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Introduction

The functional analysis approach to the stability of nonlinear feed

back systems has been developed recently. Papers by Desoer and Lee [1],

Sandberg [3] and Zames [4] have pointed out how gain and positivity

criteria yielded, in addition to the classical stability results, infor

mation on the relations between inputs and outputs and weaker requirements

on the linear part of the system which can contain delays for instance.

The system used in stability theory has usually been modelled by the sys

tem S.l (Fig. 1). Zames [4] considered such a system and imposed the

condition that the nonlinear element be such that Nx = 0 whenever x = 0.

Such a restriction rules out an important class of nonlinear!ties such as

backlash and hysteresis. These nonlinearities presenting memory and

possibly having time varying characteristics are so complex that they

cannot be modeled well. Usually the modeling is done for a class of

input function (Chua and Stromsmoe [5]), or by replacing the hysteresis by

a backlash and a nonlinear gain (Kodama and Shirakawa [6]). The Lyapunov

theory allows one to define more loosely the nonlinear element in exchange

for a stronger condition on the linear element and of a zero, or constant

input (Weissenberger [7], [8], Walker and McClamroch [9], Yakubovich [10]).

Since the properties of hysteresis type nonlinearities imply errors which

do not go to zero it is often required of the linear element to have an

integrator in order for a L„ stability criterion to be used. However, the

stability condition could very well be of a bounded input-bounded output

type, i.e. L^ stability, with in addition the absence of sustained
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oscillations. Such a condition could be obtained through the L1 stability

of the derivatives of the functions appearing in the system.

In this paper the main condition on the nonlinearity will be that its

slopes be bounded. The requirement on the linear element will be that it

satisfies either a circle condition or a Popov type condition.

In the first section the use of a class of function

(x(.)| o>0 , e0t x(t) GL2[0,»)} CL^O,") n^O,*)

will lead to a L- stability criterion. In the second section this cri

terion will be used to find a L criterion. In the third section trans-
00

formations will lead to a circle criterion and a Popov type criterion.

Examples and experiments will be presented in the fourth section. The

fifth section will consist of a short discussion on the problems of

modelling hysteresis.
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Definitions and Notations

The following definitions will be used through the paper. All the

functions appearing in this paper will map the line [0,«>) on the real

line

i.e. X = {x(»)|x : [0,«>) ->- (-«,«»)} is the linear space of functions which

will be considered.

Let x G x, given T > 0, the truncation x of x at T is defined as

a function belonging to X such that

xT(t) = x(t) Vt B 0 <_ t <_ T

x (t) =0 Vt > T

Let Y C x be a normed linear subspace of X and let IIxO be the norm
y

in Y of x € Y.

The extension Y of Y is defined as Y ={x(')|x6X and

^GY V finite T > 0}.

The extended norm Hxll of x € Y is defined as
ye e

Ixll - Hxil if x 6 Y
ye y

ixll = »
ye

if x G Y x^Y
e

Remark IIx II is a monotone nondecreasing function of T hence if Y is



complete and if there exists a constant A > 0 such that

£ * VT > 0 HxJI < A, then x e Y and Hxll < A
T y — y —

•^r w

Examples of normed spaces used in this paper:

oo

L^O,") =(x(-) |x GXand / |x(t) |dt <«}
0

00

L2[0,«) =(x(-) |x exand / x2(t) dt <«,}
0

LJO,*) = {x(-)|x G x and sup |x(t) | < «»}
t>0

given o > 0

/N2a[0,») ={x(-)|x exand / (eat x(t))2 dt <«»}

given o > 0; given I a countable set, given t. > 0

N3a[0,~) ={x(0|x €Xand x(t) =x&(t) + ^ x± 6(t -t)
i e I

oo

with / (eat xa(t))2dt + ^ ax.

e |x. | < °°}

i e i

^ * Remark: given c^ > 0 Va > 0 a < a, N2 [0,~) C N2 [0,«)
1



used

m rn oa\ = U a,

Two other spaces on which no norm will be defined are going to be

d" N2[0,«) = U N2q[0,«») ={x(-)|x € x and 3a >0 such that e0tx(t) e L2[0,«)}
a > 0

^ *

N3[0,«>) = U N3(j[0,<»)
a > 0

by extension of the notion of extended spaces N„ [O,00) and N- [0,w) are

introduced as

N2ex[0,«) = (x(-)|x e x and ^ € N2[0,~) ¥ finite T > 0}

N3ex[0,») = (x(-)|x GX and X.J, € N3[0,«) V finite T>0}

Even though it will not be possible to use directly the space

N«[0,<»), because of the lack of a convenient norm, the ties of N2[0,«>)

with L1 [0,«0 and L«[0,«>) are very important. The two following lemmas

are going to show these ties and their consequences.

Lemma 0.1

The space N„[0,«>) has the following properties

a) N2[0,«) CL]L[0,«») nL2[0,«)

b) N2ex[0,~) = L2e[0,oo)

c) Vx €E N9[0,«>) 3 cj >0 such that

(0.1) HxIL <-^- llxll T
Ll " /2a" N2a
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Proof:

a) assume x € N2[0,<»)

then 3 a >0 e0t x(t) e Lo[0,»)

however

eot > 1 Vt > 0

then (x(t))2 < (eat x(t))2 Vt > 0

and xe Lo[0,~) with Hxll <_ He0t x(t)H_
i L2 L2

hence N2[0,«>) Cl [0,»)

-at, at|x(t)| =e-ot(eot |x(t)|)

but e €= Lo[0,») as a matter of fact lie ° 1. =
2 L2 /2c~

and (eat |x(t)|) €L2[0,«) by hypothesis

then |x(t)| being the product of two L0 functions is an L.. function,

in addition

00

/|x(t)|dt <_ lle~atH .lleat x(t)L by the Schwartz inequality
L2 L2

then Hxll < HxIL which proves (c)

and N2[0,«) C L [0,»)
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b) trivially (a) implies N2 [0,«) C L [0,oo)

assume x *= L0 [0,«»)
2e

then xT e L2[0,««) V finite T > 0

but e^ € L2[0,») Vfinite T>0

using the Schwartz inequality

T T

f (eat x(t))2 dt < e2aT / (*<t»2 dt <°°

hence B(x(t)eat)T0L <e°T 0^

and xT G N2o[0,«) hence xT G N2[0,~)

and x € N2ex[0,»)

Lemma 0.2

Let x be a function belonging to X and which has a derivative

x € X.

a) if x €= N2[0,«>) then x £ L^fO,00) and there exists a constant

A such that x(t) -*• A
t-*»

b) if x G N3[0,») then x € Lro[0,«) and there exists a constant B

such that x(t) •+ B

Proof

a) If x G N2[0,oo) then by Lemma 0.1 x € L-'tO,*) hence x € LJO,")



it v

also V e > 0 3 T such that V T0 > T. > T

2 2|x(T2) - xCT^I »| /* x(t)dt| £ f |x(t)|dt < e

00

hence x(t) converges to a finite constant A <_ 1 |x(t)|dt when t

b) x(t) =x^(t) +^2 x[ 6(t -x^
i G I

with xf €N2[0,») and 2^ \K±\ <°° by the definition of N3[0,»)
i S i

then from part a) 3 a finite constant A 3 x'(t) -»• A and
t-x»

00 00

f S Xi ^t^i)^ "S Xi /" ^^i)^ =S Xi 1(t"Ti)
0 i € I i e I ~0

l(t) =0 V t < 0

l(t) =1 V t > 0

i e i

where l(t) is such that

;ince x ^ |x!| < » there exists a finite constant A* such that / ^ x! =

i G I i e i

then x(t) •* B = A + A*

Some more definitions will be necessary.

