

Copyright © 1969, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

•^ Abstract Models for the Synthesis
Of Optimization Algorithms

by

6. Meyer and E. Polak

Memorandum No. ERL-268

October 1969

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Introduction.

The convergence of optimization algorithms has been studied exten

sively in recent years (see [4], [5], [6], [7], [8], [9], [10]). The

approach generally adopted in these studies consisted of defining a

class of algorithms and then giving convergence theorems which applied

to every algorithm in this class. This approach has resulted in the

development of general procedures which have considerably simplified

the task of establishing whether an algorithm is convergent. However,

the emphasis so far has been on analysis. Very few of the existing

results provide guidelines for the synthesis of algorithms.

In this paper we present a systematic approach to the problem of

synthesis of optimization algorithms. The development of an algorithm

usually evolves through three phases. The first is a heuristic, or

invention phase in which intuition plays an extremely important part.

In the second phase one transforms one's intuitive ideas into a

"conceptual" algorithm, i.e. an algorithm which may consist of oper

ations that are inadmissible in a practical method. (For example, a

conceptual algorithm may require us to find the limit of an infinite

sequence at each iteration). The last phase consists of converting

the "conceptual" algorithm into an "implementable" algorithm. Our

approach to the problem of synthesis consists of two parts. First

we develop abstract models for algorithms. These models guide the

inventive process towards "conceptual" algorithms which will later be

easily made implementable. Once the abstract models are established,

we present a set of methods for converting "conceptual" algorithms,

-1-

>

falling into the class defined by the abstract models, into "implemen

table" iterative procedures.

One of the most frequently occurring difficulties in the implemen

tation of a conceptual algorithm is the requirement that an implicit

* relation be solved at each iteration, e.g. minimize a function along a

line, maximize a linear function in a convex set, etc. Generally, we only

have methods for constructing a sequence whose limit point satisfies such

an implicit relation. Now it is well known that no limit point of an in

finite sequence can be determined on a digital computer in a finite time.

Consequently, the task most frequently encountered in the design of a

transition from a "conceptual" algorithm to an "implementable" one is that

of finding methods for avoiding the need to construct limit points.

In this paper, we propose two methods for obviating the need for

constructing infinite sequences in subprocedures. The first is a

truncation procedure and is presented in Section II, the second is an

e - approximation procedure which is presented in Section IV.

The scope to which a paper must be held does not permit us to

illustrate the applicability of the ideas presented copiously. It is

our hope, however, that the two examples given in Section III will

convince the reader of the great usefulness of the approach described.

I. Abstract Models for a Class of Iterative Procedures.

Throughout this paper, we shall assume that we are given a closed

and bounded subset T of R in which we wish to find points with a specific

property it. We shall call points in T with the property tt desirable.

-2-

The simplest algorithms for finding desirable points in T are

composed of a map £(•) from T into R, of a map A(») from T into all

the subsets of T and have the following form.

Algorithm 1.

Step 0: Compute a point zQ in T and set i = 0.

Step 1: Compute a point z.+1 in A(z.).

Step 2; If £(z±+1) < C(z±) set i = i+1 and go to Step 1,

otherwise stop.

Definition 1. We shall say that an iterative procedure of the form of

Algorithm 1 is convergent if any sequence of points {z.} it generates

satisfies one of the following conditions:

(i) If the sequence {z±) is finite i.e.{z±} = {zQ, z-,...z. } then

z> , is desirable;

(ii) If the sequence {z.} is infinite then any of its cluster

points is desirable.

It is quite easy to show that Algorithm 1 is convergent under

the following assumption (see [10]).

Hypothesis 1. [Zangwill]

(i) z in T is desirable if there exists at least one point a in A(z)

such that £(a) - £(z) _> 0;

(ii) £(*) is continuous on T;

-3-

(iii) A(0 is closedt

Hypothesis 1 is not the only assumption which ensures that

Algorithm 1 is convergent. We now state another assumption which

ensures that Algorithm 1 is convergent (see [9]).

Hypothesis 2. [Polak]

(i) z in T is desirable if there exists at least one point a in

A(z) such that £(a) - £(z) > 0;

(ii) £(•) is either continuous on T or else £(z) is bounded from

below on T;

(iii) If z in T satisfies £(a) - £(z) < 0 for all a in A(z), then

there exist e > 0 and 6 > 0 such that £(a') - £(zf) < - 6 < 0

for all z* in T such that || z1 - z || £ e, for all a' in

A(z»).

Remark. It can be shown that Hypothesis 2 is weaker than Hypothesis 1

(see [1]).

In this paper we differentiate between explicit and implicit

algorithms. This differentiation is largely heuristic but is extremely

important in the construction of computationally efficient algorithms.

