Copyright © 1970, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

DESIGN OF PRECOMPENSATOR FOR DECOUPLING PROBLEM

by
 S. H. Wang

Memorandum No. ERL-M275
2 Apri1 1970

ELECTRONICS RESEARCH LABORATORY
 College of Engineering
 University of California, Berkeley
 94720

DESIGN OF PRECOMPENSATOR FOR DECOUPLING PROBLEM

Abstract-For a class of linear time-invariant multivariable systems which can not be decoupled by state variable feedback, but which are invertible, we propose an algorithm of designing a precompensating dynamic system which results in a new system that can be decoupled by state variable feedback.

Consider a linear time-invariant multivariable system representation,

$$
\begin{align*}
& \dot{x}=A x+B u \\
& y=C x \tag{1}
\end{align*}
$$

where x is an n-vector, u is an m-vector, y is an m-vector, and A, B and C are $n \times n, n x m$ and $m \times n$ constant matrices, respectively. We consider the control law

$$
\begin{equation*}
u=F x+G w \tag{2}
\end{equation*}
$$

where F is an $m x n$ constant matrix, G is an $m \times m$ nonsingular constant matrix, and w is the input of the overall system.

Theorem 1 (Falb and Wolovich ${ }^{1}$)

A system with representation (1) can be decoupled by using the control law in (2), if and only if the $m \times m$ matrix

$$
B^{*}=\left[\begin{array}{c}
 \tag{3}\\
c_{1} A \\
d_{B} \\
c_{2} A{ }^{d_{2}} \\
\vdots \\
c_{B} A \\
d_{m} \\
d_{B}
\end{array}\right]
$$

is nonsingular, where c_{i} is the i-th row of C; and

$$
\begin{align*}
d_{i} & =\min \left\{k: \quad c_{i} A^{k} B \neq 0, k=0,1, \ldots, n-1\right\} \\
\text { or } \quad d_{i} & =n-1 \text { if } c_{i} A^{k_{B}}=0 \text { for all integers } k \varepsilon[0, n-1] \tag{4}
\end{align*}
$$

In particular, we may pick $G=\left(B^{*}\right)^{-1}$

$$
\text { and } F=-\left(B^{*}\right)^{-1}\left[\begin{array}{c}
c_{1} A^{d_{1}+1} \\
\vdots \\
c_{m} A_{m}+1
\end{array}\right] \text {. }
$$

For a precise definition of decoupling refer to Ref. 1; for an alternate treatment see Ref. 2.

Comment
From the Laurent expansion of the matrix transfer function
$H(s) \triangleq C(s I-A)^{-1} B=\sum_{j=0}^{\infty} \frac{C A^{j} B}{s^{j+1}}$, it is easy to check that $c_{i} A^{d_{i}}={\underset{s i m}{m o m}}^{d_{i}}{ }^{d_{i}^{+1}} h_{i}(s)$, where $h_{i}(s)$ is the i th row of $H(s)$, so B^{*} can be computed directly from the matrix transfer function: B^{*} is completely determined by the input-output properties of (1), and is independent of the state representation. This fact will be used repeatedly
in the following.
Definition 1 (Gilbert ${ }^{3}$)
Let $H(s)=C(s I-A)^{-1} B$ be the transfer function of (1), then $H(s)$ is said to be weakly coupled if and only if

$$
\begin{cases}1 . & \operatorname{det} H(s) \neq 0 \text { a.e. } \tag{5}\\ 2 . & \operatorname{det} B^{*}=0 \\ & \text { where } B^{*} \text { is given by (3) }\end{cases}
$$

We state and prove the following theorem which was suggested by Gilbert ${ }^{3}$.

Theorem 2

Given a system with a weakly coupled transfer function, we can always decouple it by the insertion of a precompensating dynamic system at the input terminals, then apply the feedback law specified in Theorem 1.

Proof.

The proof of this theorem is given by an algorithm discussed later.

Lemma 1

Suppose that $H(s)=C(s I-A)^{-1} B$ is an $m \times m$ matrix transfer function of (1), in which each element is a proper rational function of s;
let $d=\min \left\{k: \quad \frac{1}{s} \ddagger m s^{k} \operatorname{det} H(s) \neq 0, k\right.$ is a positive integer $\}$,
and for $i=1,2, \ldots, m$ let

－₹00

$$
\text { sT G ff Kquo pue ff Tp }+u=p
$$

บәч7

So $\operatorname{det} B^{*} \neq 0$ if and only if that $d=m+\sum_{i=1}^{m} d_{i}$
This proves (b). The above reasoning also proves (a).
From Proposition 2, p. 53, in Ref. 3, det H(s) can be written as $\frac{h(s)}{\operatorname{det}(s I-A)}$, where $h(s)$ is a polynomial in s of degree not greater than $n-m$. So if det $H(s) \neq 0$ a.e., it is easy to see that $n \geq d$.

