

Copyright © 1970, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

ON THE USE OF MODELS IN THE SYNTHESIS OF

OPTIMIZATION ALGORITHMS

by

E. Polak

Memorandum No. ERL-M274

16 July 1970

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

ON THE USE OF MODELS IN THE SYNTHESIS OF

OPTIMIZATION ALGORITHMS

by

E. Polak

Department of Electrical Engineering and Computer Sciences
Electronics Research Laboratories

University of California, Berkeley, California 94720

1. INTRODUCTION

Two of the pivotal problems in the construction of optimization

(as well as other) algorithms are the problem of ensuring that an algo

rithm is convergent and the problem of ensuring that it is implementable,

We shall present methods for coping with both. In particular, we shall

show that the solution of both of these problems is considerably facili

tated by the use of algorithm models together with corresponding conver

gence theorems. In this paper we shall consider algorithms for solving

problems of the following kind.

1.1. Abstract Problem; Given a closed subset T of a Banach space

B (with norm 11 *IL), construct points in T that have property p. Q

1.2. Definition: We shall denote by S the set of all points in

Research sponsored by the National Aeronautics and Space Administration,
Grant NGL-05-003-016(Sup 8) and the Joint Services Electronics Program
Grant AFOSR-68-1488.

-1-

T having property P, and we shall call S the solution set. (We shall

assume that S is non empty.)

The concept of an algorithm for solving the problem (1.1) being

convergent is simple to define; that of it being implementable is not.

Let us begin with convergence.

1.3. Definition; We shall say that an algorithm for finding a

z G S is convergent if given a zQ G T, the algorithm constructs a se

quence zQ, z_, z„, ..., in T such that if {z.} is finite, its last ele

ment is in S, and if it is infinite then all of its accumulation points

are in S. | |

The somewhat fuzzy concept of an algorithm being implementable

rests on the assumption that, for practical purposes, certain functions

can be evaluated on a digital computer in finite time, whereas other

functions cannot. For example, we may be willing to assume that we can

evaluate f(z) in finite time, but we cannot assume that we can compute

min f(z + Ah) in finite time. Essentially, an implementable algorithm
A<£U

is one in which each iteration can be assumed to be executable in finite

(preferably short) time. Let us elaborate this further. It is quite

T
common for an algorithm to be stated in the following form, where A:T-»-2

(the set of all subsets of T).

T
1.4. Algorithm Model; (Solves problem (1.1), A:T->-2 .)

0. Compute a zQ G T and set i = 0.

1. Compute a z . G A(z.).

2. If z - G S, stop; otherwise, replace i by i+1 and return to 1

-2-

When stated constructively, we may find that algorithm 1.4 expands

as follows.

1.5. Expanded Algorithm Model:

0. Compute a z~ G T and set i = 0.

1. Select a subalgorithm Z for computing a point in A(z.).

2. Set yn = z. and use the subalgorithm E to construct an infinite

sequence yQ, y±9 y^ ...

3. Set z.-t = lim y., replace i by i+1 and return to 2.
1+1 j-x» 3

Obviously, the construction of z... according to 3. in (1.5) cannot

be carried out in finite time on a digital computer. In practice, the

construction of the sequence {y.} is stopped after a finite number of

terms are constructed and the last of these terms is used as an approxi

mation to z. .. If the construction of the sequence (y^) is truncated

too early, the resulting "implementation" of algorithm (1.4) may not be

convergent. If this truncation occurs too late, then one may be using con

siderably more computer time than is really necessary. The problem of

constructing an implementation for an algorithm can be stated as follows.

Given an algorithm of the form (1.5), derive from it a convergent algo

rithm which, when stated constructively, does not use infinite subproce-

dures. In addition, we would expect the implementation to be efficient.

In the next section we shall give conditions for algorithms of the form

(1.4) to be convergent and we shall illustrate by means of two examples

how one verifies the various assumptions needed in specific cases. In

the remaining sections of this paper we shall give a few specific methods

-3-

for algorithm implementation and, again, we shall illustrate these by

examples.

2. CONVERGENCE OF CONCEPTUAL ALGORITHMS

Probably, the most useful convergence theorem for algorithms of

the form (1.4) is the following one.