By an explicit algorithm we shall mean an algorithm of the form of

Note: Let A(») be a map from T into all the subsets of T. If for

any sequence {y.} converging to y and for any sequence {a.} converging
* * *

to a , with a. in A(y.), a belongs to A(y), then we say that the map

A(«) is closed.

-4-

Algorithm 1 in which the map A(«) is a point to point map, i.e. A(»)

maps T into T. We use the word explicit to indicate that the computation

of A(z) for z in T can be carried out in a reasonably straightforward

manner.

Explicit algorithms do not lead to computational difficulties and

therefore we shall say no more about them. Implicit algorithms on the

other hand cannot be readily implemented on a digital computer, as we

shall shortly show, and must therefore be regarded as "conceptual"

rather than as "practical" algorithms. The following sections of this

paper will be devoted to developing methods for modifying convergent

implicit algorithms in such a way as to produce convergent algorithms

in explicit form.

We shall consider two abstract models of implicit algorithms. The

first one,which is defined below, uses a map A(*) such that to compute

a point z in A(z), we must solve an implicit equation.

Definition 2. Let U(«) be a map from T into all the subsets of T and

let a(») and y(*) be maps from T into R . Then for every z in T, we

define the set A(z) as consisting of all y in U(z) such that Y(y) =

a(z).

The following assumption ensures that the set A(z) is not empty.

Hypothesis 3. Given any point z in T, there exists a point y in U(z)

such that ot(z) = Y(y).

In this case, Algorithm 1 takes on the following expanded form.

-5-

Algorithm 2.

Step 0: Compute a point zQ in T and set i = 0.

Step 1: Compute a point z.+- in U(z.) satisfying Y(zi+1) = «(zi).

Step 2: If £(z.+1) < C(z±), set i = i+1 and go to Step 1, other

wise stop.

Hypothesis 4.

(i) A point z in T is desirable if there exists at least one point

y in U(z) such that a(z) = Y(y) and £(y) - £(z) > 0;

(ii) The maps a(«)» Y(*) and £(•) are continuous on T;

(iii) The map U(*) is closed.

The proof of the following proposition is easy and has been omitted.

Proposition 1. If the maps a(«), Y(')» £(•), and U(«) satisfy Hypotheses

3 and 4, then the map A(«) given by Definition 2 is closed and Algorithm 2

is convergent.

We now present the second specific form of the map A(*) that we

wish to consider. This form is characterized by the fact that to find

points in A(z) we must compute intermediate points.

Definition 3. Let U be a closed and bounded subset of R , let $(*,*) be

a map from T x U into R, let b(« ,•) be a map from T x U into T and let

a(») be a map from T into R. Then for every z in T, we define the set

A(z) as follows:

-6-

A(z) = {y|y = b(z, w) ,wG U such that 3(z»w) = a(z)}.

The following assumption ensures that for every z in T the set

A(z) is non empty.

Hypothesis 5. Given any z in T, there exists a point w in U such that

$(z,w) = a(z).

With the map A(«) defined as above, Algorithm 1 expands as follows.

Algorithm 3.

Step 0; Compute a point Zq in T and set i = 0.

Step 1: Compute a point w. in U satisfying a(z) = 3^, w^.

Step 2: Set z = b(z , w).

Step 3: If C(z.+1) < £(z.) let i = i+ 1 and go to Step 1,

otherwise stop.

Hypothesis 6.

(i) A point z in T is desirable if there exists at least one point

w in U satisfying a(z) = $(z,w) such that £(b(z,w)) - £(z) >_ 0;

(ii) The maps a(*) and £(•) are continuous on T»

(iii) The maps $(•*•) and b(«,») are jointly continuous on T x U.

Proposition 2. If the maps a(*)» £(•>•)> b(»,«) and ^(») satisfy

Hypotheses 5 and 6, then the map A(.) given by Definition 3 is closed

and Algorithm 3 is convergent.

-7-

The transformation of an implicit algorithm into an explicit one

usually depends upon the specific conceptual method one has in mind for

finding points in the set A(z). We shall now introduce two infinite

subprocedures for calculating points in A(z) and in the next section

we shall show how these subprocedures can be truncated to produce

convergent explicit algorithms.

We begin by considering a subprocedure for computing points in the

set A(z) when the map A(*) is defined as in Definition 2 (we suppose,

of course that we are unaware of a more straightforward method for

calculating points in A(z)). Let us denote by N the set of positive

integers and suppose that we have a mapping m(*, •, •) from T x T x N

into T which satisfies the following assumption.

Hypothesis 7.

(i) m(z,y,j) belongs to U(z) for all z in T, y in U(z) and j in N;

(ii) The sequence (Y(m(z»y,j))}. A converges to a(z) for all

z in T and y in U(z).

