^.

which yields

kh. 5* =(G^I-E^)"1EG^)"1 (g^. -CS^d-^,)"^^ +§))

With 6* determined we can now obtain all the required quantities.

There are a number of cases in which the amount of labor involved in solving

the necessary condition equations (16) to (20) is considerably less than for the

general case we have described above. We shall now consider two of these rather

important special cases.

Case I

k-1 k-1

k5. minimize | V Hu^2 +| V

subject to

K - xi*ll2
idO i=l

k6. x.+1 = Ax^^ +Bu^ i=0, 1, 2,..., k-1 ,

with x, e (Rv, u, €R ,and Xq =Xq, x. =x, given.
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Assuming that p = -1 is true, the necessary conditions (l£) to (20)

require for this problem, that the optimal u, and x, satisfy

k7. xi+1 •= Ax± +Buif i=0, 1,..., k-1, Xq =Xq, x^. =^ ;

k8. 3± = A\+i -(xi *xi*)» * al9 2>-"> k5
T

k9. ~ui * B pi+l = °> i =0, 1,..., k-1 .

From (k9)9 u, = BPi+1> i =0, 1,..., k-1, and hence the optimal Uq, tL,..., Uj^

and Xq, x^..., x^ and p., P2,..., Pj^ satisfy (k9) and

50a. x±+1 =Ax± +BB pi+1, i=0, l,...,k-l, xQ =Xq, 3^ =Xj^

*> »T~ /A *\50K P± - A pi+1 - (Xi -Xi )

Obviously, there is no need to use the modified Newton-Raphson method to solve (50),

since it is linear and of the form of equations we already know how to solve.

Case II

k-1

51. minimize V f^) +| UuJ2
i=0

subject to

52. xi+1 - x± = f±(xi) + Bui, i =0, 1,..., k-1 ,

v U * * 0x. e IR , u. e ffr, with Xq = Xq, x. = x. , given, Again assuming that p = -1, the

necessary conditions (16) to (20) require for this problem that the

optimal u. and x. must satisfy

53# xi+l "xi = fi^ +B'V i=°> X>*"> k"1» *o =x0> \ =\ '
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afj.^)1 a 0 A
5^ pi~pi+l = aXi pi+l" ^i^' i=l, 2,..., k ;

55. - u± +BT pi+1 = 0, i=0, 1,..., k-1 .

A A
Since u. can be obtained in terms of p.. from (55), we eliminate (55) before

applying the modified Newton-Raphson method to the following resulting system:

56. x1+1 - x± a fi(xi) + BB Pi+1> * e°> !»•••> k-1, Xq =XQ, Xj^ =x^

/af1(x.)\ 0
57. pi-pi+i = haxT-hi+i-^V' i-l*2,..., k-1.

In the above derivation, note the great saving in labor which results from the
with

fact that u. may be expressed in terms of Pi.1> as compared / the general case

presented in the beginning of this section.

For further reading on the use of the Newton-Raphson method in control

problems, the reader should consult \Bk"] and [LI]. Also, to see how dynamic

programming can be used to develop a related algorithm, the reader should

consult [M2].
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6. Minimization Without Calculation of Derivatives

The calculation of the derivatives of a function may be quite costly and

one may therefore wish to avoid it. There are basically two types of

algorithms for minimization which avoid the calculation of derivatives. The first

type approximates derivatives by finite differences, the second type is

intrinsically independent of derivative calculations. We shall now give a few

examples of algorithms which avoid the computation of derivatives.

Consider again the problem

1. min ff°(z) |zeR11}

where f : & -»IR is at least once continuously differentiable, and for every

a real, the set [z | f (z) < a) is bounded. The following three methods

approximate derivatives by means of finite differences.

2. Modified Steepest Descent: Assume that a zQ e \R and an eQ > 0 are given.

Step 0: Set z = zQ

Step 1: Set € = eQ
+v» i

Step 2: Compute the vector h (z) e(Rn, whose i component, hg(z), is defined by

3. h*(z) £-^(f°(z +e?J -f°(z)), i=1, 2,..., n

and §i is the i column of a nx nunit matrix, i.e., ?, = (l, 0,..., 0),

l2 = (0, 1, 0,..., 0) etc.

Step 3: Compute a u (z) > 0 to be the smallest real such that

,> k. f°(z + v- (z) h (z)) < f°(z + )ih (z)) for all u> 0
€ e , — e -

» Step k: If f (z + u (z) h (z)) - f (z) < -e, set z = z + u (z) h (z) and go to
*- —^~~ e c — e e

Step 1. If f (z + p. (z) h (z)) - f (z) > -e, set e = c/2 and go to Step 2.
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We can use Theorem (1.3.21) to show that if {z^ is a sequence constructed

A by the algorithm (2) (i.e., z^ Zg,..., are the consecutive values assigned to

* z in Step k), then either {z±} is finite, i.e., the algorithm jams up at zR, and

3' Vf°(z. )=0, or else it is infinite and every accumulation point z of {z^

satisfies Vf°(z*) = 0.

5. Remark: Instead of choosing u (z) to satisfy (k), we may take u (z) to be
————— 6 6

any value satisfying, for some ae (0, ^),

6. -u (z)(l-a) <h (z) ,h (z)> < f°(z +u (z) h (z)) -f°(z) <
6 6 6 6 6

< ]i (z) a <h (z) , h (z)> .
6 6 E

For a comparison see (II.1.18).

7. Modified Newton-Raphson Method (Goldstein and Price TG21

aiui

Suppose that f (•) is strictly convex/twice continuously differentiable; and

that az eIK11 and an eQ >0 a:re given.

Step 0: Set z = zQ.

Step 1: Set e = €0-

Step 2: Compute the n X n matrix H (z) whose i column is - [vf (z + e l±) -
0 +Vi

- 7f (z)], where §. is the i column of the n X n unit matrix.

Step 3: If H (z)" exists, and <vx (z), H (z) vf (z)>> 0, compute ji (z)
6 6 6

according to (6) (or (k))9 with h (z) £ -H (z)"1 Vf°(z), and go to Step k.
6 6

Otherwise, set e =§ and go to Step 3.

Step k: If f (z + y. (z) h (z)) - f (z) < -e, set z = z + y. (z) h (z) and go to
6 6 — 6 6

Step 1. If f (z + u (z) h (z)) - f (z) > -e, set e = § and go to Step 2.
6 6 «£

We can again show by means of theorem (1.3.21) that either the sequence {z.},

of consecutive values assigned to z in Step k9 is finite, terminating at z. and
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7f°(z ) =0, or else {z.} is infinite and all the accumulation points z of {z^

A satisfy Vf°(z*) =0. Since a strictly convex function has aunique minimum, z,

we conclude that z^ -» z.

S We conclude this chapter with a very simple method for unconstrained

minimization which does not require any derivative evaluations. It is particularly

effective when the function f (•)> which one wishes to minimize on k , is of the

form

8. f°(z) = V M-x*
i=l

For i = 1, 2,..., n, let £. be the i column of the n X n unit matrix, i.e.,

the |. are the usual co-ordinates for IR . Let v-^ v2> ••o v2n in (R , be defined

by, V]L =5^ v2 -5^ v3 -?2, vu =-52,..o v^ =Sn» v^ = -Sn. We can now

state the method of local variations.

9. The Method of Local Variations: Suppose azQ <= OR*1, and apL> 0are given.

Step 0: Set z = zQ, p = p^

Step 1: Set i = 1.

Step 2: Compute f (z + pv.).

Step 3: If f°(z +pv^,) <f°(z ), go to Step k.
If f (z + pvj > f (z ) and i < 2n, set i = i+1 and go to Step 2.

If f (z + pv.) > f (z ) and i = 2n, set p = p/2 and go to Step 1.

Step k: Set z = z + pv* and go to Step 1.

10. Remark: It is clear that this procedure can be made to be somewhat more

efficient by using past information in choosing the first ie{l, 2,..., 2n}

for the cyclic scan of the values f (z + pvi). The particulars of such

modifications are best worked out with respect to the specific class of problems

in which one is interested.

This method seems to have been known for quite a while. It was described in [EL]
and [C3]•
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i

The Algorithm (9) generates a sequence of points {z^} which lie in the

bounded set {z |f (z) < f (z0)}, and hence {z.} contains convergent
+Vi

subsequences. The point z. is the j consecutive value assigned to z in Step (k) of (9)

U. Definition: We shall say that a subsequence {zfc] of a sequence {z.}

generated by the Algorithm (9) is p-stationary if

f°(zk +pkvi5 -^^k^ i=1$ 2,,#" ^ '
where p. is the largest value of pused concurrently with zk in Step 3of (9).

(i.e., Zj^ =zk_1 + p±v±* f°r some *e C1' 2^««> 2n)-)
IS. Theorem: Let {z.} be an infinite sequence of points in IE? generated by

the Algorithm (9). Then (z.) contains p-stationary subsequences, and each limit

point of a p-stationary subsequence is alocal minimum or saddle point of F(»).
Proof: Since the set {z |f°(z) <f°(z0)} is bounded, starting with zQ, it is
possible to construct only a finite number of points z± satisfying, for a fixed

p>0, zi+1 =z± +pv.., j€= {1, 2,..., 2n}, and f°(zi+1) <f^). Hence, after
a finite number of steps, the Algorithm (9) will construct a p-stationary point

z. . Pursuing this argument, we see easily that {z.} must contain p-stationary
Pk> i»e.j the

subsequences {2^}, ksKc(0, 1, 2,...}, such that the/associated values of p,

converge to zero as k •+ ».

Now, let {zj, keKc {0, 1, 2,...} be any p-stationary, convergent

subsequence constructed by (9) and let z denote its limit point. Then, we have,

for each k e K,

13. f°(\ +Pk§d) > ^fc)' j=1, 2,..., n

Ik. f°(zk -pk§3) > Azk), j=1, 2,..., n

Applying the Taylor expansion to (13) and (lk) 9 we obtain,



15.

-6V

ofv(z +XJpk§.) 0
rfcg +pk \ j > f°(zk), j=1, 2,..., n,

Xj e [0,1]
oz*

Q df°(2U -lldP §,) 0
16. f°(zk) -pk £ K 3 > fU(zk), j=1, 2,..., n,

3z j

V? 6 [0,1] .

Hence, since zk •+ z , pk -4 0 and since f (•) is continuously differentiable,

we conclude that of (z )/dz = 0 for j =1, 2,..., n, i.e., that vf (z ) « 0,
that

so / z is a stationary point. The fact that it must be a point of local

minimum or a saddle point now follows by inspection.
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III. CONSTRAINED MINIMIZATION PROBLEMS

1. Penalty Function Methods

Penalty function methods for solving problems of the form

0 n
min {f (z) | zs ft elR ] were first proposed by R. Courant in 19^3 [Ck']. The

intuitive reasoning behind these methods is as follows. Suppose that we wish

to minimize f (z) subject to r(z) =0, with ze (Rn, and f°(#) and r(-)

continuously differentiable. Now consider the problem

1. minimize Yi(z) =f°(z) +Xi||r(z)||2, i=0, 1, 2,...

with 0 < Xq < X, < Xp>... If Xj > 0 is very large, the cost in not satisfying

r(z) =0 becomes very high in (l) and hence one may expect the solutions z. of

(1) to lie in, or close to, the set ft = {z|r(z)=0}. We also note that

«y.(z) =f(z) for all zeft, and hence yi(z.) <min {f°(z)| r(z) =0}. If
Xj > 0 is allowed to grow infinity, one may therefore expect that the values

Yi(zi) will grow monotonically to the optimal value, min {r (z) |r(z) =0}, and

that the z. will, converge to a z e ft which is optimal for (1).

There are two separate reasons for wishing to consider sequences of problems

such as (1), rather than to solve (l) for a single preassigned value of X. > 0,

to obtain an approximation to min {f (z) | r(z) =0}. The first is that one

really does not know how to pick such a X. and hence one prefers to observe the

growth of the values yAz*) and to stop when this growth becomes negligible.

The second reason is that if one started with a rough guess zQ and tried to

minimize y±(%) for \± > 0 very large, the term xj|r(z)|| would be extremely large

in comparison with f(z), thus swamping it. In addition, computer overflow would

be likely to occur. Thus, one would tend to increase the X. gradually, using z.,
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which minimizes y^/2)* as the starting point in minimizing y. _(z). We shall

return to computational specifics of penalty function methods after establishing

two of the better-known methods in this class. (The first is due to Zangwill p2],

the second to Fiacco and McCormack [PI], [F2].)

Exterior Penalty Functions.

Suppose that we wish to solve the following problem

2. P: min {f°(z) |ze ft}

0 n 1
f is a continuous function from R into R , and ft is a nonempty,

closed subset of IRn.

3. Definition: Asequence {Pi^)}^* of continuous real-valued functions
defined on R , is called a sequence of (exterior) penalty functions for the set

ft if for every i =0, 1, 2,...,

k. p±(z) =0 if and only if ze ft

and

p^(z) > 0 for every z^ ft

5« pi+l^z) > pi^z) for every z^ft

6« Pi(z) -» +« as i -♦ +» ,for every fixed z£ ft .

Now consider the sequence of problems

7. V min {f°(z) +p±(z) |ze(Rn}, i=0, 1, 2,...,

where the v^(') are exterior penalty functions for ft.

Let

8« b = min {r (z) |zs ft}

9- \ =min {f (z) + p±(z) JzelRn}, i=0, 1, 2,... .
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If we assume that b and the b. exist and that they are finite, then we have the

following result.

10. Lemma: The sequence {"*>.«}idQ satisfies bQ < b, < bg < ... < b. ... < b.

Proof: For i=0, 1, 2,..., let z^ e(Rn be such that

10a. b± •ffyz^ +Pi(zi)

Using (5), we obtain

10b. *i 1 *1*m) +*±l*±*) * f°(zi+i +W*na> =bi+i •

Now, using (k) and (10a) we get

10c. \>±< f°(z) +p±(z) s f(z) for all zc ft,

i.e.,

bA <min £f°(z) Iz e ft} =b ,

which completes our proof.

U. Lemma: Let {P^C*)}!0.^ te a sequence of penalty functions for the

constraint set ft, and let {z.}!°- be a sequence in Kn. If {z.}?_/, converges to

apoint z ;z. ^ ft for i =1, 2,..., and the seauence {P-COJi^-i is bounded,

then z e ft.

Proof: We shall prove this lemma by contradiction. Suppose that z is not in

ft, and let M> 0, be the bound on Pi(zi), i.e., 0< Pi(z±) < M for i =1, 2, 3,

Since z ^ ft, and, by (6), pi(z ) -♦ +», there exists an integer h* such that

p [z ) > 2M. Now, since p ,(♦) is continuous, there exists a ball B with center
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#

z such that for all z e B

11a. Ph,(z) > f

Kote that since pv,(z) =0 for z6 ft, Bn ft =$> the empty set. Now, z. -♦ z*

and hence there is an integer hw such that z. e B for all i > hw. Let H =

max {*W}> then for all i> k9 z± eBand, by (5) and (lla)

nb- 'Pi^) >PK(2i) > f >

which is a contradiction, since Pj(z.) < M. Hence z eft.

12• Sheorem: Suppose that for i = 1, 2,..., the problem p. defined in (7)

has a solution z^ Then any accumulation point of the sequence {z.}" - is

optimal for the problem p defined in (2) .*

Proof: Without any loss in generality, we may assume that z. •+ z . First, if

for any integer j,p.(z.) =0, then z. eft, and z. also solves the problem P

(since f (z) s f (z) + p. (z) for z e ft). Consequently, by Lemma (10),

bA =b for every i> j and hence P^z^ =0 for all i> j, since p.(z) > 0

for all z^ ft . Therefore for all i> j, z. e ft and is also an optimal solution
* 0

to problem P. Since ft is closed, z e ft, and, since f (•) is continuous,

0/ *N *
f (z ) « b, i.e., z is an optimal solution to the problem P.

Now suppose that z± ^ ft for i=0, 1, 2,... Since z. •+ z and f°(») is
continuous, r (z^) -♦ f (z ), and hence there exists a positive number M< •, such

1* 0If the set {z |f (z) + pQ(z) < b} is bounded, then, since this set contains the
entire sequence {z.}, {z } has accumulation points.
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that

13. |f°(Zi)|<M *« 1=0,1,2,...