A1



A relation N with domain and range in X is a subset of the product

space X x X.

If (x,y) is a pair belonging to the relation N y will be said to be

the image of x under N.

A mapping M of X into X is a relation with domain and range in X

such that no two members have the same first coordinate,

i.e. if (x,y) £ M and (x,z) £ M then y = z.

Let N be a relation with domain and range in a linear normed space

Y.

The gain g (N) of the relation N with respect to the norm on Y is

defined as:<

(0.2) gy(N) =sup j^Jj*

where the supremum is taken over all the images z of x under N and over

all x, x ^ 0 x G Do(N).

The system S.l (Fig. 1) which is going to be studied is of a classi

cal type. It has a linear time invariant element H and another element

which behavior is only known through an input-output relationship: N.

This element N can be multivalued, time varying and nonlinear. A

great number of practical systems can be modelled in this way.

10



The equations defining the system S.l are:

C.l.a

C.l.b

C.l.c

C.l.d

ex(t) = uL(t) - y2(t)

e2(t) = u2(t) + yx(t)

(ei,yi) GN

y2(t) = (He2)(t)

where N is a relation with domain and range in X. And H is a linear

mapping with domain and range in X.

The following assumption on the linear element H will be used

through the paper.

Assumption 0.1

Let H be a linear mapping of X into X such that there exists h^X,

a- > 0 and a countable set I such that

(0.3) '

h(t) = 0 V t < 0

h(t) =ha(t) + 22 hi 6<t-ti) Vt̂ 0
i e i

and eu h(t) <E L^O,*)

defining H in the following way

V x G Do(H)

(0.4) (Hx)(t) = (h*x)(t) = J h(t-x) X(x)dx

The immediate consequences of assumption 0.1 are given in the

ont ^-^ a«t0 V» °0tiThis means e ha(t) G L^O,*) and 2-f e |h: |<
i G I

11



following lemma.

Lemma 0.3

Let H be a linear mapping satisfying assumption 0.1 then

a) H maps L_[0,«>) into L„[0,°°)

b) H maps L2 [0,°°) into L2 [0,«)

c) Let g(t) * e and let (g«x)(t) = g(t)»x(t) then for a <_ aQ

(aQ defined in assumption 0.1) and for all x G L„ [O,00)

(0.5) [g.(h*x)](t) = [(g-h)*(g.x)](t)

d) H maps N9rt[0,°°) into No^[0,«>) for o <_ on and H maps No[0,«>)

into N2[0,<»).

Proof

It can be noticed at once that (a) implies (b) trivially

Va) since e h(t) G L-fO,*) with oQ > 0 t .> 0

h(t) G L^[0,«>) it is a well known result that the convolution of

a L function with a L2 function is a L« function.

t t

c) [g-(h*x)](t) =eat f h(t-T)x(x)dT = f h(t-T)ea(t"T)eaT x(x)dx

= f(g-h)*(g.x)](t)

d) Let x G N2 [0,*) with a <_ oQ and y = h*x

12



then eat y(t) = e0t(h*x)(t)

using part (c)

at /4v . at, v . , at *l . e y(t) = (e h)*(e x)

since a < a. e h(t) G L.[0,«)
I . - 0 1

by hypothesis

eat x(t) GL2[0,co)

then eat y(t) GL2[0,~) and y(t) GN2(j[0,«>)

let x G N2[0,«) then there exists a a <_ a such that x G w [0,»)

using the preceeding reasoning y^L [0,°°) hence y G No[0,«»).

Lemma 0.4

Let H be a linear mapping satisfying assumption 0.1

If sup |h(ju))| < R V oo G (-oo,oo)

then 3a, 0 < a £ an such that

|h(a + jco) I <_ R V w G (-»,«>)

Proof

I *

Since h(t) = h (t) + /^ h. 6(t - t )
i G 1

Let A and A be defined as follows:
a s

A = |h (juO - h (a + ju))|
o cl cL

Ag = |hs(ju)) - hs(a + jco) I

00

then Aa =IJ eja)t(l -eat) ha(t)dt

A <
a —

T 00

\J e^d -e0£) ha(t)dt| +J |eJWt(l -e") ha(t)|dt

13



Note that for 0 < t < T

, at I . _ at
1 - e < oTe

and that V t > 0

. ati „ at
1 - e < 2e

the inequality will then become

A
a

OO 00

<. aT / eat|ha(t)|dt +2 j eat|hfl(t)|dt

given e > 0 pick T = T(e) in such a way that

on

/
T

e

e0t|h(t)|dt <|

let 6n(e) = £
1 °nt4Tlle u h (t)0T

a Li-.

v

then if a < 6. (e) A < ^
— l a — z

A =
s

2^ h±(l - e X)e x

A8iE IhJ-h -e0'1! + £ |h±| |l-e ,
i G IT i G I - IT

at at

|l - e | 1 2e 1 Vi G I

at. at

|l - e 1| 1 aT e Vi Gi since t± <T Vi GI

14
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let

at. ^-«\ at

iGl i e I - T
as±°t 2 \\\e°i +2 2 |hi|e ±

V**
ot.

E
i e i - Ilpl

«2(e) = e

4T E m-v'
i G I

T

pick then Tf = T'(e) in such a way that

then if a£ S?^ A —f

and if a £min(6 (e), &Ae))

|h(jaj) - h(a + ja)) | <_ e V w G (-<»,oo)

letting sup |h(jaj)|=RQ

pick r

Assumption 0.2

VLet H satisfy assumption 0.1 and in addition e h (t) G Lo[0,o°)

15



I. N2 stability

This section is going to give the conditions on the elements of the

system S.l insuring N2 and N~ boundedness.

A "small gain theorem" using the close relationship between the

space N?[0,«») and L«[0,«>) will give these conditions. The fact that

N9[0,°°) is a linear subspace of L-IO,*) will be used in the next section

when the results of this section are going to be applied to the behavior

of the derivatives of the error and output functions.

A sector type condition is going to be imposed on the relation N.