Clearly, for any z in T and y in TJ(z), every cluster point of the

sequence {m(z,y,j)} is in A(z) given by Definition 2. When the map

m(»,-,«) is introduced, Algorithm 2 assumes the following specific form.

-8-

Algorithm 4.

Step 0: Compute a point zn in T and set i = 0.

Step 1: Compute a point y, in U(z) and let z _ be any cluster

point of the sequence {m(z., y , j)}.=-

Step 2: If S(z.+1) < S(z.), set i = i + 1 and go to Step 1,

otherwise stop.

In view of Proposition 1, the following proposition is obvious.

Proposition 3. If the maps <x(*)> Y(*)» £(*)> U(') satisfy Hypotheses 3

and 4, the map m(., •, •)satisfies Hypothesis 7, Algorithm 4 is convergent.

Remark. Obviously, Algorithm 4 cannot be implemented on a digital

computer since it would inevitably jam up in Step 1.

We now consider a subprocedure for computing points in A(z) when the

map A(«) is defined as in Definition 3. Thus, suppose that we have a

map m(«,»,») from T x u x N into T which satisfies the following assump

tion.

Hypothesis 8.

(i) m(z,y,j) belongs to U for all z in T, y in U and j in N;

(ii) The sequence ($(z,m(z,y,j))}. „ converges to a(z) for all

z in T and y in U;

-9-

When such a map is introduced, Algorithm 3 assumes the following specific

form.

Algorithm 5.

Step 0: Compute a point z in T and set i = 0.

Step 1; Compute a point y. in U and let w. be any cluster point

-00

of the sequence {m(z , v., j)/._ •

Step 2: Set z = b(z , w).

Step 3; If S(zi+1) < Z(z±) let i= i+ 1 and go to Step 0 other

wise stop.

In view of Proposition 2, the following proposition is obvious.

Proposition 4. If the maps a(»)» 3(',')> £(•) and b(.,«) satisfy

Hypotheses 5 and 6 and the map m(•,*,♦) satisfies Hypothesis 8,

Algorithm 5 is convergent.

Again it is clear that if implemented on a digital computer,

Algorithm 5 would inevitably jam up in Step 1.

II. Truncation Methods.

As we have just seen, Algorithms 4 and 5 will inevitably jam up

in Step 1 since it is impossible to compute cluster points of infinite

sequences in a finite time by means of a digital computer. Even if one

relies on the finite word length of a digital computer to stop calcu

lations after a finite time, this finite time will usually be prohib-

-10-

itively long. Consequently some sort of truncation procedure must be
i

used in converting these algorithms into a more realistic form.

We begin by defining a class of maps from N into N (the set of all

positive integers) which will be called truncation functions.

Definition 4. We shall say that a map £(•) from N into N is a trunca

tion function if given any m in N, there exists a k in N such that

£(i) > m for all i > k , i in N.

We first use truncation functions in Algorithm 4 which then takes

on the following form.

Algorithm 6. Let &(•) be a given truncation function.

Step 0: Compute a point z in T and set i = 0.

Step 1: Compute a point y in U(z) and set z . = m(z , y.»il(i)).

Step 2; If S(zi+1) < €(z±), set i = i+ 1 and go to Step 1,

otherwise stop.

Remark. In Step 1 of Algorithm 6, it is required that a point y be

found in U(z.). We suppose that this task is easy. In fact, in almost

all applications, z belongs to U(z) and a natural choice for y. in

U(z.) consists in letting y. = z.. In order to ensure that cluster

-11-

points of infinite sequences generated by Algorithm 6 are desirable the

following assumption must be made.

Hypothesis 9.

(i) The sequence (Y(m(z,y,j))}™ is monotonocally decreasing for

all z in T and y in U(z);

(ii) Given any z in T, y in U(z), j in N and 6 > 0, there exists an

e > 0, possibly depending on z, y, j and 6, such that

Y(m(z\y\j)) - Y(m(z,y,j)) < 6, for all z' in T such that

Ilzt_zl I1 £, f°r all y1 in U(z') such that ||yf - y| | < e.

Proposition 5. If the maps a(-)> y(')> 5("), U(-) satisfy Hypotheses 3

and 4, the map m(.,»,») satisfies Hypothesis 7 and 9 and the map £(•) is

a truncation function, then every cluster point of an infinite sequence

generated by Algorithm 6 is desirable.

Proof. Consider an infinite sequence {z±} generated by Algorithm 6 and

let z* be a cluster point of this sequence i.e. let K£ be a subset of
*the integers such that the subsequence {z }. converges to z. Consider

K

the sequences {z.^} and {y,}f in T. The boundedness of T implies
1+1 K2 ^

that there exists Kn a subset of K9 such that the subsequence {zi+1>;
l *• ^i

converges to z** and the subsequence {y±} converges to y . The property
^1of convergent sequences implies that the subsequence {z±} also converges

* i
to z .