2.1. Theorem [1], [2]: Consider algorithm (1.4). Suppose that

there exists a function c:T-HR which is either continuous or bounded from

below, and that for every z G T such that z £ S, there exist an e(z) >

0 and a 6(z) < 0 such that

2.2 c(z") - c(z') < 6(z) < 0

for all z1 G T, ||z' - z||B < e(z),

and for all z" G A(z')

Then algorithm (1.4) is convergent.

Proof: Obviously, we only need to consider the case when the se

quence {z.} constructed by (1.4) is infinite. Suppose that z is an ac

cumulation point of {z.} and that z £ S. Then there exist an e(z) > 0

and a 6(z) < 0 for which (2.2) holds. Since z is an accumulation point

of {z.}, there exist a subset K C {0, 1, 2, ...} and an integer k > 0

such that z. -»• z as i •*• °° for i G K, and llz. - zIL < e(z) for i £ k and
l * l B

„4-

i G K. Suppose that i £ k, j > 0 are such that i G K, (i+j) G K. Then

c(z.+.) - c(z.) = [c(zi+j) -c(Z±+._±)]+ ...

... + [c(zi+1) - c(z±)]

Since none of z. G S, i = 0, 1, 2, ..., we must have c(zi+1) - c(z±) < 0

for i=0, 1, 2, ..., by (2.2), and since in addition IIz± - zllg < e(z), we

find that

2.3 c(zi+j} "c(zi} * 6(S) < °

for all i G K, i £ k

Relation (2.3) shows that the sequence {c(z.)>Gk is not Cauchy. How-

ever, {c(z.)}, ,_.- must converge either because z ->- z and because c(«) is

continuous, or else because c(z.,-) - c(z.) < 0, i = 0, 1, 2, ...» and

c(') is bounded from below. Hence we have obtained a contradiction and

we therefore conclude that z G S. |_J

We shall now show what is involved in using Theorem (2.1) in the

case of two well known algorithms. The first is a modified method of

centers due to Huard [5] and the second is the Frank and Wolfe algorithm

[6]. In order to shorten our exposition, we shall make use of a few

-5-

simplifying assumptions.

The Huard algorithm can be used for solving the following problem.

2.4 min (f°(z) IfX(z) < 0, i = 1, 2, ..., m}

•f n 1
where the f :R +R , i = 0, 1, ..., m, are strictly convex, continuously

differentiable functions, such that for some feasible z (i.e. f (z) ^ 0

for i = 1, 2, ..., m), the set

2.5 T = {z G Rn |f°(z) -f°(z0) * 0, f^z) < 0, i=1, 2, ..., m

is compact and has an interior.

2.6 Modified Method of Centers (Huard [5]):

0. Compute a feasible point z~ such that the set T in (2.5) is com

pact and has an interior and set i = 0.

1. Set z = z,.

2. Solve the linear programming problem

min {h° |-h° + (Vf°(z), h> < 0; -h° + fj(z)

+ <Vfi(z), h) < 0, j=1, 2, ..., m; |h£| < 1,

(cont.)

-6-

<& — j., z, ..., n/,

and denote its solution by (h (z), h(z)), where h (z) G R ,h(z) G R .

3. If h°(z) = 0, set z . = z and stop; otherwise go to 4.

4. Compute the step size y(z, h(z)) so that

2.8- d(z + y(z,h(z))h(z), z) = min d(z + yh(z), z),
y*o

where the distance function d:RnxR ->R is defined by

2.9 d(z«,z") = max{f0(z') - f°(z"); fi(zf), i= 1, 2, ..., m}

5. Set z = z + y(z,h(z))h(z), replace i by i+1, and return to

v.n

Comment: Note that h (z), as computed in 2. of (2.6), satisfies

2.10 h°(z) = min max {< Vf°(z) ,h > ;fJ <z) +<Vf3 (z) ,h > ,
|h*|<l

Z= 1, 2, ..., m; j = 1, 2» •••» m>

that h^R^R1 defined by (2.10) is continuous, that h°(z) <0 for all

-7-

feasible vectors z, and that h (z) = 0 if and only if z is optimal for

(2.4), i.e. if and only if z is the solution of 2.4 (see [2], [3]). In

this case, because of the strict convexity of the f (•)» the solution

set S consists of only one point.

