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Abstract

The notion of target function is presented, and is applied for pro

blems of pursuit with linear dynamics. It is shown that this approach

unifies and extends the work of Pontriagin, Pshenichnyi and many others.
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I. INTRODUCTION AND CONTENTS

Consider the linear system

z(t) » Az(t) + u(t) - v(t) , t •> 0

z(0) - zQ ,

where at time t, z(t) is the state, u(t)[v(t)] is the control selected by

player P[E] subject to the constraint u(t) £ U[v(t) £ V], where U[V] is

a fixed subset. A is a constant matrix. There is also specified a fixed

subset M, called the target set. It is the objective of P to choose u(t)

for each t, based on the information available to P at time t, in such a

way as to steer z(t) to M. We say that capture has occurred if z(t) £ M.

On the other hand, E selects v(t) based on the information available to

E at time t, in such a way as to prevent capture.

Various situations must be distinguished, depending upon the infor

mation available to each player. We shall distinguish two main types,

open loop and closed loop. We are interested in the latter case only,

but it is sometimes helpful to analyze the former case. A different

classification is obtained depending on whether we require the capture

to occur at a fixed time T independent of the control employed by E, or

whether we permit the capture time to vary according to E*s control.

These situations are precisely defined in the next section.

Target functions are defined, and some of their fundamental proper

ties are studied in Section III. The basic idea involved consists in

substituting for the eventual fixed target M an immediate moving target
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F(t) for each time t. The function F(t) should be such that if

z(t) € F(t) for all t, then eventually capture must occur. The attrac

tiveness of this approach depends upon the ease with which one can dis

cover target functions and derive closed loop controls from them. In

this sense the approach is analogous to Lyapunov's second method. In

Section IV we present some "natural" candidates for target functions.

There we also show that many of the solutions proposed in the literature

correspond to selecting one of these candidates as a target function.

The last section consists of some critical comments.

II. PROBLEM FORMULATION

Consider the linear system

z(t) = Az(t) + u(t) - v(t)

where z(t) GR , u(») and v(«) are input functions under the control of

players P, E respectively and constrained by u(t) €= u, v(t) £ V where

U and V are fixed compact, convex subsets of R . A is a constant n * n

matrix.

Let M be a fixed closed, convex subset of R . M is called the

target.

Definition 1; a. A control u(») [v(0] defined over some interval

[a,b] is said to be admissible if it is piecewise continuous, continuous

from the right, and u(t) £ U [v(t) £ V] for all t £ [a,b]. We sometimes

denote this function as ur ., [vr ,-,].
[a,b] [a,b]J

b. If ur ,,, vr ,, are admissible, then z(b,z ,ur .,,vr ,,) is the
[a,b]' [a,b] ' a' [a,b]' [a,b]'

state of (1) at time t, corresponding to the inputs ur ,,, vr ,, and
[a,dJ ia,Dj
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initial state z(a) =» z .

Definition 2: a. Starting at z(0) = zQ, P can /Capture E in time T

if for all admissible vf. , there is an admissible urQ „,, with u(x)

» ^(z(t),v(t)) depending only on z(t) and v(t), such that z(t ) ^ M for

some t € [0,T]. (Note that t depends on z_ and vro -,.)
JL JL JL

b. Let T (zfl) « inf {t [starting at z0, P can capture E in time t }.

If P cannot capture E starting at z~ in any time T < °°, we let

*

T (zQ) = «>.

c. For each t, let

* i *Z (t) - {zq|t (zq) = t}.

Z* ={Z()|T*(z0) <00}Let *

Remark 1

The assumption that at time x, P knows the current control v(t) is

less realistic than a closed loop formulation where P only knows the

past. However, it is very helpful technically and can be rationalized

as follows. Let z(0) = zQ with T (zQ) < °°. Let u(t) = ^(z(t),v(t)) be

a closed-loop control using which P can capture E in time T, in the

sense of Definition 2a. Let e > 0. Then there is 6 > 0 such that with

the closed-loop control u (t) = ^(z(t),v(t-6)) , P can e-capture E in

time T i.e., for all admissible vf. ,, there exists t £ [0,T] such that
£ r _. J.JL

z(t ,zQ,u rQ t*-pVro *-,) G M+ S ,where S£ = {z|z G R ,|z| < e}. Note that the

We set Ut(t) =un, 0 £ t < 6 where u. €= U is arbitrary.

Here and throughout |z| is the Euclidean norm of z £ R .
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control u is based on the present state and past control of E. The

proof of the above statement follows easily from the boundedness of V
JL

and the fact that T (zQ) is finite. It is even possible to let e approach

zero. However various delicate technical problems arise which are not of

importance here. The interested reader may consult [1] - [3].
JL £

Now let zn be such that T (z-) < °°. In some cases the time t in

Definition 2a, can be chosen to be independent of the control v,. _, of

E. Such situations are of interest because some important cases fall

into the category, and the problem is greatly simplified when this pro

perty is taken into account. We therefore propose the following

definition.

Definition 3; a. Starting at z(0) = zQ, P can capture E (in the

absorbtion sense) at time T if for all controls Vr0 _-. there is a control

uro TV wittl u^ = ^(Z(T)>V(T)) depending only on z(t) and v(t) such

that

z(T'z0'U[0,T]'V[0,T]) EM*

b. Let

T(z.) - inf(T|starting at zQ, P can capture E at time T}

If P cannot capture E starting at zQ at any time T < °°, we let

T(zQ) = «.

c. For each t, let

tFrom now on whenever we say control we mean admissible control..
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Z(t) - {z0|T(z0) = t}.

Let

Z= {z0|T(z0) <~}

Remark 2

(i) The condition that the capture time be independent of the con-

*

trol of E is highly restrictive. First of all it is clear that T (z)

<^T(z) for all z. In fact as shown in Example 1 below it may easily be the

case that T (z) < °° but T(z) = °°.

