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ABSTRACT

The control system considered in this paper is modeled by the stochastic

differential equation

dx(<u,l) = r(t,x(.,w), u(L,w))dt + dB(L,to),

where B is n-dimonsional Brownlan motion, and the control u is a non-anti-

cipative functional of x(w,-)> and takes its values in a fixed set U. Under

various conditions on f it is shown that for every admissible control a

solution is defined whose law is absolutely continuous with respect to the

Wiener measure y, and the corresponding set of densities on the space C

forms a strongly closed, convex subset of L (C,y). Applications of this

result to optimal control and two - person, zero-sum differential games

are noted. Finally, an example is given which shows that in the case where

only some of the components of x are observed, the set of attainable

densities is not weakly closed in I. (C,|i).
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1. INTRODUCTION AND CONTENTS

A stochastic control problem is defined by the specification of

the stochastic differential equation which models the system dynamics,

the information available to the controller and the corresponding set of

admissible control laws, and the cost incurred by each control law. Of

theoretical interest is the "existence" problem, which means determining in

terms of the above three defining characteristics a class of control problems

for which there exist control laws achieving minimum cost. Published results

([1, 2, 3], see especially the excellent survey article [4] of Fleming) differ

from one another and are not usually comparable because either the models are

different or the set of admissible control laws are different.

There are two basic steps involved in obtaining an existence result.

The first step involves determining conditions which guarantee that a

solution of the stochastic differential equation is defined for every admis

sible control law. The next step involves the search for a topology under

which the set of solutions (or an equally good substitute) is compact, and

the cost function is lower semi-continuous. Thus, for instance Fleming and

Nisio [1] consider stochastic differential equations of the form

dx(t) = f(t, x(.)) u(t)dt + a(t, x(-), B(-)) dB(t), 0 <_ t < «>

where u(t) is any process taking values in the unit cube, and independent

of future increments B(t«) - B(t-), t _f t. < t„, of the Brownian motion B.

Various conditions on f, a are imposed to guarantee a solution for every

admissible control. It is then shown that the set of laws of all the

solutions of the differential equation corresponding to the different
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control Laws is compact in the Prohorov matric. Benes [3] considers

stochastic differential equations of the form

dx(t, a)) = f(t, x(., a), u(t, a))dt + dB(t,w), 0 <_ t <_ 1. (1)

where f is measurable with respect to its arguments and continuous in u.

The control law is any non-anticipative, measurable functional u(t, co) =

^(t, x(«, u))) which takes values in a compact set U. He assumes that f

satisfies a linear growth condition,

|f(t,x(-,<i>),u)|2 <K(l + lx(.,o|0) 2.

The existence of solution to (1) for every control law is guaranteed by a

result of Girsanov [5] (see Corollary 3 below). The resulting law is ab

solutely continuous with respect to the Wiener measure u on the space C

of all continuous functions from [0, 1] into R . Benes shows that if

f(t, x(«,o)), U) in convex for every t e [0, 1] and x(*,u)) z C, then the set

of densities corresponding to all the admissible control laws is convex

and strongly closed (hence weakly compact) subset of L (C,p).

In this paper, we show that the above result holds, if the linear

growth condition is replaced by the growth condition (2 ),

f(t, x(-,ui), U)| 1 fo(llx(-,o)ll) (2)

where f : R -*• R is increasing, and the condition
o
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/(exp IT <f(t, B, u), dB(t) >-\ t |f(t, B, u)|2dt y(dB) =1
(3)

for every admissible control law. An example is given to show that (2)

does not imply (3). The linear growth condition implies (3) (see Corollary i).

Condition (3) also follows from (2), if the drift term f in (1) has a delay (sc<;

Corollary 4). Finally we show that in the important case, where the control

is allowed to depend only on some components of the state x, the set of

densities is in general not weakly closed in L (C,u).

In Section 2 we give some preliminary results and definitions, and in

Section 3 we present the main result on weak compactness of the attainable

densities. In Section 3 we give conditions which guarantee (3), in Section
i

4 we present applications to optimal control and stochastic differential

games, and in the final section we present the negative example for the

problem with partial observations.

2. PRELIMINARIES

In the main, we adopt the notations and definitions of Benes [3].

Consider the stochastic differential equation (1),

dx(t) = f(t, x, u(t, x)) dt + dB(t), 0 <_ t <_ 1,

(1)
x(0) = 0,

where B(t) is a standard n-diraensional Brownian motion process with

continuous sample paths, x(t) is the state of the system and u(t,x) is the

control law which takes values in a compact subset U of R . To state the
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precise conditions which f, u must satisfy we need the following definition.