Thus, to associate algorithm (2.6), with the model (1.4), we de

fine the set T as in (2.5), we define the set S C T to be the set con^

T
sisting of z, the unique optimal solution to (2.4), and we define A:T*2

as follows:

2.11 A(z) = {z1 | z1 = z + y(z,h(z))h(z)}

where h(z) G R is any vector such that (h (z),h(z)) is optimal for (2.7)

(Note that A(z) = {z} where z is the unique optimal solution to (2.4).

Also note that the solution of (2.7) need not be unique.)

To apply Theorem (2.1) to the above algorithm, we have to produce

a function c(*)« We set c(») = f (•)• Since f (•) is continuous, we see

that algorithm (2.6) is convergent if for every non-optimal z* G T, there

exist an e(z*) > 0 and a 6(z*) < 0 such that

2.12 f°(z») - f°(z) <: 6(z*) < 0

for all z G T satisfying IIz - z*[| <_ e(z*) and for all zf G A(z), with

A(z) defined by (2.11).

-8-

We shall now show this to be the case. Suppose that the vector

z* G T is not optimal for the problem (2.4). Then we must have h (z*) =

Y* < 0. Making use of the continuous differentiability of the fJ(*),

j = 0, 1, ..., m, and of the compactness of the sets T and H =

{h | |h^| < 1, j = 1, 2, ..., n}, we can show that there must exist an

e* > 0 and a A* > 0 such that the following three relations hold:

2.13 h°(z) < ^

2.14 |<Vfi(z + Ah), h> - (Vfi(z), h> | <

2.15 If^z + Ah) -f^z)! < ^

for all z G T satisfying [|z - z*|| £ e , for all A G [0,A*], and for all

h G H.

Now, let z be any point in T satisfying Hz - z*[| ^ £*, and let h(z)

be any vector such that (h (z),h(z)), is optimal for (2.7). Then, because

of (2.13), in view of (2.10), we get

2.16 <Vf°(z), h(z) > < h°(z) < \

2.17 fj(z) + <Vfj(z), h(z)> < h°(z) < ^~

-9-

j = 1, 2, ..., m

By the mean value theorem,

2.18 fj(z + A*h(z)) - fj(z) = A* <Vfj(z + Ajh(z)), h(z) >

Aj G (0,A*), j = 0, 1, 2, ..., m

Consequently, (2.14) implies that

2.19 f°(z +X*h(z)) -£°(Z) <^ <^f

We now make use of the dichotomy that either fJ (z) > y*/4 or else that

fj(z) <y*/4. If for some j G {l, 2, ..., m}, fj(z) >y*/4, then f

(2.17), (2.18) and (2.14) we obtain that

rom

2.2C fj(z +A*h(z)) -fj(z) <^-

and hence, since y* <0and f^(z) <0, we conclude that f3 (z + A*h(z))

< A*y*/8. Now, if fj(z) £ y*/4 for some j G {l, 2, ..., m}, then

from (15), we conclude that^f3 (z + A*h(z)) <y*/8. Now, let z' =z+

y(z,h(z))h(z), with y(z,h(z)) as in (2.8). Then we must have

-10-

2.21 f°(zT) - f°(z) < d(z,,z) < max {f°(z + A*h(z)) - f°(z);

fj'(z +A*h(z)), j=1, 2, ..., m} < max {\ ,̂ -}

£ 6* < 0

Since (2.21) is true for all z G T satisfying ||z - z*|| < e*, we see that

we are done. | |

The Frank and Wolfe algorithm solves the following problem.

2.22 min {[It - zll | fj (z) < 0, j = 1, 2, ..., m}

where the fJ:R->-R are continuously differentiable, strictly convex func

tions , and

t £ T ^ {z G Rn |fJ(z) < 0, j= 1, 2, ..., m}

We shall assume that the set T is compact and that it has an inter

ior.

