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I. INTRODUCTION.

The solution of complex optimal control problems is frequently facili

tated by an imbedding or, to be more precise, by a decomposition into a

family of simple optimal control problems. This paper presents a (single

iterative) decompositon algorithm which shares a number of geometric ideas

with algorithms given by Frank and Wolfe [1], Neustadt [2], Eaton [3],

Gilbert [6], Barr and Gilbert [7], Polak [10] and Polak and Deparis [11].

In comparing the algorithm in this paper with the ones mentioned

above, the reader will find that it applies to a larger class of problems

and that it is made up of simpler subprocedures which often result in

improved speed. In particular, it makes less stringent requirements of

continutiy of the reachable sets than its predecessors, it only requires

convexity rather than strict convexity of the state space constraints (a

common feature in [2], [10], [11]), it is single rather than double itera

tive as in the case of the Barr-Gilbert algorithm (see [7]), and it does

not require the search of a minimum along an arc (as is the case in [10]

and [11]). The extent to which the algorithm presented in this paper

differs from its predecessors is indicated to some extent by the fact

that while all the algorithms presented in [2] to [11] construct a mono-

tonically increasing sequence of reachable sets, the present algorithm

produces a sequences of reachable sets which can oscillate.

Actually, to be exact, this paper presents not one, but five algo

rithms. The first algorithm solves a canonical geometric problem which

is closely related to a large class of optimal control problems. This

algorithm is then endowed with additional features to produce the others
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algorithms, each of which is directed towards different groups of optimal

control problems.

The class of problems which can be treated by means of the algorithms

to be presented includes minimum-energy, minimum-fuel and minimum-time

discrete and continuous optimal control problems with linear dynamics and

a finite number of convex state space constraints. As will be seen from

the examples presented, the algorithms are fast enough to be usable for on

line control in many practical situations.
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II. GEOMETRIC PROBLEM AND PRELIMINARIES.

It has already been demonstrated in [2 - 11], that a number of optimal

control problems can easily be transcribed into a problem involving two

4 „~ convex compact sets: a target set T which is fixed and a reachable set,

R(X), depending on a scalar parameter X which is usually the cost.

We shall now state this geometric problem and develop some of its

properties which we shall need later.

Problem 1:

t
Given a convex compact subset T of a real Hilbert space "K and a map

ping R(«), from a compact subset A of the reals into all the subsets of

3C, satisfying

(i) R(X) is convex and compact for all X in A;

(ii) R(Xf) Cr(x") for all X', X" in A such that Xf < X";

(iii) R(») is continuous on A;
A. /\ A

Find a X in A and an x in T such that X £ X for all X in

{x e a| r(x) n t ^ 0> and x e r(x).

Remark: By R(») continuous on A we mean that given any neighborhood

N(R(X)) of R(X) there exists a neighborhood N(X) of X in A such that for

e ' , all X1 e n(X), R(X') CN(R(X)). Note that Problem 1 differs from the

problems considered previously in the literature in two very important

respects. In Problem 1 , the set T is not required to be strictly convex

and the mapping R(.) is not required to satisfy R(X) strictly convex for

all X in A. We shall see later that this enables us to consider optimal

We use ( •,. )to denote the inner product in 30.
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control problems with polyhedral target sets, as well as optimal control

problems with dynamics which are not completely controllable. It should

also be noted that the continuity required of the mapping R(0 is weaker

than the continuity usually required in the literature, as for example

Hausdorff continuity. Consequently Problem 1 is extremely general and,

as a result, a large number of problems can be transcribed into the form

of Problem 1.

Theorem 1. The set {X G a| R(X) H t ^ 0} is compact.

Proof: In order to prove this theorem, we shall show that the set

A={x G A| R(X) H T = 0} is open. Suppose that A is empty, then obviously

A is open; now suppose that A is not empty and let X be in A. The defini

tion of A implies that R(X) H T = 0. R(X) and T are closed subsets of a

Hilbert space, then there exists N(R(X)) and N(T) disjoints neighborhoods

of R(X) and T respectively. The continuity of the mapping R(0 on A im

plies that there exists N(X), a neighborhood of X in A such that

R(Xf) C N(R(X)) for all X1 in N(X). It follows that N(X), neighborhood

of X in A belongs to A i.e. A is open. This implies that the set

{X £ A| R(X) Ht = 0} is a closed subset of A which is compact and is

therefore compact.

Remark: Theorem 1 shows that Problem 1 is well defined.

Definition 1. Let P(«,«) be the mapping from "K * K into all the subsets

of 3C defined by

(1) P(v, s) = {x e K | < s, x - v > = 0}

Theorem 2. The set {X € A| R(X) H p(v, s) j 0} is compact for all v and
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s in 3C. The proof of Theorem 2 is basically the same as the proof of

Theorem 1 and is therefore omitted.

Definition 2. Let V(.) be the mapping from "K into all the subsets of T

-* »"* defined by

(2) V(s) = {v e t| <s, x - v> <_ 0 for all x in T}.

Remark: The compactness of T implies that the mapping V(.) is well defined.