Consequently, since f (z.) + P-jU.) <b for i =0, 1, 2,...,

Ik. pi^zi^ < b+M

and therefore, the sequence [vA**)}?^ is bounded. It now follows from

Lemma (11) that, z € ft and so, by the definition of b,

15. b< f°(z*)

But, for i=0, 1, 2,..., b>f0^) +V±(*±)9 and Pi(z±) >0. Hence
b > f(z ) and therefore we must have b = f(z ). Since z e ft and f(z ) s b, z

is an optimal point for P.

We shall now give some examples of penalty functions which satisfy the

properties stipulated in Definition (3).

*&• Proposition: Let JT: (Rn -> (R1, i=1, 2,..., m, be continuous functions

and let

17. ft «{zjf^z) <0, i =1, 2,..., m} .
n TFor each i &0, 1, 2,..., let p±: IR -HR be defined by

m

18. p.i(z) =^ V [maxC^z), 0}]a
j=l

where \± and a are scalars satisfying X.. > 0 and a > 1. if x > X
* "" i+1 1

fox i a0, 1, 2,..., and \± «+ +• as i -» », then {p.(*)}?* is a sequence of

penalty functions for the set ft.

Proof: First note that ft is closed since the functions t*"(»)9 i=0, 1, 2,..., m,

are continuous. Next, since **(•), J»1, 2,..., m, is continuous, q3(.) is
also eoutiiKOQa, *£tire
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18a. *qj(z) £ [maxjf^z), 0}]

Finally, since [q (0]° is continuous, p^O is continuous.
Since \. > 0, p.(z) =0 if and only if ze ft and p^z) >0 for all

z4 ft. Since X±+1 > \±$ i=0, 1, 2,..., Pi+1(z) >P±(z) for every zei ft .
r Pj[(z) -* eo,

Since X* -* +00 as i •+ w'for every z ^ ft. Therefore, by Definition (3) 9

{PJ.(0}!9=o is a sequence of penalty functions for ft.

18c. Proposition? For every i »0, 1, 2,..., the function pi(«) defined in

(18) is continuously differentiable on IRn if the functions :r"(0> i =1, 2,

..., k, are continuously differentiable on IR and a> 2.

2$° Proposition: Let r: lRn -+ IR01 be a continuous function on DR and let

ft « {z: r(z) = 0}. For each i =0, 1, 2,..., let the map p^ IR •+ IR be

defined by

20. PjL(z) - Xi||r(z)||«

where X. and a are scalars with \. > 0 and a > 1. If X.., > X. for i = 1, 2,
1 1 — 1+1 i

..., and X^ •+ +» as i •+ eo, then {P.j(*)}£_£ is a sequence of penalty functions

for ft. Also, pi(») is continuously differentiable on IRn if r(*) is continuously

differentiable on IRn and a > 2.
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30a. Proposition: Suppose that the functions r (•)> introduced in (16), are

convex, and that the function r(»), defined in (19) is affine. Then, for

i =1, 2,..., the functions p.(0, defined in (18), and the functions p.(0>

defined in (20), are convex. ^

20b. Iroposition: If {p! (•)}? r\ is a sequence of penalty functions for the

set ft-, and {P^C*)}!^ is a sequence of penalty functions for the set ftp, then

{Pj(O+pVOli^ *s a se<Juence of Penalty functions for ft- n ftp. Also,

min {pj(*)» PiC*)}!*^ is a sequence of penalty functions for ft- U ftp.

21. Remark: Exterior penalty functions can be used not only to transform a

.constrained optimization problem into a sequence of unconstrained minimization

problems, but also into a more tractable sequence of constrained minimization

problems. For example, suppose that we wish to minimize f (z) subject tor(z) = 0,

f(z)< 0 (r: IRn -♦ IR , f: DRn •+ IR01) and the function r(*) is not affine. Then we

cannot use any of the methods of feasible directions to be described later. Now,

suppose that {P* (•)}.«/) is a sequence of penalty functions for the set £z:

r(z) «= 0}, then, under suitable assumptions, we can use a feasible directions

method to solve the sequence of problems: min {f (z) + Pi(z) | f(z) < 0} to

obtain a solution of the original problem.

22. Proposition: Consider the problem min {f (z) | r(z) =0, f(z) < 0} where

f: [Rn •+ R,r: IRn •+ IE?1, f: |Rn -* IR . Let {PiCO}?^ be any sequence of
penalty functions for the set {z: r(z) =0}, satisfying the Definition (3) and

let zi be optimal for the problem: min {f (z) + p.(z) | f(z) < 0}. Then any

accumulation point z of [^±)±:s0 is optimal for the original problem.

Interior Penalty Functions.

We shall now consider a different type of penalty functions for solving

the problem:
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23. P: min (f°(z) |ze ft}

where f : (R -♦ IR is a continuous function and ft is a nonempty subset of IR .

o . .

We shall assume that ft = ft £ 0, i.e., that ft equals the closure of its

interior, and that for every a real, the set {z: f (z) < ctf} is bounded. We

now define a sequence of penalty functions for ft.

2k. Definition: A sequence {PiC*)}?^ of continuous real-valued functions
o

defined on ft (the interior of ft) is called a sequence of interior penalty

functions for ft, if for i =0, 1, 2,...,

o

25. 0 <Pi+1(z) <Pi(z) for all ze ft ,

26. Pi(z) -» 0 as i -4 »

o # then
27. if z, e ft for j = 0, 1, 2, z. -* z e dft, / vA**) ■♦ +» as j -» oo ,

Now consider the problems P. defined below

0 °28. PA: min {f (z) + p±(z) | ze ft}, i =0, 1, 2,...

29. Theorem: Let z. be optimal for P., i =0, 1, 2,..., defined in (28)*.

Then every accumulation point of the sequence {z,}. ,-> is optimal for the problem

P defined in (23).

Proof: If for i =0, 1, 2,..., we let

30. b± 4 min {f°(z) +p±(z) jzeft}

tLet zQ c ft. Then ft± &(zeO| f°(z) +p±(z) <Q^ =f0^) +P0(zQ)} c
{z I f (z) <ol}. Hence ft. is a compact subset of ft, and inf {f (z) + p. (z) |

z e ft} =inf {f (z) +p±(z) | z eft} =min {f°(z) +pj[(z) | z eft}, since f°(-)
and vA') are continuous.
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and set

30a. b = min {f°(z) |zc ft}

then we have

31. bQ > b- > ... > b. > b. - ... > b .

Since the b. form a bounded, monotonically decreasing sequence, they must

converge, i.e., b. -♦ b . Now, suppose that b / b, then from (31) , b > b.

0 / \ *
Since f (•) is continuous, there exists a ball B, with center z, the optimal

point for P, such that for all z e B

32. f(z) < b - i (b - b) .

o

Now take any z* e B 0 ft, then, since p^(z) 4 0 as i4 eo, there exists an integer

k such that for all i > k,

33. Pi(z') < J(b* -b)

and hence, for all i > k

3*. h± = f°(Zi) +Pi(Zi) <f°(z') +Pl(««) <b* - I (b* -b) ,

which contradicts our assumption that b. -» b . Therefore, b = b.

Now for i =0, 1, 2,... f (z.) + P^z.) < f (zQ) + P0(zQ), and hence

z. e {z |f (z) < f (zQ) + pQ(zQ)} which is bounded by assumption.

Let {z.}, je Kc {0, 1, 2,...} be any convergent subsequence of {z.}!°'9 with

liait point z e ft and suppose that z is not an optimal point for P. Then

f(z ) > b, and the sequence {(f(z.) - b) + p.(z.)}, j e K, cannot converge to

zero, which contradicts the fact that (b. - b) -» 0. Thus, all accumulation

points of {z.} are optimal for P. This completes the proof
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of the theorem. (Note also, that P^z^) ■♦ 0, since f(z^) - b +Pj(z^) -» 0

and z. -» z.)

35. Remark: To utilize penalty functions of the above type, we must have an

initial feasible solution in the interior of ft as a starting point for the

unconstrained optimization algorithm to be used for the solution of the 7±.

Since f. (z) + p. (z) -» + • as z approaches the boundary of ft, the unconstrained

opbifflization algorithm will then generate a sequence of points z., j =» 1, 2,...,

which will all be in the interior of ft.

36. Remark: Suppose that ft ={z |f (z) <0, i=1, 2,..., m}, where the f\>)

are continuous functions such that

(i) f*(z) ^0 for all ze ft,

(ii) the set {z | f (z) = 0, i = 1, 2,..., m} is contained in the closure
o

of ft,

(iii) for i =0, 1, 2,..., \±> \±+1 > 0, and \± •+ 0 as i -> «,

m

p. (z) = -X. \ -5 are penalty functions for ft.i 1 /^ fi(z)
i=l

then
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37. Remark: Suppose that we wish to minimize f (z) subject to z e I 1ft and
no iel 1

ft., J c I. Then we may use interior penalty
u ieJ x

functions for the sets ft., i e J, and exterior penalty functions for the remaining

fl±. (See [3]).

Computational Aspects"!"

The use of penalty functions requires us to minimize a sequence of functions

of the form f (z) +p.(z),zeIR . However, as we have seen in the preceding

sections, the various unconstrained minimization methods which are available to

us, usually compute only local minima, and, in addition, take an infinite number

of steps to compute these local minima. If we insisted on using penalty function

methods in a literal sense, therefore, we could not even get past minimizing

0 nf (z) + pQ(z), zeft , in finite time. One must therefore use truncation

procedures in approximating the minima of f (z) + p.(z). Also, if one uses a

method on f (z) + p^z), which can only compute points z. such that vf (z.) s0,

then one must also wonder as to the nature of the accumulation points of the z

sequence of z.. We shall now propose a truncation procedure for use with penalty

functions and shall, establish its properties for a few special cases.

Similar procedures can also be developed for use with interior penalty functions.

Thus, let us consider again our original problem,

38. min {f°(z) '| ze ft cIRn}

The remaining results in this section do not appear to have been published before,
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Let — P.(*)» i =0, 1, 2,..., be a sequence of penalty functions (inner or
ei

outer) for ft which we assume to be closed. We suppose that f (•) and p(») are

continuously differentiable and that e.= -4->e>0» We now state a "first

order" type algorithm for "solving" (38).

39. Algorithm: Choose c > 0, ze |Rn.

Step 1: Compute

kO. h (z) fi - [7f°(z) + i vp(z)]
e c

Step 2: If ||h (z)|| > e9 go to Step 3.

If ||h (z)|| < e, set c= f and go to Step 1.

Step 3: Compute y.(z) > 0 to be the smallest possible number such that

hi. f°(z + u(z)h (z)) + ~ p(z + ii(z)h (z))
e e e

0 1
< f (z + uh (z)) + - p(z + uh (z)) for all v- > 0.
— e e e • —

(or else use, the method for choosing u(z) described in (II.1.18) or (II.1.32), i.e.,
Set ]i(z) = Xi).

Step k: Set z = z + u(z)h (z) and go to Step 1.

We shall now show that in a number of important cases, this algorithm

will compute points z which satisfy necessary conditions of optimality for (38).

Case 1: Suppose that ft = {z |r(z) =0}, where r: IRn -♦ IR^ is continuously

differentiable and the Jacobian matrix *^ has maximum rank for all ze |Rn.*
dz

Consider the sequence of points z. constructed by the algorithm (39), start-

~ 1 Ping at an initial point zQ with p(z) = ^ ||r(z)|| . Within this sequence, we

Actually, it is enough to make the weaker assumption that sZLSL haS maximum
oZ

rank in an open set containing the sequence z. which the algorithm (39) generates.
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single out a subsequence of points z. at which the algorithm reduced, in Step 2,

the current value of c = e^ to a new (and smaller) value e. -.. For this sub

sequence {z.} assuming that it is infinite, we find that

k2. lyVH * *t
and e. -» 0 as j -* •, i.e., we find that

1*3.

Now, with p(z) = |||r(z)||2,

kh. y,> - -

|he (8j)|| - o.
J

A.) *11^1 '*'<'
Suppose now that z. •+ z , then,- since ^^ has maximum rank for all ze IR ,we

j oZ

conclude that r(z ) = 0, i.e., z eft. Next,

k5. ^P("J} " "\ o.
dr(z,) /dr(z.)

-1

i
dz

dr(z ) r Q

We therefore conclude from the fact that h (z.) -* 0 and from the continuity of
ej d

2g|5l and vf°(z), that

ir(z.) , .(2e1£1 forVlW1 «g(Q -°'-^ ^li6. lim

ej40 ^
dz dz

Thus, in the limit, (kk) gives

*7. vf°(z*) +
az

ty a 0

dz
vT(z ) i t

i.e., z s ft and satisfies the necessary condition of optimality (1.2.1). There

fore, if the sequence {z.} constructed by the Algorithm (39) for Case 1 remains in

a bound set, it will have subsequences of points {z.} which converge to points
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z e ft satisfying (1*7). This will always be the case if the set ft = {z | r(z) = 0}

itself is bounded. Generally, in order to ensure that the sequence {z.} stays

bounded requires some additional assumptions on f (•) and r(#).

Case 2: Suppose that ft = {z |f(z) < 0} where f: lRn -♦ IR is continuously

differentiable, and the Jacobian matrix —152 j^g maximum rank for all ze |Rn.
oz

m

Let us set p(z) =§ \(max {0, f^z)})2, or, setting J(z) ={j | f*(z)
i=l

>0, j e {1, 2,..., m}}, we may write p(z)=^ \ (r(z)) . Now, for the
i e J(z)

algorithm (39)

1*8. h (z4) = - yf°(z.) + V ~ ^"(zjX6j j d Z^ ej d
ieJ(z.)

Again consider the subsequence {z.}, j e K c {0, 1, 2,...}, of {z.} at which e. is

reduced to the new value c., n. Then
0+J-

1*9. h (z.) -4 0, j e K.
ej d

* _i *
Suppose now that z.-4z, jeK, then from (1*8) and (1*9) it follows that r (z ) < 0

for all i e {1, 2,..., m} since otherwise h (z.) -» 0, j e K, is impossible. Also,
ej °

since the Vf (z) are linearly independent for all z e (Rn by assumption, we must

have

50. Vf°(z*) + y )iivfi(z*) = 0
ie jfz*)

i fi<zi) i
where u = lim «— , j s K, exists and satisfies v > 0. By inspection of (50),

is J(z*)
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4t

we see that the point z e ft satisfies the necessary conditions of optimality

(1.2.1).

Exercise: Find conditions which ensure that the Algorithm (39) will construct

compact sequences only.

Exercise: Under what conditions could the modified Newton-Raphson method be

utilized in an algorithm of the type (39) ?
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2. A Method of Centers

The method of centers, which was introduced by Huard [H3]> [B5] bridges the gap

between the penalty function methods presented in the preceeding section and the

methods of feasible directions to be presented in the next section. Depending

on one's point of view, the particular version of the method of centers which we

are about to present can be considered to be either a parameter free, interior

penalty function method, or else a parameter free feasible directions method.

Consider again the problem

1. min [f°(z) |f*(z) <0, i=1, 2,..., m}

i n 1
where f: IR-»lR,i=0, 1,..., m are continuously differentiable functions.

Suppose that we have a zQ e ft =[z |jt(z) < 0, i=1, 2,..., m} and that the set

ft(zQ) ={z |f°(z) -f°(z0) <0; f^fz) <0, i=1, 2,..., m} is compact and has
an interior. The gyst of the method of centers is to pick z^, the successor of

zQ, to be a point well in the interior of ft(zQ) (i.e., in the "center" of ft(zQ))

and then repeat the construction. When the "centering" of z., is defined in terms

of giving a minimum to a suitably defined distance function, convergence to a

stationary point can be established [B5].

Here we present a version of the method of centers which is considered to be

the most successful one so far, and which can be established by means of the

convergence theory presented in Theorem (1.3.1). Unfortunately, the original

heuristic ideas involved in the methods of centers will be lost in the process.