Assumption 1.1

Let N be a relation with domain and range in X.

There exists a constant k > 0 such that

(1.1) |y(t)| < k|x(t) V t > 0

y = 0 whenever x = 0 V images y of x under N

V xG L2e[0,») H Do(N)

16



Lemma 1.1

Let N be a relation satisfying assumption 1.1 then:

a) If the domain of N is restricted to Do(N) ri l [0,») then its

range is in L2[0,°°) and the L« gain of N g- (N) satisfies the relation:

gT (N) < kL2

b) If the domain of N is restricted to Do(N) H L9 [0,<») its range
2e

is in L2 [0,«>).

c) If the domain of N is restricted to Do(N) H n [0,<») with a > 0

then its range is in N2cf[0,«) and the N£ gain of N : g^ (N) satisfies
2a

the relation:

gN (N) < k
2a

d) If the domain of N is restricted to Do(N) H N [0,«>) then its

range is in N2[0,o»).

Proof

It can be seen at once that (a) implies (b) and that (c) implies

17



(d) trivially.
00

a) assume xGL2[0,«>) O Do(N) i.e. / x (t)dt <o« then equation (1.1)

T T

A2(t)dt <k2 fimplies / y'(t)dt <k" / x2(t)dt <_ k2 Hxll2 <»
'0 T0 2

since the right hand side does not depend on T

00

/
2, v

y (t)dt exists and is finite.

hence

(1.2) Hyll < k llxL
L2 L2

c) assume xGN2(y[0,«>) then e0t x(t) GL2[0,«)

since a > 0

eat >_ 1 Vt_> 0
and

(1.3) eat|y(t)| <k eat|x(t)|

and it suffices to apply part (a) to (1.3).

In the same way

gN (N) < k.
W2o

So far the N9 gain of the relation N has been obtained. The N
AO 2a

gain of the linear element must now be obtained. Since by far the

most convenient way to deal with a linear element is to study its

18



properties in the frequency domain the link between the space N9 [0,»)

and L9[0,«) is going to prove specially helpful in the following lemma,

Lemma 1.2

The N2 gain of the linear element gN (H) is bounded in the
2a

following way for a > 0 a <_ an

(1.4) gN (H) <_ sup |h(o + jio)|
2a a) G (-oo^co)

Proof

Assume that x G w [0,°°) with o < an a > 0
£-0 — 0

using equation (0.5):

[g.(h*x)](t) = [(g-h)*(g-x)](t) with g(t) = eat
then

(1.5) lleat y(t)0 = fleat(h*x)(t)IL = (l(eat h(t))*(eat x(t))0T
L2 L2 L2

using Parseval formula

oo

hence

(1.6)

2,1/2'eat y(t) UL <( sup |h(o +jco) |)2 ^ /"|i(o +jtu) |2 du>]
2 I a) G (-00,00) J J

= ( sup |h(a + juO|)Heat x(t)«T
(l) G (_oo)00) L,

19



or llylL <_ sup |h(o + Juj)|ixll
N2o u G (-o°,oo) N2o

and g^ (H) <_ sup |h(a + jai) |
^2a a> G (-«.,«)

Now the theorem on N9 boundedness can be stated.

Theorem 1.3

Let the system S.l be such that:

(i) There exists a constant k > 0 with which the element N satisfies

assumption 1.1.

(ii) The linear element H satisfies assumption 0.1 and in addition let

the Fourier transform h(ju)) of h(t) satisfy the following inequality.

3 R > 0 such that sup |h(ju))| < R

(iii) The functions appearing in the system belong to L9 [0,»).

Then kR <1 and u.^ u2 G N2[0,°°) implies that e^ e2> y^ y2 G N2[0,<»)

Proof:

Since by lemma 0.1 N2ex^0,°^ = L2e^0,0°* a11 the functions appearing

will belong to ^e^0*00)' Xt is then legitimate to use the N2 norm of

the truncated functions for a > 0.

a t

since e ° h(t) G L [0,~)

v a1 a0 ^ Ra such that lh^a + ^ I- R V a) G (-co,oo)

20



using lemma 0.4

|h(ju>)| < R V a) G (-00,00) implies that

3 o2 >0 3 |h(o2 + jw)| <_ R V a) G (-00,00)

then

(1.4) V a > 0, a < a2 g^ (H) <_ R
2a

by lemma 1.2.

Since N satisfies assumption 1.1 lemma 1.1 implies that

(1.5) gN (N) < k
2a

The equations of the system C.l.a to C.l.d imply:

(1-6) 0e1T»N2a .St -̂ <̂ 0^ +1,^
in the same way

(1.7) lle2TlN2o «»u2T0N2o +1^1

the definition of the N9 gain implies

(1.8) Hy, II < a (N)lle II

a-9) ly^2r\(H),eA0

replacing h1T\ and ly^l by their bound in (1.6) and (1.7) the
2a 2a

21



following inequalities are obtained

(1.10) I. I <Iu„l + g (H)»e2Tn
2a * 2a la la

a.iD ne2Tn <«u2Tn + g (N)0e1Tn
la la la la

replacing He9_IL hy its bound in (1.10) leads to
ZT N2o

d.12) i.1Ti <i-fc (h) ^ oo) i »u1T« + 8 (H)»u2Tn
la 2a 2a 2a 2a 2a

let u. and u9 G N2[0,«>)

then 3 a1 and a" >0 such that u. G N2 ,[0,oo) and u2 G N2 „[0,ot>)

take a > 0 a £ min(a9,a',a")

then u. and u2 G N2 [0,o°) and from (1.4), (1.5) and (1.12)

(1.13) De-JL (1-kR) < llu.IL + rIIuX-IT N2(j - 1 N2(? 2 N2(j

since (1-kR) > 0 by assumption

i.„i <a-uo-^o^i +Riiu2n ]
2a 2a 2a

and e. G N2 [0,°°) hence e1 G N9[0,«>)

trivially this implies that y_, e2 and y also belong to N2[0,«»)

22



It is possible to enlarge the class of functions considered to the

space N«j[0,oo). However it is necessary to restate the assumption on N.

Assumption 1.2

Let N be a relation with domain and range in X.

(i) V xG N3e [0,«0 O Do(N) and x(t) « x (t) + /^ x 6(t-T )
1 G I

the images of x under N are of the type y(t) = y (t) / A y. 6(t-T.)

i G I

where y can be zero with the understanding that y = 0 implies that no

<5 function occurs at time t..
i

(ii) there exists a constant k > 0 such that

V images y of x under N

y = 0 whenever x = 0 S»

(1.14) |y(t)|< k|x (t)| V t > 0
a a —

a

(1.15) lyj <klxj V iGI

Lemma 1.4

and V x G N-EO,*-) H Do(N)

Let N be a relation satisfying assumption 1.2. Then

a) If the domain of N is restricted to N« [O,00) ^ Do(N) with a > 0

then its range is in N_a[0,oo) and given x G n [0,oo)

x(t) =xa(t) + 22 xi fi(t-T±)
i G i

then Vimages y of x under N, y(t) =y (t) + 2^ y^ S(t-T.)