Definition 1

(a) Let C be the Banach space of all continuous functions z : [0, 1] >R

with norm II xJ = max l|/.(t)|| 0 _•• t ;• 1.1 ,where |y| is the Euclidean norm

ol y * K .

(b) For each t • 10, U let ^ be the smallest o-field of subsets

of C which contains all sets of the form {z | z(i) f. A) where i u [0, t]

and A is a Borel subset of R .

(c) Let A = ^y

We shall define the solution of (1) in such a way that the sample paths

of x are continuous (and have no explosions), so that f is a map from

[0, 1] x C x U -*• Rn. We impose throughout the following conditions on f.

CI f is measurable with respect to the product o-algebra u> ©*^®"8U,

where (jj( $ ) is the set of Borel measurable subsets of [0, 1] (U).

C2 For fixed t c [0, 1], f(t, ♦,-) is measurable with respect to the

product o-algebra ^ © $ .

C3 For fixed (t, z) c [0, 1] * C, f(t, z, •) is continuous on U.

C4 There exists an increasing function f : R -*• R such that |f(t, z, u) |
— o

< f (HzH) for all (t, z, u).
— o

C5 f(t, z, U) is closed and convex for every (t, z).

Definition 2

(a) An admissible control (law) is any map u:[0, 1] x c -> U which is
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measurable with respect to (3 <H) -4 » ant* 'or cacn fixed t k [0, 1], u(t,*)

is measurable with respect to ^ . Let *IL be the set of all admissible

control laws.

(b) For each u c ^ , the drift corresponding to _u is the function

g = g : [0, 1] x C -> Rn defined by,
u

g(t, z) = f(t, z, u(t, z)).

Let M = (g Iu c 1L }.

(c) For g r; ^f ,and N _> 0, let g : [0, 1] xC + Rn be defined by

8N(t, z) =

N r NLet ^W= {gW | g eJ/}.

Definition 3

g(t, z) if |z(i)| <_ N for t <_ t

0 otherwise

A function »/>:[0, 1] xc + Rn will be said to be causal if it is ^ ©-tf

measurable, and if for each fixed t e [0, 1], »Kt, *) is measurable with

respect to ^ .

From [6, Lemmas 1,2J we can obtain the following useful character

ization of sty . Condition C3 is needed only for Lemma 1.

Lemma 1

A causal function g : [0, 1] x C -»• R belongs to }$ if and only if

g(t, z) e f(t, z, U) for all (t, z).

It will prove convenient to work with sets larger than Jf , 9f .



Definition 4

Let «l> be the set of all causal maps .<J> : [0, 1] x c -> R such that

\* (t, z)| <f (I'zll) for all (t, z). Let 4>N = {(J) |<{> e 4>, |<J> (t,z)|_< N

for all (t,z)}.

Throughout the rest of this paper let ft be a fixed space and let CL ,

0 _< t< 1, be a fixed, increasing family of a-fields of subset of ft. Let

£L = £L. . We say that z(t) or z(t,u), 0 _< t _< 1, is a family of n-dimen

sional random variables on (ft, Q^ ), if for each t, z(t, •) is a map from

ft Into It which is measurable with respect to ^L . We shall need to

consider various probability measures on Q.. If z(t), 0 _1 t _< I, is a

family of n-dimensional random variables on (ft, ()Lr) and we wish to con

sider the stochastic process generated by z(t) corresponding to a particular

probability measure P on d , we will say that z(t), 0 <_ t _<_ 1, is an n-

dimensional stochastic process on (ft, £L., P). Finally let PQ be a dis

tinguished probability measure on £L , and let x(t,w), 0 < t < 1 be a fixed

n-dimensional, Brownian motion process on (ft, Qu, Pn) with sample paths

x(«, o) e C. We assume that the a-fields A are complete with respect to P-,

Definition 5

Let ip: [0, 1] x C > R be a causal function such that

I |i|,(t,z)| dt < * for all z c C. (4)
Jo

Then £ (i/0» 0_< t <_ 1, is the stochastic process on (ft, 0-1, Pq) with

continuous sample paths, defined by

t

^(40 =J <*(T, X), dx(T)> -\ m(T,x)|2dT.
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For convenience, let c(*) = r}(i>). (In (5), the first integral is to be

interpreted as an Ito stochastic integral).

The results of this section are immediate consequences of the work

of Girsanov [5].

