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ON THE PERTURBATIONAL SENSITIVITY OF SOLUTIONS TO

NONLINEAR DIFFERENTIAL EQUATIONS*

M. K. Inant

1« Introduction. An important problem that comes up very often in

optimization theory is the perturbational behavior of the trajectory of

an n-vector differential equation of the form

(1) x(t) = f(x(t), u(t), t)

with respect to perturbations in the initial condition x and in the forcing
o

(input) function u(t). For a suitably chosen topology for the input function-

space Hi (to which u(') belongs), and the function-space Q (to which tra

jectory x(') belongs) the d.e. (1) induces a nonlinear operator mapping

l[a x R into (_, provided existence and uniqueness of solutions for those

inputs u(.) and initial conditions x are guaranteed. The problem of

interest is to give sufficient conditions (as weak as possible) under which

the operator mentioned above is continuous and differentiable (in the sense

of Frechet) at a given point. Such sufficiency conditions have extensively

been given in literature, some of which, for example, are references [1] to

[5]. However the sufficiency conditions given in literature so far (to the

author's knowledge) have been strfct enough to exclude some important class

of systems. For example systems containing piecewise-affine nonlinear!ties
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violate the generally assumed smoothness (differentiability) conditions.

To be more specific consider the following example of such a 'kinky'

system. The d.e. of interest is given as

(2) x(t) = f(x(t), N(cx(t)))

where f(.,.) is a C mapping of R x R into Rn, c is a constant row vector

and N maps R into R with a piecewise-continuous derivative. If a is a

point of discontinuity of d > then tj— (x, N(cx)) is not defined on the

hyperplane: {x £ R ; ex = a}. If there are a finite number of such hyper-

planes does (2) possess a 'variational equation' describing the linearized

perturbations of the trajectory corresponding to perturbations in the

initial condition? or (in the operator-theoretic formulation as in the

previous paragraph) is the initial-condition-to-trajectory map Frechet dif-

ferentiable? The answer to this question turns out to be affirmative, pro

vided that the Lebesgue measure of the subset of the time interval at which

the nominal trajectory remains on the discontinuity hyperplanes is zero

[8]. Motivated by such examples of 'kinky' systems the sufficiency condi

tions stated in this paper are weakened to the extent that any further

reasonable weakening would possibly result in the violation of necessary

conditions of continuity and differentiability.

2. Formulation and Initial Assumptions. Let the input and trajectory

spaces be defined respectively as

(3a) Qi Ai» [0,T]

(3b) C&cn [0,T]
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ASSUMPTION: Let f, as given in (1), map R x R x R into R and

assume that for a given pair (x ,u*) in Rn xH(,(l) has a unique solution

x* in C .

NOTATIONAL REMARKS. The symbol |«| will stand for the absolute value

of a number, the norm of a vector in R (or R ), or a compatible norm of a

matrix. The vector and matrix norms used are given below

A n(4a) |x| = y* |x.| , x = n-vector
i=l

(4d) |a| = 2~i |aij| , A » mxn matrix
i=l ...,n
j=l,...,m

The symbol 11*11 stands for ess sup |*| . Bn(x,r) denotes a closed
[0,T]

ball of radius r, centered at x with the norm given by (4a) in R .

The norm on a product space is taken to be sum of the norms of component

spaces.

Using the notation developed above, and the assumption, let r > 0 be

a number such that

(5a) Ox*II < r

(5b) Uu*H < r

whenever the dependence of x on x and u is to be amplified x will be

denoted by <|>(»,x >u ).

