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Introduction

The functional analysis approach to the stability of nonlinear feed-
back systems has been devgloped recently. Papers by Desoer and Lee [1],
Sandberg [3] and Zameg [4] have pointed out how gain and ﬂositivity
criteria yielded, in addition to the classical stability results, infor-
mation on the relations between inputs and outputs and weaker requirements
on the linear part of the system which can contain delays for instance.
The system used in stability theory has usually been modelled by the sys-
tem S.1 (Fig. 1). Zames [4] considered such a system and imposed the
condition that the nonlinear element be such that Nx = 0 whenever x = 0.
Such a restriction rules out an important class of nonlinearities such as
backlash and hysteresis. These nonlinearities presenting memory and
possibly having time varying characteristics are so complex that they
cannot be modeled well. Usually the modeling is done for a class of
input function (Chua and Stromsmoe [5]), or by replacing the hysteresis by
a backlash and a nonlinear gain (Kodama and Shirakawa [6]). The Lyapunov
theory allows one to define more loosely the nonlinear element in exchange
for a stronger condition on the linear element and of a zero, or constant
input (Weissenberger [7], [8], Walker and McClamroch [9j, Yakubovich [10]).
Since the properties of hysteresis type nonlinearities imply errors which
do not go to zero it is often required of the linear element to have an
integrator in order for a L2 stability criterion to be used. However, the
stability condition could very well be of a bounded input-bounded output

type, i.e. Lm-stability, with in addition the absence of sustained
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oscillations. Such a condition could be obtained through the L., stability

1
of the derivatives of the functions appearing in the system.

In this paper the main condition on the nonlinearity will be that its

slopes be bounded. The requirement on the linear element will be that it

satisfies either a circle condition or a Popov type condition.

In the first section the use of a class of function
x()]  0>0, & x(t) €L,[0,)} CL[0,2) NL,[0,)

will lead to a L1 stability criterion. In the second section this cri-
terion will be used to find a L_ criterion. In the third section trans-
formations will lead to a circle criterion and a Popov type criterion.
Examples and experiments will be presented in the fourth section. The
fifth section will consist of a short discussion on the problems of

modelling hysteresis.
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Definitions and Notations

The following &efinitions will be used through the paper. All the
functions appearing in this paper will map the line [0,») on the real
line
i.e. X = {x(+)]|x : [0,9) > (-»,»)} is the linear space of functions which
will be considered.

Let x € X, given T > 0, the truncation x_. of x at T is defined as

T
a function belonging to X such that

x(t) ¥#30<t<T

x.r(t)

xT(t) 0 ¥t > T

Let Y C X be a normed linear subspace of X and let “xﬂy be the norm
in Y of x € Y.

The extension Ye of Y is defined as Ye = {x(*)|x € X and
x, €Y ¥ finite T > 0}.

The extended norm "x"ye of x € Ye is defined as

Tl Ixl 1f x € ¥
ye y

lxll o if x €Y xEY
ye e

Remark "xT"y is a monotone nondecreasing function of T hence if Y is
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complete and if there exists a constant A > 0 such that

WT > 0 x|l < A, then x € Y and Ixll < A
| Ty < y <

Examples of normed spaces used in this paper:

L,[0,») = {x(*)]|x € X and / |x(t) |dt < »}
0

L2[0,°°) = {x(*)]x € X and f xz(t) dt < «}
0

Lw[O,m) = {x(-)lx € X and sup |x(t)| < o}

t>0

given ¢ > 0

NZO[O,N) = {x(+)|x € X and f (eot x(t))2 dt < =}
0

given o > 0; given I a countable set, given T2 0

N30[0,°°) = {x(-)lx € X and x(t) = xa(t) + Z Xy §(t - 1

i€1

ot 2 oty
with / (e x_(£))%dt + . E e |xi| < =}
0

1€1

Remark: given o, >0 ¥o >0 ¢ < 0y N201[0,°°) - NZO[O,“’)

i

)
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Two other spaces on which no norm will be defined are going to be

used
N,[0,%) = U N, [0,®) = {x(-)|x €X and T o > 0 such that e’ x(t) € 1,[0,))
c>0
N,[0,®) = U N, [0,)
3 G > 0 30

by extension of the notion of extended spaces Nzex[O,w) and N3ex[0,w) are

introduced as

n-

Ny [0,%) {x(-)|x € X and x, € N,[0,) ¥ finite T > 0}

N30y [05) {x()|x €X and x, € N;[0,=) ¥ finite T > 0}

Even though it will not be possible to use directly the space
Nz[O,w), because of the lack of a convenient norm, the ties of N2[0,w)
with Ll[O,w) and LZ[O,w) are very important. The two following lemmas

are going to show these ties and their consequences.

Lemma 0.1
The space Nz[O,w) has the following properties
a) Ny[0,2) C L [0,®) NL,[0,%)
b) Ny [0,2) = L, [0,%)

c) ¥x € N2[0,°°) 3 o > 0 such that

©.1 Ixl <=2 I«

1~ /e Ny
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Proof:

a) assume x € N2[0,°°)

then 3 o¢>0 Ot x(t) € L2[0s°°)

however

" >1  wme>o0

then  (x(tN? < % x(eN? w0

and x € L2[0,w) with “x“L < le®t x(t:)"L
2 2

hence N2[0,°°) c L2[0,°")

|x(t)| = e 5%t |x() ])

but e %t e L2[0,°°) as a matter of fact ﬂe-Ot“L -1
) : : 2 V20
and (eot' :|x(t) |) € L2[0,°°) by hypothesis
then |x(t) | being the product of two L, functions is an L, function

in addition

f [x(t) |dt < “e—ct“L 0e%t x(t;)“L by the Schwartz inequality
0

2 2
then “x“L i——];— [lx"N which proves (c)
1 V20 20
and N2[0,°°) c L1[0’°°)
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b) trivially (a) implies NZex[O’m)

assume x € Lze[O,m)

T

at c
T

then x,, € Lz[O,m) ¥ finite T > 0
but e Lz[O,w) ¥ finite T > 0

using the Schwartz inequality

C1, [0,)

T T
f " x(e))? at < 27T f (x(£))? dt < =
0

| ot aT
hence [ (x(t)e )T“L < e ﬂxT"L
2 2
' @ E ]
and Xy € NZO[O’ ) hence Xn N2[0’ )
and x € Nzex[O,m)
Lemma 0.2

Let x be a function belonging to X
x € X.
a) if x € N2[0,m) then x € L_[0,»)

A such that x(t) - A
t>oo

b) if x € N;[0,») then x € L_[0,=)

such that x(t) > B

£

Proof

a) If x € N,[0,«) then by Lemma 0.1 X

and which has a derivative

and there exists a constant

and there exists a constant B

€ 1,[0,=) hence x €L_[0,«)
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also ¥e>0 ‘3‘1‘E such thatVT2>T1>T€
T, . T, '
|x(T,) - x(Tl)] = I[ x(t)dt| if |x(t)|dt < e
o h B

hence x(t) converges to a finite constant A < / |x(t) |dt when t + =
' 0

b) x(t) = x!(t) + Z x} 8(t - 1))
i€1

with x; € N2[0,°°) and E : |xi| < » by the definition of N3[0,°°)

1€1
then from part a) 3 a finite constant A 3 x'(t) - A and
a fore
co (<]
' _ = ' _ = ' _
f E x; 8(t-t,)dt E , x] f §(t-t,)de z x; 1(t-1,)
0 i€1 i€r 0 i€
ll(t) =0 ¥t<O0
where 1(t) is such that
ll(t) =1 ¥t>0

- since 2 ; Ixi"| < = there exists a finite constant A' such that E x]!_

i€1 i€1

then x(t) > B=A+A"'
o

Some more definitions will be necessary.