(ii) The set Z(t) is convex. To see this let z £ Z(t), and let

u.(t) « ^.(z(t),v(t)) be the closed-loop control which captures E at

time t starting in z., for i » 1, 2. Let 0 <_ X < 1. Then from the

linearity of (1), for the closed-loop control u(x) = Xip-(z(t),v(t))

+ (l-X) i|>2(z(t),v(t)), we can see that (Xz. + (1-X)z«) € Z(t). The con

vexity of Z(t) makes it very convenient to characterize, and therefore

much of the work reported in the literature [4],[6]-[9],[13],[19] deals

with the problem of capture in the absorbtion sense. Example 2 below

shows that Z (t) need not be convex.

(iii) Definitions 2 and 3 are both concerned with closed-loop

capture as opposed to open-loop capture where P knows at time 0 the

open-loop control vro OTx chosen by E. This problem is not very interest

ing from our point of view, however it has received some attention [7],

[10],[11]. We might add that these papers are concerned with open-loop

capture in the absorbtion sense.

The problem of pursuit can now be defined as characterizing the sets
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JL

Z and Z, and finding the closed-loop pursuit control u(t) = iKz(t),v(t))

which achieves capture. We are not restricting ourselves to finding

closed-loop controls which achieve capture in minimum time i.e., controls

it

which guarantee capture in [at] time T (z0) [T(zfl)]. Indeed in this case

the only general technique is to solve Isaac's main equation [12] (see

[13] for an application of this technique for a particular case of

capture in the absorbtion sense). Rather if T (z^) < «» [T(zn) < °°] we

want to find some closed-loop capture which achieves capture in [at] some

finite time.

it

Example 1; (T(zQ) = ~,T (zQ) < »). Consider the 3-dimensional

system z- = u, z„ = v-, z~ = v„ where u £ [-2,2] and

vf « (vl9v2) <= {X(l,l/2) + (l-X)(1/2,1)|0 <X< 1} are the constraints

on the control for P and E respectively. Let M = {(z-,z2,z,)'|z. = z2>.

By inspection we can see that for the initial condition z* = (0,-1,0),

T (zQ) = 2 but T(zQ) = ~.

Example 2: (Z(t) convex, Z (t) not convex). Consider the 1-dimen-

sional system z - u - v with v(t) £ [-a,a] and u(t) ^ [-2a,2a] where

ie

a > 0. Let M = {0}. Then Z (t) = {-ta,ta} whereas Z(t) = [-ta,ta],

it
It might be conjectured that U Z (t) is convex. The next example

T<t

shows that this is not true in general.

Example 3: Consider the 2-dimensional system,
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where u S u, v £ V and U = V is an arbitrary set.

Let M={(z-.zj'lz G [a,b], z - 0}. Then, U Z*(t) = U Z(t)
Tit T<t

- {(r cos 0,r sin 6)f|a£r£b, O£0£ 2irt} which is not convex for

t > 0, unless a » 0.

III. TARGET FUNCTIONS: BASIC PROPERTIES

If F C Rn, then 3F denotes the boundary of F. If G C Rn and z€ kn,

then d(z,G) = inf {|z-x| x e g}.

From now on we consider the fixed system (1), with constraint sets

U, V and target M.

+

Definition 4: A target function is any set-valued function

F : [0,«>) -* Rn such that F(s) is closed for each s, and F(0) Cm.

The basic idea behind the target function approach is given by the

next elementary result.

Fact 1; Let F(s) be a target function and define X(z,s) » +d(z,9F(s))

if zG F(s) and X(z,s) =-d(z, F(s)) if z£ F(s). Let X(Z(),s0) >0 i.e.,

Zq ^ F(8o^# Suppose there exists ctQ >0 and a closed-loop control

u = iJKz,v) such that for every control VrQ ,, (i) a solution to z(t)

= Az(t) + i|;(z(t), v(t)) with z(0) » zQ exists,

(ii) the corresponding function u(t) • i|;(z(t), v(t)) is an admis

sible control,

and (iii) along the trajectory

A.

i.e., F(s) is a subset of R .
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X(z(t), 8Q - ty(t)) > 0 , 0<t<_T,

for some function y(t) >^ aQ. Then starting at z_, P can capture E in

80
time — , using the closed-loop control ij>.

°o

The next (and more important) step is to find target functions F and

closed-loop controls i|/ which satisfy the above condition. We shall re

strict our search to target functions F which are smooth, and for which

t
F(s) is convex for all s. We need to develop some elementary properties

of convex sets.

Definition 5: Let F C R be a closed and convex set. The support

function of F is the function Wp :Rn •> RU {00} defined by

WF(<J>) = sup {(Jj'xIx € f}.

We also define,

Kp = {<J>|WF(<j>) <«>} ,

XF =inf {WF(<|>) I |<J>| =1},

rF ={* IM =1, wF(<j>) =xF}.

The main properties of the support function are stated in the

Appendix. It will be useful to note that X_ >_ 0 if and only if O^F.

Definition 6 [4]; For closed convex sets A and B, their geometric

Of course for the function ^r(s) = {z|T(z) <^ s}, a closed-loop control
which satisfies the conditions of Fact 1 exists by definition (it is

easy to show that S?(s) is closed). The situation is completely analogous

to converse Lyapunov stability results. The difficulty is that in general

we don't know 9f(s).
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different A *. B, is given "by

C = A * B = {z|z + B C a}.

It is shown in the Appendix that if B is bounded, then

Wc - co tWA - WB].

where for any function W : R + R, co [W] is the largest convex function

bounded from above by W.

n *
Definition 7; If A, B are closed convex subsets of R define WA by

W1,B(*)=WAW "V«'
JL JL

(If A i. B = C, we will sometimes write W_ = WA „ when there is no
C A,B

ambiguity). Also define,

X1,B =lnf {W1,B<*> I1*1 -1},

r2>B - UI|*| =i, w2>B(*) =x^ }.

Some properties of these functions are given in the Appendix. Note

XA >_ 0 if and only if B C A.

Let F(s), s > 0 be a target function satisfying conditions CI - C4,

CI. F(s) is convex for s >_ 0.

C2. F(s) is a continuous-function of s for s > 0, in the Hausdorff
*f*

metric.

