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Abstract

This paper presents a demonstrably convergent method of feasible

directions for solving the problem min{(f>(x) |g1(x) <_ 0 i = l,2,...,m},

which approximates adaptively, both <|>(x) and V<j>(x). There approximations

are necessitated by the fact that in certain problems, such as when

<Kx) - max{f(x,y)|y £ fi }, a precise evaluation of (f>(x) and V<j>(x) is

extremely costly. The adaptive procedure progressively refines the pre

cision of the approximations as an optimum is approached and as a result

should be much more efficient than fixed precision algorithms.

It is shown how this new algorithm can be used for solving problems

of the form min max f(x,y) under the assumption that Q = {x|gJ (x)
x J y

<0, j=1,..., s} Cl^n, ny ={yl^Cy) <0, i=1,..., t} CRm, with
f» g , C continuously differentiable, f(x,») concave, c,1 convex for

i = 1,..., t, and ft , Q compact.
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I. Introduction

One of the major classes of algorithms for solving nonlinear pro

gramming problems of the form min{(f)(x) |g(x) £0} (with $: TR -+1^- ,g:

Rn -+ lRm continuously differentiable) is the class of methods of feasible

directions. This class of algorithms was introduced by Zoutendijk [1], in

1959. Since then a number of more or less directly related algorithms in

this class have been-proposed by Zoukhovitzkii, Polyak and Primak [2],

Topkis and Veinott [3] and Polak [4]. Incidentally, the Frank and Wolfe

method [5], the Rosen gradient projection method [6] and the Huard modi

fied method of centers [7] can also be considered as belonging to this

class of algorithms. All these algorithms have the following feature in

common: to compute x.+- from x., one must compute both 4>(x.) and V<J>(x^).

Although usually this results in no difficulty, there are some cases where

the need to compute <j>(x.) (and V<Kx.)) leads to severe complications. For

example, suppose that cf>(x) = max f(x,y). Then, to compute (J)(x) we must

bring in a subprocedure (probably also a method of feasible directions)

which constructs a sequence (yj> such that f(x.y3) + <fr(x) as j+». There

fore, if viewed constructively, a method of feasible directions cannot be

applied to such a problem, since we would have to compute an infinite



sequence {x.}, each element of which is only obtainable as the limit point

of an infinite sequence {y3.}. Even if one adopts a nontheoretical point

of view , it is clear that the computation of adequate approximations to

<Kx.) and to V<J>(x.) is bound to be extremely time consuming when (j)(x) =

max f(y,x).
yen

y We shall show in this paper how one particular method of feasible

directions (due to Polak [4]) can be modified and extended so as to elimi

nate both the theoretical and practical difficulties indicated above. A

similar treatment also appears to be possible for some of the other methods

of feasible directions. To obtain our new algorithm, we began by extending

some of the methods for implementing theoretical algorithms discussed

in [8], [9] and [10]. The major source of difficulty in this task

stemmed from the fact that we wanted to obtain an algorithm which can be

used for min-max problems, i.e. problems in which approximations to

4>(x) (which is to be minimized) must be computed by constructing a sequence

{yJ} which maximizes f(x,y)(the assumptions in [9] specifically exclude this

case). Having obtained a method for implementing theoretical algorithms,

which coped with the various difficulties we foresaw, we proceeded to modify

the above mentioned method of feasible directions. The final result is a

rather complex algorithm. While we probably could have covered our tracks

and presented the baffled reader with this complex algorithm without a

word of explanation, we feel that the process by which it was constructed

is important in itself and should be made available to the reader. Conse

quently, in the next section, we present a general method for implementa

tion of certain types of theoretical algorithms. After that we shall con-
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struct a method of feasible directions using function approximations, and,

finally, we shall show that it applies to min-max problems.

II. A Model for Implementation.

LetQ(be a normed linear space and let T be a closed subset of S\.

Suppose that T contains a set A of desirable points and that we wish to

find an x S A. Quite commonly, a theoretical algorithm for finding an

T
x G A will make use of a search function A: T •*• 2 and of a stop rule

(surrogate cost) function c: T -* IK and will have the form below.

2.1 Algorithm Model

Step 0

Step 1

Step 2

Step 3

Select an xn ^ T and set i = 0.

Compute a y £ A(x.).

If c(y) >_ c(x.), stop; else, set xi+1 = y and go to Step 3.

Set i = i+1 and go to Step 1.

