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REPRESENTING MARTINGALES AS STOCHASTIC INTEGRALS
i

Eugene Wong

I. Introduction

Let (ft, d, (P) be a probability space and {& 0 < t < T} an

increasing family of sub-a-algebras. We assume that (X and every (X

is complete with respect to(P. Further, we assume that the family

{Q.» 0' i t i T) is right-continuous, i.e.,

a) n a, a.
s>t

Let {X , (X , 0 1 t i T) be a sample continuous second order martingale.

Mayer [1] has shown that there exists a unique sample continuous in

creasing process {A , 0 1 t i T| such that

(2) Xt "" At * Yt* ° " t" T

is a martingale. For simplicity we shall assume X = 0.

Let IB denote the a-algebra of Borel sets in [0,T], and consider

the measure

(3) u(du)dt) = <P(dcu)A(u),dt)

defined on Qd2) ®» If y is equivalent to the product measure(j (dw) dt

then there exists a Brownian motion {w ,fl. , 0 £ t< T} such that

(4) ft

Xt =JQK dWs

with probability 1. The integrand {i|i , 0 < t < T} is given by



(5) *t(«) = (P(dO)) A(o),dt)
6>(do)) dt

Even if p is merely absolutely continuous with respect to dPdt, a

representation of the form (4) still exists, but the adjunction of a

Brownian motion may now be necessary [2, p. 71].

We note that \i is absolutely continuous with respect to dPdt

1/2

m easure if and only if A ((a)) is absolutely continuous with respect to

dAt (w)
the Lebesgue measure for almost all tu. However, —-r-— is not auto

matically jointly measurable. Hence, (5) is a more natural choice for

^(w), although it may appear to be more complicated than necessary.

The condition that almost sure absolute continuity of A with respect

to the Lebesgue measure implies a representation of the form (4) was

discovered by Fisk [3], who made use of an earlier condition of Doob

[2, p. 449], namely, the existence of a ty (a)) such that whenever t > s

(6) QS/ 2 f' As 2ES(Xt -Xsr =/ ESlj/ dt.
6

Neither Fisk's condition nor Doob's condition is easy to verify.

We shall show that a sufficient condition for (4) is that there exist

positive constants a and 3 such that

2+2a
Elx- - x I1 t s1(7) SUp < oo.
ii 1-kx

0<|t-s|*B l^l

In addition, we shall consider a stochastic integral representation

which is more general than (4) but almost as useful. The sufficiency

condition (7) will be modified accordingly.
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II. A Stochastic Integral Representation

If X can be represented as in (4) then we have

(8) 2 ft 2
EX^= E«|> ds.t JQ s

Therefore, a simple necessary condition for (4) is that the increasing

function

(9) F(t) =E X*

should be absolutely continuous (with respect to the Lebesgue measure).

Using this condition, we can generate at will examples of sample con

tinuous second order martingales which cannot be represented as in (4).

Take, for example, a Brownian motion W„, v with a scale F(t) which is

continuous, but singular with respect to the Lebesgue measure. Clearly,

W„/fcN cannot be represented as in (4). An obvious modification of (4)
r Qt;

is a representation of the form

<10> Xt -//+. dWF(s)
where the increasing function F(t), 0 £ t £ T, is defined by (9). If

F(t) is absolutely continuous with respect to the Lebesgue measure,

then (10) can be rewritten in the form of (4). In a sense (10) is a

more natural representation than (4), since the time scale F(t) is now

determined by the martingale itself.

Now, define the function

(11) F"1(t) = inf {s: F(s) = t}

and define a new process

(12) X. = X , 0 < t < F(t)

The process {x , 0 < t < F(t)} is a martingale with respect to the
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family of a-algebras {& = CI , 0 < t < F(t)}. Although F may be
t F_1(t)

discontinuous, {x , 0 < t £ F(t)} is sample continuous with probability

1, and {(L., 0 £ t < F(t)} is right continuous. Hence, {x , Cl. ,

0 < t £ F(t)} is a sample continuous second order martingale with

(13) EX* =F(F~1(t)) = t.

Now set

t = inf {s: F(s) =F(t)} = F"1(F(t)).

Then for every t £ [0,T]

(14) Xt =X£ =^

with probability 1. It follows that {x , 0 < t £ TJ has a representa

tion given by (4) if and only if {x , 0 < t £ F(t)} can be represented as

(15) X, = / \\) d W .
t 1 Ts s

III. A Sufficient Condition

Let {x ,LX 0 < t < T} be a second order sample continuous

martingale and let F(t) be defined by (9). Let {A , 0 < t < T} be the

increasing process defined by the Meyer decomposition (2). By virtue

of the correspondence between X^ and X , it follows that if A is
t t t

almost surely absolutely continuous with respect to F(t), then X has

a representation given by (10). A more easily verifiable sufficient

condition is given as follows:

Theorem. Let {x, Q,, 0< t<T} be a sample continuous second

order martingale and let F(t) be defined by (9). Suppose that for

some finite positive constants a, (3.and k
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2+2a

= K < °°.