-12-

In order to show that z is desirable it is enough to establish

the three following facts;

(i) z belongs to U(z)

(ii) a(z) = Y(z)

(iii) €(z) - 5(z) > o

By construction z.+- = m(z., y., £(i)) and y± is in U(z±). It now

follows from (i) of Hypothesis 7 that z.+1 is in U(z.). Next, since
** * *

the map U(») is closed, we must have z and y in U(z).

Let 6 > 0, then part (ii) of Hypothesis 7 implies that there exists

k« in N such that Yfa(z ,y >K))~ 5/2 < a(z). From Hypothesis 9 it

follows that there exists an e > 0 such that Y(m(zf ,yf ,k2))- Yfa(z ,y ,

k„)) < 6/2 for all z* in T such that ||z'- z || < e, for all yf in
4c

U(zf) such that ||y'- y || < e . Therefore there exists k in N such

that Y(m(zi,yi,k2))- 6 < a(z*) for all i> k.^ iin Kr Since the
map &(•) is a truncation function, there exists a kQ in N such that •i)

A(i) >L for alli^>_ kki' Its-follows frbm part-^(i) of Hypothesis 9 that

4t

t(m(z|jyjW))*^li a(E") ;f©rikliii > kV*i in^K where k-= max (k^k^).
4c4c 4c

Bat y(*) is Continuouswandathereforevy(z «)-r'fi <_ &(z), Since this is

true for any 6 > 0, it follows that y(z) <. a(z >.

Now given any z. and y. in U(z.), part (ui) of Hypothesis 9 implies

that Y(m(zi,yi,j)) > a(z±) for all jin N i.e. YdKz^y^d))) 1 a(z±).
4c4c 4c 4c4c 4c

It follows that y(z) >. a(z) and therefore y(z) = a(z).
4c4c 4c

Now suppose that £(z)- £(z) < 0. The continuity of £(•) implies

-13-

that there exist a 6 > 0 and an e > 0 such that

£(z")- S(z') < - 6 < 0

4c4c

for all z" in T such that ||z" - z || <e, for all z' in T such that
4c

||z'-z|| < e. It follows that there exists a k such that £(z.+1)-

€(z.) 1 "6 for a11 i^. ± in Ki. Tne sequence {^(z±)} is mono-

tonically decreasing, the set T is bounded and therefore {£(z.)} converges

4cto £ which contradicts the fact that S(z.+1) - £(z±) < - 6 for all
** * *

i >_ k, i in K . It follows that £(z) - £(z) j> 0 and z is desir

able.

Note that as stated, Algorithm 6 is not necessarily convergent

because it may stop in Step 2 at a point z. which may be not desirable.

To make it convergent we only need to remove the stop condition in Step

2. However, in many practical instances, as we shall see in the examples

in Section III, the stop condition in Step 2 detects desirable points

only, and therefore we have included it in the statement of Algorithm 6.

We now use truncation functions in Algorithm 5 to construct the

following form.

Algorithm 7. Let &(*) be a given truncation function.

Step 0: Compute a point zQ in T and set i = 0.

Step 1; Compute a point y. in U and set w. = m(z.,y.,&(i))

Step 2; Set z±+1 = b(z±, w±) .

Step 3: If £(z±+1) < S^), let i= i+ 1 and go to Step 1,

otherwise stop.

-14-

Remark. In Step 1 of Algorithm 7, it is required that a point y be

found in the set U. We suppose that this task is easy. In fact, in

almost all applications, z belongs to U and a natural choice for y^^

consists in letting y. = z..

In order to ensure that cluster points of infinite sequences

generated by Algorithm 7 are desirable, the following assumption must

be made.

Hypothesis 10.

(i) The sequence {3(z,m(z,y,j))}" is monotonically decreasing

for all z in T and y in U;

(ii) Given any z in T, y in U, j in N and 6 > 0, there exists an

e > 0, possibly depending on z, y, j and 6, such that

3(z', m(zl,yf,j))-B(z>m(z,y,j)) < 6 for all zf in T such that

||zf - z|| < e and for all y' in U such that ||yf - y|| <_ e.

The following proposition can be proved easily, following the same type

of argument as in the proof of Proposition 5.

Proposition 6. If the maps a(0, £(•,•)» £(•), b(',0 satisfy

Hypotheses 5 and 6, the map m(•,•,•) satisfies Hypotheses 8 and 10

and the map &(•) is a truncation function, then every cluster point

of an infinite sequence generated by Algorithm 7 is desirable.