First, note that if z is optimal for (l), then, by a trivial extension of

Corollary (1.2.6),

2a. min (max {<vf°(z),h>, f*(8) + (vf1^),^, i=1, 2,..., m}) = 0,
heS

where S is any set containing the origin in its interior.
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j n 1
|h | < 1} and let cp: IR -♦ (R be defined by

2b. <p(z) = min (max [<vf (z),h>, -r(z) + (vfr(z)9h)9 i = 1, 2,..., m})
heS

* #

Thus, if z is optimal, then cp(z ) = 0.

3. Remark: Note that cp(z) can be calculated by solving min a subject to

a -<vf°(z),h> >0,

k. <j - r"(z) - <vr(z),h> > 0, i =1, 2,..., m

I*1!*!,

which is a linear programming problem. Let fo(z), h(z)) denote a solution of (k),

then cp(z) = a(z). Whenever o(z) = 0, and the optimal h is not unique, we shall

set h(z) = 0.

Also note that cp(«) is continuous because both r (•) and vr (•) are continuous

by assumption,for i =0, 1, 2,..., m.

t
5. Algorithm: Suppose we are given a zQ e ft.

Step 0: Set z = zQ

Step 1: Solve (k) to obtain a vector h(z). If h(z) =0, stop, otherwise go to

Step 2.

Step 2: Compute u(z) to be the smallest positive scalar such that

6. d(z+)i(z) h(z), z) = min d(z + uh(z), z) ,
u > 0

where

7. d(z',z) £ max {f°(z«) -f°(z), f^z'), i»l, 2,..., m} .

4.

To compute azq e ft we apply Algorithm (5) to the problem min{<j|a -f*(z) > 0,
i=1, 2,..., m} for which we construct an initial feasible solution (oq/z^) by
taking zQ arbitrary and oQ =maxff1^)] ie(l, 2,..., m}}. Since ft has an
interior, there will be a finite integer k such that o, < 0 and z. e ft, where,
for j a1, 2,... (oj>Zj) are the successive pairs constructed by (5).
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Step 3: Set z = z + u(z) h(z) and go to Step 1.

Note that the function d(-,«) acts as a "distance" function and by minimizing it

we choose a point on the ray {z'| z' = z + uh(z), u > 0} which is "well centered"

in the set ft(z).

Theorem: Let zQ, z^9 Zp,... be a sequence generated by the algorithm (5), i.e.,
+v>

for i =1, 2,... zi is the i value assigned to z in Step 3. Then either the

sequence is finite, ending at zfc and cp(z^) =0, or else {z.} is infinite and

every accumulation point z of {z.} satisfies cp(z*) = 0,

Proof: It is easy to see that for any z e ft, if h(z) as computed in (k) is not

zero, then cp(z) < 0 and there is a z» = z + uh(z) in the interior of ft(z) such

that d(z',z) < 0. Hence, the sequence construction can only stop in Step 1, and

this can happen at zQ = zfc if and only if cp(z.) =0. Thus, the case of {z.}

finite is trivial.

Now let us consider the case when {z.} is infinite. To prove this part, we

shall show that the assumptions of Theorem (1.3.1) are satisfied with T = ft,

c(-) = - f (•)> a(-) defined by the Algorithm (5), and z e ft defined to be

desirable if and only if cp(z) =0. In fact, given a z e ft such that cp(z )< 0,
•x- •*•

we only need to show that there exist an e > 0 and a 6 > 0 such that for all

ze ft satisfying ||z - z || £ e 9

8. - f°fe(z)) +f°(z)> 6* .

Let cp 8 <p(z )< 0 and let h(z )be computed as in (k), with z =z . Since <p(«)

is continuous, there exists an e > 0 such that

9. cp(z) < 9 /2 for all z <= B(z , 2e ),

where B(z , 2e ) =ft n {z | ||z - z*|| <2e*}. Now, for all z e B(z*, e*)> and
X > 0,

10- f°(z +Xh(z)) = f°(z) +X<vf°(z +§h(z)), h(z)>

where § e [0,X].
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Since (vf (z), h(z)> < 9 /2 for all z e B(z , 2e ) and since (vf (•)>, •> is

uniformly continuous onB(z,2e )xS, and S is compact, there exists a

X > 0 such that (see I.l*.7)

I 11. f°(z +Xh(z)) -f°(z) <X9*A

for all ze B(z , e ) and for all X e [0,\ ]. Now, since 9(z) < 9 /2, we must

have, for all z e B(z , 2e ) and i =1, 2,..., m,

12. f*(z) +(vf^z), h(z)> <9*/2 .
Also,

/ since the r (•), i = 1, 2,..., m, are uniformly continuous on B(z , 2e ) and

S is compact, there exists a X > 0 such that (see I.V.l)

13. If^z +Xh(z)) -f^z)! < |cp*/8|, i=1, 2,..., m,

for all \ e [0,X ] and ze B(z , e ). Since the (VfL(')9 •> are uniformly

continuous on B(z , 2e ) X S there exists a \ > 0 such that (see I.l*.7)

1*. |<V**(z +Xh(z)), h(z)> -<7fi(z), h(z)>| < I9*/8|, i=1, 2,..., 1

for all z e B(z , e ) and for all \ € [0,X ]. Finally,

15. f*(z +Xh(z)) =f^z) +X(Vf^z +C^(z), h(z)>, i =1, 2,..., m,Jc [0,X].

0 .1 .2. __ _ , , v _, * *.

m

we have,

Now let Xjjj = win {X , X , X }. Then, for any vector z + Xh(z), z c B(z , e )9

16. f°(z +Xffih(z)) - f°(z) <T^/fB

and

W* -T(z +Xmh(z)) <max f9*/8> Xm9*/8}> i =1, 2,..., m,
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of

either because r (z) < 9 /k and because/(13); or because f^z) > 9 /k9 and then

by reason of (12), (ll*) and (15). Consequently, for all z e B(z , e )»
*

18. f°(a(z)) -f°(z) <d(a(z),z) < max {^- ,%•} <0
* * *We now set 6»-max {X^ %-> -?r }and the proof is completed.

19. Remark: When y(z) is chosen so as to minimize f (z + uh(z)) - f (z) subject

to u > 0 and (z + uh(z)) e ft, the algorithm convergence properties remain the

same. It was stated in this form by Topkis and Veinott [Tl] and is then a

"feasible directions" algorithm of the type to be discussed in the next section.

The application of this algorithm to optimal control problems is essentially

the same as of the methods of feasible directions and will be discussed towards

the end of the next section.
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3. Methods of Feasible Directions

* In the particular version of the method of centers presented in the

preceeding section, we had to solve the linear programming problem (2.h) in

order to find a half line, {z1 | z* = z + v-h(z), p. > 0}, on which the next

point was going to lie. This linear programming problem always had (m+l) linear

inequality constraints in addition to the constraints |h | < 1. We shall, now

consider a class of methods which were first introduced by Zontendijk \Zk~\9 as

well as some new modifications. The major difference between these methods and

the method of centers, presented in the preceeding section, lies in fact that

only a small part of the constraints used in (2.k) are now required for solving

a problem of the form (2.k) to find a half line on which the next point will lie.

However, since only part of the constraints are used in the computation of this

half line, it becomes necessary to use "an e-proceedure" so as to keep tab on

the constraints which are not included. This e-procedure is known by the names

of "antizigzagging precaution" or "antijamming precaution".

Consider again the problem

1. min {f (z) | f (z) < 0, i = 1, 2,..., m}

where for i - 0, 1,..., mf: (R -*(R is continuously differentiable. We shall

assume that (l) has a solution. As we have already indicated, this can be ensured

by requiring that for every a e IR , the set {z | f (z) < a} be compact, or else
A iby requiring that the set ft = {z| f (z) < 0, i =1, 2,..., m} be compact, or that

j the set (z |f (z) -f (zQ) <0, f^fz) <0, i=1, 2,..., m) is compact for ogiven

sQ e ft which is then used as a starting point.

; We recall that in (1.2.8), the set J (z) was defined for any e > 0 and
e —

z e = ft, by
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2. Jc(z) = {0} (^J {i | f*(z) +e>0, i s {1, 2,..., m}} ,

and that by (1.2.6), if z is optimal for (l), then

•J A
3. min max A (vf (z),h) = 0 ,

heS i e JQ (z)

where S is any subset of |R containing the origin in its interior.

k. Definition: Let S be some compact subset of (R containing the origin in

its interior. For e > 0, we define 9 : ft -» IR as

cp (z) s min max (vf^fz),^
e h e S i e J (z)

e

5. Remark: It is not difficult to see that J (z) and 9 (z) have the following
5 C

properties: Suppose z e ft is given. Then,

5a. For any e > eS J (z) z> J ,(z) and hence 9 (z) > 9 ,(z) >
e c c c

5b. For any e > 0, there exists a p > 0 such that J , (z) = J (z);
e+p e

5c. For any e > 0, there exists a p> 0 such that J (z') c J (z) for all z* s
e €

B(z,p) Ifz'efl I ||i'-*|| <p}.

To compute 9 (z) we solve the problem

6. min {o I o •*• (vAz),!!) > 0 for is J (z); h e S} .

The optimal pair a (z)> h (z) for (6) satisfies 9 (z) =r a (z) ^

max (vf^z), h (z)>. In solving (6), we shall always set h(z) =0
ie J (z) e C

c

whenever a (z) - 0 . Note that a sensible choice for S
e

would be S=(h I[h*! <1}, or S=[h |||h|| < 1}.

The algorithms we are about to present in the form of an idealized computer

program will find points ze ft such that cp0(z) =0. Note that these algorithms

are parameterized by the particular choice for the set S, i.e., for each choice

of S we get a different algorithm.
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The procedure (7) 9 below, is a minor variation of a method given by

Zontendijk [Zl*].

* 7. Algorithm: Suppose that a zQ e ft' and an 6q > e* > 0 are given.

(See next page)

TTo find azQ e ft, solve, using the Algorithm (7), the problem

min {CT | r(z) -a < 0, i «1, 2,..., m}, with initial, feasible point (zf, a1)

where z* is arbitrary and a* =max {^(z1) |i=1, 2,..., m}. Since the optimal
value 0 for this problem satisfies a < 0,
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Step 0: Set z = zQ

* Step 1: Set e(z) = e0 (We shall use the abbreviated notation e = e(z) .)

Step 2: Compute 9 (z) and h (z) by solving (6)
— e €

Step 3' If 9 (z) < -e> set h(z) = h (z) and go to Step k.
6 6

If 9 (z) > -eand e < e', compute 9n(z).

If 90(z) = 0, set z = z and Stop.

If 90(z) < 0, set e =e/2 and go to Step 2.

If cp (z) > -e and e > eV set e - e/2 and go to Step 2.
e

Step k: Compute \(z) > 0 such that

8. \(z) = max {X | f (z + Qh(z)) < 0 for all. a e [0,X]

and i = 1, 2,..., m} .

Step 5* Compute u(z) e [0,x(z)] to be the smallest value in that interval such

that

9. f°(z +u(z)h(z)) =min [f°(z +uh(z)) |11 e [0,X(z)]} .

Step 6: Set z - z + y.(z) h(z) and go to Step 1.

10. Theorem: Let zQ, z.? z ,..., be a sequence in ft constructed by the

algorithm (7), i.e., z_, z-,..., are the consecutive values assigned to z in

Step 3 or Step 6. Then, either the sequence {z.} is finite and its last element,

say z^, satisfies 90(z0 =0 or else {z.} is infinite and every accumulation

point z in {z.} satisfies cp0(z) =0.

Proof: Obviously, the algorithm (7) defines a map a: ft -♦ ft. We shall show

that this map together with the map -f (•)(-f°(«) taking the place of c(-) and ft the
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place of T) satisfy the assumptions of Theorem (1.3.1). For the purpose of

* applying Theorem (1.3.1) we shall agree to call a point z e ft desirable if

90(z) =0.

»• First we must show that the characterization (1.3.2) is satisfied. Thus,

suppose that zn e ft satisfies 9n(z0) = 0. Then, since for all e^ > 0, J (z-) d

Jq(zq), we must have -eQ <%(z0) <cp (zQ). Hence, after a finite number of

halvings of eQ in Step 3> the algorithm will find that 90(zQ) =0 and will set

zQ = zQ, i.e., a(zQ) = zQ. This is in agreement with (1.3.2).

Now, given a point zQ e ft, the algorithm can only construct a new point

z.^ such that f (z^) <_ f (zQ). Hence, suppose that the algorithm sets z = zQ

(i.e., zQ = z_ in Step 3 or Step 6). If zQ was reset to z in Step 3, 9 (z) =0.

Suppose zQ was reset to zQ in Step 6, i.e., u(zQ)h(z0) =0.- Then this implies

that h(zn)= 0 and hence that 9^ (z.) = 0, i.e., that 9 (zrt) > -e_: a condition
u e0 0

in Step 3 which does not permit a continuation to Step 6. Thus zn can only be

reset to the value zQ in Step 3 and then it satisfies 90(zQ) =0.

We shall now show that Condition (1.3.3) is satisfied. Let zQ e ft be any

point such that 90(zQ) < 0. Then, from (9) and (l.lj-,7),

11. AzQ +>i(z0)h(z0)) -f°(z0) i -6Q <0.

It now follows from (5c) that there must exist a p• > 0 such that

12. J (z) c J (zA) for all z e B(z„, p*) ,c0 e0 0 0

/ where B(zQ, p') »(z |zs ft, ||z-z0|| < p1} and eQ is the value of Gused in Step 2

in computing the h(zQ) which is then used in Steps k9 5, and 6 (i.e., it is the

{ last value of gused in conjunction with the given z = zQ). Let m: P -♦ CT be

defined by

•j» . ' *

If h(zQ) /0, then by construction cpe (z0) < -e0 < 0, (see (5)). It now follows .
from (I.lf.l) and (l.l*.7) that p.(z0) / 0.
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_ i
m(z) = min max <Vf (z),h)

heS i e J (z_)
e0 0

Then m(«) is continuous (see (I.H.18)) and there is a p" > 0 such that

Xh. |m(z) -9 (zQ) |< e0/2 for all ze B(zQ, p").

Let p --- min fp1, p"}, then, because of (12) and (1*0 and the fact that 9 (zQ) <

-e0, we have, for all ze B(z~, p), that

15. 9 (z) <i(z) < -e0/2 •
e0

But J /o(z) C J (z), and hence, for all z s B(zn, p), we have
V2 e0

16. 5 m(z) <9„ (z) < -Sq/2 .

We therefore conclude that for all ze B(zQ, p) the algorithm (7) will use a

value e(z) > e0/2 in computing the h(z) in Step 2 for use in Steps k9 5and 6, i.e.,

for all zeB(zQ, p) and for all ieJ ,* (z), <vf1(z), h(z)> <-eQ/2.
Now, for any ze B(zQ, p) and i =0, 1, 2,..., m, we have, by the mean value

theorem, that

17. 'f*(z +Xh(z)) =fX(z) +X(fXz +£h(z), h(z)> ,

where Qe [0,\]. Since the functions <Vf1(»), •>, i =-0, 1, 2,..., m, are uniformly
x (see (IJ4.7))

continuous on the compact set B(zQ, p) X S, there exists a \ > 0/such that for

all z e B(zQ, p/2), and for all ie {0, 1, 2,..., m},

18. Kvf^fz * Qh(z))9 h(z)> -(vf^z), h(z)>| < SqA ,

for all Ce [0,X ]. Similarly, since the functions £*"(•) are uniformly continuous
2 .(see (I.U.I))

on B(z0, p) and since S is compact, there exists a \ > O'such that for all ze

B(zQ, p/2) and. for all is {1, 2,..., m},
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!9- 1^(2 +Ch(z)) -f*(8)| <e0/2 ,
2

for all £ e [0,\ ]. Now, for each zg B(z„, p/2) and for each iej , x(z),
u e(z)

i
<Vf (z),h(z)> < -eQ/2, and for each zg B(zn, p/2) and for each ig J ,,(7)f.

u e(z; '

f(z) <-e0/2. Hence, setting \n =-. min [X1,*2}, we have, for any zeB(zQ, p/2)

3°a- f(z +V^2)) "**(z) <XmeQA for all isJi(z) (z) ;

30b. f (z + Xmh(z)) <0 for all ie J , .(z) .
6\Zj

Since for all zg B(z , p/2) we must have n(z) > X , we are led to the
t• ~ m

conclusion that

21. -f°(z +u(z)h(z)) -(-f°(z)) >\meA, for all zgB(zQ, p/2) ,

i.e., that condition (1.3.3) is satisfied. This completes our proof.