ALGORITHM FOR THE DESIGNING OF PRECOMPENSATOR

Given a weakly coupled transfer function $H(s)$, the following algorithm gives a precompensator which results in a new system that can be decoupled by state feedback as discussed in Theorem 1.

Step 1. Calculate det $H(s)$, where $\operatorname{det} H(s)$ is a proper rational function of s .

If det $H(s)=0$ for all s in the complex plane, stop! (This is not a weakly coupled system, this algorithm isn't applicable.) If $\operatorname{det} H(s) \neq 0$ a.e., calculate $d_{j}=\min \left\{k: \lim _{s} \mathrm{~m}^{k+1} \mathrm{~h}_{\mathrm{j}}(\mathrm{s}) \neq 0\right.$, $k=0,1, \ldots\}$
where $h_{j}(s)$ is the j-th row of $H(s)$.
Note that $\operatorname{det} H(s) \neq 0$ a.e. $\Rightarrow h_{j}(s) \neq 0$ a.e. $\Rightarrow d_{j}<\infty j=1,2, \ldots, m$
Step 2. Construct the $m x m$ constant matrix B^{*} as follows,

$$
\begin{equation*}
b_{j}^{*}=\lim _{s \neq} s^{d_{j}^{+1}} h_{j}(s) \quad j=1,2, \ldots, m \tag{9}
\end{equation*}
$$ where b_{j}^{*} is the j-th row of B^{*}, and $h_{j}(s)$ is the j-th row of $H(s)$. Note that the definition of B^{*} and of $d_{j}, j=1,2, \ldots, m$ in (8) and (9) is equivaient to that in (3) and (4). Note also that $b_{j}^{*} \neq 0$, $j=1,2, \ldots, m$.

Step 3. The assumption that the given transfer function is weakly coupled implies that rank $\left(B^{*}\right) \triangleq \mathrm{p}<\mathrm{m}$. Perform elementary column operations on $H(s)$, using constant multipliers, (this corresponds to linear recombinations of input terminals of the given system), in order to get a new transfer function, say $H_{1}(s)$, so that its corresponding B_{1}^{*} has its last $m-p$ columns identically zero; the first p columns of B_{1}^{*} are linearly independent. Moreover, the process can be carried out so that there are p rows, say r_{1}, r_{2}, \ldots, r_{p}), whose only nonzero elements form a $p \times p$ nonsingular diagonal natrix.
i.e.
$\left[\begin{array}{llllll}\mathrm{x} & 0 & 0 & 0 & x & \\ \mathrm{~b}_{1} & 0 & 0 & 0 & 0 & \\ \mathrm{x} & 0 & 0 & 0 & x & \\ 0 & b_{2} & 0 & 0 & 0 & \\ 0 & 0 & b_{3} & 0 & 0 & \\ 0 & 0 & 0 & 0 & 0 & \\ 0 & 0 & 0 & 0 & 0 & \\ 0 & 0 & 0 & 0 & b_{p} & \end{array}\right]$
where the b_{i} 's are non-zero constants; the b_{i} 's are the diagonal elements of the $p \times p$ nonsingular diagonal matrix.

Step 4. Now we have p columns in B_{1}^{*} with nonzero elements, and among these p columns we have p^{\prime} columns (say $i_{1}, i_{2}, \ldots, i_{p}$) with two or more nonzero elements, where $1 \leq i_{1} \leq i_{2}<\ldots .<i_{p} \leq$ p, we claim that $I \leq p^{\prime} \leq p$, since if $p^{\prime}=0$, then some rows in
B_{1}^{*} are identically zero, this contradicts with the definition of B_{1}^{*}.

Multiply $i_{1}, i_{2}, \ldots, i_{p}$, th column in $H_{1}(s)$ by $\frac{1}{s}$, (this corresponds to putting an integrator in series with the correr sponding input terminal). Call the resulting transfer function $\tilde{H}(s)$.

Step 5. With respect to $\tilde{H}(s)$, calculate $\tilde{\mathrm{d}}_{j}, j=1,2, \ldots, m$ and \tilde{B}^{*} in the same way as in (8), (9). If det $\tilde{\mathrm{B}}^{*} \neq 0$, then apply the feedback law in Theorem 1 to decouple $\tilde{H}(s)$. Otherwise repeat step 3,4 until we get that $\operatorname{det} \tilde{\mathrm{B}}^{*} \neq 0$.

Proof. of Theorem 2.
We are going to show that using the above algorithm, in a finite number of iterations of step 3,4 and 5 , we come up to $\operatorname{det} \tilde{B}^{*} \neq 0$.