3. Continuity.

THEOREM 1. Suppose that

CI] a) for each fixed (x,u) in Bn(0,2r) x Bm(0,2r), f(x,u,») is

measurable on [0,T] ,
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(b) for each t in [0,T], f(*,',t) is continuous on an open set

containing Bn(0,2r) x Bm(0,2r),
t

C2] there exist non-negative integrable real-valued functions

k.(') and k„(«) on [0,T] such that for each t in [0,T]

Iffr-jU^t) - f(x2,u2,t) |<k^t) Ix^x^ + k2(t) l^-^l

¥(x1,u1), (x2,u2) e Bn(0,2r) xBm(0,2r),

and suppose that the existence of solution assumption of previous section is sat

isfied, then, there is a constant y > 0 such that (1) has a unique solution

ft /"I ft

<J>(*,x + 6x , u + 6u) in C corresponding to each pair (x + 6x , u + 6u)

satisfying the relation

C6a) |6xJ + Il6ull <y

C\ ft

, is Lipschitz around (x ,u ) as given by the
*

_ .i
o

relation

C6b) Il4)(',xo,u*) -<K-,xQ +6xo, u* +6u)H <Ke 1{\&x \ +06u!l)

where

V-( x ,6u) satisfying C6a)

T

K=max(l, C k2(t) dt)

A T
Kl / k°(t) dtX k2<t:

t
A function is said to be integrable if it is measurable, and the integral
of its absolute value (norm) is finite.
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Before proceeding to the proof of Theorem 1 let us remark on a

technicality for the purposes of unambiguity. Leave aside the proof, even

a discussion of this technical point is neglected in most text books on

differential equations due to its possibly elementary nature. The fact

that has to be proved is the following:

For each x^ c [0,T] and u€ Qi
n

such that

Hxll < 2r , Bull < 2r

f(x(t), u(t), t) is integrable Rn valued function on [0,T]. We first have

to show that each component of f is measurable in t. Taking x, (t) and

Uj^(t) as sequences of simple functions converging almost everywhere to

x(t) and u(t) we first prove measurability for fixed k([7] p. 85). Letting

k go to infinity and using closedness of measurability under pointwise

convergence ([6] p. 67), together with CI] b) which insures convergence,

+
the measurability of f(x(t), u(t),t) follows . It remains to show that

T

r if(x(t), u(t),oi dt <«>
^0

which follows from integrability of f(x (t), u (t),t) and C2].

Proof of Theorem 1. Choose y as follows

~K1
(7a) Y = —

2K

Definitions of K and K- imply that

(7b) y < r/2

t
For more details of these type of proofs the reader may refer to any text
book on measure theory such as [6] or [7].



i

Let us for the time being assume for (6x ,6u) satisfying ($a) a unique

solution exists on [0,T] such that

(8) H<j>0, xq +6xq, u*(-) +6u(-))H <2r

For simplicity let

y(t) =$(t, xq +6xq, u* +6u)

We then have

y(t) -x* (t) =Sx + f [f(y(T), u*(t) +6u(t),t) -f(x*(x), u*(t),t)] dx
° JO

Using (5), (7b), (8) and C2]

|y(t) -x*(t)| <|6xJ + C k^lyOr) -x*(T)| dx+ C k2(T)|6u(T)| dT

|y(t) -x*(t)| <|6xo| +Il6u(-)H f k2(T)dT + C k^T^yCr) -x*(t)| dx

Using Bellman-Gronwall Inequality

_t

f ^(tHt
|y(t) - x*(t)| <Ke~Q —(|6xo| +D6ull) <Ke^(|6xo| +06u(-)H)

(9)
fte [o,t]

Using (6a) and (7a) in (9)

|y(t) - x*(t)| < r/2 , ¥ t G [0,T]

or

(10) By<-)B < r/2 + llx*ll < 3r/2 < 2r
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We now have to justify our initial assumption of existence of

cf>(t, x + 6x , u + 6u) in Bn(0,2r) for t € (0,T). Let [0,£] be the max-
+ ft

imum interval for which <l)(t, x + 6x , u + 6u) is defined and is in
o o

Bn(0,2r). It suffices to show that £ > T. Suppose not, then there is a

t" in [0,T] such that

|(J>(t", x + Sx ,u* + 6u)| = 2r

and

|(|)(t, x +6xq, u* +6u)| <2r, V- te [0,t']

Using the same argument in deriving (10) we get

|(J)(t', xq +6xq, u* +6u)| -|x*(t')| £r/2.

or

(11) l**(0| >2r -r/2 = 3r/2.