2.23. The Frank and Wolfe Algorithm [6]

0. Compute a z^ G T and set i = 0.

-11-

1. Compute v(z.) G T such that

2.24 <t - z , v(z)) = max <t - z., v>
11 vGT X

2. Set

[z±9 v(2i)] = {z | z = Xz± + (1 - A)v(Zi), A G [0,1]}

and compute z. - G [z , v(z.)] such that

2.25 []t - zi+10 = min II t - z|
zG[zi,v(zi)]

3. If [|t - zi+1B = lit - z±\\, set zi+1 = z± and stop; otherwise re

place i by i+1 and return to 1. I I

To identify algorithm (2.23) with the model (1.4), we define S = {z},

where z G T is the unique solution to (2.22). It is not difficult to

show that under the assumption stated [It - z.,. [| = [|t - zj (and z
i+1 i i+1

zi) if and only if z = z. Hence we see that the stop command in 3. of

(2.23) corresponds to the stop command in 2. of (1.4). The map A:T+2T is

now defined as follows.

2-26 A(z) = {z' | [|t - zMI = min [|t - z"||}
z"G[z,v(z)]

-12-

Since A(z) consists of exactly one point for all z G T, we see that

A:T->T. Note that A(z) = z (z G S).

To apply theorem (2.1) to algorithm (2.23), we define c:T-*-R by

2.27 c(z) = [It - zU .

Since c(»)> as defined by (2.27), is obviously continuous, to show that

(2.23) is convergent, we only need to show that for every non-optimal

z* G T there exist an e(z*) > 0 and a S(z*) < 0 such that (recall that

A:T-KT in this case)

2.28 c(A(z)) - c(z) < 6(z*)

for all z G T such that ||z - z*[| £ e(z*). Now the function v:T-*-T, de

fined by (2.24), is continuous since T is strictly convex. In addition,

the function c:TxT-HR defined by

2.29 c(z,,z") = min [|t - z|
tG[z',z"]

is also continuous. Therefore both c(') and c(a(OJ are continuous on T

and hence the existence of an e(z*) > 0 and a 6(z*) < 0 satisfying (2.28)

follows directly. I I

-13-

Algorithm (2.6) is non-implementable because of the instruction in

4., while algorithm (2.23) is non-implementable because of the instruc

tion 1. We shall now introduce a few methods for making such algorithms

implementable.

3. ADAPTIVE IMPLEMENTATION

Since we may have difficulty in computing points in A(z), as we

have just seen, we shall construct an algorithm model which uses a

- + T
map A:R xt*2 such that

A(0,z) = A(0) and A(e,z) -*• A(z) as e + 0.

In addition, it must be relatively easy to compute points in A(z).

According to theorem (2.1), we need to have a function c:T-*-R with

certain properties, so as to ensure that algorithm (1.4) is convergent.

Since from the examples given we saw that such a c(') is usually avail

able, we can include it in the adaptive model below, which solves prob

lem (1.1).

3.1. Algorithm Model:

(A:R+xt+2T, crT^R1, eQ >0, e' G (0,eQ), a>0, 6 G (0,1))

-14-

0. Compute a zn G T, set i = 0.

1. Set £ = £ .

2. Compute ay G A(e,z.). '

3. If c(y) - c(z) < ote, set z - = y, replace i by i+1 and return

to 1; otherwise go to 4.

4. If £ > £', set £ = $£ and return to 2; otherwise go to 5.

5. If z. G S, set z.+1 = z. and stop; otherwise set £ = $£ and

return to 2. I I

When it is difficult to determine if z. G S, we may prefer the

following approach.

3.2. Algorithm Model:

,+ m «T(A:R xt+2 , c:T-*-R, £ > 0, a > 0, 3 G (0,1))

0. Compute a z G T, set i = 0.

1. Set £ = £n.

2. Compute a y £ A(e,z).

3. If c(y) - c(zi) _< -ae, set z.+_ = y, replace i by i+1 and return to 1;

otherwise set £ = $£, set z. - = z., replace i by i+1 and return to 2. I I

When returning from 3. to 1., in the algorithms (3.1) or (3.2) results in

excessive computing times, due to the process of reducing e to an acceptably

low value, we may return from 3. to 2. without loss of convergence, pro

vided the assumptions of the theorem below are satisfied.

-15-

3.3. Theorem: Suppose (i) that c(0 is either continuous or bounded

from below on T, and (ii) that for every z £ T which is not in S, there exist

an £(z) > 0, a 6(z) < 0 and a y(z) > 0 such that

3.4 c(z") - c(z') < 6(z) < 0

for all z' G T, [|z! - zfl- ^ e(z), for all z" G A(y,zT), for all y G
B

[0,Y(z)].