(1.16) lly II < kllx HM
a N2o a N2a

23
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(i.i7) V* eati , . V^ ati
z* \j±\<*22 e i-i

i G I

b) If the domain of N is restricted to N3[0,o°) H Do(N) then its

range is in N3[0,oo) O Do(N) .

c) If the domain of N is restricted to N3 [0,°°) H Do(N) then its

range is in N3 [0,«") H Do(N) .

Proof

a) Let x G N3 [0,°°) let y be an image of x under N.

By assumption 1.2

|y (t)| < k|x (t)| V t > 0
cl a

by lemma 2

HyXt < kllx IL since x G N [0,oo)
aN2a aN2a a 2a

trivially since

^r-> at.

|y±| <k|x±| ViGIand since ^Lf e ^ l*J <°°
i G i

' \y±\ <k 2-r
i G I i G I
2 e *|yii< k S e°i k

hence y 6L [0,o<>)

(b) and (c) follow trivially from (a)

24



Theorem 1.5

Let the system S.l be such that:

(i) There exists a constant k > 0 with which N satisfies assumption 1.2.

(ii) The linear element H satisfies assumption 0.2.

In addition let the Fourier transform h(jio) of h(t) satisfy the following

inequality 3 R > 0 such that for a <_ aQ

22 lhile i <R; and sup \^w\ KR
iGl

(III) The functions appearing in the system belong to ^ex^0'00)*

Then kR<1and u^ u2 G N3[0,oo) imply that e^ e2> y±9 y2 G N3[0,oo)

Proof

The action of the linear element on e9 is

or

(1.18)

y2(t) =(h*ea>2)(t) + ^ elf2Cha*«(t-T1))
i G I

i G I j G J

y2(t) =(h*ea2)(t)+ X) ei,2ha(t-Ti>
i G I

+E S hi ei,2 6(t"V V
i G I j G J

25



by equating the coefficients of like kind of terms in the equations of

the system S.l.

C.l.a will become, using (1.18)
r

(1.19) ea,l(t) =Ua,l(t) "(h*ea,2)(t) "£ ei,2 V^V
i G I

(1.20) S *m,l 6<^«> =S U£,l 6(t"V '£ S Yi,2 ^"VV
i G I j G jX, G Lm G M

a) Taking into account the <5 function part: (1.20) after truncation

will give

"•"' S •"• iv." •- L •"• iv.i * L L •°"rv 'Vv
o3, 0(t.+T )

£ fc L„ iG iT jGjt

the truncated index sets being obtained in the following way

M_ = {m/m G m and a <_ T}

from the hypothesis on H; / ^ e ^|h I<R

then (1.21) becomes

a.22) y^
m G Hj,

aa
m ,_

e e
m

j ^J

opt. .^r*- i»^£ G L,
i G t

equation C.l.b of the system will become, with respect to the 6functions
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2 ei,2 ^-v • £ u*,2 «<i-v+ £ yj,i 5(t-v
iGl fc G B jGA

and become after truncation at T

(1.23) V a""1 le I< V °Yi , , V . ,°6j/^ lei,2l - Z-T e |u |+ 2^ ly, Je J
i e Im 9 G R » ^T J'1T *fc BT je^

using inequality (1.15) with equation (1.23)

(1.24) ^ e iei,2ii L * ^K,2i +k Z i^ii* 2
1G XT »€ BT jG AT

by assumption 1.2: AT C m , then (1.24) becomes

(1.25) V e°Ti le. J < V B°Y4 L. I.f. \P , , aaS e4lei,2l ±E ^K.l +kV |e 1
T •*eBT mG^

\7^ i
eplacing ^ e 'ei 2' by its bound ln (1-22>

e m

i€lT

a6„ x~> . oy

(1.26) (1-kR) 7. e "le™lll Z^ " '^,1' "" ^ '^,2'e
mGHj. »G4 *eBT

a$. . ^—* ^
e |un -I < oobut by the hypothesis on ^ and u2 Tj e ^luA>1l <°° and 2*4 & *>2

I GL ' *G B

since (1-kR) > 0
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Eatx -IT XT"> °& X~^* °Y t• m|em(1li(l-kR)1 22 e lKtll+« £ e *|u |

since the right hand side does not depend on T and is finite

(1.27) ^2 e °le_ J <-
m G M

aa

m,l

from where it follows that

oi. *—«% a6, ^-^ a6

€

i € I jGA iGD

V^ CTTi V* a6i • . V^ a6<
2*4 e lei,2l <-• 2*4 e l^.il <-• 2^ - lylf2l"<

b) Looking at the other part of the function equation (1.19) becomes

a-2* "ea,lTBN2o i'Ua,lT"N2o +"^a.A1^+»( I>i,2lV^T™^
using the same reasoning that in Theorem 1.3

since |h(ja))| < R V u> G (-co,oo)

3 o? > 0 3 |h(a9 + jw) |£ R V a €• (-»,«)

then V a > 0 o <_ a? g^ (H) <_ R by lemma 1.2
N2a

The equations of the system for the L2 [0,oo) part of the function

become

(1.29) De II < llu B + lly II
a'2T N2„ - *'2t N9^ + ya,ln. NT "20 -AT w2a a'AT N2o
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from Lemma 1.4 and the definitions of the gains

(1.30) Oy II < klle IIa,JT w2a a,±T w2o

(1.31) ll(h*e<a )J < Rllea 9 IL a > 0 a < a9a,2 T N2(j - a,2T ^ - 2

Equations (1.28) through (1.31) imply

(l-32> "ea,lA.(1"kR> ~ "Ua,1 JV +RiUa,2JV +1 L I^^V Aa,lTN2o a,1f|, N2o a,2T N2fj
\i G I '2o

but

Vi G I /
T N

2a

a(T4+Tj)

i G I j G IT
ei,2»ej>2

or

(1.33) Z ^ie1>2, X
ai

I \i G T i G t

ax

^ i,^ aT M2(J

Replacing the last term by its bound in (1.32)

1/2»h

±>2

a N
T w2a

1/2
ih naT N2a

ax.