Definition 3. Let X . and X be respectively defined by
min max r J J

X . = min {X G A};
mm

X = max {X £ A}.
max

Definition 4. Let Q(«,0 be the mapping from JC x K into A defined by

X when P(v, s) H R(A) = 0 for all X ^ A;
max * '

(3) Q(v, s) = min {X e AI P(v, s) H R(X) f 0} otherwise.

Definition 5. Let z(., ., .) be the mapping from K x K x 3C into 3C defined

by:

(i) z(a, b, c) € [b, c]+;

(ii) 0 z(a, b, c) - all £ Hz - all for all z € [b, c].

It is not difficult to see that z(., ., .) is jointly continuous in all

its arguments.

Definition 6. Let \\)(.9 ., .) be the mapping from JC x K x 3C into E

Note: Given two points b and c in ?f, the set fy G K | y
= vb + (1-v) c, 0 < \j < 1} is denoted by [b, c].
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defined by:

(4) <Ka, b, c) = II b - all2 - II z(a, b, c) - all2

Obviously, ^(., ., .) is jointly continuous in all its arguments.
JL JL JL JL J* ^U ^p

Theorem 3. Let a , b , c be points in 3C such that (b -a,b -c )>0,
Jc it it ic ~k "k

Then i|> =i|>(a,b,c)>0 and there exists neighborhoods N(a ), N(b )

* * * *

and N(c ) of a , b and c , respectively, such that

*ij>(a, b, c) >_ |- >0for all ain N(a ), for all bin N(b ), for all cin
N(c*).

Proof: It is easy to show that if (b -a,b -c ) >0, then
a ^ ^ jk JL JU

ty = ty(a , b , c ) > 0. The existence of the neighborhoods N(a ), N(b )

and N(c ) now follows from the continuity of the mapping ^(., ., .).
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III. ALGORITHM FOR PROBLEM 1.

We shall now give an algorithm for solving Problem 1 . This algorithm

requires the knowledge of two initial points, one in the set T and one in

the set R(X . ). We assume that we can compute exactly a v. in V(s.) and

Q(v., s.) at each iteration, as required by the algorithm. We shall see

later from the examples to be presented, that this assumption is entirely

justified. Finally, in order to obtain meaningful results, we must suppose

that Problem 1 has a solution, i.e. we shall assume that there exists a

X in A such that R(X) H T t 0.

Algorithm 1:

Step 0: Compute an x. € T and a yn £ R(X . ). Let i = 0 and go to Step 1.

Step 1: If y is in T set x = y and go to Step 2, else go to Step 2.

Step 2: If Hy - x II =0 stop, else go to Step 3.

Step 3: Compute s = y. - x. and a point v, in V(s.) as defined in (2).

Step 4: If (s., y-v. ) > 0 for all y in R(X . ), compute Q(v., s.) as

defined in (3), set X. = Q(v., s.) and go to Step 5, else set X. = X .iii ° r> x m^n

and go to Step 5.

Step 5: Compute a w in R(X.) satisfying ( s., w - v. ) £ 0.

Step 6: Compute y.^ in [y., w.] and x.+1 in [x., v.] such that

II y., 1 - x.+1 0 <_ II y - x II for all x in [x., v ] and for all y in

[yj» w ]. Let i = i + 1 and go to Step 1.

Lemma 1. Consider the sequences {x.}, {v.}, {y.}, {w.} and {X.} generated

by Algorithm 1 , then:

(i) the sequences {x.} and {v.} are in T;

(ii) the sequences {y.} and {w.} are in R(X);
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(iii) <y - x , v. - w > >_ 0 for all i;

(iv) <x. - y , x, - v. > >_ 0 for all i;

(v) the sequence {II y. - x. 11} is monotonocally decreasing;

(vi) the sequence {X.} satisfies: X. <_ X for all i.

Proof:

(i), (iii), (iv) and (v) are self evident.

(vi) By assumption, Problem 1 has a solution X in A. It follows

that if X. = X . , then X. < X.
i min* i —

Hence the only interesting case to consider is when (s., y - v. ) >0

for all y in R(X ). Suppose that this is indeed the case and that

X. = Q(v., s ) > X. Then the definition of Q(v., s.) implies that

R(X) H P(v., s.) = (j). But R(X) is convex and contains R(X . ): therefore

(s., y - v. ) > 0 for all y in R(X). Now, by construction, (s.,x-v. ) _<0

for all x in T, and hence R(X) and T must be disjoint, which contradicts

the definition of X. It follows that if <s., y - v > > 0 for all y in

R(X . ) then X. < X.
mm i —

(ii) is self evident in view of (v.).

* * * *

Theorem 4. Any accumulation point (x , v , y , w ) of a sequence

{x., v., y., w.} generated by Algorithm 1 satisfies:

(5) <x-y,x-v>=0

(6) <y-x,y-w>=0

Proof: Consider an infinite sequence {x., v., y., w } generated by

* * * *

Algorithm 1 and let {x,v,y,w}bean accumulation point of this
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sequence, then there exists K, a subset of the integers such that the

subsequence {(x ,v., y., w )}R converges to (x ,v ,y ,w ).

From Lemma 1 we have:

<x. -y.,x. -v. > >0 for all i.
1 J± 1 i —

It follows by continuity of the scalar product that

/ * * * * \ r*(x -y,x -v / >_ 0.