Theorem 1 (Existence)

Let <J>: [0, 1] x c yRn be a causal function such that (4) holds,

(i) Then,

7exp [f,U>)\ P0(du>) _< 1.
ft

(Ii) Suppose,

^exp UOJO] P0(dw) =1,

and define the probability measure P on CL by

P.(A) = /exp [CC^>3 P (do)) , Aefl .
* A

Then the stochastic process B(t) defined on (ft, #*t> P^) °y

(6)

B(t,w) = x(t,w) - / iKt , x(«,u» ))dt, 0<_t<_l,
0

is a Brownian motion.

(iii) If <p is bounded, then (6) holds.

Proof

(i), (ii) and (iii) are immediate consequences of Lemma 2, Theorem 1,

and Lemma 1 respectively, of [5].

Theorem 1 immediately gives us a sufficient condition for the existence

of a solution to (1). Because let u e ^ , and let g be the drift
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corresponding to u. If,

^xp [c(g)] PQ(<*u)) =1,
ft

then the stochastic process x(t) on (ft, CLt, P ) satisfies the equation

x(t) = / g(r, x)dx + Brownian motion.

0

The following results show that at least when <K«, z) i« bounded Tor

bounded z , (6) is essential (Cor. 1), and furthermore, every solution of

(1) has the same law (Cor. 2). Recall Definition 4.

Lemma 2

Let ij> e 4> Let y(t), 0 <_ t <_ 1 be a stochastic process on

(ft, (X , P) with continuous sample paths, such that the stochastic process

B(t) on (ft, fl_ , P) defined by

t

B(t) =y(t) - f iKt, y)dt , 0<t<1, (7)
0

Ls a Brownian motion. Then, the measure v induced by y on (C,^d) is mutually

absolutely continuous with respect to the Wiener measdre m, and

f 1 1 ,
^ (y) =exp -/<iKt, y), dB(t) >-| f |iP(t, y)|2dtj. (8)

Proof

Since |iK«,z)| ± f (H zII), it follows from Lemma 7 of [5], that the

measure y on (C, ^O ) defined by
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1

<<P, dB >- \
'0 "0

coincides with the Wiener measure. It is easy to see that

y(S) = yexp - y<*, dB >- | y |ip|2dt
S

exp [- /<*, dB >-f /m2 dt] >0

dv

v-almost everywhere. The result follows.

Corollary _1_._

Let <J> c <l» , and let y(t), 0 ;: t <_ 1 satisfy the hypothesis of

Lemma 2. Then

r 1 1 1
/"exp A" <ip(t, z), dz(t) >- | y U(t,z)|2dt P(dz) =

Proof

From (8),

1=/^i dy (y) w(dy) = Jexp I/
c Ko

i ,

+i/ l^(t,y)l2dtj^(dy)

<^(t,y), dB(t) >

1.

(9)

From (7) we can substitute

dB(t) = dy(t) - <j,(t,y)dt

into the previous equality, and obtain (9).

Corollary 2

Let u> e 4> , and let y(t), 0 £ t <_ 1, satisfy the hypothesis of

Lemma 2. Then the measure v on (C, j ) induced by y is uniquely specified
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by i> and is given by

1r i

v(S) = /exp
S

u
Proof

From (8)

v(s) =ye
s

/|«(t,z)rdt u(dz). do)
0 J

r 1 1

/exp |/<*(t,y), dB(t)> +1/ k(t,y)|2dt
0 0

Substituting dB = dy - ^(t,y)dt gives (10).

3. MAIN RESULTS

Definition 6

For any subset ii c * ,letJD (X) be the subset of L (ft, Qi ,PQ)

defined by,

JD(£) = {exp £(♦) | 4> e 2}

Lemma 3

<£)($) is a bounded subset of L (ft, & ,PQ).

Proof

If <f> e $ , then by definition |<f>| <_ N. By Lemma 1 of [5], it follows

that

/•exp 2CL(<I>) PQ(dw) <_ exp tN .

y(dy).

For the rest of this paper let En denote expectation with respect to

the probability measure PQ. Also if y eL (ft, Q. ,PQ) then E (y| (JL t)

denotes the conditional expectation of Y with respect to Q-t*
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Lemma 4

j£) (* ) is a closed subset of L (ft, CL ,PQ).