(1.34) (l-kR)IU 0 <Ilu II +Rllu 9 IL + Y] e Ne, J Oh L
a'1T N2a " a>1T N2o a'2T N2a ±^I ±>2 aT N2a
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since h G N0 [0,°°)
a 2a

hence u ,, u 0, h G No[0,'») and a', a", a"' > 0 such that
a, la,la £.

ua,l € ^o'10'")- ua,2 £ N2(I"[°.")' ha € V"10'"*

let (i ••> 0 (i < mln(a.,,(j,,o",o'") then u ., u , h S» [0,">)
z a, J. a, z a zo

from the hypothesis 1 - kR > 0

from part (a) 2^ e le± 2I < °°
i G i

equation (1.34) becomes

a a a i G i ,

The right hand side is finite and does not depend on T,

hence e . GL [0,<») and e _ G No[0,<»)
a,i la a,l i

then trivially ya v e& 2, y 2G N2[0,o°)

and then e^ e2, y^ y2 G N3[0,»)
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II. Main Stability Criteria

In the previous section criteria for the N2 and N« boundedness of a

system of type S.l were given. In this section these criteria are going

to be applied to the behavior of a system with respect to the derivatives

of the various functions appearing within the system. Then the use of

lemma 0.2 will insure that the functions appearing within the system

belong to Lw[0,<») and have a limit when t goes to infinity. In order to

achieve this the behavior of a system of type S.l with respect to the

derivatives of input, output and error functions will be modeled by a

system S.2. The system S.2 will be of type S.l. However the elements

of S.2 will be obtained from those of S.l in the following way:

(ej. y{) e N1 iff 3 (^.y^ GNsuch that e± =ej and y =y'

the linear element being defined in the same way. An idea on how to do

the modeling can be obtained from figure 2.

The equations defining S. 2 are:

(2.1.a) e[ = u[ - y'

(2.i.b) e2 = u2 + y[

(2.1.c) <ej, y[) GN'

(2.1.d) y£ = H'e^

where u| = u1 derivative of u- in S.l etc...

Two cases will be considered as in the previous section. First the

case when the input functions have no steps and hence their derivatives

have no 6 functions.

Second the case in which 6 functions appear in the derivatives.
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A. The input functions have no steps.

An assumption on the element N will be necessary.

Assumption 2.1

Let N be a relation with domain and range in X.

(i) V x G Do(N) which has a derivative the images y of x under N

have derivatives.

(ii) There exists a constant k > 0 such that

(2.2) |y(t)| < k|x(t)| Vt>0| Vimages y of x under N

y =0whenever x=0 J VxG Do(N) and having a

derivative belonging to L„ [0,o°)

This assumption insures that N» satisfies assumption 1.1.

Theorem 2.1

Let the system S.l be such that

(i) There exists a constant k >0 with which N satisfies assumption 2.1,

(ii) The linear element H satisfies assumption 0.1 and the Fourier

transform h(jw) of h(t) satisfies the following inequality

3 R > 0 such that sup |h(jw)| < R

(iii) The functions which appear in the system have derivatives which

belong to L2 [0,°°).

If kR <1and if the derivatives i^, u£ of u1 u2 belong to N [0,»).
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Then the derivatives e±, e2, y^ y2 of ev e^ yv y2 belong to

N2[0,oo).

Proof

Using the system S.2 to model the behavior of S.l with respect to the

derivatives: since 3 k > 0 with which N satisfies assumption 2.1. N*

satisfies assumption 1.1 with k. It, then, satisfies the hypothesis of

theorem 1.3.

from L. Schwartz [11] (Vol. 2, Chapt. 6, Thm. 9) it is known that

the derivative of a convolution is the convolution of one of the factor

with the derivative of the other:

(2.5) h*e2 = h*e2

hence H' = H

and H1 satisfies the hypothesis of theorem 1.3.

The functions ej, e£, y^, y£ satisfy the hypothesis of theorem 1.3

All the hypothesis of theorem 1.3 are then satisfied.

then u±9 u2 G N2[0,») imply 4^ e£, y^ y2 G N2[0,«).

B. There can be steps in the input functions.

The assumption on N must be restated.

Assumption 2.2

Let N be a relation with domain and range in X.

(i) V x G Do(N) which has a derivative the images y of x under N
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have derivatives.

(ii) V x G Do(N) which has a derivative in N3 [0,°°)

x(t) =xa(t) +^2 XI «(t-T±)
i G I

The derivatives y of the images y of x under N are of the type

y(t) =ya(t) + ^2 yj ^(t-T^
i G i

where yj can be zero with the understanding that y! = 0 implies that no

6 function occurs at time t..

(iii) There exists a constant k > 0 such that

|y'(t)| < k|x!(t)| V t > 0

y = 0 whenever x' = 0
a a

y!| < k|x!| V i G i

V images y of x under N

* V x G Do(N) and having a

derivative belonging to N, [0,«>)

This assumption insures that N' satisfies assumption 1.2.

Theorem 2.2

Let the system S.l be such that

(i) There exists a constant k > 0 with which N satisfies assumption 2.2

(ii) The linear element H satisfies assumption 0.2.

In addition let the Fourier transform h(ju)) of h(t) satisfy the

34



following inequality "3 R > 0 such that for a <_ a~

at.

|hi|e x < R and sup |h(jw)| < R
i G I

£,..,--.

(iii) The functions which appear in the system have derivatives which

belong to N. [0,»).

If Rk < 1 and if the derivatives u1 and u„ of u. and u9 belong to

N3[0,oo).

Then the derivatives e^ e2» y ,y2 of e , e2> y , y2 belong to

N3[0,oo).

Proof

Using the same procedure as in theorem 2.1 the behavior of the

system S.l with respect to the derivatives is modelled by S.2.

Since 3 k witn which N satisfies assumption 2.2, N1 satisfies

assumption 1.2 with k and then satisfies the hypothesis of theorem 1.5.

Using Schwartz [11] again H' = H and then satisfies the hypothesis

of theorem 1.5.

The functions ej, e', y', y' satisfy the hypothesis of theorem 1.5.

All the hypothesis of theorem 1.5 are then satisfied

then ux, u2 G N3[0,o») imply e±9 e2> y^ y2 G N3[0,oo).

Corollary 2.3

If the hypothesis of either Theorem 2.1 or Theorem 2.2 are satisfied

by a system S.l then the output and error functions belong to L^O,") and

have limits when t goes to infinity.

The proof is a straightforward application of lemma 0.2.
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III. Applications

This section deals with the application of the results of section 2.

These results can be used either to obtain a L criterion for systems which

could be studied with the L2 stability, or to obtain a stability criterion

for systems which could not be studied with L9 stability.

A system could be L9 stable under a sector condition on the nonlinearity

and L stable under another sector condition this time on the slopes. In

order to transform the gain conditions in sector conditions for the non-

linearities and in circle or Popov type conditions for the linear element

some transformations will be needed.

From the use of these transformations it will be possible to show

that hysteresis is a special case of the relation N.

A. The transformation Tc which is going to be used is represented in

figure 3. It is a classical transformation which can be expressed

analytically by

(3.1)

Tc

(3.2)

N- = (N - AI)

Hx =H(I +AH)"1

Assumption 3.1

Let H be a linear mapping of X into X such that there exists

h G x and aQ > 0

h(t) =h1 +h^(t) + 22 hi 6(t~ti) Vt>_ 0

(3.3)

h(t) =0 V t < 0

where h' is a real constant

i G i
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and e0° (h^(t) + XI hi 6^-ti)) €V0'"0
i G I

defining H in the following way

V x G Do(H)

(3.4) (Hx)(t) = (h*x)(t)

The following lemma is the extension of the circle theorem of

Zames [4].