C3. Kp/gN is closed for each s > 0.

C4. For all <J> G Ky.., s > 0, the partial derivative of Wp, v(4>) with

respect to s exists and is continuous in <J> and s.

t
i.e., For each s and e > 0, there is 6 > 0 such that F(s) C F(sf) + S
and F(s') C F(s) + S whenever |s - sf| <_ 6. £
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Let X(z,s) ° X_, v and T(z,s) = T-, * (see Definition 5)
N • ' F(s)-z N ' F(s)-z

Lemma 1

Let F be a target function satisfying CI - C4. Then

+ n + tt
a) T(z,s) is upper semi-continuous for (z,s) £ R * R .

n+1
b) T(z,s) is differentiable along any direction in R for

(z,s) G Rn xr+. Furthermore, if f = (e,y)f with eG Rn, yG r

then

3X(z,s) A X(z + xe,s + xy) - X(z,s)

3f SSr

*6r(z,s) IP tl «P(.)^(*> +(llWF(8)-z(*»,el

(j) g r(z,s)

c) If e(x), y(x) are such that lim e(x) = e and lim u(x) = y,
t-KH- x-KH-

then

n™ X(z + xe(x),s + xy(x)) - X(z,s) _ 3X . .

x->0+ T 9f

where f = (e,vO '.

Proof; See Appendix.

From now on, unless explicitly stated otherwise, we only consider

target functions which satisfy CI - C4.

f
i.e., For each s, z and e > 0 there is 5 > 0 such that r(s?,z*)

C T(s,z) + S whenever |s - sf| + |z - zf| < 6.

t+R+ = {s|s >0}.
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Let F be a target function. For each z G r let

s(z) = min {s|z G F(s)} i.e., s(z) is the smallest root of the equation

X(z,s) = 0. If X(z,s) = 0 has no root then let s(z) = °°.

Lemma 2

s(z) is lower semicontinuous on the set {z|s(z) < °°}.

Proof: Let z be a sequence converging to z such that s(z.) con

verges to 8 < °°. By definition, X(z.,s(z.)) = 0. Since X is continuous

it follows that X(z,s) = 0 and hence s(z) £ s.

Let u(*)» v(») be any controls, then along any trajectory of (1)

we must have

z(t+x) = z(t) + xe(x) x > 0

where,

e(x) - Az(t) + u(t) - v(t) + Sill

and so

lim e(x) = Az(t) + u(t) - v(t).
x-K)+

Let s be a function such that s(t+x) = s(t) - xu(x) with lim y(x) = y.

Then along this trajectory, we see from Lemma 1 that,

(dX(z(t),s(t))+ Alim X(z(t) + xe(x),s(t) - xy(x)) - X(z(t),s(t))
dt x+0+ T

min [-y tr WWo.(<j>) - <f),(Az(t) + u(t) -v(t))]. (2)
4>Gr(z(t),s(t)) 9s F(8)

nefinltion 8: For z G Rn, u G U, v G V, s > 0, y G R let
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3(z,s,u,v,u) = min [- y~ Wp(s) ((())- <j>f (Az + u - v)] (3)
4> G T(z,s)

Lemma 3

$(z,s,u,v,y) is continuous in u, v, y and lower semicontinuous in

z, s.

Proof; The continuity in u, v, y is clear from (3). The lower

semicontinuity in (z,s) follows from the fact that T(z,s) is upper semi-

cintinuous in (z,s) (Lemma la).

Definition 9: Let £!(F) - {z|0 < s(z) < °°} .

Theorem 1

Suppose there is a« > 0 such that for all z G ft(F), for all v € V,

there exists y _> ou and u G u such that

3(z,s(z),u,v,y) > 0.

s(z )
Then starting at zn G fi(F), P can capture E in time

Proof: Let v(») be any admissible control, and let y~ >^ an, un G u

be such that 3(z0,s(zQ),u0,v0,yQ) > 0. Let u(t) = uQ for 0 < t < t^

where t. > 0 is the largest t1 >^ 0 such that B(z(t),s(zQ) - yQt,u0,v(t),yQ)

>^ 0 for t <_ t_. Since v(t) is continuous from the right it follows from

Lemma 3 that t. > 0.

Therefore at t = t_, X(z(t,),s(zn) - Un t_) ^ 0, because X(zn,s(z0)) = 0

dX +and from (2), (~ (z(t),s(zQ) - liQt)) >_ 0 for t < t... Hence,

s(z(t1)) < s(zQ) - yQ t± < s(zQ) - aQ t^,
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and in particular z(t,) G fi(F).

Next we start at z. = z(t..) and let y.. >_ an, u, G u be such that

3(z1,s(z1),u;.,v1,y ) > 0 where v1 = v(t1) . Let u(t) = u- for t^ <_ t < t^

where t2 .> 0 is the largest t^ >0 such that 3(z(t) ,s(z.,) - y.(t-t1) ,u-,v(t) ,y )

>_ 0 for t- £ t <_ t«. Once again t2 - t > 0, and

s(z(t2)) < s(z1) - yx(t2 - tx) < s(zQ) - aQ tr

Continuing in this way we define u(t) = u., for t. <_ t < t. _ with

s(z(t±+1)) < s(zQ) - aQ t±+1 , i= 0, 1, 2, ... (5)

Either in a finite number of steps s(z(t)) = 0 and z(t) G M (with

s(z0} * *
t £ — ) or t converges to t and z(t.) converges to z(t ), and fromuq i i

(5) and Lemma 2, 0 < s(z(t )) < s(zQ) - aQ t . If s(z(t )) = 0, then

z(t )G m. otherwise 0 < s(z(t )) <s(zj- aQ t . But then z(t )G fi(F).
*Starting at z(t ) we can repeat the procedure. Eventually for some t,

s(z )
s(z(t)) = 0 with t <

0

Remark 3

(i) Theorem 1 and its proof were suggested by [4], In the light

of Theorem 1, [4] can be considered as a proof of Theorem 1 for a parti

cular F (see Section IV.1), and y = 1, for all i.