Proof (Benes [3])

N
Let § , n = 1,2,3,'•• be a sequence from * and let P be such that

n

a nd

lim l\ |p-exp ^(4^)1 =0
n >'"

lim exp r,(<J> ) = p a.s.' P.
n-**>

(ID

(12)

First of all p >0 a.s. P0- Because, let A = {oj|p (w)=0}. Then from

(12),

Also.

lim C(* ) (w) = -m for w e A
n

n-H»

1 1

C(4>n) =/(VS' x)' dx(s)> "iy"l*n(8,x)|2 di
0 0

and, |<fr | _< N so that from (13),

But

X

lim / <4> (s, x), dx(s)> =-00 on A.
J n

n-*»

o[/<VE_ If ^n, dx(s)>
0

=EQ f\*nW\2da IN2,

(13)

so that Pn(A) = 0. By Ito's representation [7], there is a causal map

n
ty : [0, 1] x C -»• R with,
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1

T i^(t, z)i2 dt <»
0

for z in C, such that

1

p=1 + / <il»(t, x), dx(t) > a.s. PQ.
^0

Let,
z

p(t) =E0(p|(2t) =1+ f <*(s, x), dx(s) >.
0

Then, by Jensen's inequality

1 I

f E0|p(t) -exp rl^n)\2 dt <J EQ |p -exp r,(«|>n)|2 dt
"O Jo

which converges to zero, so that taking subsequences if necessary we can

assume that

p(t) =lim exp e'O^) a.s. ^©PQ, (14)
it*00

where Z denotes Lebesque measure on [0, 1]. Next, by Ito's differentiation

rule, ..

exp C(*n) =1+1 exp Ct(4»n) <<t>n(t), dx(t) > a.s. PQ

so that 1

E
u

'0

j

50 f 'exp ct(*n) *n(t) "^(t)|2 dt =EolCXp rAKy "pl

converges to zero, and therefore, taking subsequences if necessary, we

can assume that

iKt) =lim exp C*^) <t>n(t) a.s. ^©Pq.
n-*»

Since p(t) > 0 a.s. PQ, we see using (14) that

4£1- lim * M a.s. £©P0- (15)
. P(t) „»K> n °n*"
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It follows that there is a causal map <J> : [0, 1] * C -»• R

<f>(t, x(-, w)) = lim (}>n(t, x(«, 0))) a.s. I * PQ
n-*»

and t

p(t) = 1+ / p(s) <<J>(s, x), dx(s) >.

From ito's differential, rule we see that

d(loR p(t)) =<(|'(t), <lx(t) >-I |(j'(t)|2 dt,

and hence

p = exp r.010.

Because of (15) we can assume that |(|>| ± N, so that the lemma is proved.

We shall also need the next result.

Lemma 5

j)($ ) is a convex set.

Proof

Let <J>. c <I>N, A. >o, 1=1,2, with *x +A2 =1. By Ito's differentiation
rule

Define,

Then

dP

d[exp Ct(4>i)] =exp ^((fr.) <<J>.(t), dx(t)> .

p(t) =Xj^ exp Ct(*1) +*2 exp Ct(«J>2).

(t) =A exp Ct(<J>i) <c(.i(t), dx(t)> +A2 exp Ct(*2)< <J>2(t), dx(t) >

which we can rewrite as

dp(t) = p(t) <<Kt), dx(t)> , (16)

where

A exp t'flO X~ exp ^(O
<Kt)=-^j — ♦1(t) + y *2(t).

/] A. exp Ct(<J>i) 2-»A.exp Ct(*±)
i=l X X i=l x
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Evidently (J> e * since (J>(t,z) is a convex combination of $^(t,z) and

<J> (t,z). By Ito's differentiation rule from (16) we obtain (17)

d(log P(t)) =<<Kt), dx(t) >- \ |({)(t)|2dt
and p(0) = 1 from (14) so that integrating (17) yields

t c

log p(t) = f<*(s) dx(s)> ~k f U(s)|2ds.
J0 0

Hence p(1) = exp C(<i>) and the lemma is proved.

We can now prove our main result.

Theorem 2

(i) «D (^ ) is a convex set.

(ii) Let

^/°={g|8^. KQ(exp C(g)) =1}.

Then, ,£)(̂ °) is aclosed, convex, subset of L <ft ,Q^, PQ).

We shall develop the proof through a sequence of lemmas.

Lemma 6

& (JH) is convex.

Proof

Let gi(t, z) =f(t, z, Ui(t,z)) with Ui e 7l±, i=l,2 and let A±>_ 0,

with A + A = i. By [to's differentiation rule,

d(exP4L(g.)) =expc^gj) ^(t), clx(t) > i=l,2.

Define,

p(t) =A1 exp Ct(g1) +A2exp c (g2>•

Then if we repeat the proof of Lemma 5 we can conclude that, (noting

P(0) = 1),
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p(l) = A1 exp c(gx) + A2 exp c(g2) = exp c(*),

where <J> (t,z) is a convex combination of g (t,z) and g (t,z). Since g.(t,z)

t f(t,z,U), and since this set is convex by condition C5, we see that

cj> (t,z) e f(t,z,U)

and hence <J> e Jfy by Lemma 1. The lemma is proved.