We have already observed that by setting S-{h eiRn| \\?-\ <l}, we can

compute 9e(z)(z) and h(z) by solving alinear programming problem, i.e., these

quantities are obtainable by finite step procedures. Thus, the weak link in the

algorithm (7) seems to be the requirement of solving exactly equations of the

form f1(Z() +Xh(zQ)) =0for X(zQ) and of minimizing the function f°(.) along the
linear segment. {z| z=zQ +uh(zQ), y. e [0, X(zQ)]}.' Neither of these operations
can be performed in a finite number of steps. The following propositions are

obvious in the light of Theorem (I.3.I6) and show to what extent these operations

may be approximated without affecting the convergence properties of the algorithm

(7). The reader should have no difficulty in adapting them also for algorithm
(2.1?) in which the requirement of minimizing d(z',z) exactly /^the sLc sort

tj
e
(z )(z )denotes the complement of J^ )(z )in [0, 1, 2,..., m}

"P XO—p—ow—ona—jjuhw—n.w
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of difficulty.

22. Proposition: Suppose that in Step 6 of the Algorithm (7) zQ is reset to

zQ +iiifzJ, where, for a fixed pe (0,1], n0 satisfies

23. (f°(z0) - f°(z0 +U0h(zQ))) >P(f°(z0) - f°(z0 +H(z0)h(z0))) ,

where u(zQ) is defined as in (9). Then Theorem (10) remains valid, (c.f. (II.1.15))

2U. Proposition: Suppose that the functions f (•) are convex, and that the sets

{z | f (z) < 0} are compact for i =0, 1,..., m, and that Steps k and 5 of the
+

Algorithm (7) are replaced by the Steps U1, 5' below. Then Theorem (10) still

remains valid.

Step k': Assume an as (0,l/2) is given. Compute X > 0, i =0, 1,..., m, to

satisfy

25a. (l-a)X° <vf°(z),h(z)> < f°(z +X°h(z)) -f°(z)

< aX°<vf°(z),h(z)> ;

25b. Xi(a) (&*•(*)Mz)) < f*(z +X^z)) -f*(z) <-f1^) ,

for i/0,iej (z),
e

25c -X*a <f*(z +X*h(z)) < 0,for ie J (z)
— e

Step 5': Set u(z) =min {X°, X1,..., x"1}.

26. Proposition: Suppose that a p> 0, ape (0,1) and an ae (0,1) are given,

and suppose that Steps h and 5 of Algorithm (7) are replaced by the Steps U", 5"

below. Then Theorem (10) remains valid.

Step V: Compute the smallest integer k > 0 such that

27a. f°(z +J3kph(z)) -f°(z) -pkp o<vf°(z) ,h(z)> <0t+

27b. f^fz + pkph(z)) <0 for i=1, 2,..., m .

Step 5": Set >i(z) = £kp.

•^The reader should compare this procedure with (II.1.18).
tipk is 3 to the power k.
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The introduction of,e into the Algorithm (7) ensures that for each non-

optimal zn e Q9 there exists a p> 0 and a X > 0 such that for all z e fl,
0 .all m

||z-zJ| <p, we have z+Xh(z) g ft for/x <= [°^m]> i.e., it ensures aminimal

step size about each non-optimal zQ e= ft. This effect was used in the proof of

Theorem (10).

A second important, but not entirely independent, effect of using c in (7)

is to ensure that we do not solve systems of simultaneous equations of the form

f (z) -- 0, i e I, for points on the intersection of surfaces when these points

are not optimal. The solution of such a system of nonlinear equations by

gradient methods requires an infinite number of operations and hence solution

points would become convergence points of a sequence zQ, z_, Zp,..., constructed

by an algorithm not using an e-procedure. Thus, an algorithm would jam (or zig

zag) without "the antijamming precautions" defined by the use of e in the

algorithm (7).

Equality Constraints.

We shall now indicate how the exterior penalty function method (1.39) can

be combined with the method of feasible directions to solve problems of the form

28. min {f°(z) If(z) * 0, r(z) =0}

where f°: \Rn + IR , f: lRn -♦ OR1", r: (Rn -♦ IR^ are continuously differentiable.

We shall assume that the matrices ° \z/ and °*W are of maximum rank for all
oz oz

z in a "sufficiently large" open set containing the set {z | f(z) 5s 0, r(z) = 0}.

We shall also assume that the set {z | f(z) ^ 0) has an interior.

To solve (28), we can apply Algorithm (7) (or one of its modifications) to

the problem

29. min [f°(z) +~77 ||r(z)||2 |f*(z) <0, i =- 1, 2,..., m} .

where e" > 0 and is driven to zero by modifying the Algorithm (7) as follows.
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We assume that we start with c" > eQ > eS with e" fairly large, and that we have
A i» a zQ g n ={z |f (z) < 0, i =1, 2,..., m}. We also introduce scale factors

p», fi» c (0,1)

« 30. Algorithm: '

Step 0: Set z = z_
• — *— 0

Step 1: Set e(z) - eQ (e(z) .-= 6).

Step 2: Compute cp (z), h (z) by solving (6) with

f°(z) + —T, ||r(z)||2 taking the place of f°(z).

Step 3: If cp (z) < -e, set h(z) = h (z) and go to Step h.
6 C

If Jp€(z) >-e, and c<eS set c1 =P* €*, j" =3"e" and go to .7tep 1.
If 9 (z) > -c, and e > e'> set e • c/2 and go to Step 2.

Step k: Compute X(z) > 0 such that

31. X(z) =max {X |f*(z +oh(z)) <0 for all ae [0,x] and i=1, 2,..., m).

Step 5: Compute >i(z) e [0,X(z)] to be the smallest value in the interval / such that

32. f„(z +u(z)h(z)) = min {f°„(z +iih(z)), y. e [0,x(z)]) ,

where

33. f°,(z) * f°(z) +^t||p(z)||2
Step 6: Set z = z + u(z)h(z) and go to Step 1.

somewhat

We may proceed^as for the Algorithm (1.39) to establish that the sequence of
points {z±}, computed by the above algorithm, may have at least one subsequence which

/ converges to apoint zsatisfying the necessary condition of optimality (see (1.2.3)),

This method does not seem to have been published before,



31*.

35. p. £ 0, <]i,f(z)> = 0 .

& It is also possible to introduce some elements of the modified Newton-

Raphson method into feasible directions algorithms,. The manner in which this can

be done will be sketched out towards the end of the next section, and will then

be discussed in detail in Section 5«

-95-

-vf (z) + -^ *+I"5T1 * • °
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h. Further Applications to Optimal Control

We shall now show, by means of two examples, how the Algorithms (2.5),

(3.7) and (3.30) (and their modifications) can be applied to certain classes of

optimal control problems.

Case 1: Consider the optimal control problem,

\ k-1

1. minimize > f, (x. ,u.)£ fi(v^
i=0

subject to

xi+1 -x± ^fi(xi>ui^ * =°> 1>*--> k"1>

•1

with x. e Rv, u. e R restricted as follows

3a. xQ -Xq, qH\) <0 for j=1, 2,..., m,

3b. 1^1 < 1, i=0, 1,..., k-1 .

Setting z = (tu, u-,..., u. ,), this problem becomes

H. min {f (z) If^(z) <0, i^1, 2,...., m ;

|u.| < 1, j - 0, 1,..., k-1] ,

where

i=0

/ 6. ^(z) = q1(xk(z)) ,

and x.(z), i =0, 1, 2,..., are determined by xQ(z) - xQ and

7. xi+l^ "xi^ r; ^^(z),^), i _- 0, 1, 2,..., k-1 .

k-1

f°(z) = \ f^(xi(z),u:i) , i=1, 2,..., m
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The problem (k) is in standard form for the Algorithm (3.7), since

* 111.| < 1 is equivalent to the pair of inequalities u. - 1 < 0, -1 - u. < 0,
. ^ " *~

provided we assume that P. ={z |f^z) <0 i=1, 2,..., m; |u.| < 1, j=0,1,...,k-1}
has an interior. «*

* Thus, the only thing that remains to be done is to see how to utilize the
%

/

dynamical structure of (7) in the calculation of the various required derivatives

for (3.7) • We note that we have already developed a procedure for calculating

vf (z) in Section II.5 to which the reader is referred. To calculate vf^z),

i e {1, 2,..., m}, we note that

Hence, for i = 1, 2,..., m,

9. ^~u^" = ("or— >Vq^x^fz))), j=0, 1,..., k-1
o j

But by (II.5.8),

10. -r- = $

ox (z) 3f.(x.(z),u )
K - H 3 1_

du k,j+l 0u.

where $. . , is a \> x v matrix calculated from
k,j+J-

df1(x.(z),u.)
n- *i+l,j+l-*i,j+l = 5x7 *i,j+l'*j+l,j+l =I (the identity matrix),

i =• j+1, j+2,..., k,

Thus, from (9) and (10), for i = 1, 2,..., m, and j =^0, 1, 2,..., k-1,

of*(z) of.(x (z),u.)
"du*^ =< ' ou. >$k,j+l v* (xk(z))>12.

0 3

Referring to the development in Section II.5 we now see that the jT ' can
«j

be calculated as follows for a given z. First calculate the x.(z) , j =0, 1,
j

2,..., k, using (7), with x^z) =xQ. Next, for i = 1, 2,..., m, calculate the

vectors p^ ^, Pj+^ i>#">Pfc i> in K » from
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/3f (x,(z), u.)\T

T iThis yields p^ =$k^ vq (x^z)) and hence, for i=1, 2,..., m, and j=0, 1,

c.9 *.., k—l,

Thus, at no time do we really need to manipulate particularly large arrays in

calculating the desired derivatives. Next we note that the linearity of the

inequalities |u.| < 1, which must be satisfied by the u., can also be exploited.

Thus, to calculate cp (z), we must solve by (3.6) (with S ={h I In1! < 1}), i.e.,

we must solve

15. minimize a

subject to

* such that r (z) + e> 0;*
15a. a - <vx(z),h> > 0, for i = 0 and all i e {1, 2,..., m)/

15b. a -h** >0 for all j such that u. -1+ e>0

15c. a + h3 > 0 for all j such that -u. - 1 + e> 0

15d. |hd| <1, j=0,1,..., k-1.

Algorithm (2.5) may be used in a similar manner.

To solve problem (15) efficiently, one should use generalized upper boundary

techniques (Sec. [IV]). With these techniques one would have to invert matrices

whose dimension is governed by the number of inequalities in (15a) only.

Alternatively, one may compute a feasible direction h at z by solving
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16. Minimize a subject to

16a. a - <vf (z),h> > 0 for i = 0 and all ie" {l,...,m}

such that r (z) + e > 0

16b. -h** > 0 for all j such that u -1 + e> 0
j

l6c. h** > 0 for all j such that -u.-l + e > 0

l6d. |hJ| < 1, j--0, 1,..., k-1

The justification for (16) can be obtained as follows: Consider for the

moment problem (3.1) and let jr(z) c J (z) and J^(z) c J (z) be such that
Az) UJ?(z) =J (z) and for all ie J*(z), f^z) be affine.
e e c c

17. Definition: For e > 0, let 7) : G + W" defined by
•- €

T)c(z) «Min {a|a - (vf^z) ,h> >0, i e J^(z); - (^(z)^) >0,ie j£(z) ;heS],
It is now easy to show that

(a) T] (z) < ^ (z) < 0 for all e > 0

(b) If z is optimal for (3.1) > then T) (z) = 0.

(c) Can use !]_(•) instead of q> (•) in Algorithm (3.7) without upsetting the

convergence properties of the algorithm.

Case 2: Consider the following simple problem:

k-1

(llx^Xj II + u± )
i=0

We number the components of h in the same manner as the components of the control
0 i k-1^ sequence z, i.e., h ~ (h , h ,..., h. ).



-99-

subject to

* l8d. xi+1 =Ax.. +bu^ i=0, 1,..., k-1, x± eRv, u± eE1,

with the boundary conditions Xq = xQ , xfc = x^ , and the u. e [-1,+1] for

* 1=0,1, 2,..., k-1.

Assuming that this problem is "nondegenerate," i.e., that p° = -1, the

necessary conditions of optimality stated in (1.2.1*0 become for this problem:
* A * A * A

if "Uq, u^..., Uj^ and xQ, x.,..., x. are optimal for(l8), (l8a), then,

19. xi+1 =*Ax± + buA, i =0, 1,..., k-1 ,

So, x0 =x*, ^ =x^

and there exist multiplier vectors p., p ,..., p in IRV, satisfying

21. p± = A pi+1 - (x±-x± ), i =0, 1, 2,..., k-1 .

such that (from (1.2.17)),

22. vl± = sat <Pi+1> b), i =0, 1,..., k-1 .

Substituting from (22) into (19), we obtain

23. xi+1 = Axj, + b sat <Pi+1> b>

A A A

Thus, to find the optimal control sequence, u^, u-,..., u^_n> together with optimal

trajectory, Xq, x^..., x^, we must solve (23) and (21) (and use (22)) with the

g mixed boundary conditions xQ « xQ , xfc = x^ . Now, in (23) 9 sat <p. ., b> is not

continuously differentiable in p. . and hence we cannot apply the modified Newton-

^ Raphson method (II.3.2) to this problem (c.f. Section II.5).

However, we can apply Algorithm (3.30), as follows. We construct a penalized

cost function, with z= (uq, u^..., \„1^ and €" >° larSe>
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k-1 k-1

,0 ,_x A 1 V7 i! /_n *m2 V7 .. 2 . 1 „ ,„N „ *„?
V

i^l idO

f°,(«) 4 i \ i|Xi(z) -X.Y+ \ V^IKW -**

Then, we apply Algorithm (3.30) to min {f „(z) | |u.| < 1, i ^ 0, 1, ?.,..., k-1}.

To evaluate cp (z), for a given z, we solve the linear program,
6

25. minimize <j

subject to

25a. ct - <vf t.(z)>h> > 0

25b. a - ha > 0 for all j such that u. - 1 + e> 0

25c c + hJ > 0 for all j such that -u. - 1 + e> 0

25d. |h^| < 1, j=0, 1, 2,..., k-1

where we calculate yf u(z) as indicated in (II.5).
c

AnExtens^njof^^goidt^^

In computing cp (z) by (15) or by (25) we may often find that the

inequalities (15b), (15c) (or (25b) and (25c)) can be quite numerous and may

therefore have an appreciable effect on the computation time, even if special

linear programming codes are used (such as described in [VI, V2].

Wo shall now present afew modifications of the Algorithm. (3.7) which are more

suitable for use with optimal control problems. Consider again the problem

26. min {f°(z) If^z) <0, i=1, 2,..., ra]

where the f^(m)9 i =0, 1,.'.., m, are continuously differentiable functions from
n T

(R into IR' .
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27. Definition: For e > 0, let cp : fl -» (R (ft - [z | fX(z) < 0, i - 1, 2,...,m})

* be defined by

28. o (z) = min {<vf°(z),h> | <vf*(z),h> +e<0
c

fori/0,isJ(z);heS]
€

where S is any compact set containing the origin in its interior. (This function was
first used in [Z5].) n
29. Proposition: Suppose that for every z <= a there exists a vector hs(R' such

.that (Vf^z) ,h> <0 for all i /•- 0, ie JQ(z). Then, for any ze 0, cpQ(z; :0

if and only if 90(z) =°«

Proof: We give a proof by contraposition.

===£> Suppose that for some ze 0, cpQ(z) <0> then by inspection, cpQ(z) < 0,

i.e., 5^(z) '•= 0==>90(z) =0.
< Now suppose that for some z<= ft, cpQ(z) <0, with cpQ(z) =<vf (z) ,h).

Tnen <7f°(z,»,h> <0, <7fi(z),h> <0, i e JQ(z), i/OandheS. Let he !Rn be
1

such that (yf^z),*!) < 0. Then, since S has an interior, there exist a X > 0

such that hSX^h +\2h) e Sand (vT^z),^) <0 for ie JQ(z), i.e.,

£ (z) <0=^cp0(z) <0, which is equivalent to the statement that cpQ(z) -0

• >y (y.) _0. This completes our proof.