A'
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A relation N with domain and range in X is a subset of the product
space X x X. »
If (x,y) is a palr belonginé to the relation N y will be said to be
the image of x under N.
A mapping M of X into X is a relation with domain and range in X
such that no two members have the same first coordinate.
i.e. if (x,y) €M and (x,z) €M then y = z.
Let N be a relation with domain and range in a linear normed space
The ggig'gy(N) of the relation N with respect to the norm on Y is

defined as:

120y
X

0.2) g (N) = sup
Y y

where the supremum is taken over all the images z of x under N and over
all x, x # 0 x € Do(N).

The system S.1 (Fig. 1) which is going to be studied is of a classi-
cal type. It has a linear time invariant element H and another element
which behavior is only known through an input-output relationship: N.

This element N can be multivalued, time varying and nonlinear. A

great number of practical systems can be modelled in this way.

10



The equations defining the system S.1 are:

c.l.a el(t) = ul(t) - yz(t)
c.1.b ez(t) = uz(t) + yl(t)
C.l.c { (el,yl) €N

c.l.d yz(t) = (lle,) (t)

where N is a relation with domain and range in X. And H is a linea:
mappiﬁg with domain and range in X.
The following assumption on the linear element H will be used

through the paper.

Assumption 0.1 ‘

Let H be a linear mapping of X into X such that there exists h € X,

00 > 0 and a countable set I such that

h(t)

=0¥%¥t<O
(0.3)
h(t) = h_(t) + E hy 8(t-t,) ¥t>0
i€1
o5t .
and e h(t) € Ll[O,w)

defining H in the following way

¥ x € Do(H)

t

(0.4) (Hx) (t) = (h*x)(t) = J/~ h(t-t) x(1)d=
0

The immediate consequences of assumption 0.1 are given in the

ont gt
i
* This means e ° h (¢) € Ll[O,w) and :E: e ? lhil <
i€1

11
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following lemma.

Lemma 0.3
Let H be a linear mapping satisfying assumption 0.1 then

a) H maps LZ[O,W) into L2[0,m)
- b) H maps L2e[0’m) into Lze[O,m)

C) Let g(t) = eot and let (g’X) (t) = 8(t)‘X(t) then for o f_ UO

(oo defined in assumption 0.1) and for all x € Lze[O,m)
(0.5)  [g-(h*x)](t) = [(g-h)*(g-x)](t)

d) H maps NZG[O,W) into NZO[O,w) for o <9, and H maps NZ[O,m)

into NZ[O,w).

Proof

It can be noticed at once that (a) implies (b) trivially

o,t

a) since e 0 h(t) € Ll[O,m) with 9 > 0 t>0

h(t) € Ll[O,w) it is a well known result that the convolution of

a Ll function with a L2 function is a L2 function.

t t
c) [g:-(h*x)]I(t) = eotj h(t-1)x(1)dT = f h(t-'r)ec(t-T)eOT x(t)dt
0 0
= [(g'h)*(g-x)]1(t)

d) Let x € Nzo[O,w) with ¢ < 9, and y = h*x

12
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then et y(t) = eOt(h*x)(t)
using part (c)
% y(t) = (et h)* (%)

since o <o e n(r) € L, [0,)

0
by hypothesis

_eot x(t) € L2[0,w5

then Ot y(t) € LZ[O,Q) and y(t) € NZO[O,W)

let x € NZ[O,w) then there exists a ¢ < 9,

such that x € NZG[O,Q)

using the preceeding reasoning y € NZO[O,G) hence y € NZ[O,w).

Lemma 0.4

Let H be a linear mapping satisfying assumption 0.1

1f sup |h(jw)| <R ¥ 0 € (~=,x)
then FJo, 0<o j_oo.such that

|ﬁ(0 + jw)l <R V€ (~»,»)

Proof
Since h(t) = ha(t) + E hi §(t - ti)
i€l
Let Aa and AS be defined as follows:

8, = |h_(u) - ﬁa(o + juw) |

A
8

b (Jw) - b (o + ju)|

then 8, =1 ] & - ") n_(o)ar]

.

o< | &t - %Y n_(r)ae| + f
a — a
T

(=)

13

|e39C 1 - %% n_(o)]ae
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Note that for 0 < t < T
|1 - eOtI - oTe’"
and that ¥ t > 0

ll - eOtl < th

the inequality will then become

-]

T

ot ot
Aaione |ha(t)|dt+2 [e Iha(t)|dt
0

given ¢ > 0 pick T = T(e) in such a way that

[ e |h(t)|at <%
T
€

€

let 61(5) = 5t

0
4tlle ha(t)[lL

AN
then if o j.él(e) Aa 5_%

1

ot jut,
i
A, = | z hi(l -e Ne

i€1
oty

Ag < 2 I, ]-11-e 7| + }:

i € IT 1i€1 - IT

ot at
1-e Y <221 wierx

oti cti
|1 -e | <oTe ¥ié€ I, since t

14

i

|by |

<7T

gt
|1 - e i

¥i€1

T
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AsioT_E |hi|e + 2 E

i€1 i€1 - IT

pick then T' = T'(e) in such a way that

ot
\ i«
Z Ihyle = <3

€
let 62(5) = Coti
4T E : |hi|e
i€r
€
then if o j_éz(e) AS <3

and if o j_min(dl(e), Gz(e))

gt

i
]hile

[h(jw) - h(o + jw)| <€ ¥ w € (~o,=)

letting sup |ﬂ(jm)| =R
w

0

R - R0

2

pick

Assumption 0.2

oLt

Let H satisfy assumption 0.1 and in addition e

15

h,(£) € 1,[0,%)
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I. N2 stability

This section is going to give the conditions on the elements of the
system S.1 insuring N2 and N3 boﬁndedness.

A "small gain theorem" using the close relationship between the
space NZ[O,M) and LZ[O,w) will give ;hese conditions. The fact that
NZ[O,w) is a linear subspace of L1[0,m) will be used in the next section
when the results of this section are going to be applied to the beﬁavior
of the derivatives of the error and output functioms.

A sector type condition is going to be imposed on the relation N.

Assumption 1.1

Let N be a relation with domain and range in X.

