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ABSTRACT

Necessary conditions are obtained for a time-varying network to non-

trivially realize a time-invariant terminal behavior. Networks containing

one type of time-varying element and more than one type of time-varying

element are considered. Some implications of the results are that with

one type of time-varying element present there must be at least two time-

varying components, and with time-varying RC or RL networks there must be

at least two time-varying components of each type in order to realize a

time-invariant terminal behavior. There are in addition certain constraints

on the derivatives of the component values.
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1. Introduction

n-3i
It has been demonstrated that time-varying RLC networks can

realize a time-invariant terminal behavior in a nontrivial way (i.e., the

time-varying components contribute to the terminal behavior). In particu

lar, examples are known of a time-varying R fixed C network having a driv

ing point impedance with inductive reactance1 , a time-varying C or

L and fixed R network having a driving point impedance with negative real

[21
part , and non-reciprocal two ports can be realized with time-varying

[21
resistors, capacitors, or inductors .

In this paper certain necessary conditions are obtained for a net

work containing time-varying components to nontrivially realize a time-

invariant terminal behavior. These results provide partial answers to

the questions regarding how many time-varying elements are required to

realize a time-invariant terminal behavior, and what the relationship

between these elements must be. In particular, it follows from these

results that there must be at least two time-varying components of the

same type, and the derivatives of their component values must never have

the same sign. It is not known, however, if two time-varying components

are sufficient.

2. Preliminaries

n-4i
It has been shown that except for certain degenerate cases, any

linear time-invarient RLCT network of the form shown in Fig. 1 can be

described by the mathematical representation

x(t) = Ax(t) + Bxu(t) + B2i(t) (la)
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y(t) = C^Ct) + Dxu(t) + D2i(t) (lb)

v(t) - C2x(t) + D3u(t) + D4i(t) . (lc)

The p-vector u consists of voltage and current inputs, and the output p-

vector y consists of the corresponding conjugate variables at those ports.

The input current vector i(t) and output voltage vector v(t) are both q-

vectors. The state vector x(t) is assumed to be an n-vector. The matrices

in (2.1) are of orders compatible with the vector dimensions given above.

Associated with the representation in (1) are two signature matrices

which will be denoted by Z_ and E.. The matrix £- is called an external

[31
signature matrix , and is a p x p diagonal matrix with a + 1 in those

positions corresponding to a current and a - 1 in those positions cor

responding to a voltage in the vector u. The matrix Z_ is called an in

ternal signature matrix, and is an n x n diagonal matrix with + l's on the

diagonal. This matrix is determined by the capacitors and inductors in

the network (see [1-3] for details, and [8] for related ideas).

The fact that the representation (1) arises from an RLCT network

imposes certain symmetry conditions on the matrices. These can be simply

stated in terms of the signature matrices I- and Z» as follows:

i) Z2AZ2 = A' iv) Wi - Di
ii) ~*2Bih = ci v) E1D2 = D3

iii) -E2B2 = C2 vi) D4 = D4

where a prime denotes matrix transposition.

Passivity imposes further conditions on the matrices in (1). In
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particular, if the network of Fig. 1 consists of positive R, L, and C's

then the symmetric part of the matrix

-A

C,

-B, -B.

D,

will be non-negative definite. Note in particular, that since D, is sym

metric it must be non-negative definite.

Consider now the dynamical system

x(t) = A(t) x (t) + B(t)u(t) (2a)

y(t) = C(t) x (t) + D(t)u(t), (2b)

which will be denoted by (A,B,C,D). The response y to the input u

with zero initial state at time tQ is given by

y(t) = f C(t)$(t,T)B(T)u(T)dT + D(t)u(t;

where $ is the transition matrix associated with A. Following

call the function w(t,x) = C(t)$(t,T)B(x) the weighting pattern, and a

weighting pattern w is called stationary if w(t,x) = w(t-T,0).

Definition 1: Two systems (A,B,C,D) and (F,G,H,J) are called zero-state

equivalent if D(t) = J(t) and they have the same weighting pattern.