2.2 Theorem (Polak [10]). Suppose that c(«) is continuous on T, and that

for every x € T satisfying x £ A there exists an £(x) > 0 and a 6(x) > 0

such that for all x1 e T, with II xf - x» < e(x),

2.3 c(y) - c(x') < - 6(x) ?yG A(xf).

Then, either the sequence {x.} constructed by algorithm (2.1) is finite and

its last element is in A, or else {x.} is infinite and every accumulation

point of {x.} is in A. 1 1

When the functions A(») and c(«) appearing in (1) cannot be evaluated

in a reasonable manner, one needs to approximate A(x) and c(x) somehow.

OO ..IX)

In this paper, we shall use sequences lA.(•)/.* and {C,(O-Lq of approxi-
T R1

mating functions, where A.: T -*• 2 and c'. T -»• 2 for j = 0,1,2...
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We shall assume that the functions c(0, C (•) and A. (•), and the sets T

and A have the following properties.

2.4 Assumptions:

(i) c(«) is continuous on T;

(ii) T is compact;

(iii) Given any x G T satisfying x £ A, there exists an e(x) > 0, a

6(x) > 0 and an integer N(x) >_ 0 such that

2.5 c.(y) - c.(x') < - 6(x) V y G A (x'), V x' G B(x,e(x)),
3 3 J

V c.(x') G C.(x'), V c.(y) S C (y), V j > N(x),
j J j j

where

2.6 B(x,e) = {xf g T|IIxT - xll < e} ;

(iv) Given any integer j >_ 0, there exists aw > - « such that

2.7 c.(x)>w. V c (x) G C (x), V x e T.
3 3 3 3

(v) Given any y > 0, there exist an integer M(y) ^ 0 such that

2.8 |c.(x) - c(x)| <Y V c (x) G C (x), V j > M(y), ¥ xe T. Q

It is not difficult to see that the assumptions in (2.4) are directly

related to those in theorem (2.2) and the requirement that the C. (•) be

approximations to c(*) and that the A.(') be approximations to A(*)« In

terms of these new functions algorithm (2.1) expands as follows.

2.9 Algorithm Model

Step 0; Select an x G T; select parameters r > 0, '/ r '0,1). nnrl
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an integer j >_ 0. Set i = 0, j = jQ, q(0) = jQ, and e - eQ.

Step 1: Compute a c.(x.) G C (x ).
s— J i J •»•

Step 2: Compute ayG A (x±) and ac (y) G c.. (y).

Step 3: If c(y) -c.(x±) >-e, set j=j+1, e=ae and go to Step 1;

else set x+1 =y, ei+1 =e, q(i+D =jand go to Step 4.

Step 4: Set i = i+1 and go to Step 2. •

2.10 Comment: The e-test in Step 3 above serves the purpose of ensuring

that the integer j used at x. was sufficiently large for the approxima

tions A.(x ), C.(x±), C(y), to A(x.), c(x±), c(y), to be adequate. It is

borrowed from a simpler implementation of (2.1) which only approximates

A(-), see (1.3.34) of [10]. •

2.11 Comment: The sequence {q(i)> and {e±} are defined in (2.9) only be

cause we shall need them later. Note that for i = 0, 1,2,3,...

2.12 ei = otHV 'eQ

2'13 Xi+lGAq(i+l) (xi} 'D

The following lemmas will enable us to state the convergence properties

of algorithm (2.9)

2.14 Lemma: Suppose that the algorithm (2.9) jams up at a point x,^ cycling

indefinitely between Steps 3 and 1. Then x± G A.

Proof: Suppose that the algorithm (2.9) jams up at xi and that xi £ A.

Then by (2.4) (iii) there exist an e(x.) > 0 a 6(xj,) > 0 and an integer

N(x.) > 0, such that
i —
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2.15 cj Cy> -Cj(x.) <-6(x±) ¥yGAj(x.), VCj(x.) GCj (x.),

V c.(y) G c (y), V j > N(x±) .

Since the algorithm is cycling indefinitely between Steps 3 and 1, it
00 i00 r / \ \°°

must be constructing sequences {yr>r=:0, {cq(i)+r (xi)J±=0 and lcq(i)+r(yr^r=0'

such that

2.16 yr eAq(1)+r(x±), ^qii)+t(\-> e cq(.)+r(x.). cq(i)+r(yr) e

and

2-17 Cq(i)+r<V "Cq<i>+r<V >"aq(i)+r£0 =""'V r"0'1-2-.- •

However, there exists an integer p > 0 such that

2.18 aq(i)+peQ <6(x±) and q(i) +p>N(x±) .