Lemma 7

<?\ (£j ) is convex.

Proof

The set

()l ={p |pc I/V, fl- ,P0),P >0, EQp =1}

is convex, and

so that the result follows from Lemma 6.

Next let g , n= 1, 2,#** be a sequence from JH and let p be in

L (i2»^Z »p0) such that

lim exp-C(gn) =P a.s. P and in L1(ft, Q^ ,PQ) (18)
n-*»

For each positive integer N, let

g (t,z) v if |z(t) I <_ N for t <_ t
N . n

gn(t'z) =
0 otherwise,
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N
and for N = 1, 2, 3,*'« define inductively, subsequences g, , k e K , and

$ c <t> as follows:

1 1
For N=l, let g, , k e K. , be a subsequence of g , n=l,2,3,... and let

Ev J- Tl

<J> e <I> be such that

exp r,(<J> ) = w. lim exp c(g*)

kEKi

(Here and In the remainder w. lim means the weak limit in L (ft, (X^ P.).).

N
From Lemmas 4 and 3 «.t_) C*i» ) is a weakly, sequential Ly compact subset of

2 N N
L (U>0L , P) and g t. <l» so that the above construction makes sense.

N N N N+lSuppose g, , k l k and i|> l<1> are defined. Then let g, , k c K^.,-1

i » f N+l I' V A 1 . ,.N+1 nN+1 u u -u -be a subsequence of g, , k e K^ and let <f> e 4> be such that

, N+l . N+lx
exp C((J> ) = w. lim exp c(g )

keKN+l

Lemma 8

Let C = {z |z e C, |z(t) |_< N for x _< t}. Then we can assume that

for i _> 0,

. N+i . N U. . ,. , 1
vf> (t,z) = <|> (t,z) lor 0 £ t <_ 1, 2 i. C .

Proof

First of all from

,J, , . , Nv
exp s(<f> ) = w. lim exp C(gi).>

k£KN
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it is immediate that

E (exp C(*N) \dJ =w. 11m E.(exp C(g^) | fl.. )

Secondly since

E0a«>N)) =i, E0<^Sk)) =1

it follows that a.s. Pn,

exp ?*(/) =EQ(exp ^) |£t), exp Cfc(g£) =E^exp C(g£) |^t)

and hence,

exp ct(*N) =w. lim exp ^(g*). (19)
k£KN

Next let

ft = (a) | a) e ft, x(«, u) e C }

By definition, for i > 0

N N+i tgk(T, x(',tu)) = gk (x, x(',w)) for t < t,aje ^

so that from (19) we can assume that for i > 0,

exp cV4"1) (u>) = exp c'fo11) (a), x£ t, weft*.

The result now follows if we note that

0=/"|exp 5(4,N+1) -exp C(*N)|2 P^do.) =f[fexv Ct(+N+i)<*N+i(t), dx(t)>
4 "4°
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t,.N, / ,N- exp (. (<|. ) <<|< (t), dx(t)> P (tlw)

mf V0Lp 2'- N, . .N+i(cf,N) \f+l (t, x(-,u>) -At, x(.,u))|\lt P (dc)"I"0'
.t,.N,so that since exp r, (<(> ) > 0 a.s. PQ, we must have

1 /

/ /kN+1 (t,x(',u))) -c|)N(t, x(.,a)))|2 dt
ft" -o
N

and the lemma is proved.

Because of Lemma 8 we can define a causal function <J>: [0,1] * C -* R

such that

P0(dw) = 0

N+i(t, z) = <f> (t,z) for 0 < t < i, llzll < N, i _> 0.

From the proof of Lemma 8, and from (18) it follows that

p = exp C(<l>) a.s. PQ

Lemma 9 completes the proof of Theorem 2.

Lemma 9 We can assume that,

♦ e-tf
Proof

Because of (20) and Lemma 1 it is enough to show that

(t,z) e f(t,z,U) for 0 < t < 1, Hzll < N,

By our construction

N,
exp c(<j> ) = w. lim exp C(gk)

k e K

•19-
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2
From the properties of weak L convergence it is known that there is a

N N
convex combination of the exp £(gi) which converges to exp C(<J> ) in the

2
L norm topology. More precisely, for each n, there are non-negative numbers

\l\ •••, An with An + ••• + An = I such that
1 n I n

n

lim E0|expcOj>N) - £ \n± exp r, (gj) |2 =0. (22)