(ii) If we have a target function F, then (4) automatically gives
s(z0)

us a closed-loop control u = ^(z,v) which achieves capture in time

Thus the pursuit problem reduces to finding target functions which

satisfy the hypothesis of the Theorem.

-13-
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(iii) Sometimes it is convenient to relax the strict inequality in

(4). But then we must assume that the closed-loop control is well be

haved as follows.

Theorem 2

Suppose there is a. > 0 and a closed-loop control u = i|/(z,v) such

that for all z G ft(F), v G v, there exists y >_ a_ satisfying

3(z,s(z),ip(z,v),v,y) > 0. (6)

Suppose that for every admissible control v(0, and z_ G fi(F), the solu

tion to z = Az + ij;(z,v) - v with z(0) = z_ exists, and the corresponding

control u(x) = ^(z(x),v(x)) is admissible. Then starting at z G ft(F),

s(zQ)
P can capture E in time using the closed-loop control \p.

ao

Proof; Let z(t) be a trajectory starting at z G fi(F) and using

admissible control v(») and u(x) = <Mz(x) ,v(x)). By hypothesis, there

is a function y(x) >^ an such that

3(z(t),s(z(t)),u(t),v(t),y(t)) > 0.

It follows from (2) that

(^ (z(t),s(t)))+ >0

for
t

s(t) « s(zA) - I y(x)dx < s(zQ) - aQ t
0

'o> -/ -

Since X(z(0),s(zQ)) = 0, we conclude that X(z(t),s(t)) > 0 so that

-14-



s(z )
s(z(t)) < s(t) < s(zn) - ctA t. Hence z(t) ^M for some t <

h Vs)-z<*>

0 ° ' - %

In some cases (6) implies (4) with a. replaced by a« - 5, as

follows.

Definition 10 [5]: z G ft(F) is said to be regular if

s=s(z)
•-kw« > 0 for all 4> G T(z,s(z))

s=s(z)

If every z G ft(F) is regular then fi(F) is said to be regular.

Theorem 3

Suppose there is a, > 0 such that for all z G ft(F), v e V there

exists u G u, y >^ aft such that

3(z,s(z),u,v,y) > 0. (7)

Suppose that ft(F) is regular. Then starting at z G fi(F), P can capture

s(zQ)
E in time -——- where e > 0 is arbitrary.

a0

Proof: Since ft(F) is regular, it follows from (2), (7) that if 6 > 0,

3(z,s(z),u,v,y-6) > 0

for z G $}(F) . Also \l-6 >^ ar\~& so tne result follows from Theorem 1.

Remark 4

It may be helpful to note that fi(F) is regular if and only if for

all z G F(s(z)), z G interior (F(s(z) + 6)) for 6 > 0 sufficiently small.
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In turn this implies F(s) H mC C f(s') H mC and 3F(s) H 8F(s') Cm when

0<s< s1. (Here MC = {z|z G M}).

Sometimes a target function F may be obtained as the geometric dif-

•J* A

ference of two target functions F , F« i.e., F(s) = F. (s) *. F2(s) (as

for example in Section IV.1). Then instead of using the functions

it it it it *

Ww„\ „»Xfr,s,3 it is more convenient to use the functions W_, v ,X ,T ,s ,3
F(s;-z F(s)-z ' '

which are defined as follows.

WF(s)-z(*> =WF1<s)-«(*> "WF2(s)W' X*<z>s> =min {WF(s)-zW 1*1 -l}>

T*(z,s) =(<J) |<J)| =1, W*(s)_z(<j>) =X*(z,s)},s*(z) =min {s|s >0,X*(z,s) =0}
and

*

s (z) = « if X(z,s) > 0 for all s > 0, and

e*(z,s,u,v,p) - min [- p̂ W*(g)_z«0) +(fj W*(s)_z(«)•(A**i-v)]
<t> e r (z,s)

Let ft (F) = {z|0 < s (z) < °°}. The analogous version of Definition 10

is the following.

*

Definition 11; z G ft (F) is said to be regular if

h Vs)-z<*>
s=s (z)

4> G r*(z,s*(z)).

* it
ft (F) is regular if every z G ft (F) is regular.

*

s=s (z)

> 0 for all

t
In this case it is enough that F^, F2 satisfy CI - C4, provided we use

the functions \J%, X* defined below.
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We can now obtain a development completely analogous to the develop

ment from Lemma 1 through Remark 4. Since there are no subleties involved

we omit this. The interested reader can consult [14].

One further observation will prove useful.

Remark 5

Let F(s) be a target function, or suppose F , F„ are target functions

and let F = F. * F2« Let <I>(s) De a nonsingular n x n matrix function. It

is sometimes more convenient to work with the set function $(s) F(s)

instead of F directly. Since $(s)[F1(s) * F2(s)] = $(s) F^s) * $(s) F2(s),

and since z G F(s) if and only if <Ks) z e $(s) F(s), we can equally well

use the functions W*, v-,, N A/ x ((b) instead of W-, N (<j>), and
$(s)F(s)-$(s)zVT' F(s)-zVY"

W<Ks)F(s)-$(s)z(y) instead of WF(s)_z; the functions X ,Y etc., will also

be changed appropriately. Such a nonsingular transformation will be

employed often in the succeeding sections.

IV. SPECIFIC TARGET FUNCTIONS AND APPLICATIONS

IV.1. Open-loop capture in absorbtion sense. We again consider the

system (1), together with the sets U, V, M.

Definition 12; Starting at z(0) = zfi P can capture E (in the

absorbtion sense) at time T, open-loop, if for all controls vro _-.,

there exists a control ur« , (depending on vrn _-,) such that

z(T,zn,urft Ti»vrn Ti) ^ M. Let T (zn) be the minimum such time; if none

exists set T (zQ) = °°. Let Z (t) = {z|t (z) = t}.