Lemma 3.1

Let S.l be a system such that

(i) N is a relation with domain and range in X inside the sector (a,B)

with 3 > 0. i.e.

(3.5) a<̂ |} <3; Vt>0

y = 0 whenever x = 0

V y images of x under N

V xG L2e[0,o») or N3ex[0,~)

(ii) H is a linear element satisfying assumption 3.1. In addition

3 6 > 0 with which H satisfies the circle conditions for the sector

(a,B). i.e.

a) If a = 0

(3.6) Re h(ju>) + j > 6, V uG (-00,00)

b) If a > 0

1,1 . 1,1 1,1 1,(3.7) |h(ja>) +i(i +i) j>±(A -|) +6, Va> G <—,-)

and the nyquist diagram of H does not encircle the point - —(— + —)

37



c) If a < 0 then

(3.8) |h(ja,) +±<i +|)|<i(I -I) +6, Va, G(-«,,«,)

Then using the transformation previously defined with

(3.9) A = 2-t_§-

letting

(3.10) kx =-2-=-^

N. will be a relation inside

(3.11) (- kr kx)

and H1 will be such that

(3.12) \\iMl <i-

a0t
and 3 aQ >03 eu h^t) G L1[0,oo)

Proof

i) If h1 =0 then this is Zames1 result,

ii) If h' ^0 |fi (juj)| <£ is astraight application of Zames
results. Using a theorem by Desoer [2] on the general formulation of

the Nyquist criterion

eU hx(t) GL1[0,oo)

With the help of lemma 3.1 it is going to be possible to state a
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modified version of theorems 2.1 and 2.2.

Assumption 3.2

Let N be a relation with domain and range in X

(i) V x G Do(N) which has a derivative the images y of x under N

have derivatives.

(ii) There exists two real constants a, 3, with 3 > 0 such that

9 9

ax (t) < y(t) x(t) < 3 x (t) V t ^ 0 V images y of x under N

and y = 0 whenever x = 0

This insures that N' is inside (a,3).

Theorem 3.2

V x G DQ(N) and having

derivatives belonging

toL2 [0.-).

Let the system S.l be such that

(i) There exists two real constants a,3 and 3 > 0 with which N satisfies

assumption 3.2.

(ii) The linear element H satisfies assumption 3.1 and satisfies the

circle condition for the sector (a,3).

(iii) The functions which appear in the system have derivatives which

belong to L9 [0,«>).

If the derivatives u- and u9 of u-, u2 belong to N2[0,oo) then the
• • • •

derivatives e^, e2» y1» y2 of e^ e2, y^, y2 belong to N2[0,«).
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Proof

a + 6
Using Lemma 3.1 the transformation Tc with A = —x— will transform

the system S.l in another system S.1.1 of type S.l where N. will be such

that

|yi(t)| < k1|e1(t)|, Vt > 0

y, = 0 when e.. = 0

i" i 1and H. will be such that Ih^juOl <£-

S.l.l then satisfies the hypothesis of theorem 2.1.

Assumption 3.3

Let N be a relation with domain and range in X

(i) V x G Do(N) which has a derivative the images y of x under N

have derivatives

(ii) V x G Do(N) which has a derivative in ^gxt0*00)

x(t) =x'(t) + ^2 Xi 6(t"Ti)
a

i G I

V images y1 of e, under N.

Ve G Do(N.) and having

derivatives

the derivatives y of the images y of x under N are of the type

y(t) =ya(t) + ^2 y[ 6(it'T±)
i G I

where y' can be zero with the understanding that y^ = 0 implies that there

is no 6 function at time t..
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(iii) There exists two real constants a, 3, and 3 > 0 such that

r

ctx|2(t) < y»(t) x'(t) < 3x,2(t) V t>0
a a a a —

^ y' = 0 of x' = 0
^ Ja a

aXi.2 <yi Xi KiJ>X±2 viGI

V images y of x under N

V G Do(N) and having a derivative belonging to N- [0,°o).

This assumption insures that N1 is inside the sector (a,3).

Theorem 3.3

Let the system S.l be such that

(i) There exists two real constants a, 3; 3 > 0 with which N satisfies

Assumption 3.3.

(ii) The linear element H satisfies assumption 3.1 and h' G N2(j [0,«>).

In addition it satisfies the circle condition for the sector (a,3)»

and^lhje0'1^.
I

(iii) The functions which appear in the system have derivatives which

belong to N3ex[0>°°)'

If the derivatives u_, u2 of u-, u2 belong to N3[0,°o) then the

derivatives e^, e2> y^ ,y2 of e1> e2» y ,y2 belong to N3[0,oo).

Proof

A transformation and lemma 3.1 are used in the same way as they were

in theorem 3.2 and the transformed system satisfies the hypothesis of

theorem 2.2.
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B. A transformation T can be used with some systems in order to have

the Popov condition on the linear element. It suffices to take a first

order multiplier:

(3.13) Z(jto) =y^1
qjw

The transformation T will be expressed analytically by
m

(3.14)

T

(3.15) m

N = NZ

{ n± =z"1 h

Assumption 3.4

Let N be 'a relation with domain and range in X

(i) there exists k > 0 such that

(3.16) 0 <^YT^ <k vtl°| vy images of x under N

y=0whenever x =0 J VxGL2e[0,«») ODo(N)
t

(ii) either a) / y(x)x(x)dx ^ 0 V t > 0 Vy images of x under N

0 VxGL2e[0,oo) ODo(N)

having a derivative
t

or b) / y(j)x(x)dT _< 0 Vt>^0 Vy images of x under N

Vx G L2e[0,oo) O Do(N)

having a derivative

The implication of condition 3.4 (ii) will be considered in the

examples.
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Lemma 3.4

Let S.l be a system such that: there exists k > 0 with which N

satisfies assumptions 3.4 (i) and 3.4 (ii, a).

Let H satisfy assumption 3.1.

In addition let H satisfy the Popov condition with q > 0

i.e. Re[(l + qjco) h(ju>) +r-]>_<5>0 VuG (-»,«»)

Then the transformation T with z(1o)) = ., , , will lead to a
m 1 + qjuj

system N_, H. having the following properties:

a) N^ is inside the sector (0, k) with respect to the L„ norm.

i.e. <y1, y1 - ke]L > <_ 0 Vy images of e under N.

e1 e L2[0,«) n Do(N1)

b) 3 <5' > 0 with which H. satisfies the circle conditions for the

sector (0,k).

