

Copyright © 1970, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

CANONICAL STRUCTURE IN ATTRIBUTE BASED

FILE ORGANIZATION

by

Eugene Wong and T. C. Chiang

Memorandum No. ERL-M285"

1 October 1970

Electronics Research Laboratory

College of Engineering
University of California, Berkeley

94720

Canonical Structure in Attribute Based

File Organization

by

Eugene Wong and T. C. Chiang

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

Abstract

A new file structure for attribute-based retrieval is proposed in

this paper. It allows queries involving arbitrary Boolean functions of the

attributes to be processed without taking intersections and unions of lists.

The structure is highly dependent on the way in which the file is to be

used and is uniquely determined by the specification of the allowed queries.

Thus, for example, the structure for retrieval on the basis of ranges of

values of a given attribute would be very different from one where only re

trieval on the basis of a single value is permitted.

The file organization being proposed is based on the atoms of a

Boolean algrebra generated by the queries. The desirable properties

claimed for this structure are proved, and file-maintenance questions

are discussed.

Research sponsored by the Joint Services Electronics Program, Grant AF0SR-
68-1488 and the U. S. Army Research Office—Durham Contract DAHCO4-67-C-0046

-1-

1. Introduction

A basic goal of file organization is to enable a large body of in

formation to be accessible via its content. This is almost always done

by creating a secondary body of information which in some sense reveals

the content of the file. For a large class of file organization tech

niques this secondary body of information consists of lists of accession

numbers or addresses of records. Each list, in turn, consists of the

addresses of all the records in the file having some specified common

property. For example, for a file of personnel records the collection of

all employees with a Ph.D in Electrical Engineering may be such a list.

The lists of accession numbers or addresses which are generated can

be stored separately from the main file in a directory such as in inverted-

file structures, or threaded through the main file by means of pointers

as in multilist type of information storage. Hsiao and Harary [1] have

elucidated the whole spectrum of alternatives which are possible by pro

posing the "generalized file structure" which include multilist and in

verted-file as extreme cases. In this paper we shall address ourselves

to the complementary problem of deciding what lists to generate in the

first place. Of course, the secondary information that needs to be gener

ated must depend on the nature of the main-file on the one hand and on

the addressability that we demand of it on the other. The aim of this

paper is to make clear this dependence and to arrive at an optimal struc

ture.

-2-

In a file structure where some lists of addresses are available,

retrieval of all records belonging to a single list is immediate, but

retrieval of records corresponding to a Boolean function of the lists is

in general time-consuming and difficult. We have found a file structure

which has some highly desirable properties. The lists of addresses to

be stored in this structure are generated according to the specified acces

sibility, i.e., what sets can be retrieved. These lists are pairwise dis

joint so that no intersection ever needs to be performed. They are com

plete in the sense that every retrievable set corresponds to a union of

these lists. Because they are generated by the specified retrieval re

quirement, they are also efficient. In particular, retrieval involving

ranges of values, which is awkward in many file structures, is handled in

a natural way in this structure.

2. File Structure

We shall adopt,with some simplification,the model of Hsiao and Harary

for an unformatted file. A record is a finite collection of attribute-

value pairs. We permit the broadest interpretation of the terms "attribute"

and "value". For example, for the record of a published paper, typical

attributes include author, title, journal of publication, etc., but "content"

can also be an attribute, the value of which is then the entire text of the

paper. Each record is assigned a unique positive integer called its ad

dress. A file is a finite collection of distinct records. We shall only

consider the organization problem involving a single file.

Access to the records is via some of the attribute-value pairs. Let

i>be a fixed subset of the collection of all attribute-value pairs

-3-

appearing in the file. An element of £> is called a keyword. We assume

that only queries in the form of a Boolean function of keywords are per

mitted. For example, let K. = Author-Hemingway and K. = classification-

fiction. Then K A K represents a request for all the non-fiction works

by Hemingway in the file. We assume that every record has at least one

keyword. This is reasonable, since otherwise this record can never be

retrieved. However, we do not assume that each record is uniquely identi

fied by its keywords. Two records having identical keywords will always

be retrieved together.

For each keyword K. we denote by R(K.) the set of all records con

taining K.. We denote the ordered list of addresses of the records in

R(K) by A(K.). In an inverted-file structure the lists A(K±) are stored

separately from the main file in a directory. In a multilist structure

only the first address of each list A(K.) is stored in the directory, and

the remainder of the list is threaded through the main file via pointers.

For example, let a., denote the j— address in A(K.). The directory con-

tains a.,, the record at a.- will contain the keyword K. together with
il* il i

the next address a.„ on the list A(K.). The record at a., contains the

pair (K , a.. -), and at the last address on A(K.) the record contains

(K , 0) to denote "end of list". Thus, in a multilist structure, the

keywords in each record are augmented by pointers pointing to the next

record on the list. Hsiao and Harary have proposed a generalized struc

ture which amounts to breaking up each A(K) into sublists, keeping the

first address in each sublist in the directory, and threading the re

mainder of each list in the main file as in the multilist structure.