Suppose that <x -y,x -v > >0, then theorem (3) implies that:

it "k it it

$ = iKy , x , v ) > o

it it it it it it

and that there exist neighborhoods N(y ), N(x ), N(v ) of y , x and v

respectively such that:

*

2
|x_ y[|2 - !z(y, x, v) - yll2 >^~

for all y in N(y ), for all x in N(x ), for all v in N(v ). This in turn

implies that there exists a positive integer k such that:

Dx±-yin2- l«(ylt Xi, v±) -yi»2l|-

for all i > k, i in K.

Now by construction, z(y±, x^^, v±) G [x±9 v±] and the definition of y±+1

+Note: Let {x } be a sequence and K be a subset of the integers then we

denote by {x.} the subsequence of {x.} consisting of all the x. such that
1 K x

i belongs to K.
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and x - implies that

iyi+i-xi+i' illz<yi' v V -Vi11-

It follows that

'y, " xJI2 - »y_ -x_ll2>$->_

i "i "'U-l "i+1 - 2

for all i >_ k, i in K. But this contradicts the fact that {(x , y.)}v

converges to (x , y ) and hence we must have \x -y,x -v > =0.

it it
The proof of (6) is done exactly in the same manner, replacing x , y

* * * it
and v by y , x and w .

Theorem 5. Consider the monotonocally decreasing sequence {Hy. - x.ll}

generated by Algorithm 1 . Then either the sequence is finite and its

last element fly. - x, II satisfies Hy, - x, II = 0 or it is infinite and the

sequence {Hy - x. II} converges to zero.

Proof: First suppose that the sequences {x.} and {y } generated by the

algorithm are finite. Then since the only stop command of Algorithm 1

is in Step 2, x, and y, must satisfy Hy, - x, II = 0. Now suppose that

the sequences {x.} and {y,} are infinite. Consider the sequence

{(x., v , y , w )} in "K x K x "K x K. The points x and v. are in T

which is compact, the points y., w are in R(X) which is also compact.

In other words the sequence {(x., v., y,, w )} is in T x T x R(x) x R(x)

which is compact. It follows that there exists a subset K of the integers

such that the subsequence {(x , v., y., w.)>K converges to a point
JL JL JL JL ^, /v

{(x , v , y , w )} of T x T x R(X) x R(X).
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From Lemma 1 we have:

<y - x , v. - w > >^ 0 for all i.

It follows by continuity of the scalar product that:

(7) <y - x , v - w > >_ 0.

The following equality is easy to establish:

<y -x,y -w >=Hy - x D + <y -x,v -w >+<y -x,x -v >

It follows, using (5) and (7) that

/ * * * * \ ll * *ll2<y -x,y -w >>_lly - x II .

k k 9

Relation (6) shows that Hy - x II =0. Since the decreasing sequence

{fly - x B} possess a subsequence which converges to zero, the sequence

{lly - x.H} itself converges to zero, which completes our proof.

Theorem 6. If the sequence {X±> generated by Algorithm 1 is finite then

max X. = X

i

and if the sequence {X } is infinite then

sup X. = X

Proof: Let X be defined by

X = max X, when the sequence is finite,
i
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X = sup X. when the sequence is infinite,
i

The compactness of A implies that X is in A. By definition, R(X) Ht^.

Suppose that X < X, then it follows that R(X) and T are disjoint. Now T

and R(X) are convex, compact subsets of a Hilbert space JC and therefore

there exists an e > 0 such that IIx - yll >_ £ > 0 for all x in T and y in

R(X). The definition of X i.e. X. <_ X for all i, implies that Hx - yll ^ e > 0

for all x in T and y in R(X ), i.e., Hx. - yJ >_ £ > 0 for all i, contradicting

Theorem 5 . Therefore X •> X, and since by Lemma 1 , X < X for all i, we

conclude that X = X, and the Theorem is proved.

Remark: The sequence {X,} generated by Algorithm 1 does not necessarily

converge to X. However Theorem 6 does show that the sequence {X } has

a subsequence which converges to X. This fact can be incorporated in a

heuristic stopping rule for Algorithm 1 , which could partly be based on

the rate of increase of the sequence {y.} defined below.

Definition 7: Let {X.} be a sequence computed by Algorithm 1 in the

process of solving Problem 1 . We associate with this sequence a sequence

{y } defined as follows,

y. = max {X. I j < i) for every i.
i j

Lemma 2. Let {X.} be a sequence computed by Algorithm 1 and let {y.}

be the sequence obtained by using Definition 7 , then either the sequence

{y.} is finite and its last element y, satisfies y, = X or it is infinite

and the sequence {y } converges to X.
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IV. DISCRETE MINIMUM - ENERGY OPTIMAL CONTROL PROBLEMS

We shall now show how a class of discrete, minimum-energy, optimal

control problems can be transcribed into a slightly modified form of

Problem 1 . We shall also present a few specific problems in this class

which were solved by means of Algorithm 1 in order to give the reader

a feel for the numerical behavior of this algorithm.