EXt - X
I t s

(16) sup t—' '—r

0<|F(t)-F(s)k3 lF(t) "F(S)I
1+a

Then X admits a representation of the form given by (10).

Proof: By virtue of the correspondence given by (12) and (14),

we can assume

(17) F(t) = t.

Let {A } be the increasing process defined by the decomposition (2).

By the Lebesgue decomposition and Radon-Nikodym theorems we can write

(18) A (w) = f \\> (w)ds +B (w).
c J0 s t

We assume that {i|>s(w),se [0,T] ,(oe Q] has been chosen to be jointly

measurable. This can always be done, if necessary, by defining ty as

in (5). In (18) B (w) is almost surely singular with respect to the

Lebesgue measure.

Now, from (2) we have

(19) EAt -EX* =t.
Therefore, if Eip = 1 for almost all t in [0,T], then B is almost

L t

surely equal to zero and Afc is absolutely continuous (Lebesgue measure)

with probability 1. Conversely, if At is absolutely continuous with

probability 1, then E^t = 1 for almost all t. Next, define \\> (u),t)

as follows:

(20) ^(c.t) =-f A^(U) -A(v_1)T(n)
2n 2°

By an application of the martingale convergence theorem, Doob [2, p. 346]
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dAt(u>)
has shown that for each u> *|> (w,t) converges to —tt— for almost all t.

n cit

Hence for almost all (w,t) (d(rdt - measure)

(21) lim ty (w,t) = ^ (03).
n-*» n

Since Eip (w,t) = 1 for all t and n, Eip. = 1 provided that
n t

(22) sup f 4> (o),t)(? (du>) • 0.
n \J> (w,t)>N n N*00

By assumption we have

E|Xf -X |2+2U
(23) sup —£ 5___

o<|t-s|<e I'" s>
for some a, 3 > 0. We now proceed to prove that (23) implies (22).

Mayer [1, p. 118] has constructed approximations to A of the form

, rt Eas(X2,, -X2)
(24) A* = f s+h S dst JQ h

_ ,^S/„ „ v2

•1
s+h s ,

ds

'0 h

and has shown that e|a - A I., > 0. Now set
1 t t' h+0

A A = A - A, ,,

AAh= Ah -Ah ,
' (?)* (^

where v is the smallest integer greater than 2n(t/T). Then, from (20)

we can write

*n(t) •T V

*£{A*A +|AtA-A^A|}.
Now, if B, C and D are positive random variables and
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(26) B < C + D

then

(27) JBdP < J (C+D)d(P
BkN B^N

< J (C+D)d(P
max(C,D)£N/2

12 J Cd<? +2 / Dd(P
(C>D,C>N/2) (D£C,D£N/2)

£ 2 J Cd? + 2 J Ddfl.
C£N/2 D>N/2

Since E|A - A I ., > 0, we can find h(n,N,t) such that
1 t t' h+0

h < h(n,N,t) implies:

(28) f E|AtA - a£a| <i .
On the other hand, from (24) and using the Holder inequality, we get

(29> .,„ . .U« ,n ,(?)T E|X +h - X|2+2<*
e(t<a) 41, s+Vs «-

Therefore, for all h < 3

kn t %1-Kx

(30) E(^ A^a) 1 K

where k is defined by (23). The Markov inequality now immediately

implies that for 0 < h < 3

ox) / 4*^4*
V^A2H/2 N

Combining (25), (27), (28), and (31) and choosing h sufficiently small

so that both (28) and (31) are satisfied, we get
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(32) / *n(t)dP< £K+i
^ (t)>N N

n

which verifies (22) and completes the proof for the theorem.

IV. An Example

Suppose that F.. (t) and F (t) are two continuous and increasing

functions on [0,1] such that as Borel measures they are mutually singu

lar. Let W and V be two independent standard separable Brownian

motions. Define

(33) Xt =aWFi(t) +bW^^j

where a and b are two bounded random variables independent of the

Brownian motions but not necessarily independent of each other. If we

denote by 0i> the completed a-algebra generated by {W_ ( v, W . v,

0 < s < t }, then {x , H, 0 <, t < l} is a sample continuous second

martingale with

EX2 =F(t) =(Ea2)F1(t) +(Eb2)F2(t)t

It is by no means obvious that X admits a representation of the form

X. = ( i|> dF(s).
c ^Q s

However, by direct computation we find

E(Xt - Xs)4 =3{(Ea4)[F1(t) - F^s)]2 +(Eb4)[F2(t) - F2(s)]2
2, 2,+2EaV[F1(t) - F1(s)][F2(t) - F2(s)]}.

By the Schwarz inequality we get

E(Xt -Xg)4 <3[F(t) -F(s)]2
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so that ,

e(x - x y
t s ., „

sup < 3

[F(t) - F(s)T

and condition (16) is satisfied. Hence, X can indeed be represented

as in (10).
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