There exists a constant k > 0 such that

1.1)  |y@)| < x|x(t)] ¥t>0
y = 0 whenever x = 0 ¥ images y of x under N

¥x € Lze[O,m) N Do(N)

16



Lemma 1.1

Iy.

Let N be a relation satisfying assumption 1.1 then:
'a) If the domain of N is restricted to Do(N) N LZ[O,w) then its

range is in L2[0,m) and the L2 gain of N BL (N) satisfies the relation
2

g, (N) <k
L,
b) If the domain of N is restricted to Do(N) f‘Lze[O,w) its range
is in Lze[O,m).

c) If the domain of N is restricted to Do(N) r'\NZU[O,«») with o > 0

then its range is in NZO[O,w) and the N20 gain of N : gNzo(N) satisfies

the relation:

gy M) <k
20

d) If the domain of N is restricted to Do(N) rlNZ[O,w) then its

range is in NZ[O,w).

Proof

It can be seen at once that (a) implies (b) and that (c) implies

17

.
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(d) trivially. -

2
a) assume x € LZ[O,w) N Do(N) i.e. ./r x“(t)dt <
0

T

T
implies fyz(t)dt < k2 f xz(t)dt < k2 llxlli < o
0 0 2

since the right hand side does not depend on T

-]
./r yz(t)dt exists and is finite.
0

hence

@.2) Iyl <k lxl
L, L,

c) assume x € Nzo[O,w) then et x(t) € Lz[O,m)
since 0 > 0

and
(1.3) eOtly(t)| <k eOtlx(t)I

and it suffices to apply part (a) to (1.3).
In the same way

gy (N) < k.
N20

| So far the N20 gain of the relation N has been obtained. The N

then equation (1.1)

20

gain of the linear element must now be obtained. Since by far the

most convenient way to deal with a linear element is to study its

18
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" properties in the frequency domain the link between the space N2 [0,)

and L2[0,w) is going to prove specially helpful in the following lemma.

Lemma 1.2

The N2° gain of the linear element gy (H) is bounded in the
20

following way for o > 0 o ﬁ_oo

(1.4) gy () < suwp Ih(o + jw)|
20 w € (-, =)
Proof
Assume that x € Nzo[O,m) with o <0, ©°> 0
using equation (0.5):
[g- (h*x)1(t) = [(g-h)*(g-x)](t) with g(t) = e°F

then

(1.5) 1%t y(t)uLz = "eOt(“*")‘”"Lz = 1" n(e))*(e" x(eN,
2

using Parseval formula

et Y(t)"LZ'=[-]2'—“- f lfl(o + jw)lz I)'E(o + ju.\)|2 dw] 1/2

-0

hence
le°t y(t)"L i[( sup |1;(0 + jw) |)2 !2'? fl:?(o + jw) |2 dw] 1/2
2 Ly € (mo,m) J
(1.6)
= " . ot
" € (Lo, ) Iho+ 3w le x(t)uLz

19



h lxl
or ||y||N < sup |h(o + jw)|lx N

20 w € (~w,) 20

and gy (H) < F sup Iﬁ(a + jm)]

Now the theorem on N2 boundedness can be stated.

Theorem 1.3
Let the system S.1 be such that:
(i) There exists a constant k > 0 with which the element N satisfies
assumption 1.1.
(1i) The linear element H satisfies assumption 0.1 and in addition let

the Fourier transform ﬁ(jw) of h(t) satisfy the following inequality.

3 R > 0 such that sup |h(jw)| < R
W

(iii) The functions appearing in the system belong to Lze[O,W).

Then kR < 1 and U, U, N2[0, ) implies that €15 &5 Y15V, € N2[0, ).

Proof:

- Since by lemma 0.1 Nzex[o,m) = Lze[O,w) all the functions appearing

will belong to NZex[O,m). It is then legitimate to use the N, norm of

the truncated functions for o > 0.

ot
since e © h(t) € L1[0,m)

¥o < 9 3 Rb such that ]h(c + jw)|_<__Rc ¥ w € (-=,)

20



using lemma 0.4
|ﬁ(jm)| <R ¥ w € (-»,©) implies that

Fo,>0D |h(o, + jw)| <R ¥ w€ (-=,x)

then

(1.4) ¥o0>0, 0c¢< g,y gNZO(H) <R

by lemma 1.2.

Since N satisfies assumption 1.1 lemma 1.1 implies that

(1.5) (N) <k

g
NZG

The equations of the system C.l.a to C.1.d imply:

.6) e, |l =le -y 0 <lu 0 +ly I
1T'N, 1T 72TN, IT'N, 2T N, _

' in the same way

.7 "eZTUN < []ulelNz0 + "leuN

20 20

the definition of the N2 gain implies

(1.8) nleuNzo <y @ "elT"NZG

(1.9) HyZTHN < gNz(J (H) [IeZT"N

20 20

replacing "le"N and "y2T"N by their bound in (1.6) and (1.7) the
20 20

21



following inequalities are obtained

a.10) el < fu +g. @Wle,l
TN, =i, T BN, YU N,
@.11) fe,l < Ny, 1 +g. Mle
2T NZO 2T NZO NZO 1T NZO
replacing “e2T“N by its bound in (1.10) leads to
20

(1.12) “elT“N (l—gN (N) N ) f-uulT“N
o] 20 20

+g. @,
2 N

20 20 2T NZU

let u; and u, G'Nz[O,m)

then J ¢' and ¢" > 0 such that uy € Nzc,[O,w) and u, € NZO"[O,m)

take 0 > 0 ¢ f_min(oz,o',o")

then u, and u, € NZO[O,w) and from (1.4), (1.5) and (1.12)

Iy Q-kR) < Bu b+ Rl b

(1.13) e
1T Ny, 26 20

since (1-kR) > O by assumption

-1
“elT"N < (1-kR) [uuluN + RuuzﬂN ]
20 20 20

and e, € NZU[O,w) hence e, € N2[0,m)

1

trivially this implies that Y15 & and Yy also belong to NZ[O,W).

22



It is possible to enlarge the class of functions considered to the

space N3[0,w). However it is necessary to restate the assumption on N.

Assumption 1.2

l.et N be a relation with domain and range in X.

(1) ¥ x € N3ex[0,"0 N Do(N) and x(t) = xa(t) + :E:: Xy G(t—Ti)
1€1

the images of x under N are of the type y(t) = ya(t) 2 Yy 6(t-11)
i€1

where y; can be zero with the understanding that y; < 0 -implies that no

§ function occurs at time Ti.

(ii) there exists a constant k > 0 such that

(1.14) Iya(t)|< klxa(t)| ¥t> O.W ¥ images y of x under N

[
(=]
Y

y_ = 0 whenever x
a a

(1.15) Iyil <klx| ¥1€1 | and ¥ x € Ny__[0,) M Do(N)

Lemma 1.4
" Let N be a relation satisfying assumption 1.2. Then

a) If the domain of N is restricted to N30[0,w) N Do(N) with 0 > 0

then its range is in N30[0,w) and given x € N3G[0,m)

x(t) = xa(t) + E X, s(t—Ti)
. i€er

then ¥ images y of x under N, y(t) = ya(t) + 2 : vy 6(t-ri)
' i€1

" (1.16) llyall]N < k"xa"N

20 20

23
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(1.17) oty ot
Sy S

1€1 i€

b) If the domain of N is restricted to N3[0,w) M Do(N) then its
range is in N3[0,w) N Do(N).
c) If the domain of N is restricted to N3ex[0,w) N Do(N) then its

range is in NBex[O’m) N Do(N).