Let,

n-x» i=l

i»n(t) = z2 ai cxp ^(s^
i=l

Repeating the proof of Lemma 5, we can conclude that

hn(t) =exp Ct(nn) a.s. PQ,

N N
where, n (t,z) is a convex combination of g.(t, z), ***, g (t,z). In

n In

N
particular, from the convexity of f(t, z, U) and the fact that g.(t, z)

g.(t, z) £ f(t,z, U) for "zll <_ N, it follows that for Hzll < N,

nn(t, z) e f(t, z, U). (23)

Next,

EQ |exp c(4>N) "exp C(r,n)|2 =EQ |C exp A<J>N) <<f>N(t), dx(t) >
0

f r- J exp Ct(nn) <nn(t), dx(t)> |2 =EQ J Iexp ^(<^) <J>N(t)

t 2
- exp c ( n„) n (t)| dt

n n
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converges to zero by (22). Taking subsequences if necessary we see that

exp r. (<J> ) (u>) (J) (t, x(* ,">))

= lim exp CL (n ) M n (t, x(-,Q))) a.s. I © P (24)
n-voo

where £ denotes Lebesque measure on [0, 1],

Also a.s. Pft,

exp I*(*") =E0(COJ>N) \<Lt), exp Ann) =EQ(c(nn) |/\)

so that from (22)

lim / E |exp r, (ty ) - exp r, (n )| dt = 0
n-k» «/n*»

and hence we can assume taking subsequences if necessary that,

t N texp c (<f> ) M = lim exp £ (nn) M a.s. A © P .
n-x»

t N
Since exp ?(<{>)> 0 a.s. P, we conclude from (24) that

N
<J> (t, x(-,o))) = lim n (t, x(-,w)) a.s.Jl © Pn

n U
n-x»

and hence from (23), and'the fact that f(t, z,U) is closed, we see that

(J) (t, x(-,ui)) e f(t, x(-,o)), U) for Hx(-,u>)U < N, a.s.fc©PQ.

N
By appropriately modi lying <J» we can assume that (21) is satisfied.

From Corollary 1 of Lemma 2 and from Theorem 2 we obtain Theorem 3.

Theorem 3

Suppose f satisfies CI - C5 of Section 2.
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(i) For an admissible control u eft, there exists a solution to

(1) with continuous sample paths (without explosions), if and only if

EQ exp c(gu) = 1.

(ii) The set of densities {exp £(g ) |. E exp c(g ) = 1} is a convex

set, which is closed in the norm topology of L (ft, $,, P ).

3. SUFFICIENT CONDITIONS FOR E exp C(<J>) = 1

Lemma 10

Let <J) :10, 1J xC-*• Rn be acausal map such that f |(j)(t,z)|2 dt <
0

for all z in C. Define T, : C •*• C by

t

T^(z)(t) =z(t) - [ <})(T, z)dT. (25)

Suppose that for each N > 0 there is M > 0 such that Ht,(z)H <_ N implies

Hzll < M. Then,

EQ exp KM = 1.

Proof

Immediate from Lemma 7 of [5].

As a consequence of Lemma 10, we can obtain the following sufficient

conditions. The first result is due to Benes [3].

Collary 3

Let <J>: [0, 1] x C -»• R be a causal map and suppose there is a constant

K such that

|<Kt, z)| £ K(l + max |z(x)|)
1< x < t
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Then,

EQ exp c(<J>) = I-

Proof

Let T (z) (t) = y(t), and let y(t) = max |z(x)|. Then, from (25)
9 0<x<t

Y(t) <. |y(t) | + JK(1 + y(x))dt
0

t

<. ( llyll +K) + J Ky(t) dt.
0

By the Bellman-Gronwall inequality,

(Izll = Y(l) < (exp K) Y(0) + (exp K) (llyll + K)

<_ (exp K) (2Hyll + K) ,

and the result follows from Lemma 10.

The next result is useful if we have a control system with delay.

Corollary 4

Let f: [0, 1] xC+R be a causal map such that for some 6 > 0,

|<f>(t,z)| < f ( max |z(x)|)
0 < x< t-6

where fQ: R ^ R is increasing. Then,

EQ exp C(<j>) = 1.
Proof

Let y, y be defined as in the previous proof. Then,
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By induction,

Y(6) _< llyll + fQ(Y(0)),

Y(26) < llyll + f (y(<5))

< Hyll+ f ( HyO + fo(y(0)))

= fx( lly» , Y(0)) say.

Y(i5) jc f .(llyll , Y(0))

where f is increasing in each argument. Evidently if (m-1) 6 < 1 <_ mfi,

we see that

Y(l) = llzll < f ( llyll , |z(0)|)
— m

and the result follows from Lemma 10.