In step 1 , with respect to $H(s)$, we calculate $d_{j} d_{j}, j=1,2, \ldots, m$ using eq (6) and (8). Similarly, in step 4, with respect to $\tilde{H}(s)$, we calculate $\tilde{\mathrm{d}}, \tilde{\mathrm{d}}_{\mathrm{j}}, \mathrm{j}=1,2, \ldots, \mathrm{~m}$.

Furthermore, they are related in the following way
$\tilde{d}=d+p^{\prime}$
$\tilde{d}_{j}=d_{j}+1$ if $j \in\{1,2, \ldots, m\} \backslash\left\{r_{1}, r_{2}, \ldots, r_{p}\right\}$ where " \" denotes set difference.
$\tilde{d}_{j}=d_{j}+1$ if $j \in\left\{r_{k}: k \in\left\{i_{1}, i_{2}, \ldots, i_{p},\right\}\right\}$
$\tilde{d}_{j}=d_{j}$ if $j \in\left\{r_{k}: k \in\{1,2, \ldots, p\} \backslash\left\{i_{1}, i_{2}, \ldots, i_{p},\right\}\right\}$

Add eq (11) - (13), we have
$\sum_{j=1}^{m} \tilde{d}_{j}=m-p+p^{\prime}+\sum_{j=1}^{m} d_{j}$
or $\tilde{d}-m-\sum_{i=1}^{m} \tilde{d}_{i}=d-m-\sum_{i=1}^{m} d_{i}-m+p$
Since in step 3 , we have $\operatorname{dst}\left(B^{*}\right)=0$, i.e. $m>p$,
so $\left(\tilde{d}-m-\sum_{i=1}^{m} \tilde{d}_{i}\right)<\left(d-m-\sum_{i=1}^{m} d_{i}\right)$,
i.e. the difference between d and $m+\sum_{i=1}^{m} d_{i}$ is reduced after we perform
step 3 and 4 .

It is clear that in a finite number of iterations of steps 3, 4, and 5, we obtain $\tilde{d}=m+\sum_{i=1}^{m} \tilde{d}_{i}$, and by Lemma 1 , this is equivalent to $\operatorname{det} \widetilde{\mathrm{B}}^{*} \neq 0$.
Q.E.D.

Example

Consider the following matrix transfer function,

$$
H(s)=\left[\begin{array}{ccc}
\frac{2 s+3}{s^{2}+3 s+2} & \frac{6}{s+3} & \frac{1}{s+2} \\
0 & \frac{4}{s^{2}+5 s+6} & \frac{1}{s^{2}+4 s+3} \\
\frac{1}{s+1} & \frac{3(s+5)}{s^{2}+4 s+3} & \frac{1}{2(s+3)}
\end{array}\right]
$$

From step 1 , we obtain that $d_{1}=0, d_{2}=1, d_{3}=0$ and from step 2,

$$
\mathrm{B}^{*}=\left[\begin{array}{ccc}
2 & 6 & 1 \\
0 & 4 & 1 \\
1 & 3 & \frac{1}{2}
\end{array}\right]
$$

Note that B^{*} is singular and $\operatorname{det} H(s) \neq 0$ a.e., i.e. this is a weakly
coupled system.
Following step 3; i.e. performing elementary column operations on $H(s)$, using constant multipliers: (a) add to the third column of $H(s)$ the product of the first column of $H(s)$ by $\frac{1}{4}$ and the product of the second column of $H(s)$ by $-\frac{1}{4}$, (b) add to the second column of $H(s)$ the product of the first column of $H(s)$ by -3 .

The resulting transfer function is $H_{1}(s)$ and

$$
H_{1}(s)=\left[\begin{array}{ccc}
\frac{2 s+3}{s^{2}+3 s+2} & \frac{-9 s-15}{s^{3}+6 s^{2}+11 s+6} & \frac{7}{4} s+\frac{9}{4} \\
0 & \frac{4}{s^{3}+6 s^{2}+11 s+6} \\
\frac{1}{s^{2}+5 s+6} & \frac{1}{s^{3}+6 s^{2}+11 s+6} \\
& \frac{6}{s^{2}+4 s+3} & \frac{-\frac{5}{2}}{s^{2}+4 s+3}
\end{array}\right]
$$

The corresponding $B_{1}^{*}=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 4 & 0 \\ 1 & 0 & 0\end{array}\right]$
Refer to step 4; multiply the first column of $H_{1}(s)$ by $\frac{1}{s}$, we get $\tilde{H}(s)$, the corresponding $\quad \tilde{B}^{*}=\left[\begin{array}{ccc}2 & -9 & \frac{7}{4} \\ 0 & 4 & 0 \\ 1 & 6 & -\frac{5}{2}\end{array}\right]$