Then the algorithms (3.1), (3.2) and the time varying versions of

these algorithms obtained by returning from 3. to 2., instead of to 1., are

convergent.

Proof: We shall only give a proof for algorithm (3.2) (as stated),

since the convergence of the other algorithms can be established in a

similar manner.

First, suppose that for some i, z = z. . = z « = ..., i.e., that

the algorithm jams up. Then it must be constructing a sequence of vec

tors y±+j G A^Eq.zJ, j=0, 1, 2, ..., such that c(yi+j) -c(z±) >
-a$ £q, j = 0, 1, 2, ..., and therefore we conclude from assumption (ii)

in (3.3) that z. is in S.

Now suppose that there is no i such that z = z. . = z „ =

Suppose that z* G S is an accumulation point of the sequence {z.} (con

structed by (3.2)), i.e. z -»• z* as i-»- «> for i G K C {0, 1, 2, ...}.

Then, by assumption (ii) in (3.3), there exist £(z*) > 0, 6(z*) < 0 and

Y(z*) > 0 for which (3.4) is satisfied. Since z + z*, i G K, there

-16-

must exist an integer k > 0 such that [|z. - z[| ^ £(z*) for all i G K,
i iJ

i > k and max (3 £n, a3 £Q} £ min {y(z*), -6(z*)}. Hence, for any two

consecutive points z., z. , z, ^ z. ., i > k of the subsequence {z.}. ,

we must have

3.5 c(z) - c(z±) = [c(z) - c(z +1)] + ... + [c(z.+1)

-c(Zi)] < -a3keQ+

which shows that the monotonically decreasing sequence {c(z.)}._K. does

not converge. But the sequence {c(z.)}.„. must converge because of assump-

tion (i) and hence we have a contradiction; i.e. the accumulation point

z* must be in S. Q

We shall now show how algorithm model (3.2) leads to an implementa

tion of the modified method of centers (2.6). Referring to (2.8), we be

gin by noting that, because the functions f (•)» i = 0, 1, ..., m, are

1 1
convex, the function 8:R -*• R defined by

_p .

Let £ G {i, i+1, ..., i+j-1} .be such that z. = z„ but z- - f z«. Then

we must have c(z^+1) - c(z^) < -a£ with £ > 3 £Q because of (3.4), since

3k£Q *Y(z*) and a3k£Q ^-6(z*). In addition,. c(z +1) -c(z)£0for
all p G {i, i+1, ..., i+j-l}. Hence (3.5) follows directly.

-17-

3.6 6(y) = d(z + yh(z), z)

is also convex. Hence we can compute its minimum on [O,00) by means of

the golden section rule, using the Fibonacci fractions F. = (3 - /F)/2,

F„ = 1 - F., as follows. Note that 6(0) = 0.

3.7. Golden Section Subprocedure:

0. Find the smallest integer p such that

3.8 6(p - 1) < 9(p) and 6(p - 1) < 0(p - 2)

and set a«= p - 2, b^= p, and j = 0.

1. Set Vj =,j + F^bj - aj)(Wj - aj + F2(bj -^

2. If 9(v.) < 9(w.), set a.... = a., set b... = w., replace j by
3 j j+1 3 3+1 3

j+1 and return to 1; otherwise set a.... = v,, set b.,. = b., replace i
j+1 j j+1 j

by j+1 and return to 1. | [

The intervals [a.,b.], j = 0, 1, 2, ..., contain the ninimizer

m(z,h(z)) required by algorithm (2.6). Their lengths decrease exponen

tially, with b. -a =0.62^(bQ -a), j=0, 1, 2, Quite obvious

ly, this procedure will not find y(z,h(z)) in finite time.

Now, in the context of problem (2.4) and algorithm (2.6), suppose

- + T
that we define the map A:R xt->-2 as follows:

-18-

3.9 A(£,z) = {z1 = (z + yh(z)) G T |y - y(z,h(z)) | < £>

where h(z) and y(z,h(z)) are as in (2.11). Then we see that A(0,z) =

A(z), and, if we define c(») = f (•)» then the assumptions of theorem

(3.3) will be satisfied by f°(-) and A(.,.) as defined by (3.9). A con

vergent implementation for algorithm (2.6) is therefore obtained as fol

lows.