The specific class of discrete minimum energy optimal control

problems we shall consider is the following one,

Problem 2:

N

Minimize ]T (u^)2

subject to

(8) z = A. z._x + b. uJ j= 1, 2 ... N

(9) z0 = z0;

(10) zN e T;

(11) |uj| 1 1 j= 1, 2 ... N;

where, for j = 0, 1, 2 ... N, z € En is the state of the system at time

j and, for j=l, 2...N, uJ^E is the input at time j. The matrices

A and b are real and are of dimensions n x n and n x 1 respectively,
j J

for j = 1, 2 ... N. The set T C En is assumed to be compact and convex.
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As an intermediate step in transcribing Problem 2 into the form

of Problem 1, it is convenient to rephrase this optimal control problem

as a convex programming problem as follows. Let

(12) ro =\*«-r"AiV

(13) r. =A^ A^ ... Aj+1 b. j= 1, 2 ... N-l;

then Problem 2 becomes

N

Minimize ]T (u^)
3=1

subject to

N

(i) (rQ+ £ r. uj) GT
j=l

(ii) |uj| <. 1 j= 1, 2 ... N.

To complete the transcription in the form of Problem 1 , we define A and

R(.) as follows:

Definition 8. Let A be the subset of the reals defined by:

(15) A= {X e E1 |0 <_ X <_ N}

n
Definition 9. Let R(.) be the map from A into all the subsets of E
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defined by:

N N

(16) R(X) ={y EEN|y =rQ +£ r uj, |uj|<1, £ (uj)2 £A)
3=1 j=l

The following result is obvious.

Theorem 7. The mapping R(.) defined in (16) has the following properties:

(i) R(X) is convex and compact for all X in A,

(ii) R(Xf) C R(x") for all X\ X" in A such that X1 < X"

(iii) R(X) is continuous on A.

We now see that Problem 2 can be restated as a sequence of two problems.

Problem 3. Minimize X subject to

X e A, R(X) H T ^ <J>

where T, A and R(.) are defined as in (10), (15) and (16) respectively.

Problem 4. Given that X is the solution of Problem 3 find the sequence

"1 AN
u , ..., u with the properties that

N

-—-4 2

(i) £ <u > " X
j=l

N

(ii) (rQ +Y. rj uJ) GT
3=1

(iii) |uj| <. 1, j= 1, 2 ... N.
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Consequently, if we wish to solve both problems simultaneously we must

add a few operations to Algorithm 1 in order to take care of Problem

4 . These will be stated in Algorithm 2 below. Since this is a

specific algorithm, it contains exact instructions for carrying out the

computations required by Algorithm 1.

12 N
Notation: We shall denote by u the sequence of controls (u , u » •••» u )

Different control sequences will be denoted by u,, u« etc.

Remark: Algorithm 1 may generate infinite sequences and therefore,

from a practical point of view, some sort of truncation of the sequences

must be included in the algorithm in order to obtain finite computational

time. The positive scalar e introduced in Algorithm 2 fulfills this

purpose.

Algorithm 2: Let e > 0 be given.

Step 0: Compute r., j = 0, 1, 2 ... N using (12), (13) and (14). Compute

an xQ G T, set yQ = rQ, uQ = 0, i = 0.

Step 1: If y. is in T let x. = y. and go to Step 2, else go to Step 2.

Step 2: If Hy - x.ll <_ £ stop, else go to Step 3.

Step 3: Compute s. = y, - x. and a point v. £ V(s,).

Step 4: If (s., rn - v. > <_ 0 set u. = 0, w. = rfi and go to Step 6,

else go to Step 5.

Step 5: Compute a scalor v < 0 satisfying

N

2_ <r., si > sat <vr , s± > =<v± - rQ, si >.
j=l
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If no such v exists, Problem 2 has no solution, stop,

else set

u^ = sat <vr,, s. > , j= 1, 2, ..., N;

N

wi "r0 +I rj »i;
j=l

and go to Step 6.

Step 6: Compute x. ., G [x±, v^]

and y±+1 e [y±t w±]

satisfying

for all xe [Xj,, vi]> for all yS [yj,, w±].

Step 7: Compute C G [°» 1] sucn that

and set u±+1 = (l-O ui + ^ ui

N

Step 8: Let X±+1 = £_ ^U±+V
j=l

set i = i+1 and go to Step 1.

+ 11
Note: The function sat (.) : E •+ E is defined by

sat (a) = a if |a| < 1
sat (a) = 1 if a > 1

sat (a) = - 1 if a < - 1
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In view of Lemma 1 and Theorem 5 , the following result is clear,

Theorem 8. When Problem 2 has a solution, Algorithm 2 generates

finite sequences

{xi}i=0> {yi}i=0» {ui}i=o and Ui}i=0

such that

N

<« yk =ro +Z rj ukGR(V;j
j=i

(ii) xfc € T;

(iii) Byk - xkll <_ e;

N

i.2(iv) X, = Y* (u*J) <_ X, where X is the optimal cost for Problem 2;
3=1

(v) |u£| £1 j=1, 2... N.

Remark: The definition of R(*k) implies that

yk = ro

N

+ I rjukGR(V-
j=l

By (ii) in Theorem 7, R(\) CR(X). Together these two facts imply that

yk€R(X).

The reader can see easily that if w is determined in Step 4 of

Algorithm 2 then <s ,w - v. > <. 0, and if w± is computed in Step 5

of Algorithm 2 then <s., w - v. > = 0. In either case w± satisfies
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(s., w. - v. ) ._< 0 as required in Step 5 of Algorithm 1.