It is easy to see that T (z0) <_ T(z) for all z. In general there is

0, *
no ordering between T (z) and T (z).
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Definition 13;

t

a. Let ^U(t) - J eAT Udx -{f eAT u(x)dx|U[0 t] admissible}

t t

b. Let C\)(t) = f eAT Vdx ={f eAT v(x)dx|v[() -admissible}

c. Let #°(t) = [- m+q^(t)j * qy(t).

The next result is immediate.

Lemma 4 T

a. wqj(T)(<J>) * y max ((b!eATu)dx,WU/(T)(<b) =| max ((b»eATv)dx,

JL JL

b. W n = co [W^O, J where,
a°(T) U (T)

VmW '¥-*«4*I>(W" ^)W -W-M<Y> +W0((T)(y) -̂ T)^

c. zG z°(T) if and only if -eATz G #°(T).

We can use Z as a target function. Equivalently, from Lemma 4c and

Remark 5 we may use the function CL (s) = -e Z (s). Because of the

simple characterization obtained in Lemma 4a, 4b we shall use

JL + +

W 0 = w_M+OI*ty^ instead of W70- Thus let,

t
Recall co[W] = largest convex function bounded from above by W.

tt
W<^i satisfies conditions CI -C4 since V is compact. In order that

^-M+0|S ^-M + wOIsatisfy CI - C4 we must assume that K_M is closed.
This is true if M is described by linear inequalities.
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W*(z,s,(J>) =W* Q As (<j)) =<b'eAsz +^(-(b) +Wq|(;:)(<J)) - Wq,<s)((f>). (8)

JL JL

X (z,s) = Min {W (z,s,(J>) | |<b| = l} (9)

T*(z,s) = {r | |<J>| = 1, W*(z,s,(b) = X*(z,s)} (10)

s*(z) • min (s|s > 0, X*(z,s) = 0}, s*(z) =«, if X*(z,s) > 0 for all (11)

s > 0.

JL J\ JL *\ JL

3 (z,s,u,v,y) = min [-y g^- W(z,s,<J>) + (^ W(z,s,<J)) (Az+u-v)]
<J) e T*(z,s)

min [-y(<b*Ae Sz + max (b'e u - max (b'e v) + <f>'e (Az+u-v)].
<b G r (z,s) (12)

We can now specialize Theorems 1, 2, 3 in terms of the particular func

tions introduced above. As example, we specialize Theorem 3. Let
JL f\ JU J^ ^_ /\

^ (# ) = (z|0 < s (z) < «>}. Following Definition 11, we say that ft (U )

is regular if for all zG ft*(&°), and all <j) G r (z,s (z)),

it it it
,. As (z). , At As (z) ,, As (z) . n
<b'e Az + max (b!e u - max <pfe v > 0.

u £ U v € V

Theorem 4

JL /"|

Suppose that ft (CL ) is regular. Suppose that there is aQ >0 such
JL C\

that for all zG ft (tf_ ) and vG v, there exist y >. aQ and uG u such

that

* * * *
. As (z) , . , ,- v.. As (z)A . r ,, As (z) _^ ,, As (z) ,

»fe (u-v) + (l-y)(bTe x Az > [ max <J>'e u - max <J> e v 'vj
u G U v G V

(13)
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ft it it (\
for all (j) e T(z,s (z)). Then starting at zn G ft ($. ), P can capture E

it

s (zQ)
in time where e > 0 is arbitrary.

Proof; Because of the representation (12), (13) is equivalent to

(7).

Remark 6

The results of [4] correspond to Theorem 4 with the additional

condition that (10) holds for y = 1, so that capture is guaranteed in

it
time s (zn) + e where e > 0 is arbitrary.

IV.2. Extremal Aiming. By imposing additional conditions on the

dynamics, and the sets U, V, M we can use the target functions defined

in Section IV.1 to simplify and make rigorous (for the linear case) the

f
extremal aiming pursuit strategy studied by Krasovskii [9], [15]-[18].

Thus consider system (1) again, and the sets U, V, M. We define the
JL JL JU JL JL

functions W ,X ,T ,s ,3 by the equations (8)-(12). Let zQ f M be
it A it it

a fixed initial state such that s = s (zQ) < °°. Then s is the smallest

tsuch that [e zfl +Qj(t) -M] 3 ^V(t). Consider Assumptions 1 and 2.
jl A *•

Assumption 1; For every tG [0,s ]and every zGe zQ +Qj(t) -C\)(t) f
it

s (z) < °°, and furthermore

it

a[eAs (z) +qJ|(s*(z)) -M] n;<V(s*(z)) =(P*(z)} (14)

[9] is concerned with the linear case only. [15]-[18] consider nonlinear
dynamics with applications to the linear case.

"H" • *Krasovskii considers dynamics which separate as x = A^x + u, y = A2y + v.

He also requires M to be a subspace.
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it

consists of a single point p (z). Here 3K denotes the relative boundary

of a closed convex set K.

Assumption 2; The set (Q|(t) - M) has smooth boundaries i.e., at

every point on the boundary of £}j((t) - M there is a unique outward normal

to the set QJ(t) - M.

From Assumptions 1 and 2 we immediately obtain the next fact.

Fact 2; Suppose Assumptions 1 and 2 are satisfied. Then,

r*(z,s*(z)) = {<J>(z)} (15)

A 4* *

consists of a single vector, for all z G e z_ + Qj[(t) - Qj(t) and for all

0<t<s*(zQ).

Theorem 5

Suppose Assumption 1, 2 are satisfied. Let ip ; R •+ U be any

function such that

* *

<j)t(z)eAs (z)iKz) = max <j),(z)eAs (z)u (16)
u G u

for all zGeAtzQ +Qi(t) -C\)(t), and all 0<t<s*(zQ). (In (16) <f>(z)
is given by (15).) Suppose that for every admissible control vrn *, v-.