Thus, under the assumptions stated in (29) > finding points z e a which

satisfy cp0(z) =0 seems to be about as good an idea as finding points ze nwhich

satisfy cpn(z) =0. However, for optimal control problems such as the ones we

have examined in this section, cp (z) is much easier to compute than cp (z) . For

>$ example, for the problem considered in Case I, to compute $ (z) we solve

?0. ' ruin <vf (z) ,h>
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subject to

30a. <vf^(z),h> + e<0 for all ie(l, 2,..., m}

such that f (z) + e > 0 ;

30b. -hJ + e<0 for all je {0, 1, 2,..., k-1] such that
-u. - 1 + c > 0 ;

i "
30c. h +€ < 0 for all j s {0, 1,..., k-1} such that u.-l + e > 0 ;

30d. [h^l <1, j=0, 1, 2,..., k-1 .

Now the only inequalities which determine the dimension of the matrices to be

inverted when solving (30) by means of the simpler algorithm are (30a), which

usually are few in number. Hence cp (z) is easier to compute for this case than

cp (z).
e

31. Theorem: Consider the problem (2.6). Suppose that for every z e ft there

exists avector he IRn such that (vf^z) ,h> <0 for all i£ 0, ie JQ(z) . Then

the function cp (•) in Algorithm (3.7) without effecting the convergence properties

of (3.7), i.e., Theorem (3.10) remains valid.

We leave the proof of this theorem as an exercise for the reader who will

find in the second half of the next section a few helpful results.

We observe that we can also modify Algorithm (2.5) to make its application

to optimal control problems easier, as follows.
•j

32. Definition: Consider the problem (26). Let cp: ft -* IR "be defined by

£(z) =min [<vf°(z),h> If^z) +<v/(z),h> <0

i =1, 2,..., m; h & S} ;

where-S is any compact set containing the origin in its interior.
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33. Proposition: Suppose that for every z e ft there exists anheS such that

(yf (z),h) <0 for all i /• 0, ie JQ(z). Then, for any zc ft, cp(z) =0 if and

only if cp(z) - 0, where cp(*) was defined in (2.2fb).

The proof of this proposition is similar to that of (29) and will therefore

be omitted.

3^» Theorem: Suppose that for every z e ft there exists anhsS such that

<7f1(z),h) <0 for all i/0, ie JQ(z). Then the function Jp(.) in

Algorithm (2.5) without affecting its convergence properties, i.e., Theorem (2.8)

remains valid.

We again leave the proof of this theorem as an exericse for the reader and

again suggest that he read the; next section before attempting to carry out the

proof.

For the problem considered in Case I cp(z) is computed by solving

35. min <vf°(z),ti>

subject to

35a. f^z) + <yf1(z),h> < 0, i = 1, 2,..., m

35b. u. -1 + h^ <0, j r-. o, l,..., k-1
J

35c. -u. -1 -hj < 0, j ,: 0, 1,..., k-1
J

35d. |nd| <1, j=0, 1,..., k-1

Again it can be seen that this is easier to solve by means of the simplex

algorithm then the problem whose solution yields cp(z).
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A "Second Order" Extension of Algorithm (3.7).

It is interesting to observe that some ideas of the modified Newton-Raphson

method can also be injected into the method of feasible directions. Consider

again the problem min {f (z) |zeR11}. Then, the direction h(zQ) given ^7 tne

Newton-Raphson method at zQ is the one which is obtained by minimizing the

quadratic approximation

0 , o2f°(z)
36. <7f°(z0),h> + | <h -2-h>

dz

to f°(z) -f(zQ) (with h=z-z )at z. Indeed, taking the gradient of (36) with
respect to h and setting it equal to zero, we obtain
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o ^°M36. vf°(z0) + ^- h = o

/a2f°(z0)\-1 0
so that h(zQ) =- j x J vf (zQ) solves (36). Let us now return to the

problem (3.1), and assume that f (•) is convex, and that af^M
dz

> \ > 0 for

all z in a "sufficiently large" open set in P .

38. Definition: Let H(z) be an n x n positive definite matrix whose elements are
~ 1

continuous functions of z. For e > 09 we define the function cp : ft -* R as
G

9 (z) =min {<vf°(z),h> +<h,H(z)h> helRn, <v*i(z),h> +e<0 for
i £ 0, i e J (z)}

e

39, Proposition: Suppose that for every z e ft there exists a vector h e !R

such that <vfi(z),h> <0for all i/0, is JQ(z). Then 9Q(z) =0 if and only if

cpn(z^ = 0, for every ze ft.

The proof of this proposition will be given in the next section.

1*0 Theorem: Suppose that for every z e ft there exists a vector h € !R—* 2 0

such that <7f (z),h> <0 for all i/0, ie JQ(z) . If ——^i > 0and is
dz

continuous for all z e IRn (or a "sufficiently large" open subset of (R ), and

2 0

H(z) _ d* W in(38) >then the convergence properties of the Algorithm (3.7)
dz2

are preserved when the function cp (•) is used instead ofcp (•), i.e., Theorem

(3.10) remains valid for Algorithm (3-7) modified by the substitution of cp(•)
6

for cp (•). (This theorem can be proved by following the steps in the proof
c

of Theorem (3.10) and making use of the lower semicontinuity of cp (•). That cp (')

is lower semicontinuous will be established in the next section) .

It may be expected that when Algorithm (3.7) uses cp (•) it will converge
e

faster than when it uses cp (•) or cp (•) as far as the number of iter-

ations is concerned. However, each iteration takes more effort to perform, since

second partial derivatives must be calculated and since a quadratic programming

problem is harder to solve than a linear programming problem.
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In application to control problems, the above indicated modification of

Algorithm (3.7) may be particularly attractive for use on minimum energy

problems of the type,

k-1

^ min | V (Ui)2
k-1

dn i Y^ (Uj
i*0

subject to

*Oa. xi+l "* xi = fi^xi,ui^ x±eiRv, uie(Rk

lab. |u^| <1, i=0, 1,..., k-1,

Mc* q^(x^) < 0, j=1, 2,..., m .

0 1In this case, with z = ta, u>,..., u. -),'we see that f (z) = 5 <z,z> and (38)
^ . min tL

gives cp(z)=/{<z,h> +j <h,h> |<vT"(z),h> +e<0for all ie {1, 2,..., m} such

that jT(z) +e>0; hJ +e<0for all je[0, 1,..., k-1} such that u. -1+e>0
and -h^ + g<0 for all je= {0, 1,..., k-1} such that -u. -1+ e> 0} .
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5. A Second Look At Feasible Directions Algorithms t

In the last three sections, a method of centers as well as a class of

methods of feasible directions were presented as algorithms for finding a zero

of the functions <p(*), q>0(#) 9(0, q^')> Vq(') which are zero at all optimal

points of the problem

1. min {f°(z) If^z) <0, i=1, 2,..., m} ,

where the f : |R -4 |R , i - 0, 1,..., m, are continuously differentiable functions.

We shall now show both how the family of such functions and of the resulting

minimization algorithms can be extended further. Since we are about to run out

of bars and tildas which we have been placing on cp, we shall change our notation

slightly.

A A

2. Theorem: For e > 0 and z e (1 = (z | r*(z) < 0, i = 1, 2,..., m}, let J (z) be

defined as in (3.2) (i.e., J (z) = {0} U{i | fX(z) + e > 0, is(l, 2,..., m}});

let Hq9 }L,..., H be arbitrary n x n positive semidefinite matrices; let S be a
n 12compact subset of B containing the origin in its interior, and let cp (•)> cp (•)>

e

cp (•) and cp (•)» mapping |R into (R ,be defined as follows:

3. cp (z) = min (max {<yf (z) ,h>; ^(z) + (vf (z),h>, i =1, 2,.r., m})
h e S

k. cp (z) .= min max (^(z),^ ;
e h e S i e J (z)

e

5. . cp (z) =: min (max {<vf (z) ,h> + <h, R.h) ;
heS

.'

f^z) +-<Vf1(z),h> +<h, ^h), i=1, 2,..., m})

6. cp (z) = min max (<vT (z),h> + <h, H.h)) .
e h s S i e J (z) V l /

e

^Except as stated, the results in this section appear to be new.
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1 2 ^ U +Then, for any z e ft, cp (z) =0< >cpQ(z) =0< >cpJ(z) =0< >(pQ(z) =0.1
p A A

(Note that by (1.3.6) cpQ(z) =0 for all zwhich are optimal for (1). Hence, by

this theorem we have that if z is optimal for (1), then cp (z) =cp0(z) = cp (z) =

tPo(S) =o).
Proof: (We give a proof by contraposition)

(i) /(z) =0<£=>cp2(z) =0.
•X- P •X- t -X- -X-

=>Suppose that for some z e ft, cpQ(z ) = max ^ (vf (z ),h ><0. Then,
i e JA(z )

0
since the origin is in the interior of S, there exists a X > 0 such that for all

-X--X- O •X- "X- T •X- -i -X •X'

X e (0, X ] Xh e S and, in addition, max {X <Vf (z ) ,h >; r"(z ) + X <vfAz ) ,h >,

i =1, 2,..., m} <0, which implies that cp (z ) <0, i.e., cp (z ) =0- >cpQ(z ) =0.

<= Suppose that cp1(z*) =max {<vfi(z*) ,h*> ; f^z*) +<vf1(z*),h >, i =1, 2,
..., m} < 0. Then cpn(z ) < max <vr"(z ,h ) <0, i.e.", cpQ(z ) =0 >

ieJ(z*)
1/ *Ncp (z ) = 0.

1 ^ * 3/ *\(ii) cp (z) = 0< >cp (z) = 0. > Suppose that for some z e ft, cp^(z ) < 0,
i -x- i *x- *3 ^t

then, by inspection, cp (z ) < 0, i.e., cp (z ) =0 • >cp (z ) =0.

<£=Now suppose that cp1(z*) =max {<vf (z ),h >; f^z )+(vf^z ),h >, i=1,

2,..., m} < 0. Then, because the origin is in the interior of S, there exists a

X > 0 such that for all \e(0, X ]> Xh eS and, in addition, (because when X is

very small the linear terms dominate the quadratic ones), cp^(z )< max [X <vf (z ),h )

+X2 <h*, J^n*); f*(z*) +X<vfi(z'X"),h*> +X2 <h*, H^), i=1, 2,..., m} <0,
i.e., cp (z ) = 0. >cp (z ) =-. 0.

(iii) To complete the proof we must show that 9q(z) =0<£=^>cp0(z) =0. We

omit this part of the proof since it is essentially the same as (ii) above.

7. Theorem: Suppose that the functions f^(') in (l) are twice continuously

differentiable. For i=0, 1, 2,..., m, let H. =3- ^~ if
?i, , dzd

° \z< > 0 for all z e ft, and let H. = 0 (the zero matrix) otherwise. Then the
Bz - n
function cp (•) may be used instead of the function cp (•) in Algorithm (2.5) and

the function cp (•) may be used instead of the function cp (•) in Algorithm

"^Azz^B denotes "A implies B". A<=>B denotes "A implies B and B implies A".
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(3.7) without affecting the convergence properties of these algorithms, i.e.,

Theorems (2.8) and (3.10) remain valid with these substitutions. (At this point

the reader is advised to re-read carefully (2.5) and (3.7) as well as the proofs

of (2.8) and (3.10)).

Proof: To establish this theorem we only need to observe two facts,

(i) By Section j.k, the functions cp (•) and m(»), with

nf(z) =•-. min max - [<vr"(z),h> + <h, H.h>], c e [0, en] (where eA > 0 is
h <= S i e J (z ) 1 ° °

€

as given in (3.7))> z eft, are continuous;

(ii) Since II. > 0 for i =0, 1,..., m, for every z e ft, and every heS

(vf (z),h) < (vr (z),h) + (h, H.h). The reader can now complete the proof

by using these facts to modify slightly the proofs of Theorems (2.8) and (3.10),

respectively.

O 1

The use of the functions cp (•) and of cp (•) in a feasible directions

algorithm introduces information about the second-order properties of the

functions f (•), i =0, 1, 2,..., m, and may therefore be expected to result in

accelerated computation, as far as the number of iterations is concerned.

However, this advantage is off set (if not totally obliterated) by the fact that

to compute cp (z) or cp (z) one must solve a minimization problem with linear cost

and quadrative constraints, which is not amenable to finite step procedures.

Thus we are led to two other accelerated versions of Algorithms (2.5) and (3.7)
(one of which was already sketched out in flection h)
which only require us to solve quadratic programming problems that are amenable to

finite step solution. We begin with a few preliminaries.

8. Definition: Let JL be a positive definite n x n matrix. Then, for every
c 1

z e ft we define cp^ : ft •+ fR by

9. cp5(z) =min {<vf°(z),h> +<h, iyi> | f^z) +<v**(z),h> <0
i = 1, 2,..., m}t

'A feasible directions algorithm based on this function was presented by
Topkis and Veinott in [Tl], without proof of convergence.
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Also, for every z e ft and every e > 0, we define

10. cp6(z) =min {<vf°(z),h> +<h, I^h> |<7f*(z),h> +e<0
for ie J (z) , i ^ 0}

e

11. Theorem: Suppose that for every z* e ft there is a vector h1 e (R such that
* i ^ 0. a ^ ^

(7T'(z,),h,> <0 for all ie ^(z1),/ Then, for every ze ft, cp^(z) =0<=P
6 1cPq(z) =0< >cp (z) =0.

c 1 -X-
Proof: (i) cp' (z) = 0< >y (z) = 0. >Suppose that for some z eft,
1 "X- ^ "X"cp (z ) <0, then by Theorem (2), cp3(z ) <0, with K. as above and all other

H. =0. Hence cp5(z*) <0, i.e., cp5'(z*) =-- 0=>9 (z*) =0.
y C 4f- ft^t^fr "X- "X-

< Now suppose that for some z eft co^fz ) =<vf (z ),h >+ <h , jyi ><0.
(where h* satisfies the constraints in (9)). *
Then there exists a X*> 0 and a X > 0 such that X(h +\'h')eS for all

m

Xe[0, Xffl], and\<Vf°(z*),(h* +X'hO) +X2<(h* +X'h*), H^h* +x'h')) <0,
f^z*) +X(Tf^z*), (h* +X'h')) <0, i=1, 2,..., m, for all Xe (0, Xj,

T <*• 1 •X- ^ "X"

and hence cp (z ) < 0, i.e., 9 (z ) =0 >qr(z ) = 0.

(ii) 9^(z) =0<=^>91(z) =0. By Theorem (2) we may prove instead that
&(z) =o< >9q(z) =0, with H r= 0for i=1, 2,..., m. >Suppose that
for some z* eft, 9Q(z*)< 0, then, by inspection, 9Q(z )<0, i.e., 9Q(z )=0
=>9j(z ) =0.

< Now suppose that 9°(z ) == <vf (z ),h >+ <h ,J^h ><0. Then there exist

a X' > 0 and a X >0 such that X(h + X'h1) e S for all X e X ], and
m m

X<vf°(z*), (h* +X,h,)> +X2<h* +X,hf, qD(h* +X,h,)> <0, X<vfi(z*), (h*+.X,h,)>
<0 for ie JQ(z ) and therefore 9Q(z )<0, i.e., 9Q(z ) =0=?>90(z )=0.

Thus, under the assumptions stated, finding a zero of 9 (•) or of 9q(0 seems
1 2 ^ h-to be about as good an idea as finding a zero of 9 (•) or cpQ(0 or 9 (•) or cp0(»)

and, from what has been said at the end of the preceeding section, an algorithm

for finding a zero of 9 (•) or of cpQ(#) may possibly be somewhat faster than the
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* However, to show that we may substitute 9 (•) for 9 (•) in Algorithm (2.5) or

6 29 (•) for 9 (•) in Algorithm (3.7) we must exhibit some additional properties

i of these two new functions.

We digress for a moment to establish a general result.