Our main concern will be with systems which are zero-state equivalent

to a constant coefficient system. For (A,B,C,D) to be zero-state equiva

lent to a constant coefficient system, it is necessary and sufficient that
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D be constant and its weighting pattern be stationary, (see [5] and [6]).

In order to characterize these systems completely in terms of A,B,C, and

D we must define the operators 6 and A associated with the system (A,B,C,D)

These operators are defined as follows.

(6C)(t) =*L C(t) + C(t)A(t) (4)

and

(AB)(t) =-^ B(t) +A(t)B(t) (5)

Powers of 6 and A are defined in the obvious way;

(<5kC)(t) =-^ (6k_1C)(t) +(6k""1C)(t)A(t) >(6°C)(t) =C(t) (6)

(AkB)(t) =-^ (AHB)(t) +A(t)(Ak_1B)(t) >(A°B) (t) =B(t) (7)

The following result is proved in [7J (see also [6] for similar

results), and provides the desired characterization of systems which are

zero-state equivalent to a constant coefficient system.

Theorem 1: Let the system (A,B,C,D) be such that A is 2n-2 times contin

uously differentiable (where n is the order of A), B, and C are 2n-l times

continuously differentiable. Then a necessary and sufficient condition

for (A,B,C,D) to be zero-state equivalent to a constant coefficient system

k
is that D and (6 C)B be constant for k = 0,1,..., 2n-l. Also, if (A,B,C,D) is

i k
zero-state equivalent to a constant coefficient system, then (6JC)(A B) is

is constant for all j, k < 2n-l.
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3. Networks with Time-Varying Resistors

Consider the network shown in Fig. 2 in which the linear, passive,

time-invariant RLCT (p+q) port is described by (1), and R(0 is the re

sistance matrix of the time-varying resistance q-port. It will be

assumed throughout that R(t) is a symmetric positive definite

matrix for all t.

The q-vectors i and v in (1) are now related by

v(t) = - R(t)i(t), (8)

which, when used in (1), yields the following state equations for the

network of Fig. 2:

x(t) =[A -B£[D4 +R(t)]_1C2]x(t) +[B1 -B2[D4 +R(t)]_1D3]u(t) (9a)

y(t) =[^ -D2[D4 +R(t)]"1C2]x(t) + [V± -D^ +R(t)]"1D3]u(t) • (9b)

Note that since D, is non-negative definite and R(t) is positive definite,

D4 + R(t) is invertable for all t.

The main result of this section is given by the following theorem.

Theorem 2: Let R(*) be 2n-l times continuously differentiable, and let

there exist some time t at which R(t) is either positive or negative defi

nite. Then, if the system in (9) is zero-state equivalent to a constant

coefficient system, it is zero-state equivalent to the system obtained

from (la,b) by setting i(t) = 0(i.e., the system obtained from Fig. 2 by
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replacing R(t) by an open circuit).

The following implications of Theorem 2 are immediate

a.) If a linear RLCT network containing one linear time-

varying resistor has a time-invariant terminal behavior,

then the same terminal behavior would be obtained after

the time varying resistor was replaced by an open circuit.

b.) Suppose the resistance matrix R(t) is of the form R(t) =

RQ + r(t)R1 where r(t) is a scalar, K) * 0, and R is

positive or negative definite. Then, if the network of

Fig. 2 has a time-invariant terminal behavior, the same

terminal behavior would be obtained after removing the

time-varying resistance network.

c.) In order for a network consisting of linear, fixed R,L,C's

•k

and linear time-varying resistors to realize a time-invari

ant terminal behavior nontrivially (i.e., the time-varying

resistors contribute to the terminal behavior) it is neces

sary that there be at least two time-varying resistors, say

rx(t) and r2(t), with ^(t)* (t) < 0 for all t.