Remark

McKean (p. 66 of [8]) has shown that if 6>0 then all solutions of the

one-dimensional diffusion equation

dx(t) = |x|1+6dt + dB(t), 0^ t<o°

explode with probability 1. It follows that condition (6) is a non-trivial

restriction.

4. APPLICATIONS

Consider a control system

dx(t,w) = f(t, x(-,w), u(t, x(-,u)))dt + dB(w, t),
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where the control u takes values in a set U and f obeys the conditions

£1 - C5 of Section 2. Let us impose an additional restriction.

C6 For every admissible u eU}

EQ exp c(gu) = 1

or equivalently (and directly in terms of u) for

pu(z) =exp[y<f(t,z, u(t,z)), dz(t)> -|y"|f(t,z, u(t,z))|2dt (26)

C'6

Joiz) u(dz) =1
C u

Instead we can limit ourself to the subset % consisting of those u

in ^ which satisfy C!6.

Next let L : C -*- R be a bounded function, measurable with respect to

s& . L is the cost function,and assigns to every ue^ the cost

J(u) = /

Theorem 4

L(z) p (z) y(dz). (27)
C u

o * s-i o
Suppose fb is non-empty. Then, there exists u e ^ such that

J(u ) _< J(u) for all u e ^|_°.

Proof

By Theorem 3, the set {p |u e ^£.°} is a strongly closed, convex

subset of L (C, „^,u). Hence it is weakly compact. Since
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/L(z) p, (z) P(dz)
u

C

is linear and continuous in p , the result follows.
u

Let us note that a cost functional of the type (27) allows for a

variable endpoint problem as follows. Let ^ be a closed subset of

[0, 1] xRn which includes the set {1} x Rn. Let A: [0, 1] xC •> Rn be a

bounded, causal function, and to each u £^£, assign the cost

t(z)

J(u) = J I f A(t,z)dt
c •• 0

r\t(r Pu(z) u(dz),

where t(z) =» min {t | z(t) g^J) . The term in brackets is clearly of the

form L(z) in (27).

As a second application consider a zero-sum stochastic differential

game, with two players I and II, with controls u.. (t) e U.. and u«(t) e U2

respectively, and dynamics given by

dx(t) = f(t, x, u1(t), u2(t))dt + dB(t).

Suppose that f splits as

fx(t, x, u1)
f(t, x, ur u2) -^ (tf Xf U2>/.

Assume that f satisfies CI - C5 with C5 now restated as

"f (t, z, U ) and f2(t, z, TO are closed and convex for each (t,z)".
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As before, we define the admissible controls for player i, as all causal

map u : [0. 1] x C •*• U., i=l,2. Let^j consist of those admissible controls

u. which satisfy

ypu (z) y(dz) = 1,
C "i

where,

•j. i./ x x x ^./ • i i •

1 r\ n
(28)

>* -exp y<f1(t, z, ui(t,z)),dzi(t)> -|y|f1(t,z,ui(t,z))|2dtj.

Here we have split z = ( J to be compatible with f = \ /" ). Let• ($)•
L :C ->• R be a bounded function, measurable with respect to ^ and to each

pair (u.., u2) e ^, x -^ assign the payoff to player I

J(ur u2) = /L(z)p(u jU }(z) y(dz). (29)

Theorem 5

Supposed! ± is non-empty for i=l,2,. Then, there exist u e'ZX.?,

i=l,2 such that

JCu^u^ <J(U;L,u2) <JOij^) for all u± e^°,i=l,2.

Proof

From the definition (26) of p v and the definition (28) we see that

J(ui»u2) = fL^ pu <z)pu <z> u<dz) (30)
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Next, from Theorem 3, the sets {p I u. e ZL .} are convex, closed sub-
u. ' 1 1

sets of L (C,^, y), hence weakly compact. Finally the integral in (30)
1 2

is concave (in fact linear) and continuous in p for fixed p , and convex
Ul U2

2 1
(in fact linear) and continuous in p for fixed p . Hence from the well-

known results on two-person zero-sum games the existence of a saddle-

* *

point (u., u„) follows.

5. PARTIAL OBSERVATIONS: A NEGATIVE EXAMPLE.

Again consider the stochastic differential equation (1).

dx(t) = f(t, x, u)dt + dB(t) (1)

The conditions on f are as before, but now suppose that we consider the

important case where the control u can only depend upon the past history

of the last m (m < n) components of x. More precisely, let Q be the sub-

o-algebra of J^ generated by all sets of the form

{z | z e C, z. (x) e A}

where x < t, A is a Borel subset of R and n-m+1 < i < n. Let ^jL be the
— — — m

set of all causal maps u: [0,1] * C -• U such that u(t,#) is measurable with

respect to Q . Evidently,

First of all we can see from the proof of Lemmas 5 and 6 that the set

{exp c(gu) |u e <2Lm)
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may fail to be convex. Also we know from Theorem 3, that this set is

weakly compact in L (ft, ^, PQ) if and only if it is weakly closed, and

then we could obtain an "existence" result like Theorem 4. We give a simple

example to show that in general we do not have weak closure.