LU,S \Zr\) J >

a solution to

z(t) - Az(t) + ij>(z(t)) - v(t), z(0) = zQ, (17)

exists. Then, starting at z(0) = z0, and using the closed-loop control

u = ip(z), P can capture E in time s (zn).
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Proof; From Fact 2, (12), and (16),

it it

3*(z,s*(z),iJ;(z),v,l) =-[max (J>'(z)eAs (z)u - min <b'(z)eAs (z)v]
u ^ U v G v

*

+ (J>'(z)eAs (a)(«[»(z)-v)

- max (b'(z)eAs (z)v - <b'(z)eAs (z)v > 0.
v G V

*

The result now follows from Theorem 2 (for the function 3 instead of 3),

and otQ = y = 1.

We shall now show why the control u = tp(z) is called the extremal

aiming strategy.

*rrAt
iven a point pDefinition 14; Given a point p € [e .z + Qj(t) - M], u G U is

said to be aimed at p if there is an admissible control u,0 , such that

u(0) = u and,

At
e z

t

0+ f eA(t"T)u(x)dX Gp* +M.

Lemma 5

Suppose Assumptions 1, 2 hold. For every zG e zQ +Qj(t) -C\)(t),

and 0 £ t£ s (zn), the control u = tp(z) is aimed at p (z) £ e

+ -|J(s (z)) - M, where p (z) is given in (14).

JL

Proof; By Assumption 1, there is a vector q G M and r G B^^s (z))

such that

As*(z) , *, v
e vz+r-q=p (z).
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it it

Also since {(b(z)} = T (z,s (z)), it follows that 4>(z) is the outward
a _ it t \ jl i.

normal to e z + QJ(s (z)) - M at the point p (z). Hence (J)(z) is
JL

also an outward normal to the set ^}j((s (z)) at the point r. From the

Pontriagin maximum principle, we conclude that any open-loop control

u (t) satisfying

♦'(t)u*(t) = max (|),(t)u (18)
u G U

where ^
A»(s (zn)-t) *

<J)(t) = e <j>(z) , 0 < t <_ s (z)

also satisfies

*

•/
A(s (z)-x) *, NJ
> v v ' ' u (x)dx.

But then from (16), (18) we can assume that u (0) = ip(z) and the lemma

is proved.

Remark 7

(i) In [9], Krasovskii does not explicitly state Assumption 1. He

appears to require it to hold only along every trajectory which results

from the extremal-aiming control. But then it is not very clear how to

define the function ^ precisely.

(ii) The two assumptions are extremely difficult to verify in

general. Some simplification obtains if the dynamics separate and if

M is a subspace as in the previous footnote. Theorem 2 of [6] states a

relatively simple condition which presumably implies Assumptions 1 and 2.
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Unfortunately the proof given there is erroneous, ar)A in fact [14] con

tains a counter-example. In [7], Sakawa is concerned mainly with open-

loop capture in the absorbtion sense. In his concluding remarks he does

give the extremal aiming strategy. He states Assumption 1 explicitly,

and assumes that Assumption 2 holds in general which is incorrect.

Finally there is a serious mistake in [7] which limits its applicability

to target sets M = S .

(iii) In Theorem 5 we have assumed that ty is well-behaved i.e., a

solution to (17) always exists. This can be guaranteed if Assumption 1

is required to hold in an open neighborhood of every zG e zn + ^|j((t) - ^\/(t),
*

0 £ t <_ s (zn), and if in addition (16) uniquely determines iJj(z). Then

one can show that ^(z) is differentiable in z so that a solution to (17)

is guaranteed. (See for instance Theorem 5.1 of [3]).

(iv) Note that the control ip does not depend upon the control of

E.

IV.3. Z(») as a Target Function. Following Pontriagin [4], we can use

the function Z(.) introduced in Definition 3, as a target function. It

follows almost immediately from the definition that for all 6 > 0, v,0 -,

admissible, and z- G Z(t), there exists a closed-loop control

u(x) ° iKz(x),v(x)) such that

z(6>z0'u[0,6]'v[0,8]) G Z(t~6)-

Since Z(0) « M, we can see that the control u(x) = ip(z(x), v(t)) and the

tfunction Z(«) satisfy the hypothesis of Fact 1 with y(t) = an = 1. Thus

t
Z(») may not satisfy C2 - C4, however.
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Z(«) appears to be an attractive target function. In fact it can be

appropriately modified to apply for the time-varying case also [19].

However two points must be kept in mind. First of all, if we are

interested in capture in the sense of Definition 2, then the set Z may

be a highly conservative estimate of Z (witness Example 1). Secondly,

in general it is extremely difficult to compute Z(«). Under some special

cases these drawbacks may be overcome, as follows.

Again consider system (1) and sets U, V, M.

Definition 15; The target set M is said to be absorbing if for all

z- G M, for all admissible v,n _,, there is a u,ft , such that

z(T-z0,U[O,TFv[0,T])eM-

(Evidently M is absorbing if the above condition holds for all 0 < T <_, 6

where 6 > 0 is arbitrarily small.)

The next lemma is straightforward.

Lemma 6

*

If M is absorbing, then Z(t) = Z (t) for t >_ 0.

Remark 8

(i) If M is a subspace, L is its orthogonal complement and it the

orthogonal projection of R onto L, then M is absorbing if for all

z G M, v G V, there is u £ U such that tt(Az + u - v) = 0.

(ii) The requirement that M be absorbing is highly restrictive.

However it appears to be crucial if one wishes to prove existence of an

optimal strategy for a zero-sum differential game where the pay-off to
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*

E is T (zQ) (see the assumptions in [1],[2],[20]).

We now turn to the second drawback noted above. Following [4], for

each positive integer k we inductively define set function Z (•) as

follows

Zk(0) -M

for 0<x<2"k, Zk(x) - {z|-eATz e [-Zk(0) +^{(i) *^/(x)]}

for i2~k <*x < (i+l)2"k, Zk(x) ={z|-eAsz e [-Zk(i2~k) +6)j(s) *S\)(s)}}

-k
where s = x - 12

In other words if i2~k <x< (i+l)2~k and s = X - i2~k, then

z G z (x) if and only if for every control vrn 1 there is a control
L",s J

urA , such that
[0,s]

s

eAsz + f eA(s_a)[u(a) -v(a)]da gzk(i2"k).