Computational results

In order to obtain an idea of the computational behavior of Algorithm

2 , Problem 2 has been solved for:

(17)

(18)

(19) A -

(20)

(21)

n = 10

N = 50

.9 0 0 0 0 0 0 0 0 0

0 0.9 0 0 0 0 0 0 0 0

0 0 0.5 0 0 0 0 0 0 0

0 0 0 0.5 0 0 0 0 0 0

0 0 0 0 0.9 0 0 0 0 0

0 0 0 0 0 0.9 0 0 0 0

0 0 0 0 0 0 0.6 0 0 0

0 0 0 0 0 0 0 0.6 0 0

0 0 0 0 0 0 0 0 0.9 0

0 0 0 0 0 0 0 0 0 0.

for j = 1, 2 .50

b = (7.6, 7.6, .1, .1, 15.2, 15.2, 0.1, 0.1, 7.6, 7.6)

for j = 1, 2 ... 50

zQ = (3000, 3000, 1000, 1000, 6000, 6000, 1000, 1000,

3000, 3000)
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Algorithm 2 was programmed in Fortran IV and the computations were

carried out on a CDC 6400 computer. The value of £ used in the algorithm

was taken to be 0.2. The problem was solved for 3 different target sets

T: a point, a ball and a cube in E .

Case 1: T = {t}, i.e., T is a point in En, with

(22) t = (0.6, 0.6, -0.07, -0.07, 1.2, 1.2, -0.08, -0.08, 0.6, 0.6)

The problem was solved in 2 iterations, the computation time being 1.21

second. The terminal cost was found to be 0.727.

Remark: The system defined in Problem 2 with A. and b. as given in (19)

and (20) is not completely controllable and hence R(.) is not strictly

convex. Incidentally this fact also made it somewhat difficult to construct

a target set for which a solution exists.

Case 2: T is a ball in En, i.e.,

(23) T= {x |xTP x+ pT x+ tt <_ 0}

where P = I, the n x n identity matrix

p = (0.8, 0, 0, 0, 0, 0, 0, 0, 0, 0)

TT = -9

The origin in En was used as the initial point xQ £ T for Step 0 of

Algorithm 2 . The problem was solved in 15 iterations, the computation

time being 1.68 seconds. The terminal cost was found to be 0.725.
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Case 3: T is a unit cube in E , i.e.,

(24) T= {x e En| Ix1! <1 i= 1, 2 ... n}

The origin in En was used as the initial point xQ £ T in Step 0 of

Algorithm 2 . The problem was solved in 52 iterations, the computation

time being 7.68 seconds. The terminal cost was found to be 0.734.

Remark: Because of lack of space we do not give the values of the sequence

{x.}, {v }, {y.}, {w±} and {u±} generated by Algorithm 2 for the

cases 1, 2 and 3. However, we think that an indication of the number of

iterations and of the computation times should be sufficient to give an

idea of the behavior of Algorithm 2 in the three specific cases considered,

We stated the final value of the cost in each case in order to indicate that

the three cases considered are in some sense "comparable".

Remark: At this point, it must be obvious to the reader that Algorithm

2 can be modified easily to solve problems which differ from Problem 2

N N . 2
only in that they use the cost function £ |uJ| instead of Z (uJ) .

j=l 3=1

N

Problem 5: Minimize Z |u3| subject to (8), (9), (10) and (11).
3=1

To solve Problem 5 we use Algorithm 2 with the Step 5' below

replacing Step 5.

Step 51: Compute a scalar \> < 0 satisfying

N

Y <r., s. > dez (< \>r., si >)>_ <v± -rQ, s±
3=1
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and

N

V (r., s. > dez (< vr., s. >) < <v. - rn, s. >
^-ji j i — i u .1

j=l

1 .
where dez(.) and dez(.) are functions from E into E defined by

'0 if |a| <_ 1

dez(a) =^ 1 if a > 1

-1 if a < -1

0 if |a| < 1

1 if a > 1

-1 if a < -1

dez(a) =<

-1 =

If no such v exists, Problem 5 has no solution, stop, else set

1 if <vr ,s± > >1

0 if |< vr., s± >|<1

'4 = 1 if <vr., s. > < -1
3 i

let J={j| |<vrjf s.> |*1}

J+ ={j| <vrj, si >=1}

J_ =(j| <vrjS si >=-1}

then the v? , j e J. u J are determined by solving the following trivial

problem:
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find scalars u^ ,j£ J+ U J_, satisfying

(a) 0 <_ u| <_ 1 jSJ+;

<b) -1 <u*[ <. 0 j e J__;

(c) x <v si >;i =ui - v si> -1 (v si> "i
j+uj_ jej

N

Then let w,, = rrt + V r. u? and go to step 6.
i o ^— j i

3=1

In view of Lemma 1 and Theorem 5 the following result is clear.