Proof
a) Let x € Nac[O,w) let y be an image of x under N.

By assumption 1.2

Iya(t)l < klxa(t)l ¥t>0
by lemma 2
“ya"Nz < k"xa"N since x_ € NZO[O,W)
o] .20
trivially since
oty
|yi|<k|xi| ¥ 1 €I and since Z e Ixil<m
i€1
oti oti
D> e Tyl ek D e b lx ] <m
i€1 i€1

hence y € N30[0,w)

(b) and (c) follow trivially from (a).

24



Theorem 1.5
Let the system S.1 be such that:

(i) There exists a constant k > 0 with which N satisfies assumption 1.2,
(ii) The linear element H satisfies assumption 0.2.
In addition let the Fourier transform h(jw) of h(t) satisfy the following
inequality 3 R > 0 such that for ¢ < g,

Oti .
E |hi|e T <R and sup |h(jw)| < R
i€1 ®

(111) The functions appearing in the system belong to N3ex[0’w)'

Then kR <1 and u), u, € N,[0,=) imply that e, ey, y;, ¥, € N3[0,%)

Proof

The action of the linear element on e2 is

7p(8) = (b, )(®) + D e ,(h *5(t=c,))
i€1
+ h, ei’z(d(t—ri)*é(t-tj))

|
i€r j€3

or
() = (h¥e, ,)(t) + Z ey,2 N (E=1y)
i€r
(1.18)
+ Z hj ei’2 d(t-'ri- tj)

i€1 j€J

25



by equating the coefficlents of like kind of terms in the equations of
the system S.1.

C.l.a will become, using (1.18)

-
(1.19) e l(t) =u, 1(t) - (h*ea,z)(t) - z ei,2 ha(t—'ri)
» 1 > i €1
(1.20) z e 1 6(t—am) = z uﬂ’1 6(t—82) - Z 2 hjei,2 G(t-‘ri—tj)
m €M ’ L €L i€1 jE€J

a) Taking into account the § function part: (1.20) after truncation

will give

o ‘ o(t +1,.)
m
(1.21) Z e Iem,ll < E e 1 ll + E Z hj“ei,Zl
j €I,

mEMT ﬁeLT iEI

the truncated index sets being obtained in the following way
My = {m/m €M and o« < T}

a
from the hypothesis on H; E e jlhjl <R
jE€J

then (1.21) becomes

(1.22 Z: %m o8, o1
.22) e lem’lli Z e luz,ll"' Z R|e e 1

l
mEMT 'Q'GLT iEIT i,2

equation C.1.b of the system will become, with respect to the § functions
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z ei’2 s(t-Ti) = Z u,b,2 6(t-y2) + Z yj’1 6(t-6j)

i€1 LEB jEA

7

and become after truncation at T

9T, ay 06
(1.23) E e e < z 1 2: i
Ii,ZI - e qu’zl + ij’lle

1 €1, g €B

T . i €A,

using inequality (1.15) with equation (1.23)

. oT, ' oo,
@z D e e D Myl v 3 dey 1™

1€1, =
T “ L€ By 1S A

by assumption 1.2: A; c M, then (1.24) becomes

(1.25) Z ecri | | Z %Y, z oa
) . ei,z = e qu’zl + k lem,ll e m

€
replacing E E lei 2] by its bound in (1.22)
b4
i€ I

: oo OB!L Z | | oyl
(1.26) (1-kR) Z e Mle, gl < E e Tyl +R — Up,2le
m € MT 9 € LT L BT

oY
g‘lu 2|<°°

oB
z : % w E
but by the hypothesis on Uy and u, e l“g,ll < = and
L EL : 2 €B

since (1-kR) > 0
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Oum ’ - Olﬁz oy
2, - a2 @ Byl en 3 oo

m € M, L €L 2 €B

since the right hand side does not depend on T and is finite

cam
(1.27) Z e Iem,ll <,co

mEM

from where it follows that

a1 aé o8 '
Z i z: 3 z: i :
e Iei,zl < o e Iy:]’ll < @, e lyi’zl < ®

i€1 jEA i€p

b) Looking at the other part of the function equation (1.19) becomes

* -t )
@.28) Mg, o By <lu B+ Hake, o0+ 2 : CAMENCEN) M
T 20 T 20 20 i€1 ‘ 20

using the same reasoning that in Theorem 1.3
since |h(jw)| < R ¥w€ (~»,)

3 o, >0 > Iﬁ(o2 + jw)| <R ¥uw€ (-=,=)

then ¥0>0 o0<g ey (H) < R by lemma 1.2.
— 2 20 —

" The equations of the system for the Lze[O,m) part of the function

become

@29) e, 0 <y 0 4ly 1

2 =
a,2, N20 a,ZT N20 a,lT N20
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from Lemma 1.4 and the definitions of the gains

(1.30) Iy I < klle [
a’]T NZo a’l’l' NZO

(1.31) I(hke ), 0 <Rle | c>0 c<o
a,2’T N20 - a,ZT NZo 2

Equations (1.28) through (1.31) imply

(1.32) "ea,l.uN (l-kR):’_“ua']”"N +R“ua,2 hy + 10 E |ei’2|ha(t-ri)TN
T 720 I "20 T "20 {1 €1 o
but
[ E -
( |ei,2|ha(t 'ri) T||N20
i€1
o(t,+1,)
: i
< E, Z e e, e, 112,
hl “ i,2°%4,2 ap N,
1€1T i €1 o
or
"<Z Iei,Zlha(t-Ti))T“NZO
1E€1
(e} oT
1 i
(1.33) A D0 e tiey,l D e e, M Y2
— 1) e i,2 aTNZO’
1€ 1, i €1,
oT
; i
= 2: e Iei’2| “haTﬂNzo
i€ Ip

Replacing the last term by its bound in (1.32)

oT,

1
- e f
(1.34) (@@ kR)"ea 1 IIN < lu 1 IlN + Rllu 5 HN + E lei’zl haT"N

H a’ a,
T 20 T 20 T 720 i€ T 20
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since ha € NZO[O,m)

hence u u
a,l’ "a,2’

u € quv[onm)’ ua € Nzonlogm); ha € Nzonv[o,m)

a,l ,2

let 0 > 0 o f_min(oz,u',o",o"') then uy 10 Uy 2

from the hypothesis 1 - kR > 0

, oty
from part (a) E e Iei 2| < ©
b
i€1

equation (1.34) becomes

)L f
le HN < (1-kR) <h“a,1 N, + R“ua,ZHN

a1 Yog 20

i€1I
The right hand side is finite and does not depend on T.