Lemma 7

/
0

With this characterization we can obtain the first part of the next

lemma, and the second part follows by a limiting argument (see [4] or

[19] for details).

(i) Zk+1(x) C zk(x) for all x.

oo

(ii) Z(x) = O zk(x) for all x.
k=l

Thus for sufficiently large k, Z (x) is a good approximation for
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Z(x). However the "construction" of Z (x) described above is completely

impractical in general. There is one special case where we can directly

obtain Z(») in terms of its support function. This is the case where

k 0
all the functions Z (•) coincide with the function Z (.) introduced in

Definition 12 above. But first let us define

,Jk(T) =-eATZk(x) 6 {-eATz|zGZk(x)},

,J<X) =-eAT Z(x) &{-eATz|z G z(x)}.

Lemma 8

Statements (i), (ii) are equivalent, (iii), (iv) are equivalent, and

(iii) implies (ii).

(i)A°(T) =^4(x) for 0<x<t

(ii) #°(x) =,Jk(x) for 0<x<t, k=1 2 3

(iv) HjO/T\W is a convex function of <J> for all 0 £ X £ t.

Proof; Since #°(x) ^J^x) =>^2(x) 3 .... DrjUx), (i) and (ii)

are equivalent by Lemma 7 (ii). Since W/%n = co[W n ],
^U(x) #V)

* *

W n = W n if and only if W n (<b) is a convex function of <b,

so that (iii) and (iv) are equivalent. The final assertion is proved

in the Appendix.

From this lemma, we can see that if W_M + ty-j i, . - W^ ... . is a convex

function for each X G [0,t], then it is also the support function of ^(x),

for x G [0,t]. The lemma also shows that this is a quite restrictive
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condition since it implies that the notions of open-loop capture in the

absorbtion sense and closed-loop capture in the absorbtion sense coincide.

The above lemma can also be used to derive the results of Kimura [8].

He considers system (1) with control sets U, V. Instead of the target

set M, suppose that the players P, E wish to minimize, maximize respectively

the payoff function

J(utO,T]'v[0,T]) =lDz(T'20'u[0,T]>v[0,T])l

where zfi is a fixed initial condition, T is a fixed time, and D is a

fixed m * n matrix. The information available to P at time t is z(t)

and v(t), so that the game must be considered in the closed-loop sense.

Also since T is fixed, the situation is analogous to absorbtion type

capture. Kimura proceeds by first considering the open-loop situation.

Thus let

e= min max |Dz(T,zq,u,0 t,,v.q t,)| (19)
V[0,T] U[0,T]

where of course the functions v(«)» u(») range over the set of admissible

controls. Let

M£ = {z ||Dz| < e}.

Then from (19) and Definition 12 it follows that T is the smallest time

t such that zn G Z (t) i.e., T (zA) = T. (Here Z , T correspond to
u g £ u e e

the target M .) Then, Kimura derives conditions which guarantee that
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e(zQ) is the optimum payoff even in the closed-loop case. The condition

turns out to be exactly the same as Lemma 8 (iii). The closed-loop

pursuit strategy can then be obtained from (13) for y - 1. Further sim-

*
simplification can be achieved if th* support function Vl/yO, v

CX£(x)

is strictly convex for x G [0,T] because then the set T consists of

t
only one point. For details see [14].

IV.4. An Example. In this section we present a pursuit problem with

trivial dynamics, namely where the matrix A in (1) is the zero matrix.

The problem can be solved by inspection. We shall solve it by using a

target function. The purpose of the example is to note that none of the

target functions presented so far is applicable to this problem, if the

set V contains at least two points and if it is not contained in U. (V,

U are defined below.) Consider the system

z = u + v (20)

where u ^ U, v €E v with U, V compact and convex subsets of R . The target

M is a subspace of R . Let tt denote the orthogonal projection of R onto

L, the orthogonal complement of M. Then the pursuit problem (20) is

equivalent to (21),

z = u *» v (21)

where z = ttz, u G u = tt(U), v G v = tt(V) and the target is M = {0}.

t
The following notational correspondence may help the reader. -G(t,x,£)

in [8] «-* W* 0 ,V(t,x) in [8] <- e, -F (t,0 in [8] «-• W* ((b)
^^(T)+eATz a a°(T)

and Rt(a) in [8] *~>#°(T).
tt
This projection onto a lower-dimensional problem with target {0} is possible

only because tt commutes with the transition matrix of (20), which is I. This
fact was overlooked in [7], thereby drastically reducing its contribution.
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Fact 3; Starting at z. ^ 0, P can capture E in a finite time if

and only if for all v G v, there is a u G tj and a. > 0 such that

u + v B - yz_ for some y :> an (and then capture is possible in time —).

Proof; Let v G v be such that u + v j> - yzQ for all u G tj, y > 0.

Then for v(t) = v, z(t) f 0 for all t > 0 and all admissible u(«). Con

versely consider the target function F(s) = {sznK Then

ft(F) = {rz |0 < Q < °°} and condition (6) becomes -<J>' (yz + ^(z,v)+v) >_ 0

for all |<f>| = 1, z e ft(F), so that yz + ^(z,v) + v = 0 for all z € ft(F).

By hypothesis, this can be satisfied by a closed-loop control i|> for some

u —an* ^e sufficiency then follows from Theorem 2.

V. COMMENTS

The target function approach gives us an intuitive geometric frame

work which helps infinding strategies for linear pursuit problems. We

hope that the examples of specific functions given have shown that the

approach is also unifying and operational. The results of [22], [23] can

also be derived using target functions. The approach can be extended to

nonlinear dynamics as in [16]-[18], We have not done this. In many

ways the approach is similar to Lyapunov1s second method. As in the

latter theory, general results are easy to come by. Specific target

functions are as difficult to find as specific Lyapunov functions. The

analogy goes deeper. In a recent paper Krasovskii [21] has presented

ideas quite similar to those presented here, but more along the lines of

Lyapunov theory. However he does not develop them.
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APPENDIX

Those statements below which are stated without proof, are elemen

tary.