Proof of Theorem 2: From Theorem 1 it is seen first of all that for (9)

to be zero-state equivalent to a constant coefficient system it is neces

sary that D1 - D2[D4 + R(t)]~ D3 be constant (see (9b)). Differentiating,

The term linear time-varying resistor should be understood as a linear
resistor whose resistance r(t) is such that f(t) * 0.
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this gives

D2[D4 +R(t)]*"1 R(t)[D4 +R^)]*"^ =0 (10)

From the symmetry condition v) in Section 2 we have that D. = ED' (note

£- and Y, are their'own inverses). Thus (10) requires.

E1D3[D4 +^^T1 R(t) [D4 +R(t)]_1D3 =0 (11)

Since R(t) is positive or negative definite at some time, say t-, it

follows from (11) that

[D4 +R(tL)]~1D3 =0 (12)

and hence that D = 0. Since D = ED' =0, (9) becomes

x(t) =[A -B2[D4 -R(t)]_1C2] x(t) +BlU(t) (13a)

y(t) = C± x(t) + DlU(t) (13b)

Again using Theorem 1, for (13) to be zero-state equivalent to a

constant coefficient system it is necessary that (6C-)(t)B1 be constant.

From (4) it is seen that

(6C1)(t) =C1[A -B2[D4 -RCt)]"1^] , (14)

and therefore we require

C1[A -B2[D4 -R(t)]"1C2]B1 =const. (15)

Differentiating (15) there results
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C^[D4 -R(t)]""1 R(t)[D4 -RO:)]""1^ =0 (16)

Using symmetry conditions ii) and iii) of Section 2 it is seen that

C2B1 = B2CiZl (17)

and therefore (16) gives

CjB^ -R(t)] 1R(t)[D4 -R(t)]"1 BjCj^ =0. (18)

Since R(t^) is either positive or negative definite, it follows from (18)

that CB. =0.

It will now be shown by induction that C.AB. = 0 for k • 0,1,..., n-1

For this purpose, we need the following lemma.

k.
Lemma 2.: In the system of (13), if C-A B„ = 0 for k = 0,1,..., n, then

(6kC1)(t) =C.jAk and (A^) (t) =A^ for k=0,1,..., n+1.

k iProof: Suppose C^ B2 = 0 for k = 0,1,..., n. The proof that (6JC ) (t) =

C..AJ for j = 0,1,..., n+1 will proceed by induction on j. First of all,

6 C = C so the result is true for j = 0. Suppose (6^C.)(t) = C AJ for

some j <^ n. Then

(6J+1C1)(t) =^ (6^)00 +(6^)00[A -B2[D4 -R(t)]_1C2]

=clAJ+1

since C-A^B- = 0.

The result that (A B-) (t) =A^ follows similarly by first noting
k kfrom the symmetry conditions i) - iii) that C.A B„ = (C«A B.E-)' and thus
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C2A Bx = 0 for k « 0,1,..., n. Q.E.D.

Returning now to the induction proof that C.A B« = 0 for k = 0, 1,...,

n-1, note first of all that it was shown above that C B = 0 and thus the

assertion is true for k = 0. Suppose now it is true for k = 0,1,..., j

where j < n-1. From Theorem 1 it is known that (6^ C-) (A^+1B.) is con

stant, and from Lemma 1 that (6J C ) = C AJ and (AJ B ) = AJ B . Thus

(fi^C^Xt) =C1Aj+1(A -B2[D4 -R(t)]_1C2) (19)

and hence

(<Sj+2C1)(t)(Aj+1B1)(t) =C^2^2^ -C1Aj+1B2[D4 -R(t)]"1C2Aj+1B1 (20)

Since the right side of (20) must be constant, its derivative is zero, and

thus

C1AJ+1VD4 "R(t>l~1 R(t)[D4 -R(t)]"1(C1Aj+1B2)1Z1 =0 (21)

where the symmetry conditions have been used to obtain C-AJ B. = (C AJ B_) I-

Using the fact that R(tx) is either positive or negative definite, it follows

from (21) that C^A?*1^ =0. Thus, by induction, CAkB =0for k=0,1,...,
n-1.