-4-

File structures which involve storing the lists A(K.) in some form

are best suited for retrieval involving a single keyword. Multiple-

keyword retrieval involves taking intersections, unions and complemen

tations of the lists A(K). In special applications where certain con

junctions of keywords occur frequently in queries, it has been proposed

to store the corresponding lists obtained by taking intersections, in ad

dition to the A(K.). This ad hoc procedure has obvious limitations. In

general, one cannot store a list for every query that is anticipated. A

different approach involving finite geometry has also been proposed for

multiple-keyword retrieval [2,3]. However, the full advantage of such

an approach is realized only under rather special circumstances.

3. Transformation of Keywords

Let Q be a finite set. Let (* be a class of subsets of Q. A Boolean

set operation is any finite sequence of intersections (TO, unions (U) and

complementation ("*). If (,is closed under complementation and pairwise

union, i.e., Ae()9 Be()=> AUBe(\ Ae(]9 and B<= (\ then 0 is called

a Boolean algebra . A Boolean algebra is closed not only under comple

mentation and union but also under all Boolean set operations, since A n B

can be reexpressed as A U B . If (, is an arbitrary class of subsets of Q

then there is a smallest Boolean algebra containing (,.. We call this mini

mal algebra the Boolean algebra generated by C and denote it by Qrf((,) [4].

Let 7+ be the file, i.e., the collection of all records under consid

eration. Let Q = {K , i = 1, ..., n} be the set of all keywords. Under

the assumption that every record contains at least one keyword, we have

-5-

n

9T = ^ R(K±)

A keyword K^ is said to be true for a record r. if r. contains K . It

follows from the rules of propositional caculus that each Boolean function

f(K^, ..., Kn) is either true or not true for each record. Since we have

defined R(K) as the set of all records for which K. is true, R(K.) n R(K.)
i 1 1 j

is the. set of records for which K, AK. is true, R(K.) U R(K.) is the set
i J i J

for which K.V K. is true, and so forth. Since a query is a Boolean function
J

of keywords, the set of records that are to be retrieved for a query is

always a Boolean set operation on R(K.), i = 1, ..., n. Therefore, if we

denoted = {R(K..), i = 1, ..., n} then ^R^) is Just the collection of

all possible sets of records that can be retrieved. Each set in^B(^3)

corresponds to one and only one query.

Since <£> generates ^R<&), every set in ^(J^R) can be obtained by

Boolean set operations on sets in ^K:. Therefore, if we can retrieve every

set in'-p, i.e., every R., then we can retrieve every set in (R(^P). This

is precisely why by storing the lists of addresses corresponding to the

sets in k we can retrieve every set in ^R(rR). Of course, instead of ^J5,

any collection (, of subsets which generates ^f>(^R) can serve the same

function provided that the union of the sets in 0 is the entire file tT.

In other words the lists of addresses that we store need not correspond

to R(K), i = 1, ..., n. Alternatively, we can store lists of address,

each list of addresses corresponding to a set in a collection 0 which

generates ^(^R). Naturally, the flexibility thus provided should be

taken advantage of in the organization of the file. The basic question

-6-

is: "Is there an optimal (,?" While optimality depends on the criterion

one chooses, we hope to show that the collection of atoms of 'T^To has

strong claims in that regard.

If ^r? is a Boolean algebra of subsets of rt, a set B ^CT> is said to

be an atom of CR if it is non-empty and no non-empty proper subset of B is

in^-R. Thus, atoms are irreducible units of a Boolean algebra. The atoms

of the Boolean algebra ^RC-R) can be generated from R(K.), i = 1, ..., n

in a systematic way as shown in the following theorem.

Theorem 1. Let R(K), i = 1, ..., n, be subsets of 9T such that
n

U. R(K) =9} and let -T>(&) denote the Boolean algebra generated by

"k =(R^), i=1, ..., n}. Let C ,C,..., Cnbe the 2n intersections
n _

of the form .Q -ROC.), where R = R or R. Let C. be so numbered that CJ ,
i- 1 i l i

C2' '"' Cm are nonemPtv wnile cm+i» cm+2» •••» C2n are emPtv-

Then,

(a) C. and C, are disjoint whenever j * k.

(b) B e CR(Cp) implies B n C. = <f> or C. for every j.

(c) Every B € ^C^^) is a union of some of the C.'s.

(d) {C1, C2, ..., C}are the atoms of ^RC^P).