As in the case of Algorithm 6, Algorithm 7 as stated is not

necessarily convergent because of the stop condition in Step 2. This

-15-

stop condition is included for the same reasons we gave for including

it in Algorithm 6.

III. Applications

In order to clarify the concepts and methods exposed in the

preceding sections we are now going to examine two specific problems

and the algorithms usually used to solve them.

III-l. Unconstrained Minimization Problems.

In this subsection we shall examine the following classical problem.

.A n
Problem 1. Find a z in R such that

f(z) < f(z) for all z in Rn

where f(«)» a convex map from R into R is continuously differentiable

with the property that the set {z| f(z) < a} is bounded for every

a in R1.

Suppose that we have a point z~ in Rn. We define T as

T={yeRn1f(y) <f(z0)}

In this case a point z in T is desirable iff it minimizes f(z) over

T, i.e. f(z) £ f(z) for all z in T. Since f(») is convex and continuously

differentiable, we recognize z to be desirable iff Vf(z) = 0.

We propose to use the Steepest Descent Method for solving Problem 1,

i.e. the following algorithm.

-16-

Algorithm 8.

Step 0: Let z be a point in R and let i - 0.

Step 1: Let z.+- be any point satisfying

(i) z±+1 belongs to U(z±) ;

(ii) f(z±+1) = «*Ln {f(y) |yGU (z±)} ;where U(z±) =

{y eRn |y=, z± +vVf(z±), V€ [-1,0]}.

Step 2: If f(z±+1) < £(z±) set i= i+ 1 and go to Step 1,

otherwise stop.

Algorithm 8 can be seen to be of the form o§ Algorithm 2 with the

maps a(*)> Y(*)s £(•), U(-) in Algorithm 2 defined as follows.

Definition 5. Lfit the maps a(«), Y(')9 £(') from T into R and the

map U(«) from F& into all the subsets of T be defined as:

(i) U(z) = {y€ rf | y » z + V Vf(z), ve [-1,0]}.

(ii) a(z) = min {f(y) | y€ U (z) } ;

(iii) Y(z) = f(z) ;

(iv) £(z) = f(z) .

Since by inspection the maps a(-)» Y(*)s £(•) and U(«) satisfy

Hypotheses 3 and 4, Algorithm 8 is convergent when applied to Problem 1

At this point we see the first advantage of using Abstract Models

of Algorithms as a tool for proving convergence of algorithms. On one

hand they provide us with a pattern to follow, while one the other, we

find that the proof of convergence of a specific algorithm becomes

decomposed into fairly simple and independent parts.

-17-

In Algorithm 8, the computation of z.+1 from z. is not explicit.

We therefore proceed as indicated in Section II in order to produce

truncations in the calculation of z.,- from z. .

Making use of Proposition 3, we now define a subalgorithm which we shall

use in order to modify Algorithm 8.

For every z in R , y in R and j a positive integer, consider the

following subprocedure.

Algorithm 9. Let a G (0,1) be given.

Step 0: Set y = y,i = 0 and v = 0.

Step 1; If < Vf(z), Vf(y) > = 0 go to

Step 6, else let v = - sgn < Vf(z), Vf(y±) > .

Step 2: Set y = y + v Vf(z).

Step 3: Compute 0 defined by 0 = f(y) - f(y.) + a V < Vf(z) ,Vf(y_.)>.
i i

Step 4: If 0 _< 0, let y _ = y and go to Step 5, else let

V = v/2 and go to Step 2.

Step 5: If i < j set i = i + 1 and go to Step 1, otherwise go to step 6

0HStep 6; Let v = sat v , set y = yn+ v Vf(z) and stop.
j

Remark. We choose this subalgorithm because it has a nontrivial

Note: The function sat (.): R ••-*• R is defined by

Sat (v) = V if |v| <_ 1;

Sat (v) =1 if v >1;

Sat (v) = -1 if v <-l.

-18-

amount of structure rather than because it is the best computationally.

The structure of this subalgorithm should serve the purpose of illus

trating the complexity that can be found in a subalgorithm for computing

the values of the map m(•»•,•) .

Definition 6. Let m(-,•,•) be the map from T x T x N into T defined

by: m(z,y,j) = y, where y. is given by Algorithm 9. It can be verified

easily that the map m(-,-,•) given by Definition 6 satisfies Hypotheses

7 and 9. Using the map m(-,-,-) and a truncation function £(•) we obtain

from Algorithm 8 the following "explicit" algorithm.

Algorithm 10. Let &(•) be a given truncation function.

Step 0: Compute a z in R and set i = 0.
—c— 0

Step 1: Let z.+1 = m(z.,z.,&(i)).

Step 2: If f(z.+1) < f(z.) set i = i+ 1 and go to Step 1,

otherwise stop.