hence e

a,1 € de[O,w) and e

»1 € N[0,

then trivially Ya,1° ©a,2° Ya,2 € NZ[O,w)

and then el’ ez) yl, y2 € N3[0,°’)
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ha G'Nz[O,m) and o'y, o", "' > 0 such that

ha € Nzc[O,w)

GTi
* E ¢ Iei,zluhaﬂuz
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II. Main Stability Criteria

\

In the previous section criteria for the N2 and N3 boundedness of a
system of type S.l1 were given. In this section these criteria are going
to be applied to the behavior of a system with respect to the derivatives
of the various functions appearing within the system. Then the use of
lemma 0.2 will insure that the functions appearing within the system
belong to Lm[O,w) and have a limit when t goes to infinity. 1In order to
achieve this the behavior of a system of type S.1 with respect to the
derivatives of input, output and error functions will be modeled by a
system S.2. The system S.2 will be of type S.1. However the elements

of S.2 will be obtained from those of S.1 in the following way:

' ' L S = at v = !
V(el’ y]) €N' iff 3 (e;5y;) €N such that e, =ejandy, =y

the linear element being defined in the same way. An idea on how to do
the modeling can be obtained from figure 2.

The equations defining S. 2 are:

| I R |

(2.1.a) e =u -y,
' | P | '
(2.1.b) e, u, + y1

(2.1.¢) (ei, yi) EN'

(2.1.d) yé = H'e!

where ui = 61 derivative of uy in S.1 etc...

Two cases will be considered as in the previous section. First the

case when the input functions have no steps and hence their derivatives

have no § functions.

Second the case in which § functions appear in the derivatives.
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A. The input functions have no steps.
An assumption on the element N will be necessary.

Assumption 2.1

Let N be a relation with domain and range in X.
(i) ¥ x € Do(N) which has a derivative the images y of x under N

have derivatives.

(ii) There exists a constant k > 0 such that
(2.2) ly(t)] < k|x(t)] ¥ t > 0] ¥ images y of x under N

§ = 0 whenever x = 0 ¥ x € Do(N) and having a

derivative belonging to Lze[O,w)
This assumption insures that N' satisfies assumption 1.1.

Theorem 2.1
Let the system S.1 be such that

(1) There exists a constant k > 0 with which N satisfies assumption 2.1.

(ii) The linear element H satisfies assumption 0.1 and the Fourier
transform ﬁ(jw) of h(t) satisfies the following inequality
3 R > 0 such that sup |ﬁ(jw)| <R
w
(iii) The functions which appear in the system have derivatives which
belong to LZe[O,w).

If kR < 1 and if the derivatives 61’ 62 of u; u, belong to NZ[O,w).
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Tben the derivatives él’ é2’ il’ &2 of el, €ys Y15 ¥y belong to

NZ[O,w).

Proof

Using the system 5.2 to model thé behavior of S.1 with respect to the
derivatives: since 3 k > 0 with which N satisfies assumption 2.1. N'
satisfies assumption 1.1 with k. It, then, satisfies the hypothesis of
theorem 1.3.

From L. Schwartz [11] (Vol. 2, Chapt. 6, Tﬁm. 9) it is known that
the derivative of a convolution is the c9nvolution of one of the factor

with the derivative of the other:

= *'
(2.5) h*ez h e,

hence H' =H
and H' satisfies the hypothesis of theorem 1.3.

The functions ei, eé, yi, yé satisfy the hypothesis of theorem 1.3.

All the hypothesis of theorem 1.3 are then satisfied.

then U, U, € NZ[O,w) imply e €55 Y15 Y, € N2[0,m).

B. There can be steps in the input functions.

The assumption on N must be restated.

Assumption 2.2

Let N be a relation with domain and range in X.

(1) ¥ x € Do(N) which has a derivative the images y of x under N
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have derivatives.

(i1) ¥ x € Do(N) which has a derivative in N3ex[0,w)

X(6) = x1() + D x! 6(t-r,)
i€1

The derivatives & of the images y of x under N are of the type

y(t) = y (t) + Z yi §(t-1,)
i€1

where yi can be zero with the understanding that yi = 0 implies that no

§ function occurs at time 11.

(iii) There exists a constant k > 0 such that

IY;(t)I < klx;(t)l ¥t>0 ¥ images y of x under N
y; = 0 whenever x; =0 ¥ ¥ X € Do(N) and having a

A ] . ©
|Yi| < klxil ¥i€1 J derivative belonging to N3e[0’ )

This assumption insures that N' satisfies assumption 1.2.

Theorem 2.2
Let the system S.1 be such that

(1) There exists a constant k > 0 with which N satisfies assumption 2.2.

(ii) The linear element H satisfies assumption 0.2.

In addition let the Fourier transform ﬁ(jw) of h(t) satisfy the
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following inequality =3 R > 0 such that for o 29,
ot, A

E : |[hile * < R and sup Ih(w)| < R
1€1 ©
(iii) The functions which appear in the system have derivatives which
belong to N3ex[0,m).

If Rk < 1 and if the derivatives 61 and 62 of u; and u, belong to
N;[0,=).

Then the derivatives él’ éz, §1, 52 of e €55 Y95 ¥y belong to

N3[O,w).

Proof

Using the same procedure as in theorem 2.1 the behavior of the
system S.1 with respect to the derivatives is modelled by S.2.

Since 33 k with which N satisfies assumption 2.2, N' satisfies
assumption 1.2 with k and then satisfies the hypothesis of theorem 1.5.

Using Schwartz [11] again H' = H and then satisfies the hypothesis
of theorem 1.5.

The functions ei, eé, yi, yé satisfy the hypothesis of theorem 1.5.

All the hypothesis of theorem 1.5 are then satisfied
then U, U, € N3[0,w) imply e1s €5 Y5 ¥y € N3[0,w).

Corollary 2.3

If the hypothesis of either Theorem 2.1 or Theorem 2.2 are satisfied
by a system S.1 then the output and error functions belong to Lw[O,m) and
have limits when t goes to infinity.

The proof is a straightforward application of lemma 0.2.
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ITI. Applications

This section deals with the application of the results of section 2.
These results can be used eithep to obtain a L criterion for systems which
could be studied with the L2 stability, or to obtain a stability criterion
for systems which could not be studied with L2 stability.

A system could be L2 stable under a sector condition on the nonlinearity
and L _ stable under another sector condition this time on the slopes. 1In
order to transform the gain conditions in sector conditions for the non-
linearities and in circle or Popov type conditions for the linear element
some transformations will be needed.

From the use of these transformations it will be possible to show
that hysteresis is a special case of the relation N.