Remark; Although the assertions of the theorem are standard results,

we shall reproduce the proof here for completeness.

proof: (a) We write C. in the form

n _

C. = n R (K.) , R. = R or R
j i=l jv i7 j

If j * k then there is at least one i for which R.(K.) is the complement of

1

-7-

R,(K) so that C. n c = (J>.

(b) For each i and j

R(K.) n R.(K.) = (j) if R. = R
i J i J

= R.(K.) if R. = R
J i J

Therefore, for each i and j R(K.) n c. = C. or <b. The same is true for
i J J

R(K±) n c.. For R(K.) n R(ic) we have

R(K±) n Rd^) n c

= R(K.) n (Cj or (f>)

= C. or (f>
J

It follows that for every B € <13<&), B n c. = C. or (J).

(c) We note that
n m

7}"o UR(K.) = .U c.
' i=l l i=l l

Hence, we can write for B € CR(C|^

m

B = B n ci" = u B n C.
7 1=1 l

Since each B n c. is either C. or <f>, every B in ^R(^p) is a union of the

C.fs for which B n c. = C..
i 11

(d) Each C., being a Boolean combination of R(K.), is in

^RO^P). Since each set in ^R(^P) is a union of the C's, no proper subset

of any C. can be in ^C^P). Thus, every C. is an atom of ^C^p). On

the other hand, any atom of ^R(^P) is non-empty so that it is a union of

one or more C,, i = 1, ..., m. It cannot be a union of more than one C.
i l

because then it would contain non-empty proper subsets which are in'^^p)

Thus, every atom of ^Rc"P) is one of the C.,i = l, ...,m. •

-8-

We now propose a file structure in which we store the lists of addresses

corresponding to the atoms C, i = 1, 2, ..., m, instead of storing the key

word lists A(K.), 1=1, ..., n. Since each C corresponds to a Boolean

function of the keywords, we can regard this process as one of transform

ing the keywords. The advantages of this structure include the following:

(a) Each address appears on one and only one list. Hence, the number

of addresses to be stored is always less than the total number of addresses

in (A(K.), i = 1, ..., n}.

(b) Every set to be retrieved is a union of disjoint atoms. We never

need to take intersection, and we never need to eliminate duplications in

taking union.

(c) The computation procedure in translating an arbitrary Boolean

function of keywords into a union of atoms is exceedingly simple.

Assertion (a) and (b) are obvious consequences of theorem 1. We now

justify assertion (c). A Boolean function f(K_,K„, ..., K) can always be
1 2. n

expressed as a disjunctive normal form as the disjunction of clauses each

clause being the conjunction of some of the K and K.. For example,

f(KrK2,K3,K4) =(K^A^AK^V (K^K^A^)

is a Boolean function in disjunctive normal form. A disjunctive normal

form is said to be developed, if every variable appears once and only once

in every clause either unnegated or negated (never both). If a variable

K does not appear in a clause (f> then by replacing § by (4> A K.)V (<J> AK),

we have obtained clauses containing the variable K.. Therefore, a dis

junctive normal form can always be developed by successive applications

-9-

of this procedure [5]. A Boolean function f(K., ..., K) expressed in a

developed disjunctive normal form is of the form

f(Kr ..., Kn) = V / A K \
j < n \i. < n J /

where each K is either K± or K~ . The set of all records for which f

is true is precisely

R(f) « . W , 0 R.(K..)

= . U n R.(K.)
j£n l <n j i

We recognize immediately that for each j n R.(K.) is either an atom or
1 _ n J 1

it is empty. Hence, each non-void clause in a developed disjunctive normal

form corresponds to an atom, and once a Boolean function is expressed in a

developed disjunctive normal form, the corresponding set of records is

automatically in the form of a union of atoms.

For an example, consider a file with 10 records and 4 keywords. For

the purpose of this example, we do not distinguish between a record and

its address. Let the keywords be denoted by K , K , K , K and let the

records be denoted by 1, 2, 3, ..., 10. Suppose that R(K.), i = 1, ...,

4, are given as follows:

RCKp = 1, 2, 4, 5, 7, 8, 10

R(K2) = 2, 7, 10

R(K3) = 1, 4, 5, 8

R(K4) = 3, 5, 6, 8, 9

-10-

The atoms become obvious if we reexpress the sets R(K.) in a tabular form
i

as follows: R(KX) R(K2) R(K3) R(K4)

1 1 0 1 0

2 1 1 0 0

3 0 0 0 1

4 1 0 1 0

5 1 0 1 1

6 0 0 0 1

7 1 1 0 0

8 1 0 1 1-

9 0 0 0 1

10 1 1 0 0

Table 1

when an entry "1" means the record belongs to the set R(K), and "0" means

it does not. Reading the rows of the table, we can immediately write down

the atoms as follows:

C± = RO^) n R(K2) n r(k3) n r(k4) = (3,6,9)

C2 = R(KX) n r(k2) n r(k3) n r(k4) = (1,4)

c3 = R(KX) n r(k2) n r(k3) n r(k4) = (5,8)

c4 = R(KX) n r(k2) n r(k3) nI(K4) = (2,7,10)

We have numbered the C *s in ascending order of the binany expansion repre

sented by the rows in Table 1, but this is entirely arbitrary.