To complete the proof, observe from (13) that if x(tn) = 0 then x(t) is

a solution of

.t

x(t) - I e"vu l/[Bnu(T) - B_[D, - R(T)] xC0x(x)]dX (22))» f eA(t T)[B1u(x) -B2[D4 -R(t)] ^(T)],
-'t
C0
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Since C^A^ «0for k=0,1,..., n-1, it follows that CeAtB =o. There
fore, y(t) is given by

y(t) =f CieA(t "T)B1u(x)dx +DjuCt) (23)
t0

Hence the zero-state response of (9) given in (23) is the zero-state re

sponse of the constant coefficient system

x(t) = Ax(t) + Bxu(t) (24a)

y(t) = ClX(t) + DlU(t) (24b)

and this is the system obtained from (la,b) with i(t) = 0. Q.E.D.

4. Networks with Time-Varying Capacitors

Consider the network shown in Fig. 3 in which the linear, passive,

time-invariant RLCT (p+q) port is described by

x(t) = Ax(t) + BlU(t) + B2v(t) (25a)

y(t) = ClX(t) + DlU(t) + D2v(t) (25b)

i(t) = C2-x(t) + D3u(t) + D4v(t) (25c)

and the linear time-varying capacitance network relates v and i by

i(t) = - q(t) (26)

S(t)q(t) = v(t) (27)
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where S is the elastance matrix for the capacitance network, and is

assumed throughout to be symmetric and positive definite. The only dif

ference between (25) and (1) is simply that the voltage vector v is con

sidered as the input and the current vector i as an output. The symmetry

conditions for (25) are obtained from those for (1) by replacing ^ by - i^

in i) - vi).

Using (26) and (27) in (25) there results

x(t) =Ax(t) + B2S(t)q(t) + Bjuft) (28a)

q(t) = - C2x(t) - D4S(t)q(t) - D3u(t) (28b)

y(t) = ClX(t) + D2S(t)q(t) + D^(t) (28c)

In regards to the network of Fig. 3 having a time-invariant terminal

behavior, we have the following result.

Theorem 3: Let S(*) be 2n-l times continuously differentiable, and let

there exist some time t such that S(t) is either positive or negative

definite. Then, if the system of (28) is zero-state equivalent to a

constant coefficient system, it is zero-state equivalent to the system

obtained from (25a,b) by setting v(t) = 0 (i.e., the system obtained from

Fig. 3 by shorting the capacitive ports).

As in the case of Theorem 2, we have the following immediate implica

tions of Theorem 3:

a.) If a linear RLCT network containing one linear time-varying

capacitor has a time-invariant terminal behavior, then the
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same terminal behavior would be obtained after replacing the

time-varying capacitor by a short circuit.

b.) Suppose S(t) is of the form S(t) = SQ + s(t)S1 with Sx positive

or negative definite. Then if the network of Fig. 3 has a time-

invariant terminal behavior, the same terminal behavior would

be obtained after shorting the capacitor ports.

c.) In order for a network consisting of linear, fixed, R,L,Cfs and

linear time-varying capacitors to realize a time-invariant termi

nal behavior nontrivially, it is necessary that there be at least

two time-varying capacitors, say with elastances s-(t) and s_(t),

with s-(t)s2(t) < 0 for all t.

Proof of Theorem 3: Applying Theorem 1 to (28), the condition that (6 C)B =

constant gives for (28).

[C1, D2S(t)] B,

= C1B1 - D2S(t)D3 = const (29)

-D.

Differentiating (26) there results

D2S(t)D3 ~ 0 . (30)

From the symmetry conditions it follows that D~ = - LDl, and hence (30)

gives

E^ S(t)D3 = 0 . (31)
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However, since S(t) is positive or negative definite for some t it follows

from (31) that D = 0, and thus also D, = - LD! ,= 0. As a result, (28)
13

becomes

A(t)

q(t)J

A B2S(t) x(t)

L-C2 -D4S(t) q(t)

y(t) = ClX(t) + Dxu(t)

Bl

. 0

u(t) (32a)

(32b)

The condition (6 C.)B = const, from Theorem 1 applied to (32) gives

C-A B- - C B S(t)C B = const. (33)

which requires

C1B2S(t)C2B1 = 0 (34)

From the symmetry conditions it follows that C B- = - B^'i^i » and thus

(31) requires

C1B2S(t)B^E1 = 0 . (35)

Since S(t) is either negative or positive definite for some t, it then

follows from (35) that CJB2 = 0.