3.10. Implementation of Algorithm (2.6):

0. Compute a feasible point zQ such that the set T in (2.5) is

compact; select an £ > 0, an a > 0, and set i = 0.

1. Set £ = £..

2. Set z = z .

3. Compute (h (z), h(z)) by solving (2.7).

4. If h (z) = 0, set z. - = z and stop; otherwise go to 5.

5. Use the Golden Section Subprocedure (3.7) to find an interval

[a,,b.] such that b. - a. £ £, containing y(z,h(z)) as defined by (2.8),

and set y* = (a, + b)/2.

Comment: The search for the interval [a.,b.] is a finite process.

6. If f°(z + y'h(z), z) - f°(z) <-ot£, set z =z+ y'h(z), re

place i by i+1 and return to 1; otherwise set £ = e/2 and return to 5. | |

-19-

4. OPEN LOOP IMPLEMENTATION

The models for implementing algorithm (1.4) to be given in this

section bear a strong resemblance to the ones introduced in the preced

ing one, with the notable exception that they do not make use of an £

test in constructing an approximation to the set A(z). The approxima

tion is continuously improved as the computation proceeds. The advantage

of "open loop" implementation lies in the fact that it somewhat reduces

the need for tests which may involve lengthy calculations. The open loop

approach is particularly recommended for use when the same problem has

to be resolved over and over again, with relatively minor changes in its

parameters.

As in the preceding section, we make use of a map c:T*R and, in

addition, we shall use a map A:N><T->2 , where N is the set of all positive

integers (0 G N). Also, we shall require truncation functions which

we define as follows: t:N-*N is a truncation function if for every k G N

there exists a k' G N such that t(i) > k for all i £ kf, and if t(i) > i

for all i G N.

The following algorithm solves problem (1.4).

4.1. Algorithm Model:

(A:NXT*2 , c:T*R , tn :N->N, t0:N-*N,

t1, t~ are truncation functions)

-20-

0. Compute zQ G T, set i = 0, set j = 0.

1. Set z = z , set j = t.)i).

2. Compute ay G A(j,z).

3. If c(y) < c(z), set z. _ = y, replace i by i+1 and return to 1;

otherwise replace i by i+1, j by t«(j) and return to 2. I I

When the utility of the test c(y) < c(z) in 3 of algorithm (4.1)

is outweighed by the effort in computing c(y), we may prefer to use a

direct test for determining whether z, G S, as follows.

4.2. Algorithm Model:

~ T
(A:NxT+2 , t:N->N is a truncation function)

0. Compute zQ G T, set i = 0.

1. Set j = £(i).

2. Compute ay G A(j,z).

3. If y G S, stop; otherwise, set z.+1 = y> replace i by i+1 and

return to 1. I I

4.3. Theorem: Consider algorithm (4.1). Suppose (i) that c(»)

is either continuous or else bounded from below on T, and (ii) that for

every z G T which is not in S, there exist an e(z) > 0, a 6(z) < 0, and

an integer k(z) > 0 such that

-21-

4.4 c(z") - c(zf) < 6(z) < 0

for all z' G T, llz' - zlB £ £(z), for all z" G A(j,z'), for all j > k(z)

Then algorithm (4.1) is convergent.

Proof: First suppose that there is an integer i such that z. =

z. - = z 2 = ..., i.e., that the algorithm jams up at z. cycling between

2 and 3. Then, because of (ii), z. G S.

Now, suppose that there is no j such that z. = z. , = z. ^ = ...

and that z± + zas i-»• °° for i G K C {0, 1, 2, ...}, with z <£ S. T

there exist an £(z) > 0, a 6(z) < 0 and a k(z) G N such that

4.5 c(z") - c(z') < 6(2)

for all z' G T, [|zf - zlL £ £(z), for all z' G A(j,z!), j ^ k(z). Since

z. + z for i G K, and t,(»)» to^') are truncation functions, there exists

an integer k > 0 such that for all i G K, i > k, IIz± - zllg £ £(z) and

t(i) ^ k(z). Hence, if i, i+j are consecutive elements in K, with i £ k,

then by the same argument as the one used in the proof of theorem (3.3),

we conclude that

4.6 c(zi+j) " c(zi} * 6(z)

-22-

Since (4.6) contradicts the convergence of the sequence {c(z.)}.,., we

are done. I I

Since algorithm (4.2) does not use a function c(0> we must sti

pulate its existence in our assumptions, as is done below.