12. Theorem: Let ijr(»,0 be a continuous function from (R x IR into (R . For every

z e {R let ft(z) be a subset of IR and suppose that

13. ^(z) :-• min-{^(h,z> |h e ft(z)}

•X- "X-

is well defined. Suppose that h e ft(2 ) is arbitrary. If
for any e > 0,

(i) For every h*e n(z ), B(h , e) 4 0» where7 B(h , e) = [hsdfz ) |

!|h-h*]| < e} ;+
~0# * ~ / \

(ii) For every h e ft(z ) there exists an e'' > 0 such that h e ft(z) for all

• t. *n * * nz e {z J ||z-z || < e }. Then, for every z e [R and every 6 > 0 there exists an

e > 0 such that

lh. \|f(z) < \jr(z ) + 6 for all ze(z | ||z-z || < c}

that is, \j/(») is lower semi-continuous.
•x- n — * * * •* , *.

Proof: Let s e IR be arbitrary and suppose that i|;(z ) -\J/(h ,z), h e ft(z ).
/for any 6 > 0 ^

Since ;)/(•,•) is continuous, there exists an e> 0 such that

—• "X-

15. ty(h,z) < ^(z ) + 6

-X- "X- /%,/ O •X-

for all ||z-z || <*? , ||h-h || <'e. Now choose anheB(h , e), then, by hypothesis,
> -x- *•*»,. |. -X-,. * * r^, •*.
/ there is an e > 0 such that h e ft(z) for all ||z-z || < e • • Let e = "an [e, e }.

Then h e-fl(z) for all ||z-z || < e and x

16. \|f(z) < ^(z,h) < ty(z ) + 6 for all z e [z | |]z-z -jj < c} .

'ITiis completes our proof.

*We denote the interior of a set A by A.
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We now return to our functions cp (•) and 9 (•) •
e

17. Corollary: Suppose that for every z% e ft there exists a vector h' e (R such

that <7f:L(zt)>h,) <0 for all i/0, ie Jo^z^* Then the conv*ex set
i i[h jf (z*) + (yf (z1),^ < 0, i ~ 1, 2,..., m} has an interior and the function

9'(•) is lower semi-continuous.

18. Corollary: Suppose that for some eQ > 0 and for every z' e ft there exists a

vector h* eIRn such that <vf1(z,),h,> < 0 for all i / 0, ie J (z»). Then
e0

the convex set {h | (7^(2*),^ + c <0,i/0, ieJ (z*)} has an interior for
*-

all e ^ [9> c0],and for any z e ft the function

m(z) ^min {<vf°(z),h> +(h, ^h) |<vfi(z),h> +e<0,i/0,ie J^**)} ^
lower semicontinuous for all e,e [0, eQ].

Both of these corollaries are easy to establish by showing that the assump

tions of Theorem (12) are satisfied and their proof will therefore be omitted.

In the definition of functions <$>(') and 9 (•)> the vector h is not

restricted to a compact set. We shall now show that whenever z lies in a compact

set about a z* e ft, the minimizing h, which is used to obtain the value 9 (z) or

9 (z), also lies in a compact set.
e

19. Theorem: Suppose that the assumptions stated in Corollary (17) are satisfied,
•x-

Let z e ft, let 6 > 0 and let c > 0 be such that

20. 9 (z) <9^(z ) + 6

for all z e B(z*, e) ={z e ft | ||z-z || < e} . If f (•) is twice continuously
/ differentiable, HQ(z) =vi Q2f (z)/oz£_ >0 and h satisfies (9) 9i.e.,

q*(z) =(vf°(z),h> + (h, I^(z)h>', for ze B(z , e), then h is bounded.
Proof: Since H^(z) > 0 and is uniformly continuous on B(z , q), there exists a

X1 >0 such that <h, TTQ"h> > x1 ||h||2 for all ze B(z , e) and he T?n. Also, since
n "X 2

Vf (z) is uniformly continuous on P»(z , g) > there exists a X'~ > 0 such that
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|<Vf (z),h>| <X ||h|| for all z e B(z ,e) and h e (Rn. Hence

21. vJ* {h | <vf°(z),h) +<h, IL(z)h> <95(z*) +6}
z € B(z , e) U

is a bounded set whose closure is compact and contains every h such that

9 (z) •-- <vf (z),h) + <h, T^(z)h>, ze= B(z , e). This completes our proof.

We now state without proof a similar result for cp (•).

22. Theorem: Suppose that the assumptions of Corollary (18) are satisfied and

that e0 is" defined as in (l8). Let z e ft, let 6> 0, let ee= [0, e0]> and let

23. m(z) £min {<vf°(z),h> +<h, P^h> |
(vf^z^h) + e<0, i/0, ieJ (z*)]

If f"(») is twice continuously differentiable, 1^ =-• i d, f(z) >0and 7>0is
dz

such that

2h. m(z) < m(z ) + 6

for all z e B(z ,7)> then the closure of the set

25. U[ [h |(tf°(z)9h) +<h, }L(z)h> <m(z*) +6}
zeB(z,e) '

is compact.

With the above results established the following theorem is readily proved

by essentially repeating the proofs of Theorems (2.8) and (3.10). It is therefore

stated without proof.

26. Theorem: Suppose that the function f (•) is twice continuously differentiable

z e ft.and that df^ >0for all
dz^

(i) If the assumptions of Corollary (17) are satisfied, then 95(«) can be

substituted for 9 (•) in Algorithm (2.5) without affecting its convergence

properties as stated in (2.8).
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(ii) If the assumptions of Corollary (18) are satisfied, then cp (•) can be

substituted for cp (•) in Algorithm (3.7) without affecting its convergence
c •

properties, as stated in (3.10).

This concludes our discussion of the methods of feasible directions.
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6. Gradient Projection Methods

3 We conclude this chapter with several gradient projection methods. The

v first class of such methods to be considered consists of modifications of Rosen*s

i gradient projection method [KL], [PI] and are designed for solving problems of

the form

1. minimize {f (z) |f^z) < 0, i= 1, 2,..., m}

when the constraint set ft = {z | f (z) < 0, i = 1, 2,..., m) is a convex polytope

with interior and f (•) is convex. (Actually, these methods are also applicable

to the case when ft has no interior. However, this requires that one restrict

oneself to the linear manifold containing ft, and this adds to the complexity of

the formulas to be derived. Since these are already quite complex, we shall

leave to the reader the extension of the results presented below to the case when

ft has no interior.)

For the Rosen type methods we shall assume that the cost function f (•) is

convex and that the functions f (•), i = 1, 2,..., m, are of the form

2. f*(z) ,= (f±9z) -b1,

with f. e lRn and b e IR . We shall assume that the set ft ={z |f (z) < 0,

i =1, 2,..., m} has an interior.

3» Definition: For every z e ft and e > 0, let

I (z) ={i |<f ,z> -b1 +e> 0, ie {1, 2,..., m}} .

? k. Assumption: We shall suppose that there exists an e > 0 such that for

every z e ft and c s [0, e ] the vectors f., i e I (z) are linearly independent.

(This assumption can be removed at the expense of increased complexity in the

algorithms to be presented, which must then include a scan over all or most

possible constructions of a new direction).
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5. Definition; For every e e [0, e ] and every z e ft let

6- FI (z) = (fi]i6l (z)

be amatrix whose columns are f., iel (z) (ordered linearly on i). Let PI ,^

be the matrix which projects IR onto the subspace spanned by the vectors f^,
± + n

iel (z), and let P_ / % be the matrix which projects IR onto the subspace
c \W

orthogonal to all the f., iel (z), i.e.,
1 e

7- PI (z) " FI (z) (FI (z) FI (z))'1 FI (z)t+
e e x e e / e

8. 1\ / v = I - PI (z) = L rI (z) '
c e

(Note that matrices P / \, PT /\ are symmetric and positive semidefimte.)
e s

Consequently, for every z e ft and every ee[0, e ] we have

9. vf°(z) . Pj (z) Vf°(Z) +P^ (z) vf°(z) - Pj (z)?e(z) +Pj f7-) Vf°(2)
6 C G €

where

10- h(z) ' (FI («) FI (z))"1 FT (z) ^ •
v e c / g

'When I (z) is empty, we shall assume that P / \ is the zero matrix and that

JL
? PT / x is the identity matrix.

I (z)
e

Note that for IF- / \ F_ / J to exist assumption (k) must be satisfied.

Thus, when (k) does not hold, one is forced to use combinatorial methods for
reducing I (z).
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It now follows directly from (1.2.1) and (1.2.13) that z is optimal if and

only if

11a. Pj fa Vf°(z) = 0 ,
and

nb. z0Cz) = o .

We make one more observation before stating an algorithm. Consider the

expansion (9) and let j e I (z). Then, from (9) (since K / \ -K r \ =
G I (z)-j I (z)

1 G C

PI (z)^
6

^ \ (z)-j ^ -?<(«) 4 W.3 t3 ♦ Pi (z)V(z) ,

and, since (12) is a decomposition into orthogonal components,

i3- »pie(2)-i .^wif = (sj>))2 npi (,w*/+npi WA) ii2.
G G G

Finally note that

u- <V %M-t vf°(z)> =s2(«) <v ?i (z).d 9 .
G G

15. Algorithm: Suppose we are given an 7Q e (0, e*], with e* as in (k), an
c' e (0, eQ) and a zQ e ft.

Step 0: Let z = zQ

Ste^JL: Set e(z) = cQ. (We shall use the abbreviated notation e = c(z)).

Step 2: Compute

/ i6- vz) = pi w vi0 («) .
6

^ Step g: If ||he(z)||2 >e, set h(z) =-h (z) and go to Step 6.
.2If ||hc(z)|| <eand e<Gf, compute fc^(z) (as in (&)) and § (z) (as in

(10)).
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If ||b^(z)||" =0 and §Q(z) £0, set z =z and stop

a (z is optimal). Otherwise, set h(z) .- -h (z) and
G

"* go to Step k.

> if )|h (z)|| < e and e> cS go to Step k.
%

Step k: Compute § (z) (as in (10)).

If § (z) S 0, set h(z) = -h (z) and go to Step 5.
6 C

If § (z) ^ 0, compute

17. he(z) , pi (i) vf°(z)
G

such that

18. ||he(z)|| - ; max ||P^ (z)_. vf°(z)|| .
i e I («)

§600 > 0

Set h(z) = -h (z) and go to Step 5.
G

Step 5: If ||h(z)||2 < e, set e=c/2 and go to Step 2.

If ||h(z)||2 > e, go to Step 6.

Step 6: Compute ji(z) > 0 to be the smallest scalar satisfying

0 n ?>°*19. f [z + u(z) h(z)) =, min {fu(z + vh(z)) |/(z + ph(z)) e ft)

Step 7: Set z = z + |i(z) h(z) and go to Step 1.

20. Theorem: Let zQ, z^f 'z^9..., be a sequence, in ft constructed by the

p Algorithm (15), i.e., z^, zg,..., are the consecutive values assigned to z in

Step 7. Then, either {z^ is finite and its last element is optimal, or else

t {z.} is infinite and every accumulation point of {z.} is optimal. (When f(•) is
~ i

strictly convex, the problem has a unique optimal solution z and then z. -> z.)
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Proof: We shall again make use of Theorem (1.3.1) under the assumption that

T = ft. A: ft -» ft is defined by the Algorithm (15), c(«) = -f (•) and z e ft

> is defined to be desirable if P^ fa 7f°(z) =0and ?0(z) i 0. We begin by

v showing that the characterization (1.3.2) is satisfied. Suppose that zQ is

optimal. Then \(*>0) =0 and ?0(z0) =0. Now, for any/ 1qSzo) 3VV
and the vectors f., isl (z ) are linearly independent, hence for any c e [0,e«],

1 £ U U

21. Ie(z0) =l0(z0) S0

and

22- ||he(z0)|| = 11^(^)11 = 0 .

Consequently, after a finite number of halvings of e in Step 5, the algorithm

will stop in Step 3, resetting z to its original value. This satisfies (1.3.2).

By construction, if the algorithm stops and sets z = z in Step 3 then z is

optimal. This is the only possible condition for setting z = z, since it is not

possible to have |i(z) h(z) =0 in Step 7 for the following reasons. First, h(z)

= 0 cannot occur in Step 7 because of the logic in Step 5. Second, from the

results in Section 1.1*, it follows that if h(z) £ 0, then p.(z) £ 0, since for all

ieI(z), <h(z),f ><0 and <Vf°(z), h(z)> =-||h(z)||2 <0.
6 1

We must now show that (1.3.3) is satisfied, i.e., that if z e ft is not
desirable, _ __
/ then there exists a p > 0 and 6 > 0 such that

23. - f°(z +u(z) h(z)) + f°(z) > 6

/ for all ze B(zQ, p) i(zefl | ||z-z0|| <p}. Let eQbe the last value of e(z0)
(i.e., the value of efz^used in the calculation of h(z0)in Step 3 or Step k for 7.,-zr)

Then, either

2*. ||h_ (zA)||2>e^V" > «o

or else

25. IP. (z0)||2>eb .
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Suppose (2k) took place, i.e., that h(zQ) = -h (zQ). Then there exists a

p1 > 0 such that

26. ||Pj (z jVf°(z)||2 >cQ/2 for all zeB(zQ, p»)
eo °

Let p" > 0 be such that I (z) c I (zQ) for all zeB(zQ, p") and let p =
c0 e0

min {p1, p"}. Then, for every z e B(zQ, p) and every a e [0, eQ],

27. ||pi (z) vf°(z)||2 >||pi (z) 7f°(z)||2 >||?i (z ^Vf°(z)f >e0/2 .
a Gq e0

We therefore conclude that if (2k) took place, then for all ze B(zQ, p), the

algorithm will use a final value of e(z) > GQ/2.

Now suppose that (25) took place, i.e., that h(zn) = -h (zn). Then,
u e0

either ||h (z)|| > 0 or ||h (z )|| =0 .
e0 e0

Suppose that llh (z )|| = 6* > 0. Let p" > 0 be such that I (z) C I (z )
Sq e0 c0

for all ze B(zQ, p"). Then there exists a"p e (0, pfl], such that for every

ze B(zQ, p*) and for every ae [0, e0]>

28. ||ha(z)||2> ||P^ (z) vf°(z)||2> p\ (z) 7f°(z)||2
a e0

>||Pj (z)vf°(z)||2>6V2,
eo °

and hence for every z e B(zQ, 'p), the algorithm will set e(z) > [61/2] > °-

Now suppose that ||h (zQ)|| = 0. Then, vf (zQ) \ I1 (zQ)
i e 1^ (zj

>0Cr' °'

Suppor.e k is an integer such that Cq/2 <6'/2 < c0/? >then we define

[6'/2] -e0/nk+1'

f.
l
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and in this representation the coefficients % are unique since the f.,
e0

* i e I '(Z/0 are linearly independent. Now let
e0 °

h =min {||pi Vf°(z0)|P| Ic I (z0), IIpJ Vf°(z0)||2> 0}

29. and

6. «min { . max ||P^ Vf°(z0)|f | I c I (z0), ||P^ Vf°(z0)||2= 0} .
II (z ) > 0 "0

60

Obviously, 6X >0 and 62 >0. Let 6" =min [&q9 6^ 62), and, again, let

p" > 0 be such that I (z) c I (z ) for all z e B(z , p"). Therefore by first
So e0

considering all possible subsets I of I (z) and then all possible subsets I of
*0

I (zn) such that g (zn) > 0 for iel. There exists a pe (0, pM] such that for
e0 e0

every ze B(zQ, p) and for every ae [0, eQ], either

||pi(z) 7f°(z)||2>6"/2
a

30. or

i« yz) Vz>
?*<•> >o

We therefore conclude that if (25) took place, then for all ze B(zQ, p),

the algorithm will use a final value of e(z) > [6"/2] > 0.

Now, for every ze B(zQ, p)(or for all ze B(zQ, pj, whichever is

* appropriate to consider), and for all ie^(z)^' we have (f±> hW) -°
(see (Ik)', (17)) > and so, as far as these constraints are concerned, one can

^ displace oneself an arbitrary amount in the direction h(z) from z without

constraint violation. Since for every ze B(zQ, p) and for all ie *erzy

(t±9z) +b. -e(z) < - [5'/2] (or - [6"/2] as the case may be) we now conclude
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(as in the case of the feasible directions algorithm) that there exists a \ > 0

such that z+ Xh(z)/||h(z) || e ft for all Xe [0, Xj and z<= B(zQ, p).