A. The transformation Tc which is going to be used is represented in
figure 3. It is a classical transformation which can be expressed
analytically by

(3.1) N

Te
(3.2) H

1 (N - AT)

, = H(I + AH)"1

Assumption 3.1
Let H be a linear mapping of X into X such that there exists

h € X and 9y > 0

L " -
h' + hi(t) + E h, §(t-t ) ¥t>0
i€1

h(t)

(3.3)

h(t) 0 ¥t«<oO

where h' is a real constant
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ont
and e 0 (h;(c) + Z hi G(t-ti)) € L1[0,°°)
i€er

defining H in the following way
¥ x € Do(H)
(3.4)  (Hx)(t) = (h*x)(t)

The following lemma is the extension of the circle theorem of

Zames [4].

Lemma 3.1
Let S.1 be a system such that
(i) N is a relation with domain and range in X inside the sector (c,B)

with B > 0. i.e.

(3.5) a < %%%% <B; ¥t>0 ¥ y images of x under N

]

y = 0 whenever x = 0 ¥ x € Lze[O,w) or NBex[O,w)

(ii) H is a linear element satisfying assumption 3.1. 1In addition
3 8 > 0 with which H satisfies the circle conditions for the sector
(a,B). 1i.e.

a) If a=0
(3.6) Re h(jw) +F> 8, ¥u€ (=)

b) If «a > 0

(3.7) |I;(jw) + ‘]2-‘?}4' %‘)I > —;—((1; - %) + &, ¥ o € (~»,»)

and the nyquist diagram of H does not encircle the point - %(l-+ %9
[¢] o]
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c) If o < 0 then

3.8) |G + 3G+ D] <FE - +8, ¥ 0 € (==,9)

Then using the transformation previously defined with

a+ B

(3.9) A= 5

letting

_B-a
(3.10) kl = 2

Nl will be a relation inside

(3.11) (- k., k

1 1)

and Hl will be such that

e 1
(3.12)  |h; GGw) | <-EI

g.t
0
and 3 0y>03 e h(t) €L [0,

Proof
i) If h' = 0 then this is Zames' result.

ii) If W' £ 0 Iﬁl(jw)l < %- is a straight application of Zames
results. Using a theorem by Desoer [2] on the general formulation of
the Nyquist criterion

Oot

e h, (t) € L,[0,)

With the help of lemma 3.1 it is going to be possible to state a
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modified version of theorems 2.1 and 2.2.

Assumption 3.2

Let N be a relation with domain and range in X

(1) ¥ x € Do(N) which has a derivative the images y of x under N

have derivatives.

(i1) There exists two real constants o, B, with B > 0 such that
.2 . . .2
a x (t) < y(t) x(t) < B x(t) ¥t >0 ¥ images y of x under N

and y = 0 whenever x = 0 ¥ x € DO(N) and having

derivatives belonging

to Lzelo,m).

This insures that N' is inside (o,B).

Theorem 3.2

Let the sfstem S.1 be such that

(1) Therg exists two real constants a,B and B > 0 with which N satisfies

assumption 3.2.
(11) The linear element H satisfies assumption 3.1 and satisfies the
circle condition for the sector (o,B).
(1ii) The functions which appear in the system have derivatives which
belong to Lze[O,w).

If the derivatives u, and u. of u;s U, belong to NZ[O,w) then the

1 2
derivatives él’ éz, il’ &2 of €15 €55 Y1 ¥y belong to NZ[O,Q).
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Proof

a+ B
2

the system S.1 in another system S.l.1 of type S.1 ‘where N1 will be such

Using Lemma 3.1 the transformation Tc with A = will transform

that

Iyl(t)| < kllel(t)|, vt>0 ¥ images y, of e} under N,

= S = € )
Y1 0 when e 0 Vel Do(Nl) and having
derivatives

and H, will be such that Iﬁ Guw) | < L
1 1 k1

S.1.1 then satisfies the hypothesis of theorem 2.1.

Assumption 3.3

Let N be a relation with domain and range in X
(1) ¥ x € Do(N) which has a derivative the images y of x under N
have derivatives

(ii) ¥ x € Do(N) which has a derivative in Ny, [0,

: = ' ' -
x(F) xa(t) + E x; §(t Ti)
i€1
the derivatives y of the images y of x under N are of the type

S =3I+ D v ety
i€1

where yi can be zero with the understanding that yi = 0 implies that there

is no § function at time Ti.
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(iii) There exists two real constants a, B, and B > 0 such that

.
wx)?(0) < y1(0) %) < Bx}2(e) ¥ e > 0

' - -
{ Ya 0 of x 0

A} < Bxlz

S
i i ¥yiel

ux'2 <y!x
i i

|
¥ images y of x under N

¥ € Do(N) and having a derivative belonging to N3ex[0,w).
This assumption insures that N' is inside the sector (a,B).

Theorem 3.3
Let the system S.l1 be such that

(i) There exists two real constants o, B; B > 0 with which N satisfies

Assumption 3.3.

(ii) The linear element H satisfies assumption 3.1 and h; € N20 [0,).
0
In addition it satisfies the circle condition for the sector (a,B),

ot
and E Inyle * <
I

(iii) The functions which appear in the system have derivatives which

™|

belong to N3ex[0,w).
If the derivatives 61’ 62 of U, u, belong to N3[0,w) then the

derivatives él’ éz, §1, &2 of ey e2, yl, Y, belong to N3[0,m).

Proof

A transformation and lemma 3.1 are used in the same way as they were
in theorem 3.2 and the transformed system satisfies the hypothesis of

theorem 2.2.
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B. A transformation Tm can be used with some systems in order to have
the Popov condition on the linear element. It suffices to take a first

order multiplier:

1

(3.13) Z(jw) = m

The transformation Tm will be expressed analytically by

(3.14) N, = Nz
Tm
(3.15) Hl Z H

Assumption 3.4

Let N be'a relation with domain and range in X

(i) there exists k > 0 such that

(3.16) 0 < y(t) <k ¥t>0 ¥ y images of x under N
x(t) —
y = 0 whenever x = 0 ¥ x € L2e[0’°°) M Do (N)
t
(ii) either a) f y(T)}'{(‘l’)dT >0 ¥t>0 ¥ y images of x under N
0

x) N
¥ x € Lze[oa ) DO(N)
having a derivative
t
or b) / y()x(1)dt <0 ¥ t>0 ¥ y images of x under N
0

¥x € Lze[O,w) N Do (N)

having a derivative

The implication of condition 3.4 (ii) will be considered in the

examples.
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‘Lemma 3.4

Let S.1 be a system such that: there exists k > 0 with which N
satisfies assumptions 3.4 (i) and 3.4 (ii, a).

Let H satisfy assumption 3.1.

In addition let H satisfy thé Popov condition with q > 0
i.e. Re[(1 + qjw) ﬁ(jw) + %ﬂ > 8 >l0 ¥ w € (-»,)

1

T+ qgjo will lead to a

Then the transformation Tm with z(juw) =

system Nl’ H1 having the following properties:

a) Nl is inside the sector (0, k) with respect to the L2 norm.

images of e, under N

1 1

i.e. (yl, v, - kei ) <0 vy,

ey € LZ[O,m) N Do(Nl)

b) 3 &' > 0 with which Hl satisfies the circle conditions for the

sector (0,k).