In view of Proposition 5, the following is obvious.

Proposition 7. If Algorithm 10 generates an infinite sequence of points

{z } when applied to Problem 1 then every cluster point of the sequence

is desirable.

Remark. It can be shown that if the sequence of points generated by

Algorithm 10 when applied to Problem 1 is finite i.e. {z^ = {zQ,

z.,... z, } then z, , is desirable. Consequently, Algorithm 10 is
JL 1C K.-J-

-19-

convergent for Problem 1.

III-2. Constrained Minimization Problem.

In this subsection we shall examine the following classical problem.

Problem 2. Given T a closed, bounded convex subset of R and t a point

in Rn find z in T such that

t-zll < llt-zll for all z in T.

We shall suppose that T is of the form

T o {z e Rn If^z) < 0 i= 1, 2, ..., m}

where the maps f (•) from R into R are continuously differentiable.

Suppose that we try to solve Problem 2 by means of the Frank-Wolfe

Algorithm.

Algorithm 11.

Step 0: Compute a point zQ in T and set i ° 0.

Step 1: Compute a point w. in T satisfying <t - z., w. > >^

< t - z., w) for all w in T.

Step 2: Let z. -be the point in [z.,w]satisfying ||t - z.+.

£ ||t - z|| for all z in [z.,w.] .

Note: Given two points x1 and x« in Rn, the set {y Rn |y=v x.
+ (1-*V) x2, 0<V<1} is denoted by [x^x^].

-20-

Step 3: If ||t - z±+1|| < ||t - z±|| let i=i+ 1and go to

Step 1, otherwise stop.

Algorithm 11 can be seen to be of the form of Algorithm 3 by defining

the following maps.

Definition 7. Let the set U = T and the maps a(«)» £(•) from T into

R1, &(•,•) from T xU into R1, b(»,«) from T xU into T be defined as

follows!

(i) ct(z) - max {a | a = < t - z,w > , w e T} ;

(il) £(z) - ||t - z|| ;

(iii) 3(z,w) - < t - z,w > ;

(iv) b(z,w) is defined by:

(a) b(z,w) belongs to [z,w] ;

(b) ||t - b(z,w)|| < ||t - y|| for all y in [z,w] .

In order to show that Algorithm 11 is convergent for Problem 2, it

suffices to show that the mappings a(-). £(•)» 3(*,') and b(*,«) satisfy

Hypotheses 5 and 6. It is easily verified that this is indeed so and we

therefore conclude that Algorithm 11 is convergent for Problem 2.

Once again we see the advantage of using an abstract model in

proving the convergence of a specific algorithm.

-21-

In Algorithm 11, both the point w. and the point b(z.,w) are

defined by implicit relations. However, since the computation of

b(z.,w.) from z. and w. is extremely simple, we shall consider that

z.+1 • b(z. ,w.) is an "explicit" function of z. and w.. Thus we shall

consider that the only real difficulty lies in the computation of w .

To obtain from Algorithm 11 an "explicit" algorithm of the form

of Algorithm 7, we must introduce a map m(•,•»•) satisfying Hypotheses

8 and 10. For example, one can use a method of feasible directions to

define such a map.

We now state a method of feasible directions in the required

truncated form.

For every z in T, y in T and positive integer j, consider the

following algorithm.

Algorithm 12. Suppose that S a compact neighborhood of the origin in

R , e and e' positive scalars such that e > e1 > 0 are given. Let r (•)

n 1 0
be the map from R into R defined by f (x) = < z - t, x > for all x in

Rn.

Step 0: Set Vq •» y and i a 0.

Step 1: Set e. • e.

Step 2: Compute (j) and h by solving the following:
ei £i

6 » min max < Vf (̂y.), hV
ei h^S jej 1

6i

h is any vector in S such that <f> = max (VfJ(y.), h) .
ei ei jEJ

£i

-22-

where J » {j e {l, 2, ..., m} |fJ(y.) + e, > 0} U{0} .

Step 3: If cj> < - e set h = h and go to Step 4.
£i 1 1 Ei

If <J) > - e. and e < e' compute <J>_ defined by
e. — II- 0
1 4

<J) = min max < VfJ(y), h > where
0 h€S j€J0 1

J0 °{j G{1> 2> ''"' m> 'fj(yi} =0} U{0} *
If <j)Q « 0, set y±+1 = y±9 i= i+ 1 and go to Step 1.

If (J)Q < 0, set e =y~ and 8° t0 Step 2'

Step 4: Compute X > 0 such that

X± =max {X |fJ(y± +Xh±) <0for all j=1, 2, ..., m}

Step 5: Compute y. in [0, X] such that

f0(yi +yi V - f°(yi +yV f°r a11 yln [°' Xi]*
Step 6: If i < j, set y±+1 = y± + y± h±, i = i+ 1 and go to

Step 1, otherwise stop.