Next, we note that (vf°(z), h(z)> <-e0/2 (or -[6r/2] or -[6"/2]) for all
z e B(zp, p) (or ze B(z ,*p) or ze B(z , p)) and that there exists ay ~uch

that ||h(z)|| <7 for ail ze B(zQ, p) (or ze B(zQ, p") or ze B(zQ, p)). It.now

follows from the results presented in Section (Ui) that (23) is satisfied for all

zs B(z , p/2) (or ze B(zQ, p*/2) or ze B(zQ, p/?)) for some fixed 6> 0. This

completes our proof.

Since (vf (z),h(z)} ~- ||h(z)||'", one may wish to accelerate the Algorithm

(15) by increasing ||h(z) H*" as much-as possible at each step. The following

acceleration procedure is very easily seen as not affecting the convergence

properties of the Algorithm (15). (To account for it we need to modify the proof

of Theorem (20) only very slightly).

Step l1: (Acceleration procedure, to be inserted between Step 1 and Step 2 of

(15)):

Compute E (z), h (z) h (z), (as in (10), (16), (17)).
G 6 G

If I (z) < 0, go to Step 3.
s

If S (z) i 0 and ||h (z)|| > 2||h (z )||, set h(z) = h (z) and go

to Step 5.

If 5 (z) $ 0 and ||h (z)|| < 2||h (z)||, go to Step 3.

This concludes our discussion of straightforward gradient projection methods.
projection

Vie shall next discuss methods which are a cross between gradient/methods and

methods of feasible directions.

We recall that in the Algorithm (3*7)> to obtain a "feasible direction"

h(z), we had to solve a minimization problem. In the Algorithm (15) this process

was replaced by the computation of a projection operator which, sometimes, may be
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easier to calculate. However, algorithm (15) is only applicable to problems

with linear inequality constraints. We shall now present a modification of (15)

which applies to more general situations* We shall suppose from now on that all

the functions r , i =0, 1, 2,..., m in (l) are convex and that the set

ft ={z I^(z) <0, i =0, 1, 2,..., m} has an interior.

32. Assumption: We shall suppose that there exists an e > 0 such that for

•* i
every e e [0, e ] and z e ft, the vectors vf (z), iel (z) are linearly

c

independent (where I (z) was defined in (3)).

We retain the notation introduced previously in this section with the

following, rather obvious modification. For every e e [0> g ] and z e ft we shall

let

33- *I(z) - ^i(z»iei(z)
G G

be a matrix whose columns are the yr (z), iel (z) (ordered linearly on i). The
± e

projection matrices P_ / n, P_ / % will still be defined by (7) and (8),
G G

respectively, with the matrix F '/ \ now defined by (33), etc.

3^. Algorithm: Suppose we are given/ e0 ^ (0, e]with c as in (32), an

s* e (0,g) and a zQ e ft.

Step 0: Set z = zQ.

Step 1: Set e(z) = cQ. (We shall use the abbreviated notation e = g(z)).

Step 2: Compute

35. hw = ?i (z) vf°(z) .
G

Step 3: If ||h (z)|| > e, set h(z) = -h (z) and go to Step 6.
6 6

*• If ||h (z)|| < e, and e <, eS compute h^z ) (with e^0 as in (35)) and

50(z) (as in (10)).

*The prototype of Algorithm (3*0 was published without proof of convergence in [Kl],
while the form (3k) together with the proof of convergence was published in [PI].
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If ^(z) ^0 and §Q(z) < 0, set z =z and stop, (z is

optimal). Otherwise set h(z) = -h (z) and go to Step k.
G

If ||h (z)|| < c and e> c1, go to Step k.

t, Step k: Compute § (z).
»

If § (z) < 0, set h(z) « -h (z) and go to Step 5.
6 "" G

If 5 (z) ^ 0, compute

36. h (z) = K ,7) .7f°(z)

such that

37. ||he(z)|| = _max \\P^ (z)_± vf°(z)|| .
i s I (z) c

S*(z) > o

Set h(z) = -h (z) and go to Step 5.
S

Step 5: If ||h(z)||2 < e, set e=e/2 and go to Step 2.

If ||h(z)||2 > g, go to Step 6.

Step 6: Set K (z) =I (z) when h(z) ^ -h (z) and set K (z) --, I (z)-j* when h(z)
C 6 C G G

-h (z). Compute
G

38. v(z) <k p(.) h(z) +F]c (FT Fr J-1 t
G » 6 G /

in [!,»)

where t = -e(l, 1,..., 1) and p(z) > 1 is the smallest positive scalar/such that

39. <7fk(z), v(z)> < -e

for k=0when h(z) ="^(z) and for k=0, j* when h(z) =-h (z).
Step 7: Compute X(z) > 0 such that

kO. X(z) =max [X |f^z + £v(z)) <0, £e [0, X], i =1, 2,..., m} .

t — —
The index j is the one which was used to construct h (z), i.e., h (z) =

G
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Step 8: Compute ji(z) to be the smallest value satisfying

kl. f°(z +v(z) v(z)) =min [f°(z +yv(z)) | 11 e [0, x(z)]} .

Step 9: Set z = z + ji(z) v(z) and go to Step 1.

T k2. Remark: Note that the above algorithm differs from the Algorithm (15) only

in the operations defined in Step 6.

I4.3. Theorem: Let zQ, z., z ,..., be a sequence in ft constructed by the

Algorithm (3k), i.e., z-» z ,..., are the consecutive values assigned to z in

Step 7. Then either {z.} is finite and its last element is optimal, or else {z±}

is infinite and every accumulation point of [z±] is optimal. (When either f (•)

is strictly convex or ft is strictly convex, or both, there is a unique optimal

solution for the problem (l), and hence a unique accumulation point for the

sequence {z.}, when infinite).

Proof: Again, we shall simply show that the assumptions of Theorem (1.3.1)

are satisfied for c(«) =-f°(«), T =ft, a(«) defined by (3k)9 and z defined to be

desirable if P,. /*\ 7f°(z) =0 and F,(z) < 0. We omit a demonstration that
VZ)

condition (1.3.2) is satisfied since in this case it is identical to the one

given for Algorithm (15) in the proof of Theorem (20).

We shall now show that for every non-optimal zQ e ft, there exist a p> 0

and a 6* > 0 such that

kk. -(f°(z +ii(z) v(z)) + f°(z)) >? for all ze B(zQ, p) .

First, proceeding exactly as in the proof of Theorem (20), and, in addition,

$ using the fact that the ^(0 are continuously differentiable, we can show that

if ^ € ft is not optimal, then there exists a p> 0 and a 6 > 0 such that for

all ze B(zQ, p)

k5. ||b(z)|| > 6/2 > 0 ,
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i.e., e(z) > [6/2], for all z s B(zQ, p). Next, we find that, by (39) > for all

* z e B(zQ, p)

k6. <vf°(z), v(z)> <-e(z) <-[6/2]

% and, if K, y(z) ,£ I , ^(z) (say Ke(z)(z) =T0(z)^ ~^> then> aJus°9

kl. <vf*(z), v(z)> <-e(z) < -[6/2] .

Furthermore, by construction, for all ieK ,\ (z), z e B(z_, p)
€iz; u

kB. (^(z), v(z)> = -c(z) < -[6/2] .

Finally, an inspection of (38), (39) > (16") and (17) indicates that there exists

a ip e (0, p] and an Me (0, «) such that ||v(z)|| < M for all ze B(zQ, p"). Making

use of the results in Section I.k9 in a manner similar to the one used in the

proof of (3.10), we can now readily show that for all ze B(zQ, p) there exists

a ? > 0 such that (kk) is satisfied.

k9. Remark: The acceleration Step 1* proposed for Algorithm (15) can also be

utilized in the present algorithm.
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IV. CONVEX OPTIMAL CONTROL PROBLEMS

1. A Further Extension of the Methods of Feasible Directions

This Chapter will be devoted to discrete optimal control problems which

transcribe into mathematical programming problems of the form

1. minimize ff°(z) |fX(z) <0, i=1, 2,..., m, Rz -b=0}

where the f , i =0, 1,..., m, are convex, continuously differentiable functions

such that the set ft = {z | f (z) < 0, i = 1, 2,..., m] has an interior, R is an

U n matrix and b e (R . Examining (1.1.13), (i.l.l^), (1.1.15), we find that

the above may hold, if the dynamics of the system (1.1.2) are linear, the cost

functions f. (•,•) in (1.1.3) are convex both in the control and in the state

variables, and all the inequality constraints are convex and all the equality

constraints are affine.

The methods of feasible directions presented in Section III.3 can also be

used for solving (l), after a minor modification which is the consequence of the

fact that z is optimal for (1) if and only if

2. min max <vf (z),h) =0
heS* ieJQ(z)

where JQ(z) is defined as in (1.2.8) and S* =Sn N, where S is any set in |Rn

containing the origin in its interior and N ={z | Rz = 0] is the null space of

IR. The condition (2) can be obtained as a trivial extension of the results

presented in Section 1.2.

Thus, all we need to do to apply the method of feasible directions (ill.3.7)

(or its modifications which were discussed in Section III.3)) to (1) is to

change the definition of cp (z) as follows,
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o m (z) = min max <ti (z),h)
D' e he S1 i e J (z)

G

Where J (z) is defined as in (1.2.8). Typically, to compute 9 (z), we now solve
G

(with S=fh IIn1! <1] )

ha. min a

subject to

to. <7fi(z),h> -cr < 0, ie-J.(z) ,

J»c. Rh = 0

Hd. (h1! <1, i=1, 2,..., n .
i

As an example of an optimal control problem in this class, consider the

problem,

idO"

Sa. min p

k-1

V (||xi -x.*||2 +u±2) x± eKv, u. 6(R1

subject to

qb. x. - = Ax. + bu., i -0, 1,...» k-1
x l+JL X 1

5c xQ -xQ*; Cxk-d=0; qdUk)<0, j*1, 2,...,m,

Iuil < !> i=1» 2,..., k-1 ;

where the qJ: R -» R are convex functions, CisaUv matrix and d e IR".

\ Setting z=(Uq, u^..., u^), we find that x±(z), the solution of (5b)

for Xq =xQ* and (Uq, t^,..., u^) =z, is given by
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i-1

6. x.(z) .AV+pH"X
j=0

bu.
0

(Note that — = A1"**3"1 b) . Problem (5) therefore becomes,
5u.

j

k-1

7a. minimize | V (||xi(z) -x.*||2 +u± )
i=0

subject to

7b. |u.| < 1, i = 0, 1, 2,..., k-1 .

7c. Cxk(z) -d = 0, q°'(xk(z)) <0, j=1, 2,..., m.

.th
For i =0, 1, 2,..., k-1, let R. be avXkmatrix whose j column is r^, with

r.,. ,% = A1'^"1 b for j=0, 1,..., i-1, and r.. &0 for j=i+1, i+2,..., k.
i(j+l) XJ

Then, by (6), x. (z) =A^* +R±z, and hence (7) can be rewritten as

k-1 ~ xi

8a. minf°(z)£ § V 1^+ R.zf +§<z,z>
* i=0

subject to

8b. C(Ak x0* +1^ z) -d - 0, f^z) &qd(Ak xQ* +1^ z) <0,

js=l, 2,..•> m ,

8c. |u±| < 1, i =0, 1,..., k-1 ,

i.e., f°(z) is convex, the inequality constraints f°(z) are convex, and the

equality constraints are affine.
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2. Decomposition Algorithms

We shall now present two dual methods for a class of optimal control

problems. Dual methods differ from primal methods, such as the methods of feasible

directions, in that they depend on the optimality condition (1.2.1) rather than

on the equivalent form (1.2.7). Dual methods iterate not only on the vector z

but also on the multiplier vectors ]i and if in order to find a set of vectors

which satisfy (1.2.1). As we shall see, the dual methods to be presented decom

pose an optimal control problem into a sequence (usually infinite) of considerably

easier subproblems.

A typical example of an optimal control problem which is particularly

suitable for solution by dual methods is the following one.

k-1

la. min | \ (||Xi -x^ +u^), x± e|RV, u± ep*n2 . .. 2X _ mV _ ml

i=£

subject to

lb. xi+l = ^i + bui> i = °> 1» 2>'*> k"1 >

*

lc- *q a x0 >*(*J a 2K "*k H "Y- °> y>0;

Id. Iuil <1 for i=0, 1, 2,..., k-1 .

P is avX v symmetric positive semi-definite matrix and ||x||p =<x,Px), and

Q is a v X v symmetric positive definite matrix.

/ Now let z=(Uq, u^..., Uj^) then for Xq =xQ*,

\ 2* x± = dA + \z , i =1, 2,..., k
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i * th i-1-l_where d. =Ax. and R. is avXkmatrix whose j column is r. .: r./.+1x =A J t>,

for j =0, 1,..., i-1 and r±. =0, for j = i+1, i+2,..., k.

Let C (a) c |RV be the set of states reachable by (lb) at time k, from xQ ,

with cost not exceeding a (a > 0) and using controls satisfying |u.| < 1, i.e.,

3. C(a) , jxeRv |xrzd^ +Rj^z, 1-u.jl <1;

Since the set ft = {x | q(x) < 0} is compact and strictly convex and since

the set C(a) is also convex, we can view problem (l) as that of finding an

a> 0, and a control sequence z s (il, u_,..., u. .) such that

ka.. a = min [a> 0 | C(a) n ft /0} >

to. \ 4(c^ +r^z) e C(a) nft .

Since the set ft is strictly convex, C(a) f] ft consists of exactly one point,
A

V

As we shall later see, the optimal control sequence z = ({L, u_,..., u. .)

for the optimal control problem (1) is easy to compute if we first determine the
A A A

a satisfying (k&)9 the x^ satisfying(kb) >and aunit vector se Rv which is normal

to a hyperplane separating ft from C(a). Consequently, Problem (l) may be con

sidered to be a particular case of the geometric problem which we shall now state.

In order to motivate the various assumptions which we are about to make, we

note that for every a > 0, in our example problem (1),

5. C(a)• « {x =d^ +Rj^z |z=(uq, ux,..., Uj^), \xl \ <1}
-3

llv

1^0

k-1 ,"Xi

n {x =̂ +R^ Iz=(V u^..., Vl), | V Hd^zH2 +u^ <a}
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i.e., C(a) is the intersection of afixed convex polytope K and of ahyper-
lipsoid 2(a) which grows monotonically and continuously with a.
6. ^o«ometric Problem: We are given amap C(0 from (R+ into the set of
all subsets of !RV such that every a> Q; f^

(i) for every a>0, C(a) is acompact, convex set which has an interior for^
. t

(ii) C(0 is continuous in the Hausdorff metric;

(iii) For every a>0, C(a) =S(a) 0K, where Kis aconvex polytope with interior,
/for'every a> 0, E(a) is astrictly convex set. We also assume that if 0<o^ <0^,

then E(cl) is contained in the interior of E(a ).
j- compact. ^ .

We are also given a'set ft, which either consists of aunique point or else

is strictly convex, and are required to find an a>0, avector xe ft, and aunit

vector s eEv such that

7a. a = min {a | C(a) n ft ^ 0, a> 0};

Yb# [x] = C(a) n ft ;

Tc# <x -x, s> < 0 for all xe ft ;

7d# <x -x, s> >0 for all xe G(a) .

8. Assumption: To ensure the existence of a solution and to avoid having to

discuss the degenerate case when ft 0 K consists of a single point, we shall assume

that for some ae- (0,«>), ft has points in 2(a) 0 K, where K is the interior of the

polytope K.

fGiven two compact sets A, B in [Rn d(A,B) the Hansdorff distance between these
two sets,is defined by d =max {d^dj, where d1 = max mm ||x-y|| and

' x ^ xeAyeB

d« = max min x-y .
*o

y e B x e A
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9. Proposition: Let a be defined by (l), then for every

o<c^ <a2 <a, C(o^) £ (2(a2).
Proof: If for any c^, ag e[0,a], o^ /a^ C(Oj) =C(«2), then because of (iii)
in (6), C(cO =K, which is impossible, since C(Og) c C(a) and C(a) ^Kby (8^.