Theorem 9. When Problem 5 has a solution, Algorithm 2 , with Step 5'

k k k
replacing Step 5, generates finite sequences {x^^q, ^vi^i=o' *ui*i=0

k
and {X } n such that

N

w yk=ro +X rj ^eR(V;
3=1

(ii) xk e t;

(iii) Hyk - xkH <e;

N

(iv) X, = 2_ \ui\ —^» where X is the optimal cost for Problem 5;
j=l

(v) |J| <1 j = 1, 2 ... N.
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V. A SPECIAL CASE OF THE GEOMETRIC PROBLEM:

So far, we have always considered Problem 1 in its most general

form. We shall now consider a special case of Problem 1 and obtain

for it a specialized form of Algorithm 1 . As we shall later see, dis

crete minimum time optimal control problems reduce to this special case

of Problem 1.

Problem 6: Given two convex compact subsets T and R of a real Hilbert

space 5C, find a point in T H R. Problem 6 is a problem of the form of

Problem 1 , with A containing only one point.

Algorithm 3:

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Compute an xQ £ T, a yQ ^ R and set i = 0.

If y. is in T set x = y. and go to Step 2, else go to Step 2.

If fly. - x II = 0 stop, else go to Step 3.

Compute s. = y. - x,.

Compute v. ^ T satisfying <s ,v± > >_ <s^ v> for all v in T.

Compute w. £ R satisfying <s., wi > <_ <s^ w> for all w in R.

If <s , w - v. ) > 0, stop, Problem (6) has no solution, else
i i x

go to Step 7.

Step 7: Compute y±+1 in [y^ w±] and x±+1 in [x^ v±] such that

Hy.., - X-tj.-," 1 "y - x" for a11 x in fxi» v-f] and for a11 y in fyi' wi-l

Let i = i+1 and go to Step 1.

In view of Lemma 1 and Theorem 5 the following result is clear.

Theorem 10. When Problem 6 has a solution i.e. when T n R ^ 0,

Algorithm 3 generates sequences {.x1> and {y±} in T and R respectively

such that:
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(i) the sequence {Hy - x.H} is monotonocally decreasing;

(ii) when the sequences {x } and {y±} are finite, their last element

satisfies Hy, - x, H = 0;

(iii) when the sequences {x.} and {y.} are infinite, the sequence

{Hy - x.H} converges to zero.

Theorem 11. When Problem 6 has no solution i.e. R H T = <}>, Algorithm

3 stops in Step 6 after a finite number of iterations.

Proof: Let RHT = f, then Algorithm 3 cannot stop in Step 2. Suppose

that Algorithm 3 does not stop in Step 6 after a finite member of

iterations, i.e. it generates an infinite sequence {(x±, vjL> yi> w^}.

The compactness of R and T implies that there exists an infinite subset

of the integers K such that the subsequence {(x±, v^ yi> w^)>K
JL JL JL |JL

converges to some point, say (x ,v ,y ,w ). From Theorem 4 we get:

/ * * * * \
\x -y,x -v / =0

and

/ * * * —* V _
\y -x,y -w / = 0.

This implies that <y* -x*, w* -v* >= Hy -xH. By assumption R and
* * 2

T are convex, compact and disjoint, therefore IIy - x H > 0. It follows

by continuity of the scalar product that there exists a finite integer

k^K such that

<y± -x., w± - v± > > 0 for all i > k, k G K

i.e. <s , w. - v. > > 0 for all i >^ k, k^K, This contradicts the hypothesis

that the algorithm doesn't stop in Step 6 after a finite number of IteratlonB
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and therefore the theorem is proved.

Remark: Theorem 11 is extremely important in that if Problem 6 has

no solution, then Algorithm 3 will indicate this fact in a finite number

of iterations i.e. in a finite time.

The author's computational experience leads them to suspect that the

following conjecture is true.

Conjecture 1. If (int T) H R ^ <)>, then Algorithm 3 generates finite

sequences {x.}. , and {y } - such that Hy, - x, II = 0 i.e., the solution

of Problem 6 is obtained in a finite number of steps.
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VI. DISCRETE MINIMUM-TIME OPTIMAL CONTROL PROBLEMS.

In order to show the versatility of Algorithm 1 , we have adapted

and used it to solve a few discrete minimum-time optimal control problems

which we shall now describe.

Problem 7: Minimize the integer N subject to

(25) z, = A. z. -+ b. uj j= 1, 2 .., N
j 3 j-l 3

(26) zQ = zQ;

(27) zN e T;

(28) |uj| <1 j= 1, 2 ... N;

where, for j = 0, 1, 2 ..., z. £ E is the state of the system at time j,

and, for j = 1, 2 ..., u € El is the input at time j. The matrices

A and b are real and are of dimension n x n and n x l respectively for

j = 1, 2 ... . The set T C E is assumed to be compact and convex. As

an intermediate step in transcribing Problem 7 into the form of Problem

1 we rephrase this optimal control problem as a convex programming pro

blem as follows. For N = 1, 2 ..., let

(29) rQ(N) =ANAN_1 ... A± zQ;

(30) rj(N) "SVl ••• Vl bj 3 = 1, 2 ... N -1;

(31) rN(N) = bN,
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then Problem 7 becomes: minimize the integer N subject to

N

(32) (rQ(N) +£ r(N)u3) €T
j=l

(33) |uj| <1 j= 1, 2 ... N.

The transcription in the form of Problem 1 is completed by defining

A and R(.) as follows:

Definition 10. Let A be the subset of the reals consisting of the positive

integers.