Proof

+ qi

1 1

a) For N, to §atisfy (yl, ¥, - key ) >0withe, =x 1

i.e. A xl = Ze1
it suffices that
(yl, ¥y - kx; - kax ) <0
or
(yl, ¥y - kxl ) - kq (yl, X; ) <0
by hypothesis

{yjs v, -~ kx; ) <0
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it suffices then that

(yl, )‘{1) >0

This is verified because of assumption 3.4 (ii, a).
b) since hl(jw) = (1 + qjw) h(jw) the hypothesis on H imply trivially

that H1 satisfies the circlé condition for the sector (0, k).

Lemma 3.5

Let S.1 be a system such that there exists k > 0 with which N satisfies
assumption 3.4 (i) and 3.4 (ii, b).

Let H satisfy assumption 3.1.

In addition let H satisfy the Popov condition with q < 0.

The transformation Tc with coefficient k and a change of sign i.e.

]

N

1 (kI - N)

- H(I + kn)'l

o
[

will lead to a system having the following properties.
Nl satisfies assumption 3.4 (i) and 3.4 (ii, a) and
1
Re[ (1 - qjuw) Hl(jm) + EJ >8>0
Proof

This is the extension of a lemma by Aizerman and Gantmacher [12]

y = kx -y
since

X X

1
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t t ' t '
f yl(T):‘cl(r)dT = f kx(t)x(t)dt - f y(t)x(1)dT
0 0 0

1 satisfies 3.4 (ii, a).

hence N satisfying 3.4 (ii, b) implies N

Assumption 3.5

Let N be a relation with domain and range in X

(i) ¥ x € Do(N) which has a derivative the images y of x under N

have derivatives.

(ii) there exists a constant k > 0 such that

0 < &(t)i(t) < kiz(t) ¥t>0 ¥ images y of x under N

and § = 0 whenever x = 0 ¥ x € Do(N) and having deriva-

tives belonging to Lze[O,W)

t
(iii) either a) f ).!(T);E(T)d‘l' >0 ¥t>0 ¥ images y of x under N
0 ¥ x € Do(N) having a first deriva-
tive belonging to Lze[O,w)

and having a second derivative.

t
or b) J,~ y(t)x(t)dT <0 ¥t>0 ¥ images y of x under N
0

¥ x € Do(N)
having a first derivative
belonging to Lze[O,w) and

having a second derivative.
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This assumption insures that N' satisfies assumption 3.4.

Theorem 3.6

Let the system S.1 be such that there exists a‘real constant k > 0
with which N sattsflgs assumption 3.5.

The linear clement satisfles assumption 3.1.

There exists a real constant ¢, q > 0 1f N satisfies assumption
3.5 (4ii, a), q < 0 if N satisfies assumption 3.5 (iii, b).with which

H satisfies the Popov condition:

Re((L + qju) A(Gw) +3) > § > 0
The functions which appear in the system have derivatives which
belong to LZeIO,w).
In addition él(O) = 0.
If the derivatives 61 and 62 of up, u, belong to NZ[O,w) then the

derivatives él’ éz, &1, §2 of el, ey Y10 ¥y belong to NZ[O,w).

Proof \

a) q > 0 then Lemma 3.4 applies and the transformed system satisfies’

the hypothesis of theorem 3.2.

b) q < O then lemma 3.5 applies and (a) applies to the transformed

system.
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IV. Examples and experiments

In this section the implications of the various assumptions are
going to be examined.

A few experiments were made and both'theoretical and practical results
are given.

a) Let the nonlinearity N be single valued time invariant with the
slopes in a finite sector (a,B) B > 0 (Fig. 4) then assumptions 3.2, 3.3
and 3.5 could apply allowing the use of either a circle condition or the
Popov condition on the linear element. In that case assumption 3.4 (ii)

on N' would become

t x'(t)
f N'(x') x'dt = / N'(x')dx' which by 3.4 (i) would
0 0
always be greater or equal to zero.

b) Let N be multivalued, and let the point x', y' go clockwise
around N' (Fig. 4) then assumption 3.2, 3.3 and 3.5 could apply again.
Assumption 3.4 (ii, a) on N' being satisfied. This assumption means
the area inside the curve y', x' is positive as the point goes around the

curve.
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c) N can be multivalued and let the poiﬁt x', y' go counter clock-
wise around N' (Fig. 4) then assumption 3.2, 3.3 and 3.5 could apply
again assumption 3.4 (ii, b) on N' being satisfied. This assumption
means the area inside the curve y', x' is negative as the point goes

around the curve. Some models of hysteresis and backlash belong to that

class.
d) In the case when N is multivalued, time varying and the area

inside the curve y', x' may change sign (Fig. 4) only the circle criterion

would apply (assumption 3.2 or 3.3).

Experimental Results

A nonlinearity was built using a transformer, a power D.C. amplifier
and an integrator (Fig. 5). The need for the power D.C. amplifier arose
because the analog computer amplifiers could not drive the transformer.

Several transformers were used in order to observe different

hysteresis loops. For all of them the maximum slope varied with frequency.

As can be observed in Figure 6 the maximal slope increases as frequency

decreases.



The range of variation of this maximal slope will be taken into
account.

Another interesting phenomenon occurs sometimes when there is a
D.C. offset. WNo saturation océurs on one side of the hysteresis loop
and an infinite slope can be observed. However if the derivative of the
output versus the derivative of the input is plotte& (Fig. 7) it can be
observed that the sector has been shifted away from the origin.

A transformation can be used to deal with this problem (Fig. 8).

Let the origin of the sector have the coordinates (a,B). Then let

Then the relation (e', y') obeys the sector condition. o can be
transfered into 61 and B into 62

u1=u1—a
62+3

[=]
N -
[

If o« and B are functions of time which obey the assumptions on 61
and 62 then the stability criterion applies to the transformed system
and insures the stability of the original system.

The linear part of the system was simulated on an analog computer.
For each case the experimental frequency response was compared to the

theoretical one: Figures 9, 11, and 13.
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Three linear elements wefe used. The first had an integrator hence
a criterion using LZ[O,W) stability could have been applied to it. The
second and third had no integrators. As a consequence important D.C.
offsets, due to the properties of the nonlinearity appeared. These
offsets made it impossible to apply a criterion using L2[0,w) stability.
However, the critefia-developed in this paper predicted the Lm[O,w)

boundedness of the solutions as well as the absence of sustained oscillations.

Experiment 1

Taking a linear element with an integrator a fourth order denominator

and a zero.

s + 0.2

HS) * S 7 0.0) s+ 0.6) s + D

From the frequency response of this system (?ig. 9) it can be seen
that Re(H(jw)) > - 1.535.

The maximum slope of the nonlinearity is

a) 8.7 if the all range of frequencies is taken into account.

b) 5 if the frequency is close to the frequency of free oscillations
of the linear system. It also tﬁrns out this is the lowest maximum slope.