It will now be shown by induction that C-A B„ = 0 for k = 0,1,...,

n-1. In this case, we need the following lemma.

Lemma _2: In the system of (32), if CAB, >= 0 for k = 0,1,..., n, then

-14-



(<5kC)(t) = (C Ak, 0) and (AkB) (t) =UkB 1 for k-0,1,..., n+1, where

C= (C^ 0) and B= (£l) .

The proof of this lemma is by induction along lines similar to the

proof of Lemma 1, and will be omitted.

Suppose now that C-A B2 = 0 for k = 0,1,..., j where j < n-1

•i.j-2 i+2
Theorem 1 it is known that (6J C) (AJ B) is constant, and from Lemma 2

that (6j+1C) =(C1Ad+1, 0) and (Aj+1B) =U^bJ . Thus

From

'(Sj+2C) =(C^2, C1Aj+1B2S(t)) (36)

(Ad+2B) - AJ+\ (37)

so

J+2 2j+4 j+l, J+li(6J+2C)(AJ,"B) = C1A*J,^B1 - C1AJ,J"B2S(t)C2AjrxB (38)

Since the right side of (38) is constant, and from the symmetry conditions

it follows that C^4*3^ =-(C^*3^)1^, there results from (38)

C1Aj+1B2S(t)(C1Aj+1B2)1E1 =0 (39)

From the fact that S(t) is positive or negative definite at some time

t, (39) implies that C^"*" B2 =0. Hence by induction C.,AkB2 =0for
k = 0,1,..., n-1.

From (32a) if x(tQ) = 0 then x(t) is given by

«, •jf' eA(t T)[BlU(x) +B2S(x)q(x)]dx, (40)
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k AtSince CAB « 0 for k « 0,1,..., n-1, it follows that C^ B2 = 0 and

thus from (40) it follows that

y(t) = / CieA(t "T) Bxu(x)dx +DlU(t) (41)
1

Thus the zero-state response of (28) is the same as that for the system

of (25a,b) with v(t) Z 0. Q.E.D.

It is remarked that a similar result to Theorem 3 holds for time-

varying inductor networks. This result would be obtained by simply chang

ing the voltage drive v(*) in (25) into a current drive i(-), and exchang

ing the inverse inductance matrix V(') for S(«) in the theorem statement.

5. Networks With More Than One Kind of Time-varying Element

We will begin by considering the network of Fig. 4 containing time-

varying resistors and capacitors. The linear time-invariant portion of

the network is described by

x(t) = Ax(t) + Bxu(t) + B2vc(t) + B3iR(t) (42a)

y(t) = ClX(t) + DlU(t) + D2vc(t) + D3iR(t) (42b)

ic(t) = C2x(t) + D4u(t) + D5vc(t) + D6iR(t) (42c)

vR(t) = C3x(t) + D?u(t) + D8vc(t) + D9iR(t) (42d)

and the vectors v-ji-, and v ,i_ are related by
C L> K K
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q(t) = ic(t)

vc(t) = S(t)q(t)

vR(t) = R(t)iR(t)

Using these relations in (42) gives

*(t)

q(t)

A-B3[D9 -f R(t)] XC3 B2S(t)

C2 "D6[D9 +R<t>l"1C3 D5S(t)

-1.Bx - B3[D9 + R(t)] ADy
u(t)

D4 "V°9 +*M1~\

x(t)

q(t)

(43)

(44)

(45)

(46a)

,-1 -1y(t) = (Cx -D3[D9 + R(t)] C3, (D2 -D3[D9 + R(t)]~-LDg)S(t))/x(t)
\q

(t)\
(t)j

+ (J)± -D3[D9 +R(t)j 1D?)u(t) (46b)

The symmetry conditions are stated most compactly in the requirement that

the matrix

be symmetric.