Proof

a) For Nx to satisfy <y1> y - ke. > >_ 0 with e. = x- + qx

i.e. x. = Ze..

it suffices that

*yl* yl ~ ^1 ~ kqxl * - °
or

<yx, y± - kX;L > - kq (yl9 x±) £ 0

by hypothesis

<ylS yx - kx1 > <_ 0
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it suffices then that

(yv xx > >_ 0

This is verified because of assumption 3.4 (ii, a).

b) since h-(joj) = (1 + qju>) h(jw) the hypothesis on H imply trivially

that H- satisfies the circle condition for the sector (0, k).

Lemma 3.5.

Let S.l be a system such that there exists k > 0 with which N satisfies

assumption 3.4 (i) and 3.4 (ii, b).

Let H satisfy assumption 3.1.

In addition let H satisfy the Popov condition with q < 0.

The transformation T with coefficient k and a change of sign i.e.

Nx = (kl - N)

H = - H(I + kH)"1

will lead to a system having the following properties.

N.. satisfies assumption 3.4 (i) and 3.4 (ii, a) and

Re[(l -qju)) H^jw) +£] >_ 6>0

Proof

This is the extension of a lemma by Aizerman and Gantmacher [12]

since

y1 = kx - y

x- = x
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t t t

/ y (x)x-(x)dx = / kx(x)x(x)dT - / y(x)x(x)dx

Jo Jo Jo

hence N satisfying 3.4 (ii, b) implies N- satisfies 3.4 (ii, a).

Assumption 3.5

Let N be a relation with domain and range in X

(i) V x £ Do(N) which has a derivative the images y of x under N

have derivativesi

(ii) there exists a constant k > 0 such that

0 <y(t)x(t) <kx2(t) Vt>_ 0

and y = 0 whenever x = 0

45

V images y of x under N

V x £ Do(N) and having deriva

tives belonging to L„ [O,00)

t

ler a) / y(x)x(x)dx _> 0 Vt >0 V images y of x under N

V x G Do(N) having a first deriva

tive belonging to L„ [0,«0

and having a second derivative.

t

or b) / y(x)x(x)dx <_ 0 V t_> 0 V images y of x under N

0 V x G Do(N)

having a first derivative

belonging to L2 [0,°°) and

having a second derivative,



This assumption insures that N1 satisfies assumption 3.4.

Theorem 3.6

Let the system S.l be such that there exists a real constant k > 0

with which N satisfies assumption 3.5.

The linear element satisfies asHumption 3.1.

There exists a real constant q, q > 0 if N satisfies assumption

3.5 (iii, a), q < 0 if N satisfies assumption 3.5 (iii, b) with which

H satisfies the Popov condition:

Re((l +qjw) h(ju>) +£) >6>0

The functions which appear in the system have derivatives which

belong to L« [0,»).

In addition 4(0) = 0.

If the derivatives u, and u„ of u.., u2 belong to N2[0,») then the

derivatives e^ e2, y^ y2 of e^ e2, y^ y2 belong to N2[0,«>).

Proof !

a) q > 0 then Lemma 3.4 applies and the transformed system satisfies

the hypothesis of theorem 3.2.

b) q < 0 then lemma 3.5 applies and (a) applies to the transformed

system.
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IV. Examples and experiments

In this section the implications of the various assumptions are

going to be examined.

A few experiments were made and both theoretical and practical results

are given.

a) Let the nonlinearity N be single valued time invariant with the

slopes in a finite sector (ct,0) 3 > 0 (Fig. 4) then assumptions 3.2, 3.3

and 3.5 could apply allowing the use of either a circle condition or the

Popov condition on the linear element. In that case assumption 3.4 (ii)

on N1 would become

t x'(t)

J N'(xf) x'dt = / N'teOdx1 which by 3.4 (i) would

always be greater or equal to zero.

b) Let N be multivalued, and let the point x1, y1 go clockwise

around N1 (Fig. 4) then assumption 3.2, 3.3 and 3.5 could apply again.

Assumption 3.4 (ii, a) on N' being satisfied. This assumption means

the area inside the curve y', x' is positive as the point goes around the

curve.

47



c) N can be multivalued and let the point x1, yf go counter clock

wise around N* (Fig. 4) then assumption 3.2, 3.3 and 3.5 could apply

again assumption 3.4 (ii, b) on Nf being satisfied. This assumption

means the area inside the curve y', x' is negative as the point goes

around the curve. Some models of hysteresis and backlash belong to that

class.

d) In the case when N is multivalued, time varying and the area

inside the curve y', x' may change sign (Fig. 4) only the circle criterion

would apply (assumption 3.2 or 3.3).

Experimental Results

A nonlinearity was built using a transformer, a power D.C. amplifier

and an integrator (Fig. 5). The need for the power D.C. amplifier arose

because the analog computer amplifiers could not drive the transformer.

Several transformers were used in order to observe different

hysteresis loops. For all of them the maximum slope varied with frequency

As can be observed in Figure 6the maximal slope increases as frequency
decreases.



The range of variation of this maximal slope will be taken into

account.

Another interesting phenomenon occurs sometimes when there is a

D.C. offset. No saturation occurs on one side of the hysteresis loop

and an infinite slope can be observed. However if the derivative of the

output versus the derivative of the input is plotted (Fig. 7) it can be

observed that the sector has been shifted away from the origin.

A transformation can be used to deal with this problem (Fig. 8).

Let the origin of the sector have the coordinates (a,8). Then let

e1 = e_ - a

y' = yx " 3

Then the relation (ef, y1) obeys the sector condition, a can be

transfered into u, and 8 into u«

Iu,' = u1 - a

u2 = "2 + S

If a and 8 are functions of time which obey the assumptions on u..

and u2 then the stability criterion applies to the transformed system

and insures the stability of the original system.

The linear part of the system was simulated on an analog computer.

For each case the experimental frequency response was compared to the

theoretical one: Figures 9, 11, and 13.
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Three linear elements were used. The first had an integrator hence

a criterion using L^tO,00) stability could have been applied to it. The

second and third had no integrators. As a consequence important D.C.

offsets, due to the properties of the nonlinearity appeared. These

offsets made it impossible to apply a criterion using L2[0,») stability.

However, the criteria developed in this paper predicted the L^EO,00)

boundedness of the solutions as well as the absence of sustained oscillations

Experiment 1

Taking a linear element with an integrator a fourth order denominator

and a zero.

tUs; s(s + 0.4) (s + 0.6) (s + 1)

From the frequency response of this system (Fig. 9) it can be seen

that Re(H(jw)) > - 1.535.

The maximum slope of the nonlinearity is

a) 8.7 if the all range of frequencies is taken into account.

b) 5 if the frequency is close to the frequency of free oscillations

of the linear system. It also turns out this is the lowest maximum slope.

The limit gain for the system was found to be 0.213. The theoretical

gain would be

a) taking into account the all range of frequencies

8=T335 x8^ =°-075
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b) taking into account the frequencies close to the linear element

frequency

8=T335 X^"= °-13

In the worst case the theoretical gain is slightly more than a third

of the practical one. In the best case the theoretical gain is more than

half of the practical one.