* 10. Definition: Let S={s e |RV| ||s|| =1}, and let v: S -» ft be the map

defined by

H. <x - v(s), s> < 0 for all x e ft

(Note that v(0 is a continuous map.)

12. Definition: Let a be defined as in(7b) . We shall say that a vector

s e S is optimal for the problem (6) if x = v(s) satisfies (7a), and s together

with x =v(s) satisfy (7c) and (7d), i.e., f>(s)} = C(«) 0 ft and

A A

<x - v(s), s) < 0 for all x e ft

<x - v(s), s> > 0 for all xe C («)

Thus, we say that s e S is optimal if it defines a hyperplane which separates

ft from £-(a).

To define an algorithm, we shall need the following sets and maps.

13. Definition: For every s e S let P(s) denote the hyperplane

P(s) = {xelRv | (x - v(s),s> =0}

(Note that P(s) is a support hyperplane to ft at v(s), with outward normal s.)

114-. Definition: Let T c S be defined by

f T = (seS |(x- v(s),s> > 0 for all xe C(0)J ,

^ i.e., if se T then P(s) separates C (0) from ft. It is not difficult to see that

if s e S is optimal, then s e T, and therefore we can restrict our search for an

A

optimal s to the subset T of S.
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15. Definition: Let c: T -♦ OR be defined by

c(s) - min {a |C(a) n P(s) £$, a> 0}

Note that c(0 is well defined. For suppose that C(a) D P(s) =0 for all

a> 0. Then, since C (0) c C(a) for all a > 0, P(s) must separate CAd),

from ft, for all a > 0, in contradiction of our assumption that ft has points in

O (a) for some a > 0.

16. Definition: Let w: T -4 IRV be defined by

[w(s)} = C(c(s)) n P(s)

We have already concluded that for every s e T, c(s) is well defined and

hence C^(c(s)) n P(s) / 0. Nov; suppose that for some se T, G(c(s)) n P(s)

contains two points w, ^ w . Then, since it is convex, it must also contain the

line segment {w | Xw- + (l-X) w , X e [0,1]}. But s(c(s)) is strictly convex and

hence we conclude that P(s) must be a support hyperplane to K. However, this is

not possible since ft has points in the interior of K. Therefore w(«) is well

defined.

17. Definition: For any two vectors x, y e IRV, let rt(x,y) denote the operator

which projects IRV, orthogonally, onto the subspace spanned by x, y. Let

p: (Rv X IRV •* B1 be defined by

17a. ' p(x,y) = min {a |*(x,y) (C(a)) n *(x,y) (ft) / 0, a> 0)1*

^» Definition: Let A(») be a search function from T into the set of all subsets

of T, defined by

18a. A(s) c a(s) = {s1 eT I s' =\s+ V.(w(s) - v(s)), X, 1* e (-«,+«) )

t v
It is not difficult to see that for any two x,y e IR which are linearly independent

p(x,y) =max {c(s) | se cr(x,y) = {s e T |s = Xx + vy* X, V- e (-»,+<»)}} .
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18b. c(s') = p(s, w(s) - v(s)) .

The various functions defined above are illustrated in Fig. 2.
+

19. A Decomposition Algorithm:

Step 1: Find a point sQ e T.

Step 2: Compute a point s* in A(sQ).

Step 3: If c(s') =c(sQ), stop; sQ is optimal. Otherwise set

sQ =s s* and go to Step 2.

20. Theorem: Let sQ, s^ Sg,..., be any sequence in T constructed by the

Algorithm (19) (i.e., s-, s ,..., are the consecutive values assigned to s in

Step 3). Then either the sequence {s^ is finite and its last element is

optimal, or it is infinite and every cluster point s in {s.} is optimal.

Proof: To prove Theorem (20), we shall simply show that the assumptions of

Theorem (l.3.l£) are satisfied by the maps A(«) and c(>)9 above, with se T

defined to be desirable if c(s') <c(s) for all s» e A(s). First, note that

(1.3.17) is satisfied by the maps c(«) and A(.), defined in (15), and (18),

respectively. Hence, if the sequence {s^ generated by the Algorithm (19) is

finite, its last element must be optimal.

We shall now show that the maps c(«) and A(0, under discussion, satisfy

(1.3.18). Clearly, to show this it will suffice to show that the maps c(-) and

c(.) are continuous at all nonoptimal se T, where c: T -♦ IR1 is defined by

21' c(s) = p(s, w(s) - v(s))

Continuity of c(«): Let sbe any point in the interior of T and let 6 be any

number in [0, c(s)]. Then the sets C(c(s)-6) and P(s) are strictly

This algorithm has evolved from the work of Krassovskii [K3], Neustadt [Kl],
Eaton [El] and Polak and Deparis [P3]. The above version was presented by
Polak in [P2].
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separated. Let w' e P(s) and w" e C(c(s)-6) be such that

^ 22. ||w'-w"|| = min{||x-y|| |xe P(s) , ye £(c(s)-6)}

Let w = (wf + w")/2. Then, by uniform continuity of <• -w, •> on ft x S, it

• follows that there exists an e' > 0 such that for all s1 e T, satisfying

Hs'-sll < cf, the hyperplane P(w,s') i {x e IRV| <x -w, sf> =0} separates

0.(c(s)-6) from ft, and hence

23. c(s') > c(s) - 6 for all sf e T, |[s• —s|| < e*

Similarly, we can show that there exists an e" > 0 such that

2k. c(s') < c(s) +6 for all sf e T, ||s*-s|[ < e"

Let c = min {cSe"}, then

25. |c(sf) - c(s)| < 6 for all s1 e T, J|s,-s|[ < e

which proves the continuity of c(«) at all points in the interior of T. Since

an accumulation point of {s.} cannot be on dT, the boundary of T, because c(s) = 0

for all s e 3T and s. efseT | c(s) > c(s )> 0), we need not consider the

behavior of c(') on the boundary of T.

Continuity of c(») : First, by an argument similar to the one above, it can be

shown thnt the map p(*,#) defined by (17a) is continuous at every pair of linearly

independent vectors (x,y). Now, whenever s is not optimal, the vector w(s) -

v(s) / 0 and is orthogonal to s. Hence, c(#) is continuous at every non-optimal

* s eT if w(') is continuous at every non-optimal s e T (recall that v(«) is

continuous on S).

Let s e T be non-optimal and let [s.) be any sequence in T converging to s.

Then, setting c. = c(s.), we have that c. -♦ c = c(s ) and C (c.) -* C-(c ), by

continuity of c(#) and of £*(•)• Nov?, let w be an accumulation point of
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(w(s.)}, i.e., w(s±) -»w* for ieKc[0, 1, 2,...}. Then w(s±) eC(e^•and
therefore w* e C (c*) • A1**0' since w^si^ e ?(s±> >

26. (w(s±) -v(s±), s±) = 0 for i=0, 1, 2,...

Consequently, since s± -> s*, v(s±) -> v(s*), and w^) -> w* for ieK, we must
j*. jt * •){••)(•

have <w - v(s ),s > =0, i.e., w e P(s ). Thus,

27. w* e C(c(s*)) 0P(s )

)But G(c*) PI P(s*) consists of only one point w(s ). Consequently, w =w(s )

and w(«) is continuous at s . This completes our proof.

We shall now see what is involved in applying Algorithm (19) to the

problem (l) .f First, given avector se S, we compute v(s) from the fact that

28. vq(v(s)) = Xs, X > 0 .

Thus,

29. Vq(v(s)) = Q(v(s) -x^*) = Xs, X>0

Hence (v(s) - xk*) =XQ_1s and we therefore compute X>0 from

30. | <X Q^s, Xs> - y =0 ,

i.e., X=+(2y/<s, Q^s))1'2. Thus

v(s) =x^ +(2Y/<s, Q^s))1/2 Q"1 s ,

which presents no serious problems in computing.

Next, to compute apoint sQ eTwe may proceed as follows. From (5), [d^]

3 C(0) and from (lc) *k e Q' Now> let US com^ute a*~ e t°>l] such that

A •»

fNote that when ft consists of one point only, i.e., ft =(x^), v(s) =^ for all
s e T and hence presents no difficulties in evaluation.
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q(\ x* + (1-X) d, ) =0 by solving the quadratic equation

* 32. ^(l-X)^* -(1-X)dk, Q((l-X)xk* -(1-X)dk)> -v =0 ,

i.e.,

33. (1-X)2 = *</\ - dkHq
the boundary of ftj„^->, «Q

P

Then x=(X xfe* +(l-\)dk) e oft,/and ||v%(g|| s T, hence, set sQ )W
Now, to compute c(s) and w(s) for a given s e T, we must solve (with

z = (Uq, u^,..., uk_1))
k-1

3*. n*n V Hdi +Rizllp +ui2
i=0

subject to

3ka. <(dk + \ z) -v(s), s> =0

3Ub. |u±| < 1, i =0, 1, 2,..., k-1.

We note that (3k) is a quadratic programming problem solvable by finite step
also

procedures (such as Wolfe's [Wl]). WeAnote that a special case of (3*0 arises
in (3k)

when the matrix P = o{ In this case the necessary and sufficient conditions
A * A A .

developed in Section 1.2 show thnt the optimal z = (Uq, u.^..., \^ is given by
A

35. ui =sat ^rk(i+i)' Xs^ i=°' 1,--° k"1
pk(i+l) ,

where / = A x b for i =0, 1,..., k-1,and X > 0 is easily determined

from the following piecewise linear equation.

k

36. <dfe + y sat(X <rki,s> rfei - v(s), s> = 0
i=l
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which is obtained from the fact that

37-

i=0

w(s) =dk+ V sat(X <rk(i+1), s» rfc(i+1) eP(s) .

1 X7 A 2
Then c(s> = ^ \ Ui *

Thus, so far, we have encountered no difficulties. How, while it is quite

clear that a point s' e A(s) cannot be computed exactly, it is clear from

Theorem (1.3.16) and the discussion which preceeds it, that if we carry out no

more than a very coarse search along the arc o(s) for a point which maximizes

c(s'), s' ea(s), we should, with reasonable certainity, find a point s* e o(s)

satisfying c(s*) - c(s) > p(c(s) - c(s)) for some fixed but very small p > 0,

and hence obtain convergence. Experiments carried out by the author bear out this

heuristic conclusion.

The problem becomes considerably less tractable when the set ft is described

by several inequalities, since now we can compute neither v(s) nor a point s' e A(s),

in a finite number of steps. Theorem (1.3.21), however, leads us to the following

heuristic development which is one of several that are possible. First we must

introduce a set to approximate v(s) for s e T. Thus, suppose that

38. ft = {x e |RV Iqx(x) < 0, i =1, 2,..., m}

where the qi: Rv -* R are continuously differentiable, strictly convex functions,
A

and by our assumption ft is compact and strictly convex (or else ft = (xk) is a point
A .

in which case v(s) = xk for all se T) .

39. Definition: Let p: (Rv -* IR be defined by
m

39a. p(x) - \ (max [0, qi(x)))2
i=0
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Let a > 0, p > 0 be given scale factors, let e > 0 and let

39b. ve(s) = {xetRv| lls«*«>+|h P(s))||2<ae}
Note that if a is chosen to be zero, then V (s) contains exactly one point

e

x (s), which minimizes the strictly convex function <x,s> + -r- p(x) over Rv.
e 7 pe

From (ill.1.10) we see that x (s) must satisfy x (s) -» v(s) as e -♦ 0 and
e e

kO. - <x (s),s) <-<v(s),s>

i.e.,

kl. (xe(s) "v(s)>s> > ° •

Thus, x (s) is separated from ft by the hyperplane P(s) passing through v(s) and

therefore, if we define the hyperplane,

k2. P(x,s) = {x1 | <x'-x,s> = 0}

either * or QnP(xe(s) 's) =£v(s)*
then ft lies to one side of P(x (s),s), i.e.,Aft n P(x (s),s) =/ for all e > 0, and

e e

s e S.

We now extend our functions c(») and w(»).

ii-3. Definition: Let U1 c IRV x S be such that for every (s,x) e U* there exists

an a > 0 such that C (a) D P(x,s) / 0. We define the map 'c: V1 -» !R as

k3&. *c(x,s) =min {a | C(a) fl P(x,s) £ $

^- Definition: Let UcU' be such that for every (x,s) e U, C(c(x,s)) n P(x,s)

consists of a unique point. Then we define w: U •* Rv as

kka. fw(x,s)} = £(c(x,s)) fl P(x,s) .
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HS. Decomposition Algorithm with e-Procedure
^ for (39b)

Suppose that an I > 0, and scale factorsa> 0, p> O'and an sQ e T are

given.

Step 0: Set s = sQ.

Step 1: Set c = 6q«

Step 2: Compute a point v (s) e V (s) (as defined in 39b).
G C

Step 3: Compute ^(v (s),s), w(v (s),s) and. the curve a(v (s) ,s) which is the
£ 6 S

intersection of T with the two-dimensional subspace spanned by s and

w(v (s),s) - v (s).
e e

Step k: For each s' e £ (v (s),s), compute a vector v (sf) in V (s1) and then
G S t»

find a vector s., e q(v (s),s) such that
1 G

k6. c(v (Sl),sJ = max {c(v (s«),s') | s» e a(v (s) ,s)}

Step 5: If *c(v (s^jS^ -'cfv (s),s) > e, set 3=3^^ and go to Step 1.

If c(v (s.),s.) -~(v (s),s) < g, set e = c/2 and go to Step 2.
£ ± X G

1+7. Theorem: Suppose that a = 0. Let {s.} be any infinite sequence in T

constructed by the Algorithm (k5) (i.e., s^ s^9..., are the consecutive values

assigned to sQ in Step 5), then any cluster point of {s^ is optimal.

We omit a proof of this theorem since it can easily be established by using

Theorem (1.3-21).

In practice, Algorithm (»^5) cannot be applied with a =-. 0, since the computa

tion of v (s) = x (s) cannot, in general, be performed by a finite step
e c

procedure. Nor can the point s-, defined in Step k9 be computed by a finite step

procedure. Thus, in practice, one must choose a > 0 and use some finite search

over the curve o(v ,s) for a point s... For example, one may examine the points,

(s + ^ 5)/11s +7 §||> where jis some positive integer, i =0, 1,..., j, and
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5 = p(w(v (s) ,s) - v (s)), with p e (0,1]. Although with a > 0 and an approximate
G G

evaluation of s.. in Step k9 it does not seem possible to establish mathematical 1y
^ 1

» the convergence of Algorithm 0*5), there is a certain amount of experimental

evidence to support a claim that the convergence of Algorithm (U5) is usually not

affected by these approximations.

To conclude this section we shall describe one more algorithm for solving the
Barr and Gilbert [B2], [B3] and used as a subprocedure algorithm

Geometric Problem (6). This algorithm was first introduced by^Frank and Wolfe p5] due to

and rediscovered independently by Gilbert pi] in conjunction with the solution

of optimal control problems.

,|-S. Definition: For every s e T, let y(s) e C(c(s)) be such that

i|y(s) -v(s)|l = min {||y -v(s)|| |y <= C(c(s))}

U-9. Proposition: The map function y: T -♦ (Rv defined by (kQ) is continuous.

50. Barr-Gilbert Algorithm [B21. Suppose ft = {v} (i.e., ft consists of a unique point)

and suppose that an sQ e T is given.

Step 1: Set s = sQ.

Step 2: Compute c(s), y(s).

Step 3: Set s = (y(s) - v)/||(y(s) - v)||

Since c(*) and y(') are continuous, it is easy to establish by means of Theorem

(1.3.1) that if {s.} is a sequence constructed by the Algorithm (50), then every

cluster point of [s.] is optimal, and that w(s.) -* v and c(s.) -♦ c , with

c =min {a Ive C (a) >a> 0} .

In order to apply this algorithm to a control problem with ft bigger than one

point, Gilbert introduces new sets C (a) = C (a) - ft, which can be used instead

r /letof C(cc)9 and/ v = 0 in (50). To see the details of how this is done, as

well as how one may approximate the computation of y(s), the reader should look

up [Gl], [B2], [B3].

1^
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This concludes our discussion of decomposition algorithms for optimal control

problems.

f
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