(11) clearly contradicts (5a) and the proof is complete

4. Differentiability. It has already been proved in the previous

section that the map (x, u(*)) I > 4>(*> x» u(-)) is well-defined in a

*

neighborhood of (x , u ), in particular, it is Lipschitz in this neighborhood

In this section we investigate the existence of the Frechet derivative of

the map mentioned above at the point (x , u ) in Rn x (A .

NOTATION

(12a) D^(x,u,t) =|| (x,u,t)

t
Existence and uniqueness of solutions to (1) on a nonempty interval follows
from the local Lipschitz condition C2] and the condition CI].
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(12b) D2f(x,u,t) =|£ (x,u,t)

For each t in [0,T], D.f(x,u,t) and D.(x,u,t) are nXn and nxm matrices

respectively.

ADDITIONAL ASSUMPTIONS: C3] D^x (t), u (t), t) and D2f(x (t), u (t),t)

are well-defined for almost all t in [0,T] and

T

(13) f (|D1f(x*(t), u*(t), t)| +|D2f(x*(t), u*(t), t)|) dt <«>

C4] given e > 0 and n > 0 there exist a set^ C[0,T] and a number 6 > 0

such that

(a) y(3) < n (y(') is the Lebesque measure on real line)

(b) f t£ [0,T] ~c* D f(x,u,t) and D f(x,u,t) are continuous on the

ft ft

ball centered at (x (t), u (t)) £ Rn x Rm with, the radius 6 > 0.

(c) Given any (6x, 6u) in L^[0,T] xQA

such that

(14) 06x11 + Il6ull < 6

The following hold

(15a) f |D.f(x*(t), u*(t),t) -Df(x*(t) +6x(t), u*(t) +6u(t),t)|dt <e

and

(15b) / |D f(x*(t), u*(t),t) -D9f(x*(t) +6x(t),u*(t) +6u(t),t)|dt <e
^[O.T] ~3 l l

THEOREM 2. (Frechet Derivative) Suppose that conditions CI] to C4] are

satisfied, then the map

(x, u(-)) e Rn xQJ I >*('. x, u(-)) G C
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ft

is Frechet differentiable at (x , u ). Its Frechet derivative at

*

(x , u (•)) is the linear map

L : Rn xO( >C

given by

(16) L : (<5x , 6u) | > v(.) = L(6x , 6u)

where

(17a) v(t) =D1f(x*(t), u*(t), t). v(t) +D2f(x*(t), u*(t), t). 6u(t)+

(17b) v(0) = 6xq

Proof of Theorem 2. By definition of Frechet derivative it has to

be shown that

ll<J)(-,x +6x ,u*+6u) - (J>(-,x ,u*) - L(6x ,6u)ll
(18) lim ^ 2 o o = Q

(|6xo|+il6ull)-»0 |6x |+ (I6u0

For simplicity in notation let

(19) 6x(t) =<j)(t,xQ +6xq, u* +6u) -<|>(t,x ,u*), Vte [0,T]

In the above notation, using definition of v(«) in (16), (17a) and (17b);

(18) reduces to

(20) lim "6x ~v" =0
(|6xo|+ll6uO)-H) |6x |+ Il6ull

where 6x satisfies the d.e.

t
By virtue of C3] (17a) is a well-defined, linear differential equation.
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(21a) <&(t) = f(x*(t) + <5x(t), u*(t) + 6u(t),t) - f(x*(t), u*(t),t)

with

(21b) 6x(0) = 6x

We examine (21a) for t 6 [0,T] -i . By Theorem 1 one can choose

|6x | + Il6ull so small that for a given 6 we have that

(22) Ddufl + lifixll < 6

So by mean-value theorem ([9] p 93), (22), and C4]b); for each t in

[0,T] -^f and each i=l to n there are real numbers X.(t) and rL(t) such

that

(23) 0 < X±(t), n±(t) < 1

(24) 6x±(t) =D1fi(x*(t)+Xi(t)6x(t),u*(t)+ni(t)6u(t),t). 6x(t)

+D2fi(x*(t)+Xi(t)6x(t),u*(t)+ni(t)6u(t),t). Su(t)

i = i ,..., n

Let the following notation be used to write (24) as a vector equation.

