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DESIGN OF PRECOMPENSATOR FOR DECOUPLING PROBLEM

Abstract-For aclass of linear time-invariant multivariable systems which
can not be decoupled by state variable feedback, but which are invertible,
we propose an algorithm of designing aprecompensating dynamic system

which results in anew system that can be decoupled by state variable
feedback.

Consider alinear time-invariant multivariable system representation,

x = Ax + Bu

y = Cx (1>

where xis an n-vector, uis an m-vector, yis an m-vector, and A, Band

Care nxn, nxmand mxnconstant matrices, respectively.
We consider the control law

u = Fx + Gw /2\

where F is an m x n constant matr-Iv r •»= »„btanc matrix, G is an m x m nonsingular constant

matrix, and w is the input of the overall system.

Theorem 1 (Falb and Wolovich1)

Asystem with representation (1) can be decoupled by using the
control law in (2), if and only if the m x m matrix
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*

B =

dl
c A *b

c2A 2B

d

c A1^
m

is nonsingular, where c is the i-th row of C; and

dj, =min {k: c.AkB ^0, k=0,1,...., n-l}

or d± = n-l if c±A B = 0 for all integers ke[0, n-l]

JU -t

In particular, we may pick G = (B )

and F = - (B )"1
dx+l"

ciA

m
c A
m

(3)

(4)

For a precise definition of decoupling refer to Ref. l;for an alter

nate treatment see Ref. 2.

Comment

From the Laurent expansion of the uatrix transfer function

H(s) *CCsI-A^B =|j <^IL ,it is easy tQ check that

di di+1
ciA B" |iS s ^(s), where luCs) is the i-th row of H(s),

*

so B can be computed directly from the matrix transfer function: B* is

completely determined by the input-output properties of (1), and is in

dependent of the state representation. This fact will be used repeatedly
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in the following.

Definition 1 (Gilbert3)

Let H(s) = C(sl-A) B be the transfer function of (1), then H(s)

is said to be weakly coupled if and only if

II. det H(s) ± 0 a.e.

* (5)
2. det B = 0

*

where B is given by (3)

We state and prove the following theorem which was suggested by

Gilbert3.

Theorem 2

Given a system with a weakly coupled transfer function, we can

always decouple it by the insertion of a precompensating dynamic system

at the input terminals, then apply the feedback law specified in Theorem

1.

Proof.

The proof of this theorem is given by an algorithm discussed later.

Lemma 1

Suppose that H(s) =C(si - A)"1 B is an mxmmatrix transfer func

tion of (1), in which each element is a proper rational function of s;

k
let d = min {k: l^m s det H(s) 4 0, k is a positive integer}, (6)

and for i = l,2,...,m let
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±=min{j:cAJB^0,j=0,...,n-l}

ord-n-lifcJ^B=0forallintegersje[0,n-1](4f)

then

Proof.

LetH(s)C(si-A)-1B

(a)d>m+/Ad;
PI±

m

(b)d=m+JJ>*±ifandonlyifB*is
nonsingular;

(c)ifAisannxnmatrix,thendetH(s)
40a.e.impliesthatn>d.

m

(7)

i.e.weexpandeachrowofH(s)intheLaurentexpansionaboutzero,

refertothecommentfollowingTheorem1,andanalternativedefinition

ofBineq(9)below,whereb*denotesj-throwofB*.wegettheabove

expressionforH(s).Itiseasytoseethat

detH(s)=
detB

d.+d0+...+d+m+(lowerorderterms) lzm
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So det B f 0 if and only if that d =m+\^ d.
i=l

This proves (b). The above reasoning also proves (a).

From Proposition 2, p. 53, in Ref. 3, det H(s) can be written as -h^ AN,
det(sI-A)

where h(s) is a polynomial in s of degree not greater than n^m. So if det

H(s) 4 0 a.e., it is easy to see that n > d.

ALGORITHM FOR THE DESIGNING OF PRECOMPENSATOR

Given a wealdy coupled transfer function H(s)f the following algorithm

gives a precompensator which results in a new system that can be decoupled

by state feedback as discussed in Theorem 1.

Step 1. Calculate det H(s), where det H(s) is a proper rational function

of s.

If det H(s) = 0 for all s in the complex plane, stop! (This is

not a weakly coupled system, this algorithm isn't applicable.)

If det H(s) 4 0a.e., calculate d. =min {k: H$ sk+1 h.(s) 4 0,

k = 0, 1,...} (8)

where h (s) is the j-th row of H(s).

Note that det H(s) 4 0 a.e. => h. (s) f 0 a.e. =• d < » i=l 2
J j

Step 2. Construct the m x m constant matrix B as follows,

* d.+l
bj =Jiffi s 2 hjCs) j=l,2,...,m (9)

JU jr.

whe^e b. is ihe j-th row of B , and h.(s) is the j-th row of H(s)
•J J

Note that t'ne definition of B* and of d., j=l,2,,..,m in (8) and

(9) is equivalent to that in (3) and (4). Note also that b. 4 0
• • * . 3 '

j=l,2,...,m.
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Step 3.

i.e.

The assumption that the given transfer function is weakly coupled
•ff

implies that rank (B ) £ p<.m. Perform elementary column opera

tions on H(s), using constant multipliers, (this corresponds to

linear recombinations of input terminals of the given system),

in order to get a new transfer function, say H (s), so that its

corresponding B± has its last m-p columns identically zero; the

first p columns of B^^ are linearly independent. Moreover, the

process can be carried out so that there are p rows, say r

r2,...,rp), whose only nonzero elements form apxpnonsingular

diagonal Tiatrix.

P m-p

x © o o x

b-0 0 0 0

X © © © X

0 b20 0 0

0 0 b 0 0

© O © Q O

© O O ©

0 0 0 0 b

O

where the b.'s are non-zero constants; the b.'s are the diagonal
l i

elements of the p x p nonsingular diagonal matrix.