Definition 11. Let R(.) be the map from A into all the subsets of E

defined by:

N

(34) R(N) ={y €En|y =rQ(N) +£ ^ u3, \u2|<1 j-1, ... N}
3=1

Problem 7 can now be seen to be equivalent to the following one.

Problem 8: Find the smallest positive integer N such that R(N) H T 4 <j>

where R(N) is defined by (34).

At this point it must be obvious to the reader that for a fixed

positive integer N, the sets R(N) and T are convex and compact, it follows

that the solution of Problem 8 can be obtained by trying to solve a

sequence of problems of the form of Problem 6 with N = 0, 1, 2 ,

Theorem 11 shows that Algorithm 3 will indicate that R(N) H T is empty
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in a finite number of steps if N < N. We note that the solution of

Problem 7 consists of N, the optimal number of steps and of

"1 "2 "N
u=(u,u ...u),a sequence of scalars satisfying (32) and (33).

The algorithm we are about to describe includes a feature which generates

automatically this control sequence.

Algorithm 4: z > 0 is given.

Step 0

Step 1

x G T
x0

Step 2

Step 3

Step 4

Step 5

If zQ £ T, stop, else set N = 1 and go to Step 1.

Compute r (N), j = 0, 1, 2 ... N using (29), (30), (31) and an

set yQ = rQ(N), uQ = 0 and i = 0.

If y. € T, set x. = y. and go to Step 3, else go to Step 3.

If Hy. - x.H <_ e stop, else go to Step 4.

Compute s. = y - x. and a point v. £ V(s.).

If <s., rQ(N) - v. > <_0, set u. = 0, w = rn(N) and 8° to SteP 7

If <si, rQ(N) -v± >>0set uj =-sgn <s ,r.(N) >, j=1, 2... N;

w.
l

N

rQ+ X rj<NK'
j=l

and go to Step 6.

Step 6: If (s., w. - v) > 0, set N = N + 1 and go to Step 1, else go to

Step 7.

Step 7: Compute x.+- e [x., v.] and y . £ [y., w.] satisfying:

"yi+l ~ Xi+l" - "y " X" f°r a11 yG ^yi' ^i3.

for all x £ [x., v.].
i i
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Step 8: Compute £ £ [0,1] such that

yi+1 = d-O y± + Kw±;

set u±+1 = (l-£) u± + £ u±;

set i = i + 1 and go to Step 2.

In view of Lemma 1 and Theorem 5 , we now get the following result:

Theorem 12. If Problem 7 has a solution, then Algorithm 4 generates

finite sequences {x,}, {y.}, {u,} such that their last term satisfies:

N

I

3
(i) yk =rQ(N) +£ r.(N)u£;

3=1

(ii) Uyk - XjJI <_ e, where xfc € T;

(iii) N <_ N the solution of Problem 7;

(iv) |u^| <_ 1,j=1, 2... N.

Computational results:

We use again the system described in section IV i.e. n, A., b. and zn

are given the values defined in (17), (19), (20) and (21). The value of

e used in the algorithm was taken to be 0.2. Again the Minimum Time

Optimal Control Problem was solved with the target sets: a point, a ball

and a cube.

Algorithm 4 was programmed in Fortran IV and the computations were
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carried out on a CDC 6400 computer.

Case 4: T = {t} where t is defined by (22). The solution of the problem

was obtained in 2.52 seconds. The minimum number of steps necessary to

reach the prescribed neighborhood of T was found to be 37.

Case 5: T is a ball in En defined as in (23). The origin in E was used

as the initial point xn £ T. The problem was solved in 2.33 seconds. The

minimum number of steps being 36.

Remark: Due to the particular structure of Algorithm 4 and the fact

that in this experiment the target set T has an interior, the algorithm

generated a point in the interior of T in a finite number of steps, which

support Conjecture 1.

Case 6: T is a unit cube in E defined as in (24). Again, the origin in

E was used as the initial point xfi £ T.

The problem was solved in 2.18 seconds, the minimum number of steps

necessary to reach T was found to be 36. As in the preceding case, the

algorithm generated a point in the interior of T in a finite number of

steps.
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VII. CONTINUOUS OPTIMAL CONTROL PROBLEMS.

A large number of continuous optimal control problems can be cast

into the form of Problem 1 . However, when the approach defined in

section III is applied to continuous optimal control problems, the

computational difficulties encountered can (but need not) be considerably

greater than in the discrete case. In order to show how computational

difficulties arise, we shall examine a specific continuous minimal-time

optimal control problem.

Problem 8:

Consider the system described by the differential equation

(35) z(t) = A(t) z(t) + b(t) u(t)

where z(t) £ En is the state of the system at time t, u(t) £ E is the

input at time t and A(.) and b(.) are continuous matrix valued functions

of dimensions n x n and n x 1, respectively. Let U[tQ,«0 be the set of

all Lebesgue-measurable functions u(.) from [tn,°°) into E satisfying:

|u(t)| _< 1 for almost all t in [tg,00).

Given the initial state z(tfi) = 0 at time t0 and a convex compact

target set T in E find the smallest time t in which the system (35) can

be taken from z(t0) = 0 to T by a control function u(.) in U[tQ, t].