(25) 6x(t) =D1fx .6x(t) + D2fX,n' 6u(t)

We then have for t ^ [0,T] ~*3

6x(t) - v(t) = D1f.(6x(t)^v(t)) + (D2fx - D2f). 6u(t)
(26)

+ <DlfX,n "V> 6x(t)

where we simplified the notation in (17a) and subtracted (17a) from (25)

also adding and subtracting the term D^f. 6x(t). Letting I^y and I_^ be the
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indicator functions of the sets 3> and [0,T] ~ D respectively (26) can be

extended to all of the interval [0,T] as follows

6x(t)-v(t) =V-i^c(6x(t)-v(t)) + (Vx,n "V),:ii^c6u(t)

(27)

+ (DlfX,n "Dif)-I^c6x<t> + I^(5x(t)-v(t))

integrating both sides of (27) and taking norms

rt
|<5x(t)-v(t)| < I iDjfl |6x(x)-v(T)|dx

(28) + D6uD f |D0f, - D9f|dT
[0,T] -.3* l A,T1 l

+Il6x« / |D_f, n- D.f|dT + jL<|6x<T)| +v(T)|)dT
[o,T] ^ i A»n 1 J

Using the Bellman-Gronwall Inequality

(29) H6x -vll <(Ix +I2 +I3) exp | fID^|dT

where

(30a) I AB6ul f |D f -Df|dT
1 J[0,T] ^ 2A'n 2

(30b) I0 = 06x0 J |D,f, n -D.f|dT
2 [0,T] ^ XA* X

=L. (|6x(T)| +|v(T)|(30c) I3 = J^ (|6x(T)| + |v(T)|)dT

Since the exponential term of inequality (29) is finite by C3] it remains

to show that I,, I„ and I0 are 'little o' terms in |6x I + tlfiuO. It follows
12 3 O'
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from Theorem 1 that UfixB divided by |6x |+ 06u0 is bounded above by a

constant and obviously ilfiufl has the same property the bound being 1. So

it suffices, in the cases of I. and I„, to show that the integrals in (30a)

and (30b) go to zero as |6x | + USuO goes to zero. Going back to the

definitions of D-f, and D0f, „ using C4]c), making note of the matrix
JL A,r| L A,T|

norm given by 4b) a little thought will prove that I- and I2 are 'little o'

terms in I6x | + Ufiufl.
1 o1

The next step is to prove the above claim for I„. For that purpose

we make use of the following inequalities which are derivable from earlier

results in a straightforward manner.

(31) |6x(t)| <^OOUfixH + k2(t)tl6u0

(32) |v(t)| < iD^lflvil + |D2f|ll6ull

+

As before llfixll, Bfiuil and M divided by |6x | + Il6utl are bounded so that

it is enough to show that k (•)» k2(')> lDifl> lDofl integrated on ^ can

be made arbitrarily small. Since \l(¥) can be made arbitrarily small the

result follows from a well known theorem in measure theory ([6] p. 85)

using integrability of k^.), k2^)» lDifl and lD2fl on f0,T]

5. Conclusions. For a nontrivial and nonsuperficial example of systems

to which Theorem 2 applies in a very natural way, the reader is referred to

[8]. Simple continuity and compactness arguments show that conditions CI]

t
It can be easily shown that due to C3] (19) satisfies requirements of
Theorem 1 so that v(*) is Lipschitz in (6x ,6u). In fact it is linear
in (6x ,6u).

o
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to C4] are satisfied for differential equations that are smooth in x, u

and t.

Extensions of results to the case involving an infinite time interval

are by no means trivial due to stability considerations to be taken into

account. A treatment of such cases may be found in [10].
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