Step 4. Now we have p columns in B- with nonzero elements, and among

these p columns we have p' columns (say i-, ±^9...,± ,) with

two or more nonzero elements, where 1 < i_ < i0 < . . .< i , <
— ± — z p —

p, we claim that 1 <_ p' _< p, since if p1 - 0, then some rows in
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*

B.. are identically zero, this contradicts with the definition

of B^

Multiply i , i2,..., i T-th column in H^s) by — , (this

corresponds to putting an integrator in series with the correr-

sponding input terminal). Call the resulting transfer function

H(s).

Step 5. With respect to H(s), calculate d., j = l,2,...,m and B in the

same way as in (8), (9). If det B 4 0, then apply the feedback

law in Theorem 1 to decouple H(s). Otherwise repeat step 3, 4

until we get that det B ^ 0.

Proof, of Theorem 2.

We are going to show that using the above algorithm, in a finite

number of iterations of step 3, 4 and 5, we come up to det B ^ 0.

In step 1, with respect to H(s), we calculate d, d., j = l,2,...,m

using eq (6) and (8). Similarly, in step 4, with respect to H(s), we cal

culate d, d , j = l,2,...,m.

Furthermore, they are related in the following way

d = d + p' (10)

d = d + 1 if j € {1,2,....m} \ {r r?,...,r } (11)
J j JL A p

where " \" denotes set difference,

dj =dj +1if j e|rk : kG {±v i2,...,ipt}|
d .=dj if je|rk :kG{1,2,...,p} \ {±v ±2,...,ipl}|
Add eq (11) - (13), we have

d=m-p + p'+ ^ •

j=l j=l J
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or d - m - \ d. = d - m -\ d. -m + p (14)

i=l i=l

Since in step 3, we have dat (B ) = 0, i.e. m > p,

m m

so (d -m-\^ d.) <(d -m-\^ d),
i=l i=l

m

i.e. the difference between d and m+7^ d. is reduced after we perform

step 3 and 4. 1~

It is clear that in a finite number of iterations of steps 3, 4, and

m

5, we obtain d = m + ^ "d., and by Lemma 1, this is equivalent to

det B 4 0.
i=l

Example

Consider the following matrix transfer function,

H(s) =

2s+3 6

s+3

1

s +3s+2
s+2

0 4 1

s2+5s+6 2
s +4s+3

1 3(s+5) 1

s+1 s2+4s+3 2<s+3>

Q.E.D.

From step 1, we obtain that d = 0, d„ = 1, d» = 0 and from step 2

Note that B is singular and det H(s) 4 0 a.e., i.e. this is a weakly
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coupled system.

Following step 3; i.e. performing elementary column operations on H(s),

using constant multipliers: (a; add to the third column of H(s) the pro

duct of the first column of H(s) by -r and the product of the second column

of H(s) by - -£ , (b) add to the second column of H(s) the product of the

first column of H(s) by - 3.

The resulting transfer function is H (s) and

Hx(s) =

2s+3

$ +3s+2

0

s+1

- 9s - 15

s3+6s2+lls+6

s +5s+6

s +4s+3

The corresponding B, =

7 _l 9
T s + T4 4

3 2
s +os +lls+6

3 2
s +6s +lls+6

5

" 2

s2+4s+3

Refer to step 4; multiply the first column of H^s) by -, we get H(s), the

~*

corresponding B = 2 -9 7

4

0 4 0

1 6 _ 5
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Since B is nonsingular, so we can apply the control law in Theorem 1 to

decouple H(s). If we use the following realization of H(s), as in Ref. 6,

A =

c =

0 0 0 0 0 0 0 0

0 -1 0 0 0 0 0 0

0 0 -1 0 0 0 0 0

0 0 0 -1 0 0 0 0

0 0 0 0 -2 0 0 0

0 0 0 0 0 -2 0 0

0 0 0 0 0 0 -3 0

0 0 0 0 0 0 0 -3

-1 -1 1 1 0 1 0

0 0 2 0 1 0 1

-1 1 -5 0 0 - z -1

Then G = (B )_1

10 4 7

27 9 27

0
1

4
0

4

27

7

9

-8

27
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B =

1 0 0

1 0 0

0 3 0

0 0
1

4

•1

2
-3

5

4

0 0 -1

0 6
3

~ 2

0 -4
1

2

(15)



and F = -
~* -1
(B ) L

h*
c2 A

c3 A

o

o

0

17

27

1

9

1

27

-40

27

-16

. 9

-11

18

5

3

0 0
1

" 2
0 1 0

9

" 4

-4

27

4

9

86

" 27
16

27
-4

-40

9

29

3

(16)

Figure 1 shows the interconnection among the given system H(s), the pre

compensator and the state variable feedback.

Remark

Instead of putting an integrator in series with the input terminal,

1
we may use

StO»

precompensator,

as the transfer function of the building block of the

Conclusion

Given an m x m transfer function matrix H(s), if it is weakly coupled,

we may apply the algorithm in this letter to design a precompensator, then

together with the feedback law specified in Theorem 1, we can always

4
decouple it. Morse and Wonham have found minimal order precompensator

for this purpose by a geometric approach, but they propose no algorithm

suitable for computation. Silverman has a different way of designing

a precompensator based on an algorithm for inverting a system.
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* State variable of H(s)

Fig. 1. The block H(s) is the given system. The precompensator is

designed according to the algorithm. The block F consists of

adders and multipliers; its input is x and its output is Fx,

the matrix F is given by eq (16).

Similarly the block G has w as input and Gw as output , the G

matrix is given by (15). The new overall system with input w

and output y is decoupled.
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