The limit gain for the system was found to be 0.213. The theorétical
gaiﬂ would be

a) taking into account the all range of frequencies
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b) taking into account the frequencies close to the linear element

frequency

1 1
8 = 71535 X5 = 0.13

In the worst case the theoretical gain is slightly more than a third
of the practical one. In the best case the theoretical gain is more than
half of the practical one.

Some of the responses of the system can be seen on Figure 10.

Experiment 2

This linear element has no integrator hence important D.C. offsets
occur in the response and L2 stability cannot be used to study it. The
criteria developed in this paper applied and gave a fairly close apbroxi-

mation for the gain.

s + 0.2
(s + 0.25)(s + 0.4)(s + 0.6) (s +1)

H(s) =

The theoretical and experimental frequency response were plotted

(Fig. 11) and it could be seen that
Re(H(jw)) > - 0.825

The nonlinearity was the same as in experiment 1. The limit gain
for the system was found to be 0.26. The theoretical gain would be
a) taking into account the all frequency range
1 1

8 = 5.825 ¥ 8.7 - 0-139
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b) taking into account the frequencies close to the linear element

frequency

!
g = 0.825

x %—= 0.242

In the worst case the theoretical gain is about half of the practical
one. In the best case it is very close to the practical one. The response

for the various gains can be observed on Figure 12 a, b.

Experiment 3

A linear element with 2 pairs of conjugate poles was chosen. Once
again the lack of integrator introduces D.C. offsets and does not allow

the use of the L, stability.

2

H(s) = s + 0.2

(s + 0.4 + 0.13)(s + 0.4 - 0.13)(s + 0.2 + 0.33)(s + 0.2 - 0.33)

The theoretical and experimental frequency response were plotted

(Fig. 13) and it could be seen that
Re(H(jw)) > - 5.443

A different transformer was used and different setting of the
resistqrs Ry and R, (Fig. 5) gave th different nonlinearities.

i) Nonlinearity with a maximal slope of 6.22 over the all range of
frequencies - and of 3.68 in the frequencies around the oscillatory

frequency of the linear system. The response to this system can be

seen on Figures 14 a and 15 a, b.

52



Ay

The limit gain was found to be between 0.09 and 0.1. The theoreti-
cal gain would be

a) taking into account the all frequency range:

1 1
BT 5443 % 6.2

7 = 0.0295

b) taking‘into account the frequencies close to the linear element

frequency

1 1
B =543 * 3,68

= 0.05

In the worst case the theo;etical gain is slightly less than a third
of the practical one. In the best case it is about half of the practical
one.

ii) Nonlinearity with a maximal slope of 11.15 over the all range
of frequencies, and 5.8 around the linear element frequency.

Its response can be seen oanigure 14 b.

The limit gain was found to be 0.055. The theoretical gain would
be '

a) taking into account the all frequency range

B S
8 = 5,443 * 11.15

= 0.0165

Less than a third of the practical gain

b) taking into account the linear element frequencies

1 1
8 = 57443 ¥ 5.8 - 0-0317

more than a half of the practical gain.
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Conclusion of the Experiments

The criteria developed in this paper can be used to predict the L
stability and the lack pf sustained oxcillations of a system. Even when
this system cannot be studied with the classical approach using ﬁz
stability.

The gains predicted by the criteria are of the order of the real
gains since none of them were less than a fourth of the real gains.

If in the computation of the gain, in the case of a gain varying
with frequency, the frequency of the system is taken into account a
close fit is obtained. Some more investigations of this property should
be done.

The following table summarizes the results of the experiments.

Table
Experiment 1 | Experiment 2 Experiment 3

(1) (ii)
Lower bound
of ReH(juw) - 1.535 - 0.825 - 5.443
Max. slope of
N. L. over all 8.7 8.7 6.22 11.15
freq. :
Max. slope close
to syst. freq. 5 5 3.68 5.8
Experimental
gain 0.213 0.26 0.09 to 0.1 0.055
Theoretical gain
with max. slope 0.075 0.139 0.0295 0.0165
over all freq.
Theoretical gain
with max. slope 0.13 0.242 0.05 0.0317
around syst.
freq.
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V. Remarks about the Modeling of Hysteresis

Various\ﬁodels have been used for describing the behavior of
hysteresis. When a real hysteresis is being observed it can be seen
‘that it has very different properties depending on the type of input and
the initial conditions.

For small per;odic inputs with initial conditions insuring that there
is no D.C. bias _the behavior of hysteresis is very close to the one of a
linear system with a constant phase shift.

As the amplitude of the input increases the classical hysteresis
loop can be observed. 1Its modeling has been studied in [7] for instance.

As soon as a bias appears the output becomes assymetrical and modelling
becomes very difficult.

As far as the D.C. behavior is concerned little work has been done.

The modelling of hysteresis by a double loop going through zero is
highly inaécurate - the modeling by a backlash does not show well the
saturation which is characteristic of hysteresis, does not take into
account the behavior around the origin and the fact that there is not
really a dead zone.

Even the assumptions made in this paper: slope boundedness cannot
fully deséribe the phenomenon. Infinite slopes can occur in the region
of the origin. By taking the hysteresis in an initial state correspond-
ing to a D.C. bias high enough to be in the saturation region and apply-
ing an input close to a step (a step would allow the output to have a
step itself), bringing the new input close to zero the output will

continue to decrease while the input keeps its value hence there will be
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a line of infinite slope in the response.
However it seems that the assumption of slope boundedness is the

one which allows the closest representation of the phenomenon.
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Conclusion

The functional analysis approach allows one to describe the stabilify
of feedback systems for given classes of inputs. The application of this
method to the derivatives of the functions appearing within a system
eliminates the requirement that the nonlinear element satisfies a sector
condition. The new condition being that the slopes of this element be
bounded. The assumptions on the linear element are loose enough to allow
delays and do not require that this element have an integeator. Two
types of criteria are obtained.; A circle criterion for general nonline-
arities and input functions whose derivatives can have §-functions. A
Popov criterion for a more restricted class of nonlinearities and functions
with derivatives without §-functioms.

By adding conditions on the nonlinearity a multiplier criterion could
have been obtained, however thesé conditions would have eliminated hystere-
sis type nonlinearities hence the criterion was not derived here.

From the results of the experiments it can be seen that the bounds
on the gain are fairly close to the experimental gains. The behavior of
the experimental hysteresis and its frequency dependence seems to imply
a possibility to obtain a closer fit with the criteria. Since that de-
pendence shows a decrease of the maximal slope when the frequency is
increased it gives further reasons for the effectiveness of the
dithering method‘[13, 14]. A slow varying signal superimposed on

a fast oscillation would then see the maximum slope of the hysteresis

decreased, thus allowing a higher gain. The fast oscillations would then

- be filtered by the linear element. The modeling of hysteresis is not yet

satisfactory however the bounded slopes condition seems to lead to results
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which fit reasonably reality. A way to insure a better approximation
would be to replace N' by two elements in parallel: a linear element

and a relation N". 1In this way the displacement of the sector would be

accounted for.
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