4.7. Theorem: Consider algorithm (4.2). If there exists a func

tion c:T+R which together with the map A satisfies the theorem (4.3),

then every limit point of a sequence {z.} constructed by algorithm (4.2),

and satisfying c(z. ..) < c(z.) for i = 0, 1, 2, ..., must be in S. j |

We shall now implement the Frank and Wolfe method (2.23) by modify

ing it to correspond to the form (4.2).

First, we note that we can solve the subproblem (2.24) of algorithm

(2.23) by the method of feasible directions, below.

4.8. Algorithm for Computing v(z,y,j), given y,z G T,

given j g N, ft G (0,1)

0. Set k = 0, set x = y.

1. Compute (h (x), h(x)) (h G R ,h G Rn) by solving the linear

programming problem min {h | -h + <(z - t), h> £ 0; -h + f (x) +

<VfP(x), h> < 0, p = 1, 2, ..., m; |hq| £ 1, q = 1, 2, ..., n}.

2. Find the smallest positive, integer s such that f^(x + 8 h(x)) _< 0

for p = 1, 2, ..., m.

3. If k = j, set v(z,y,j) = x + $ h(x) and stop; otherwise set x =

x + B^h(x), replace k by k+1, and return to 1. I I

Note that v(z) = lim v(z,y,j).
j-*x>

-23-

If we define the map A:NxT->T by

4.9 A(j,z) = {z» | [jt - zMI = min [|t - z"[|}
z"G[z,v(z,z,j)]

with v(z,z,j) as computed by (4.8), then we see that A(°°,z) = A(z), with

A(z) as in (2.26). It is not too difficult to show that the maps A(*,')»

defined by (4.9), and c(») = f (•)» satisfy the assumptions of theorem

(4.3). Hence, we obtain the following, convergent implementation of the

Frank and Wolfe algorithm. We only use one truncation function in this

implementation, i.e. we set t-.C*) = t2(*)«

4.10. Implementation of Algorithm (2.23):

0. Compute a zn G T; select a truncation function t(#)» and set

i = 0.

1. Set j = t(i).

2. Compute v(z.,z.,j) by means of (4.8).

Comment: Note that this process is finite.

3. Compute z1 G [z.,v(z.,z.,j)] such that

4.11 [|t - zi+1[| = min {||t - z|| |z G [z1,v(z1,z1,j)]>

Comment: Note that (4.11) can be solved trivially and hence the

-24-

computation of z . is a finite process.

4. If [|t - zMI < lit - z±0, set z±+1 = z1, replace i by i+1 and

return to 1; otherwise set z . = z., replace i by i+1 and return to 1. LJ

5. CONCLUSION

In this paper we have explored a few methods for algorithm imple

mentation. Obviously, these methods represent only a small fraction of

possibilities. A number of other implementation schemes can be found in

[3] and [4]. When presented with the need of implementing an algorithm,

the reader may find that the models which we have discussed in this pa

per do not fit his needs exactly. However, he will find that the general

philosophy of adaptive and open loop implementation, which we have

sketched out, can be utilized in a very wide variety of situations.

-25-

REFERENCES

1. E. Polak, "Computational Methods in Discrete Optimal Control and

Nonlinear Programming: A Unified Approach," University of Calif

ornia, Berkeley, Electronics Research Laboratories, Memo No. ERL-

M261, February 1969.

2. E. Polak, "On the Convergence of Optimization Algorithms," RIRO,

No. Rl, pp. 17-34, 1969.

3. E. Polak, "Computational Methods in Optimization: A Unified Ap

proach," Academic Press, 1971 (in press).

4. G. Meyer and E. Polak, "Abstract Models for the Synthesis of Op

timization Algorithms," University of California, Berkeley, Elec

tronics Research Laboratories, ERL Memo No. ERL-M269, October

1969.

5. P. Huard, "Programmation Mathematique Convex," RIRO, R7, pp. 43-

59, 1968.

6. M. Frank and P. Wolfe, "An Algorithm for Quadratic Programming,"

U. S. Naval Log. Quart., Vol. 3, pp. 95-110, 1956.

-26-

	Copyright notice 1970
	ERL-274