Definition 8. Let m(',«,•) be the map from T x T x N into T defined by

m(z,y,j) • y. where y. is given by Algorithm 12. It can be verified

that the map m(#,»,*) given by Definition 8 satisfies Hypothesis 8 and

10 (see [9]). Using the map m(•,*,•) and a truncation function &(•) in

Algorithm 11 we obtain the following "explicit" method.

Algorithm 13. Let £(•) be a given truncation function.

-23-

Step 0: Compute a point z in T and set i = 0.

Step 1: Set w » m(z.,z. ,&(*•))•

Step 2: Let z.,- be the point in [z., w] satisfying

II* " zi+iH 1 Wt " zl Ifor al3L z in [zi» wi]'

Step.3: If ||t - zi+1|| < ||t - z±\| let i=i+ 1, and go to

Step 1, otherwise stop.

In view of Proposition 6, the following is obvious.

Proposition 8. If Algorithm 13 generates an infinite sequence of points

{z.} when applied to Problem 2, then every cluster point of the sequence

is desirable.

Remark. It can be shown that if the sequence of points generated by

Algorithm 13 is finite i.e. {z±} • {zQ, z^ ..., zfc} then z^ is

desirable. Consequently, Algorithm 13 is convergent for Problem 2.

The use of the approach defined in this paper may show relations

between different well known algorithms. For example, if a function

&(•) from N into N defined by %(I) =1 for all i is used in Algorithm

13 instead of a truncation function, then Algorithm 13 is a method of

feasible directions. On the other hand if a "function" £(•) from N into

N "defined" by &(i) = °° for all i is used in Algorithm 13 instead of a

truncation function, then Algorithm 13 is the Frank-Wolfe Algorithm.

The use of truncation function in Algorithm 13 thus produce algorithms

which are "between" a method of feasible directions and the Frank-Wolfe

Algorithm.

-24-

IV. e - approximations for a Class of Iterative Procedures

The approach to the synthesis of algorithms described in Sections I

and II is by no means the only one possible. In this section we shall

show that an alternative approach exists and gives extremely interesting

results.

Throughout this section we shall consider maps A(») and £(•) satis

fying Hypothesis 1 in Section I and we will suppose that it is impossible

to use them in iterative procedures of the form of Algorithm 1 due to the

fact that the computation of points z.+1 in A(z.) is impossible (or that we

are not aware of ways of doing it).

The main idea developed in this section consists in using a map

B(«,.) from R+ x T into all the subsets of T such that the set B(0, z)

is identical to the set A(z) for all z.

We shall suppose that the task of finding a y in B(e,z) for e > 0

and z in T is relatively easy.

Consider the following algorithm.

Algorithm 14. Let e > 0 be given

Step 0: Compute z~ in T and set i = 0.

Step 1: Let e = e.

Step 2: Find a point y in B(e, z.).

Step 3: If £(y) - £(z±) <- e set ei = e, z±+± = y,i=i+l and go to

Step 1, otherwise let e • e/2 and go to Step 2.

We remark that if we let 7=0 then Algorithm 14 is almost of the

-25-

form of Algorithm 1. The following assumption on B(»,«) ensures that

cluster points of infinite sequences generated by Algorithm 14 are desirable,

Hypothesis 11.

(i) B(0, z) = A(z) for all z in T;

(ii) B(-,0 is jointly closed in both its arguments i.e. for any

4tsequence {e } converging to £ , for any sequence {z^} converg-
4c *ing to z , for any sequence {y.} converging to y , with y^^ in

4c 4c 4c
B(£ , z.), y belongs to 3(e , z).

Theorem 1, If the maps A(»)and £(•) satisfy Hypothesis 1, the map

B(",*) satisfies Hypothesis 11, then every cluster point of an infinite

sequence generated by Algorithm 14 is desirable.

Proof. Let {z.} be an infinite sequence generated by Algorithm 14 and

4c
let z be a cluster point of this sequence. Thus, for some subset K-

*of the integers, the subsequence {z.} converges to z . Consider the

Klsequence {z. A in T and the sequence {e } in [0, £] .
11 i+1 e kx _ ie K

The boundedness of T and of the interval [0, e] ensure that there exists

K, an infinite subset of K, such that the subsequences {z...}
1 l+l ., i c v

** * _ i+ie K
and {e } converge to points z and £ in T and [0, £] respectively.

K

The properties of convergent sequence ensure that the subsequence

r i *
lz.} also converges to z

Now suppose that £ > 0, then the form of Algorithm 14 implies
4c

that there exists an integer k such that £(z.,,) - £(z.) < - -z for

-26-

all i >. k, i in K and this contradicts part (ii) of Hypotheses 1-
4c

Consequently E =0.