We shall suppose that a solution to Problem 8 exists and that we

know at < °° satisfying
max J °

t > t
max —
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Definition 12. Let A be the set

A= {t G E1!^ <t<t }
1 0 — — max

Definition 13. Let <}>(.,.) be the state transition matrix of system (35) i.e,

(i) <{>(t0, tQ) = I;

(ii) f^<Kt, tQ) =A(t) <Kt, tQ).

Then, since z(t«) = 0,

t

(36) z(t) =| <f>(t, T)b(T)u(T)dT.

Definition 14. Let R(.) be the mapping from A into all the subsets of

E defined by:

t

(37) R(t) ={y|y =j <j>(t, T)b(x)u(T)dx; u(.) GU[t()) t]}

The following result is classical and is given without proof (see [2]).

Theorem 13. The mapping R(.) as defined in (37) satisfy,

(i) R(t) is convex and compact for all t in A;

(ii) R(t') C R(t") for all t1, t" in A such that t1 < t";

(iii) R(.) is continuous on A.

It follows that Problem 8 can be rewritten in the following form

Problem 9. Given a convex compact subset T of En and a mapping R(.) from
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A into E defined by (37), find t in A satisfying

R(t) nT^5

t <_ t for all t such that R(t) H T ± <J>.

It must be obvious at this point that Algorithm 1 can be applied to

Problem 8 . We note that in this case, Q(v, s) is defined by:

(38) Q(v, s) =

t when P(v, s) H R(\) = 0 for all A G A;
max

min {t G A|P(v, s) H R(t) ^ <{>} otherwise.

The quantity Q(v, s) can be characterized in a different way.

Definition 15. Let f be a mapping from A x E x E into E defined by

(39) f(t, v, s) = - <s, v> - j <<J>(t, T)b(x), s> sgn <<J>(t, x)b(x), s> dx

Lemma 2. When the set {t €= A|P(v, s) n r t) £ <\>} is not empty then

Q(v, s) satisfies:

(i) f(Q(v, s), v, s) ±0

(ii) Q(v, s) <_ t for all t in A such that

f(t, v, s) <_ 0.

The algorithm needed to solve Problem 8 is now given.
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Algorithm 5:

Step 0: Compute an xQ £ T and set y0 = 0, uQ(.) = 0, i = 0.

Step 1: If y. € T, set x. = y. and go to Step 2, else go to Step 2.

Step 2: If Hy. - x. II <_ e stop, else go to Step 3.

Step 3: Compute s. = y - x. and a point v €= V(s.).

Step 4: If <s., v. )'_> 0 set u.(.) = 0, w = 0 and go to Step 6, else

go to Step 5.

Step 5: Compute t. satisfying:

t± =min {t >_ tQ| f(t, v±, s±) _< 0}

then compute u. (.) = - sgn (<j>(t. > »)b(.), s. )

Wi = I ♦(ti« T)b(T)u1(T)dT

and go to Step 6.

Step 6: Compute xi+1 € [K±i v±] and y±+± ^ [y±, w±] satisfying:

Hy - x -0 <_ Hy - xll for all x in [x , v.], for all y in [y , w ].

Let i = i+1 and go to Step 1.

In view of Lemma 1 and Theorem 5 the following theorem is clear,

Theorem 14. When Problem 8 has a solution, Algorithm 5 generates

k k k k
finite sequences {x.}. -., ^^^^0' ^ui^i=0* an(* ^1^1=0 suc^ tnat

'k
(i) yk =j *(tfc, T)b(T)uk(T)dx;

*<>
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(ii) x^.S T;

(iii) II yk - xkll < e;

A A

(iv) t^ <_ t, where t is the solution of the minimum-time optimal

control Problem 7;

(v) lu^tOl £ 1 for all t in [tQ, t].

A close examination of Algorithm 5 reveals several difficulties.

To compute t. in Step 5, we must solve the nonlinear programming problem:

minimize t subject to f(t, v , s ) <_ 0. This problem is not amenable to

finite step solution. While procedures such as the Fibonacci search (see

[12]) can be used to obtain an arbitrarily good approximation in a finite

number of steps, the calculations can become quite time consuming because

of the need to integrate in calculating f(t, v., s.) as defined in (39).

In addition, one may have some difficulty in ensuring that the integration

subroutines used do not lead to an accumulation of excessive errors.

Because of the above mentioned difficulties, for efficient implemen

tation on computer, the Algorithm 5 must be modified by the inclusion

of e-procedures, analogous to the ones outlined in [10], Since one also

has to use e-procedures when one cannot compute exactly a v ^ V(s) in a

finite number of steps (as in the case when T is strictly convex and has

edges), and since these E-procedures are quite complex and difficult to

describe, the authors work on the use of e-procedures in solving Problem

1 will be presented in a separate paper.
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VIII. CONCLUSION.

This paper presented five closely related decomposition algorithms

for the solution of optimal control problems. The examples given, as well

as other experimental evidence available, indicated that these algorithms

are very efficient and that they do not suffer from undue ill-conditioning

effects.

Preliminary work indicates that the range of applicability of these

algorithms can be considerably extended by the addition of so called e-

procedures. These procedures are used to obtain various approximations in

a finite number of steps while preserving the convergence properties of the

algorithms. The authors will present their work in e-procedures in a

separate paper.
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