0

0

-I

lR

-17-
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Theorem 4; Let S(*) and R(«) be 2n-l times continuously differentiable

and let there exist some time t- such that S(t^) is either positive or

negative definite, and a time t~ such that R(t~) is either positive or

negative definite. Then, if the system (46) is zero-state equivalent to

a constant coefficient system, it is zero-state equivalent to the system

(42a,b) with iD(t) = 0 and v_(t) = 0.

Observe that this theorem implies that with both time-varying resis

tors and capacitors present one must have at least two time-varying resis

tors and two time-varying capacitors in order to realize a time-invariant

terminal behavior nontrivially. If for example there were two time-vary

ing resistors and one time-varying capacitor, then the time-varying capa

citor could be removed without changing the terminal behavior.

Proof of Theorem 4: Assuming (46) to be zero-state equivalent to a con

stant coefficient system, we have from Theorem 1 and (46b) that

D3[Dg + R(t)]~ V = constant (48)

Using identical arguments as those in the proof of Theorem 2 it is found

that (48) implies that D = 0 and D = 0.

The condition from Theorem 1 that (6 C)B = constant now gives for (46)

C B + D S(t)D4 = constant (49)

or equivalently

D2S(t)D4 = 0 (50)
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Invoking the symmetry conditions and our assumptions on S there results

from (50) that D2 = 0 and D4 = 0.

At this point (46) has been reduced to

x(t)

q(t)

A- B3[D9 + R(t)] XC3 B2S(t)

C2 " D6[D9 + R(t)] C3 D5S(t)
L

' x(t)"
+

V

q(t) 0

_ _

y(t) = ClX(t) + DlU(t)

Now, the condition (<S C)B = const, from Theorem 1 gives

C]AB1 -CjB^D +R(t)]"1C3B1 =const.

u(t) (51a)

(51b)

(52)

Again as in the case of Theorem 2 (see (15) - (18)), (51) will require

2C^ = 0. Next, the condition (6 C)B = const, leads to (note C..B = 0

implies that C-B.. = 0 due to symmetry)

C A Bx - C^ S(t)C2B = constant (53)

and again from symmetry and the conditions on S it follows from (53) that

C1B2 " °-
k k

It will now be shown by induction that C.A B. = 0 and C.A B. = 0

for k = 0,1,..., n-1. We need the following lemma.

k k
Lemma 3: For the system of (51), if C.AX = 0 and C..A B = 0 for k =

0,1,2,..., n, then (6kC) (t) =(C Ak, 0) and (AkB)(t) = (^b) for k=0,
/B V V 0 L)

1,2,..., n+1; where C= (C^ 0) and B= \ *) .
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k kProof: Suppose C..A B.= 0 and C-A B? = 0 for k = 0,1,..., n. By induction,

suppose (<TC) = (CiA > °) for some J ln- Then

J+l, J+l _ n J -1. kJn c(6J C)(t) = (C^^ - C1AJB3[D9 + R(t)] XC3, C1AJB2S(t))

(C^+1t 0)

since C A-'fi. = 0 and C AV « 0.
1 /AdB \Similarly suppose (AJB) = \ 1) . Then

(Aj+1B)(t) = A^3^ -B3[Dg +R(t)]"1C3AjB1

C2AjB1 -D6[Dg +R(t)]"1C3AjB1

1 i 1From the symmetry conditions it follows that C_AJB. = (C.AJB_) %1 = 0

and CJ^B = - (C Aj1!. = 0. Hence (55) gives

(Aj+1B)(t) =
A*+1B,

(54)

(55)

(56)

MMSince (<5 C) = (C , 0) and (A

follows by induction. Q.E.D.

the conclusion of the lemma

k k
Assume that C..A B_ = 0 and C..A B„ = 0 for k = 0,1,..., j with j < n-1.