The map B(»,*) is jointly closed in both its arguments, and z±+^
** * *

belongs to B(e , z.) for all i. It follows that z is in B(e , z)

4c 4t
i.e. in A(z). Consequently z is desirable.

Hypothesis 12.

(i) B(0, z) = A(z) for all z in T;

(ii) If £(a) - £(z) < 0 for all a in A(z) then there exist £ > 0,

6 > 0 and y > 0, possibly depending on z, such that

CCb') - S(zf) < - Y < 0

for all z' in T such that ||zf - z|| < £ and for all bf in

B(V, z'), 0 < V < 6 .

The proof of the following theorem can be carried out by using the

same type of arguments as were used to prove Theorem 1, and is there

fore omitted.

Theorem 2. If the maps A(-) and £(•) satisfy Hypothesis 2, the map

B(',0 satisfies Hypothesis 12, then every cluster-point of an infinite

sequence generated by Algorithm 14 is desirable.

-27-

Remark. It can be shown that if maps A(*)» £(•) and B(*»') satisfy

Hypotheses 1 and 11, they satisfy Hypotheses 2 and 12 (see [1]).

For examples of how the £ - procedure is used in the synthesis of

algorithms, see E. Polak, "Computational Methods in Optimization: A

Unified Approach," Academic Press, 1970.

V. CONCLUSION

To conclude, we should like to highlight the two most important

aspects of the theory we have presented in this paper. The first is that

by using models one can separate out the essential properties of an

algorithm from the non essential one. Thus, for example, in a gradient

method one need not specify in advance exactly which procedure one will

use to search along the direction of steepest descent, one only has to

specify that the search procedure will have certain properties. The

second point that we wish to emphasize is that given a "conceptual"

algorithm in which one has to perform in sequence several operations each

of which requires an infinite number of iterations, one can obtain an

"implementable" algorithm by flshutling" between these infinite operations,

combining them into a single infinite operation. Thus, our methods of

obtaining an "implementable" algorithm from a plurally infinitely itera

tive "conceptual" algorithm consists in "parallelizing" the infinite

operations of the conceptual algorithm.

Obviously, this paper does not exhaust the study of models for

computational methods nor of the possibilities of constructing "implement-

able" algorithms from "conceptual" ones. We hope that this paper will

lead to further work, in particular in the study of algorithms with memory.

-28-

REFERENCES

[1] E. Michael, "Topologies on Spaces of Subsets," American Mathematical
Society Transactions, Vol. 71 (1951), pp. 152-182.

[2] M. Frank and P. Wolfe, "An Algorithm for Quadratic Programming,"
U. S. Naval Res. Logist. Quart., Vol. 3 (1956), pp. 95-110.

[3] G. Zoutendijk, Methods of Feasible Directions, Elsevier Publ. Co.,
Amsterdam, 1960.

[4] B. T. Polyak, "Gradient Methods for the Minimization of Functionals,"
USSR Computational Mathematics and Mathematical Physics, Vol. 3,
No. 4 (1963), pp. 864-878. (Translation of Zh. Vychisl. Mat. i
Mat. Fiz., Vol. 3, No. 4 (1963), pp. 643-653.)

[5] E. S. Levitin and B. T. Polyak, "Constrained Minimization Methods,"
USSR Computational Mathematics and Mathematical Physics, Vol. 6,
No. 5 (1966), pp. 1-50. (Translation of Zh. Vychisl. Mat. i
Mat. Fiz., Vol. G, No. 5 (1966), pp. 787-823.)

[6] W. I. Zangwill, "Convergence Conditions for Nonlinear Programming
Algorithms," Working Paper No. 197, Center for Research in
Management Science, University of California, Berkeley, November
1966.

[7] D. M. Topkis and A. Veinott "On the Convergence of Some Feasible
Directions Algorithms for Nonlinear Programming," J. SIAM Control,
Vol. 5, No. 2 (1967), pp. 268-279.

[8] E. Polak, "On Primal and Dual Methods for Solving Discrete Optimal
Control Problems," Proceedings, Second International Conference
on Computing Methods in Optimization Problems, San Remo, Italy,
Sept. 9-13, 1968, Academic Press, 1969.

[9] E. Polak, "On the Convergence of Optimization Algorithms," Revue
Francaise d' Informatique et de Recherche Operationelle, Serie
Rouge, No. 16, 1969, pp. 17-34.

[10] W. I. Zangwill, Nonlinear Programming: A Unified Approach,
Prentice Hall Inc., Englewood Cliffs, N. J., 1969.

-29-

	Copyright notice 1969
	ERL-268