Some of the responses of the system can be seen on Figure 10.

Experiment 2

This linear element has no integrator hence important D.C. offsets

occur in the response and L2 stability cannot be used to study it. The

criteria developed in this paper applied and gave a fairly close approxi

mation for the gain.

H(s) = S+ °'2
(s + 0.25)(s + 0.4)(s + 0.6)(s +1)

The theoretical and experimental frequency response were plotted

(Fig. 11) and it could be seen that

Re(H(juO) > - 0.825

The nonlinearity was the same as in experiment 1. The limit gain

for the system was found to be 0.26. The theoretical gain would be

a) taking into account the all frequency range

8 = 0.825 X 877 = 0#139
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b) taking into account the frequencies close to the linear element

frequency

g = 025xJ-0-242

In the worst case the theoretical gain is about half of the practical

one. In the best case it is very close to the practical one. The response

for the various gains can be observed on Figure 12 a, b.

Experiment 3

A linear element with 2 pairs of conjugate poles was chosen. Once

again the lack of integrator introduces D.C. offsets and does not allow

the use of the L« stability.

s + 0.2
H(s) =

(s + 0.4 + 0.1j)(s + 0.4 - 0.1j)(s + 0.2 + 0.3j)(s + 0.2 - 0.3j)

The theoretical and experimental frequency response were plotted

(Fig. 13) and it could be seen that

Re(H(ja))) > - 5.443

A different transformer was used and different setting of the

resistors R., and R2 (Fig. 5) gave two different nonlinearities.

i) Nonlinearity with a maximal slope of 6.22 over the all range of

frequencies - and of 3.68 in the frequencies around the oscillatory

frequency of the linear system. The response to this system can be

seen on Figures 14 a and 15 a, b.
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The limit gain was found to be between 0.09 and 0.1. The theoreti

cal gain would be

a) taking into account the all frequency range:

s - 5^3x erk - °-0295

b) taking into account the frequencies close to the linear element

frequency

8=5^43 X3To8 =°-05

In the worst case the theoretical gain is slightly less than a third

of the practical one. In the best case it is about half of the practical

one.

ii) Nonlinearity with a maximal slope of 11.15 over the all range

of frequencies, and 5.8 around the linear element frequency.

Its response can be seen on Figure 14 b.

The limit gain was found to be 0.055. The theoretical gain would

be

a) taking into account the all frequency range

1 x ,A„ = 0.0165
6 5.443 11.15

Less than a third of the practical gain

b) taking into account the linear element frequencies

1 x -t^tt = 0.0317
e 5.443 5.8

more than a half of the practical gain.
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Conclusion of the Experiments

The criteria developed in this paper can be used to predict the L^

stability and the lack of sustained oxcillations of a system. Even when

this system cannot be studied with the classical approach using L2

stability.

The gains predicted by the criteria are of the order of the real

gains since none of them were less than a fourth of the real gains.

If in the computation of the gain, in the case of a gain varying

with frequency, the frequency of the system is taken into account a

close fit is obtained. Some more investigations of this property should

be done.

The following table summarizes the results of the experiments.

Table

Experiment 1 Experiment 2 Experiment 3

(i) (ii)

Lower bound

of ReH(jto) - 1.535 - 0.825 - 5.443

Max. slope of
N. L. over all

freq.
8.7 8.7 6.22 11.15

Max. slope close
to syst. freq. 5 5 3.68 5.8

Experimental
gain 0.213 0.26 0.09 to 0.1 0.055

Theoretical gain
with max. slope
over all freq.

0.075 0.139 0.0295 0.0165

Theoretical gain
with max. slope
around syst.
freq.

0.13 0.242 0.05 0.0317
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V. Remarks about the Modeling of Hysteresis

Various models have been used for describing the behavior of

hysteresis. When a real hysteresis is being observed it can be seen

, i that it has very different properties depending on the type of input and

the initial conditions.

For small periodic inputs with initial conditions insuring that there

is no D.C. bias the behavior of hysteresis is very close to the one of a

linear system with a constant phase shift.

As the amplitude of the input increases the classical hysteresis

loop can be observed. Its modeling has been studied in [7] for instance.

As soon as a bias appears the output becomes assymetrical and modelling

becomes very difficult.

As far as the D.C. behavior is concerned little work has been done.

The modelling of hysteresis by a double loop going through zero is

highly inaccurate - the modeling by a backlash does not show well the

saturation which is characteristic of hysteresis, does not take into

account the behavior around the origin and the fact that there is not

really a dead zone.

Even the assumptions made in this paper: slope boundedness cannot

fully describe the phenomenon. Infinite slopes can occur in the region

of the origin. By taking the hysteresis in an initial state correspond

ing to a D.C. bias high enough to be in the saturation region and apply-

ing an input close to a step (a step would allow the output to have a

i step itself), bringing the new input close to zero the output will

continue to decrease while the input keeps its value hence there will be
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a line of infinite slope in the response.

However it seems that the assumption of slope boundedness is the

one which allows the closest representation of the phenomenon.
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Conclusion

The functional analysis approach allows one to describe the stability

of feedback systems for given classes of inputs. The application of this

method to the derivatives of the functions appearing within a system

eliminates the requirement that the nonlinear element satisfies a sector

condition. The new condition being that the slopes of this element be

bounded. The assumptions on the linear element are loose enough to allow

delays and do not require that this element have an integeator. Two

types of criteria are obtained. A circle criterion for general nonline

arities and input functions whose derivatives can have 6-functions. A

Popov criterion for a more restricted class of nonlinearities and functions

with derivatives without 6-functions.

By adding conditions on the nonlinearity a multiplier criterion could

have been obtained, however these conditions would have eliminated hystere

sis type nonlinearities hence the criterion was not derived here.

From the results of the experiments it can be seen that the bounds

on the gain are fairly close to the experimental gains. The behavior of

the experimental hysteresis and its frequency dependence seems to imply

a possibility to obtain a closer fit with the criteria. Since that de

pendence shows a decrease of the maximal slope when the frequency is

increased it gives further reasons for the effectiveness of the

dithering method [13, 14]. A slow varying signal superimposed on

a fast oscillation would then see the maximum slope of the hysteresis

decreased, thus allowing a higher gain. The fast oscillations would then

be filtered by the linear element. The modeling of hysteresis is not yet

satisfactory however the bounded slopes condition seems to lead to results
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which fit reasonably reality. A way to insure a better approximation

would be to replace N* by two elements in parallel: a linear element

and a relation N". In this way the displacement of the sector would be

accounted for.
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Nonlinear element

Linear element phase plane

Figure 14.a Response of the system with a gain of 0.075
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Figure 15.a Response of the system with gain = 0.075
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