Now, consider a Boolean function.

f(KrK2,K3,K4) = (K1AK2AK4)V(K2AK3AK4)

-11-

We can develop the formula by rewriting it as

f(KrK2,K3,K4) = (KXAK2AK3AK4)

(K^AK^^AK^

(^A^A^A^)

Of the four clauses only (K A L/\K.AL) corresponds to an atom, viz.,

C, = (2.7, 10). Hence, the set to be retrieved for f(K ,K ,K ,K4) is

just (2.7, 10).

4. Extensions

There are many instances where certain keywords are never used

standing alone. For example, an attribute-value pair like classification-

fict, if used in a query by itself, might well bring forth half of the

file. For an example of another type, consider an attribute-value pair

like (salary - $14608.25 per year) in a personnel file. It is unlikely that

there will be a query asking for all employees earning exactly $14,608.25

per year. A query on salary will more likely be in the form of "find all

employees with salary between $14,000 and $15,000 per year". While such

a query is expressible as a union of some 10 keywords, each of the form

"salary - $14,xxx.xx", this is hardly a reasonable solution to the problem.

The file structure proposed in the last section is flexible enough

to accomodate such situations. . Suppose that instead of permitting any

Boolean function of the keywords to be a query, only certain Boolean

functions are alowed. We note that a single keyword K. may or may not

•12-

be a permissible query. For example, we may only allow keywords involve

salary to appear in unions spanning $1000 intervals. Each allowable Boolean

function corresponds to a set of records in the file. Let (] denote the col

lection of all sets of records corresponding to allowable Boolean functions.

Let ^((y) denote the Boolean algebra generated by (,. In general £R((}) is

smaller than the algebra ^RCkb generated by the individual keywords. The

atoms of CR((_5) give a coarser partition of the file than the atoms of ^RCU)

This is precisely what is wanted. Lists of addresses corresponding to the

atoms of ^o(C) will now be stored and made use of in retrieval. We note

that in this way we can answer queries involving ranges of attribute values

without taking the union of a large number of sets, provided the increments

of the range can be specified a priori.

Since only sets in (,, rather thanCR(C), are ever retrieved, one

might ask whether even a better scheme exists. The answer is "no" in the

following sense: One can show that the atoms of M->((!) give the coarsest

partition of the file such that every set in (is a union of the subsets

of the partition. Furthermore, if the union of the sets in (, is the

entire file Vjf, then every atom of 43((}) appears in at least one set of

(_. • If the union of sets in (, is not C^ then there is one atom (viz.,

T-f minus union of (j) which will not be used and it can be deleted from the

lists to be stored.

5. File Maintenance

In general, the structure proposed here is not more difficult to up

date than the usual structure. It will often be easier. For example, each

record belongs to one and only one list so that the addition or deletion

-13-

of a record requires only knowing whichatom it belongs to. If the atoms

are generated by keywords then the atom to which a record belongs is

simply that corresponding to the conjunction of all keywords in the

record and the negation of all keywords not in the record. For example,

if K.jK^.K-jK, are the keywords and if r.. has K- and K, but not the others

then r1 must be in the atom R(K) n ROO n R(K) n R(K,). If the atoms

are generated by a general set of Boolean functions of keywords, as in

the case discussed in section 4, the situation is more complicated. To

discover which atom a given record is in we have to determine which of

the Boolean functions in the generating set are true and which are false

for this record. The desired atom is then found by taking conjunction of

all the generating Boolean functions which are true together with the

complement of all the generating Boolean functions which are false.

Updating involving changes in keywords, (more generally, changes in

the generating set of Boolean functions of keywords) is more difficult.

Additions involve breaking up of some of the atoms, and deletions involve

coagulation of some of the atoms. Procedure for doing so is routine but

may be time-consuming.

-14-

References

1. D. Hsiao and F. Harary, A formal system for information retrieval from

files, Comm. ACM 13 (1970), 67-73.

2. C. T. Abraham, S. P. Ghosh and D. K. Ray-Chaudhuri, File organization

schemes based on finite geometries, Information and Control 12^ (1968),

143-163.

3. D. K. Chow, New balanced-file organization schemes, Information and

Control 15 (1969), 377-396.

4. P. R. Holmos, Measure Theory, D. Van Nostrand, New York, 1950.

5. W. V. Quine, The problem of simplifying truth functions, Am. Math.

Monthly 59 (1952), 521-531.

-15-

	Copyright notice 1970
	ERL-285