• i*1;1'.)Then (6j+1C)(t) =(C^*1, 0) and (Ad+1B) from Lemma 3. Thus

(6j+2C)(t) =(C^*2 -C1Aj+1B3(D9 +R(t))"1C3,
(57)

C1Aj+1B2S(t))
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and AJ+2B1 - B3[D9 +R(t)]~1C3Aj+1B1
(Aj+2B)(t) = (58)

C2Aj+1B1 -D6[D9 +R(t)]""1C3Aj+1B1

a+2 i+l
Now, from Theorem 1 (5J C)(AJ B) = const., and using (57) we have

(6d+2C) (Ad+1B) =Cia2J+3 "ciAJ+1VD9 +R(t)]"1C3Aj+1B1 (59)

From the symmetry conditions it follows that C>A B. = (C.AJ B_) E...

Thus, from the right side of (59) being constant there follows

C^^B^Dg +R(t)] 1R(t)[D9 +R(t)] 1(C1Aj+1B3)' =0, (60)

and since R(t_) is positive or negative definite, (60) implies that

CiaJ+1b3 =0.
Again using Theorem 1, (<5 C) (A B) = constant, and from (57) and

(58) there follows

(6j+2C) (Aj+2B) (t) =C^"^ +C1A:3+1B2S(t)C2Aj+1B1 (61)

lj+1L
1 L3

since C.AJ,J"B0 = 0. From symmetry, C0A^+1B- =- (C.Ad+1B0)'E-. Thus
'2 i N r r i

from the right side of (61) being constant we have

(C^4"3^) saKOjA^3^)' =0.

•21-
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Since S(t_) is either positive or negative definite, we have finally that

1+1 k kC AJ B2 = 0. Thus by induction it follows that C A B = 0 and C.A B = 0

for k = 0, 1,2,..., n-1.

To complete the proof of Theorem 4, observe from (51) that if x(t ) = 0

then x is a solution of

x(t) = |" eA(t "T) [BjuCO -B3[D9 +R(t)]~1C3x(x) +B2S(x)q(x)]dx (63)<" - jr
0

At _ At _Since from the above it follows that C.e B? = 0 and C-e B~ = 0, y(t) is

seen to be

CieA(t T)BlU(x)dx +DlU(t) . (64)
0

W-J[
Thus the zero state response of (46) is the same as the zero-state response

of (42a,b) with vc(t) = 0. Q.E.D.

Finally, consider the network of Fig. 5 in which there are time-varying

resistors, capacitors, and inductors. Let R(t) be the resistance network,

S(t) the elastance matrix of the time-varying capacitance network, and T(t)

the inverse inductance matrix of the time-varying inductance network. It

will be assumed that each of these matrices is positive definite and sym

metric for all t. The following result is proven along the same lines as

the previous results.

Theorem 5: Let R(*)> S(*)> and T(*) be 2n-l times continuously differenti

able (where n is the order of the linear time-invariant portion of the

•22-



network of Fig. 5), and let there exist some time t- such that R(t.) is

either positive or negative definite, and a time t_ such that the matrix

Q(t2)
s(t2) 0

o -f(t2)

is either positive or negative definite. Then if the network of Fig. 5

is zero-state equivalent to a constant coefficient system, it is zero-

state equivalent to the network obtained by shorting the time-varying

capacitive ports and open circuiting the time-varying resistive and in

ductive ports.

6. Conclusions

It has been shown that if a network containing fixed R,L,C's and one

type of time varying element realizes a time-invariant terminal behavior,

then the time-varying components will contribute to the terminal behavior

only if the corresponding time-varying resistance, capacitance, or induct

ance matrix has a derivative which is never positive or negative definite.

Thus, it follows that there must be at least a two-port time-varying net

work which is embedded in the time-invariant RLC network in order that a

time-invariant terminal behavior be realized nontrivially. It has been

shown by examples [1] [2] that it is possible to obtain time-invariant

terminal behavior with an embedded three-port time-varying network (resist

ive, capacitive, or inductive). These networks require eight time-varying

elements for a transformerless synthesis. As yet it is not known whether

a two-port is sufficient for the realization of a time-invariant terminal

behavior.
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