I. Support functions. Let F be a closed, convex set. Let W_,A_,r
r F r

be as in Definition 5.

Fact Al; W_ ; R -*• RU{w} ts a lower semicontinuous convex, posi-

t
tively homogeneous function.

Fact A2; Let W ; R •> RU{«>} be a lower semicontinuous, convex,

positively homogenous function. Let

F - {z^'z < W((f>) for all <j> G Rn}

Then F is a closed, convex set and W„ = W.
F

Fact A3; Let 6 be a closed, convex set. Then

(i) WF^ = WF + WG

(ii) Wp = WQ if and only if F = G

(iii) WF < WQ if and only if F C G.

Corollary

The following statements are equivalent.

(1) 0 e F.

(ii) WF(<|>) > 0 for all 4>

(iii) \p > 0

Recall d(z,G) = min {|z - x||x G G} and 3F = boundary of F,

i.e., WF(c«f>) = aWp((J)) for all a>0, <\> G r1
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Fact A4; (i) Xp = + d(0,3F) if O^F

Xp = - d(0,8F) if 0£ F.

(ii) If X < 0 then T consists of a single vector. If X = 0, then

0 G 9f, and V- consists of all vectors (J) G r such that |(J>| = 1, and (J>

is an outward normal to a hyperplane supporting F at 0.

II* Let A, B be closed convex sets with B bounded. Let C = A *. B and

* A * A * *
W = W = W - WWC WA,B WA V

Fact A5; C is a closed, convex (possibly empty) set.

Fact A6; Wn = co[WA - W_] = co[Wj.

it
Proof; Since B is bounded, W„ is continuous so that W_ = W. - W,, is

iJ CAB

lower semicontinuous. Since W., WR are positively homogeneous, so is

* r *iW_. Hence co[Wr] is lower semicontinuous, convex, and positively homo-
*

geneous so that by Fact A2, there is a closed convex set C such that

it

W * = co[W_]. Since W * < W. - W-, it follows from Fact A3 that
C ^ C — A is
it it

C + B C A, so that C C c. Next, since C = A ± B, B + C C A, so that

it
W„ < WA - W_. Since W_ is convex, W„ < co[WA - W„] = W * so that C C c

i-> Ad \j 0 — A U Q
•k

But then C = C .

Fact A6; \. > 0 if an only if B C A.

Let F(s), s > 0 be a target function satisfying conditions C1-C4.

Let w(z,8,*) -wF(s)_zw, x(z,s) -ap(8).,, r(z,s) = rp(8)_z.

Fact A7; X is a continuous function of (z,s) G r x [o, <»).

Proof; Since F(s) varies continuously in s, d(z,3F(s)) is a
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continuous function of (z,s). By Fact A4 (i), it follows that X is

continuous.

III. Proof of Lemma 1.

a) Let z G R , s. >^ 0, (J) G r(z.,s.), i = 1, 2, ... be sequences

converging respectively to z, s, <j>. By definition |<J> | = 1 for all i,

so that |<j>| = 1. Next, W(z. ,s. ,<J>.) = X(z.,s.) for all i, and since W, X

are continuous, it follows that W(z,s,4>) = X(z,s) so that (J) G T(z,s).

But this means that V is upper semicontinuous.

b) Set z »=z + xe, s = s + xy. For all <j) G T(z ,s ), and

(|> G T(z,s),

W(zt,st,<J>t) = X(zt,st) <_ W(zT,sT,(J))

and

W(z,s,(j>T) _> X(z,s) = W(z,s,<j>)

so that

W(zt,st,(()t) - W(z,s,<j>T) <_ X(zt,st) - X(z,s)

<_ W(zT,sT,(J)) - W(z,s,(})).

From the mean-value theorem there exists s =s+xy,z =z+xe with

* 3w * *
0 < x < x such that W(zt,st,(J> ) - W(z,s,(f> ) = x[(~ (z ,s ,**))• e

— — X X T. T az X

+ 3W ( * ^* . . ,
3s ^Z *& ,(J>t*^J* Combining this with the left-hand inequality we see

that (since V is upper semicontinuous),

X(z .s ) - X(z,s) ~TT *__ . .st
lim T T_ > min [<§f (2>s,*))'e +y||(2's'*)1
T^H- +er(z,s)
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Similarly, from the right-hand inequality,

X(z ,s ) - X(z,s) aw 3w
lim :L—L- < min [(ff- (z,s,<j>)) 'e + y^ (z,s,(|))]
X+0+ T (J)Gr(z,s) dz ds

c) The proof of this part is essentially a duplication of the above

argument.

IV. Proof of Lemma 8.

We must show that statement (iii) of Lemma 8 implies statement (ii).

This follows immediately from Fact A8 below.

Let M, U_, U2, .... and V., V2> .... be closed convex sets with

% I

V., V0, ... bounded. Define, <-% = (- M + £ U )* ( £ V ).
14 * i=l x i=l 1

Let

Al =d =(- M+Ux) *Vx and for I >1, let A£+1 =(A& +U^) *V^,

Fact A8; Statement (a) below, implies (b).

I I

(a) W^ =W_M + £ WTJ - £ Wv , I =1, ..., L.
%(h. i=l v± i=l i

(b) CL% =A^ , £=1, ..., L.

Proof; For L = 1, the assertion is true by definition. Suppose it

is true for L. Then,

L+l L+l

*/7 -W + £ W - £ W
^L+l i=l i i=l i

= W/7 + W - Wv by hypothesis
0LL UL+1 L+l
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= w. + w„ - w.

*l n:
v

L+l L+l

co[WA + W„ - W„ ],
*L UL+l ¥L+1

W

*L+1

so that #L+1 =A^ by Fact A3 (ii)
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by induction hypothesis

since W/7 is convex,
^L+l

by definition and Fact A6
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