Consider the two-dimensional system, x = (x , x ), with u e R depending
1 ^

only on x2,

dx^t) = f(t,xx)u + dBx(t)

where,

dx2(t) = dB2(t)

t < 1/2

f(t,xx) =^2 , t>1/2, x^l/2) >0
t >1/2, X;L(l/2) 1 0.

The control set is U = [-1, 1]. We shall define a sequence of control laws

u (t,x_) such that
n Z

To t < 1/2
u (t,x )=J

]Yn(x2(1/2)) C>1/2'

where the functions Y are defined below. It follows that,
n

1 1

Cn =C(gu )= /f(t,Xl) un(t) dxx(t) -\ /f2(t,x1) u2(t)dt
n

0 0

12 2
= ct 3 Y - T 3 yn

n 4 n

where,
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Therefore,

2 if xx(l/2) > 0
a = x (1) - x (1/2) ,

X '1 if x1(l/2) <0,

12 2exp Cn = exp(aB Yn) exp (- j 3 YR) (31)

We shall select y such that Iy I 1, so that (31) simplifies to
n n

1 2
exp C = exp (a|i y ) CXP (~ T 3 )• (32)

We define y as follows:
n

Let £: R -> R be a measurable function such that under PQ, £(x2(l/2)) is

uniformly distributed over [0,1]. For each integer n _> 0, define n : [0,1] -»-

{-1,1} by
^* i .r- 2m „ _ „ 2m+l rt - ..
f1 lf 2^7 -c <^T' •H>.1.---. "-1

(-1 if -jj-i 5<-ls-. m-0.1,..., n-1

Finally, let

Yn(x9(l/2)) = n (C(x«(l/2))).
n 2 n ^

Lemma 11

1 12
exp C converges to — [exp (a3) + exp (-a3)] exp (- -r- 3 ) in the

weak topology of L (ft, (JL ,Pn).
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Proof

Let A , A„, A,, be Borel subsets of R and let I. denote the indicator
or 3 C A

function of a set A. Let

nn = /lA (a(o>)) IA (3(a))) IA (5(a»)) (exp CR) (w) PQ <dw).
ft a 3 «

Now under PQ the random variables a, 3,S are independent, so that

oo oo en

\=ffflk <«> XA (3) IA <£ ) exp (ct3nnU)) exp (- ±32)
_oo _oo _oo a 3 £

P (d£) Pp(d3) Pa(da), (33)

where P , P , P are the marginal distributions of a, 3,£ respectively.

From the way n is defined and the fact that £ is uniformly distributed

on [0,1] it follows that for fixed a,3

lim f exp(a3r,n(0)exp(- \ 32)P^(dC) = f |[exp(a3) +exp(- a3)]exp(- ^2)P?(dO
—oo _00

1 2
uniformly for t £ (-00, °°). It follows that exp (aftri (£)) exp (- -r 3 )

1 12 1converges to y [exp (a3) + exp (- a3)] exp (- 7- 3 ) weakly in L (R, P^-) .

Since the integrands in (33) are uniformly integrable, it follows that

lim JIn = f I (a) I (3) I (O \ [exp (a3) +exp (-a3)]

exp (- i 32) Pr(d?) PQ(d3) P (da).
4 t, 3 a

R3

1 2
From this it follows easily that exp (a3n (£)) exp (- — 3 ) converges to

|[exp (a3) +exp (-ag)] exp (- j 32) weakly in L1(R3, Pa©Pg©P^)
and the lemma is proved.
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Finally, we can see that there is a function u(t) e [-1,1], with

u(t) = 0, for t _< 1/2 and u(t) depending on the past of x2 and x1 such

that exp £ converges to exp c(g^) in the weak topology of L (ft, /^L, PQ).
u

Next, if u is any control law such that exp g(g ) • exp s(g^) we must have
u

g » g* a.s. ^©Pq. It follows that the set of densities exp C(g )with u

depending only on x2 is not weakly closed in L (ft, Q- %P-).

Incidently this example also shows that to guarantee weak closure,

the convexity condition C5 is necessary. Because even though u (t)e{-If

1, 0} for all t, it is not the case for u(t).
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