Since $\tilde{\mathrm{B}}^{*}$ is nonsingular, so we can apply the control law in Theorem 1 to decouple $\tilde{H}(s)$. If we use the following realization of $\tilde{H}(s)$, as in Ref. 6 ,

$$
\tilde{\mathrm{A}}=\left[\begin{array}{rrrrrrrr}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -3 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -3
\end{array}\right], \tilde{B}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & \frac{1}{4} \\
-\frac{1}{2} & -3 & \frac{5}{4} \\
0 & 0 & -1 \\
0 & 6 & -\frac{3}{2} \\
0 & -4 & \frac{1}{2}
\end{array}\right]
$$

$$
\tilde{\mathrm{c}}=\left[\begin{array}{rrrrrrrr}
\frac{3}{2} & -1 & -1 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 2 & 0 & 1 & 0 & 1 \\
1 & -1 & 1 & -5 & 0 & 0 & -\frac{7}{6} & -1
\end{array}\right]
$$

$$
\text { Then } G=\left(\tilde{B}^{*}\right)^{-1}=\left[\begin{array}{ccc}
\frac{10}{27} & \frac{4}{9} & \frac{7}{27} \tag{15}\\
0 & \frac{1}{4} & 0 \\
\frac{4}{27} & \frac{7}{9} & \frac{-8}{27}
\end{array}\right]
$$

and $F=-\left(\tilde{B}^{*}\right)^{-1}\left[\begin{array}{ll}\tilde{c}_{1} & \tilde{A}^{2} \\ \tilde{c}_{2} & \tilde{A}^{2} \\ \tilde{c}_{3} & \tilde{A}^{2}\end{array}\right]$

$$
=\left[\begin{array}{rrrrrrrr}
0 & \frac{17}{27} & \frac{1}{9} & \frac{1}{27} & \frac{-40}{27} & \frac{-16}{9} & \frac{-11}{18} & -\frac{5}{3} \tag{16}\\
0 & 0 & 0 & -\frac{1}{2} & 0 & 1 & 0 & -\frac{9}{4} \\
0 & \frac{-4}{27} & \frac{4}{9} & -\frac{86}{27} & \frac{16}{27} & -4 & \frac{-40}{9} & -\frac{29}{3}
\end{array}\right]
$$

Figure 1 shows the interconnection among the given system $H(s)$, the precompensator and the state variable feedback.

Remark
Instead of putting an integrator in series with the input terminal, we may use $\frac{1}{s+\alpha}$ as the transfer function of the building block of the precompensator.

Conclusion

Given an $m x m$ transfer function matrix $H(s)$, if it is weakly coupled, we may apply the algorithm in this letter to design a precompensator, then together with the feedback law specified in Theorem 1, we can always decouple it. Morse and Wonham ${ }^{4}$ have found minimal order precompensator for this purpose by a geometric approach, but they propose no algorithm suitable for computation. Silverman ${ }^{5}$ has a different way of designing a precompensator based on an algorithm for inverting a system.

ACKNOWLEDGMENT
The author wishes to thank Professor C. A. Desoer and Mr. Felix F. Wu
for a number of valuable suggestions and discussions.

S. H. Wang

Department of Electrical Engineering and Computer Sciences and Electronics Research Laboratory, University of California Berkeley, California 94720

Research sponsored by the Joint Services Electronics Program Grant AFOSR-68-1488.

References

1 Falb, P. L., and Wolovich, W. A.: 'Decoupling in the design and synthesis of multivariable control systems', IEEE Trans., 1967, AC-12, pp. 651-659

2 Mufti, I. H.: 'A note on the decoupling of multivariable systems', IEEE Trans., 1969, AC-14, pp. 415-416

3 Gilbert, E. G.: 'The decoupling of multivariable systems by state feedback', SIAM J. CONTROL, 1969, ㄱ, p. 53, p. 55

4 Morse, A. S., and Wonham, W. M.: 'Decoupling and pole assignment by dynamic compensation' NASA Electronics Research Center report, 1969, p. 18

5 Silverman, L. M., private communication
6. Zadeh, L. A., and Desoer, C. A.: 'Linear System Theory', McGraw-Hill, 1963, pp. 411-413.

Fig. 1. The block $H(s)$ is the given system. The precompensator is designed according to the algorithm. The block F consists of adders and multipliers; its input is $\tilde{\mathrm{x}}$ and its output is FX , the matrix F is given by eq (16).
Similarly the block G has w as input and $G w$ as output, the G matrix is given by (15). The new overall system with input w and output y is decoupled.