Consequently, for r > p, (2.17) contradicts (2.15) and (2.18) and hence we

conclude that we must have x G A. Q

2.19 Lemma: Consider the sequences {e.} and (q(i)} generated by algorithm

(2.9) while constructing a sequence {x.} C T. If {xj is infinite, then

q(i) -»- °° and e(i) •> 0 as i + ».

Proof: Suppose that {x.} is infinite. Then {e.} is an infinite, mono-

tonically decreasing sequence bounded from below by zero. Consequently,

e -*• e > 0 for i -*- °°. Suppose that e > 0. We shall show that this
i —

leads to a contradiction.
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Since e •»• e* and e > 0, it follows from (2.. 12) that there exists

an integer NT such that for i >_ Nf e = e x= ... = e and q(i) = q(i+D =

= q* . It now follows from the test in Step 2 of (2.9) that for i >_ N1,

Vi+i/V ecq*(xi) and "qd+D^i+i' ecq*(xi+i>- We may therefore
write

2'20 Cq(i+l)(xi+l) "Cq(i+D(Xi) =Cq*(Xi+1> "Cq*(X±) 1
- e.,n -- e* Vi>N1,

i+l —

where c*(x±) =c a+1) (x±) and c*(x±+1) =cq(±+1)(x±+1).
q q

Therefore, we must have c #(x )+ - °° as i+ « . But, by (2.7) c (̂x±) _>
q * q

u > _ oo and hence we have a contradiction. Therefore e =0. Finally,

since e. + 0as i•> °°, it follows from (2.12) that q(i) -»• °° as i •*• °° . •

2.21 Lemma: Suppose that algorithm (2.9) constructs an infinite sequence
00

{x }°° rt. Let A denote the set of accumulation points of ix }. 0» Then,
i i=0 x x u

given any y > 0, there exists an integer P(y) such that

2.22 min{lx -x*D|x*€ A}<Y V1>P(y).

Proof: Since {x.}?- C T and T is compact by (2.4)(ii), A is a nonempty,

compact set. Hence the min in (2.22) is well defined. Now suppose that

there is no integer P(y) for which (2.22) holds. Then there must exist a

subsequence {x.}. *= v» K C {0,1,...} such that
i i c K.

2.23 min{llx.-x*H |x*gA}>y Vi^K
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But {x } is a compact sequence and hence there exists a subsequence
i i G K

{x } ,with K. C K such that x. •»- x as i -»• ~, for iG K±. By the
i i G Kx 1 i

definition of A, xG A, and, since x± -* xas i-• °° for iG 1^, (2.23)

cannot hold for all iG^ CK. Consequently (2.22) must hold. •

2.24 Theorem: Algorithm (2.9) will either jam up at a point x±i cycling

indefinitely between Steps 3 and 1, in which case x± G A, or else, it will

construct an infinite sequence {x.} which has at least one accumulation

point in A.

Proof: The first part of the theorem was established in lemma (2.14).

Hence, suppose that {x.} is infinite. To obtain a contradiction, suppose

that An A= <j>, where A is the set of accumulation points of {x.^}. Since

T is compact, A is a nonempty compact set, and hence (because we have as

sumed that A n A = (J)) it follows from (2.4) (iii) that there exist an e^ > 0,

a 6. > 0 and an integer N. >_ 0 such that

2.25 c.(y) -c.(x') <-6. VyGA(x'), VxT GB(x*,eA),

Vc.(y) Gc.(y), Vc.(x') GC(x»), Vx* GA, Vj>NA .

Let P(e.) be defined as in (2.22) (for Y = ^A) • Then, since q(i) •> °° as

i -• oo by lemma (2.19), there exists an integer N1 >^ p(e^) such that ^^ 1 NA

for all i >_ N. , and hence

2•26 Cq(i+1) (Xi+l> "Cq(i+1) (Xi) ""6A V°q(i+1) (Xi> * °q(i+1) (*i>

* «,(l+l)(xi+l) 6 Cq(i+l)(5W V l ± Nl •

Now, from (2.4)(v)(see (2.8)), we conclude that there exists an integer
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N >_ N such that

2.27 |c.(x±) -c(Xi)| <6A/4 Vc^x.) G ^(x..), Vi>N2, Vj>q(i) .

Hence, since q(i+l) >q(i), for i = 0,1,2,...,

2.28 cq(i)(x.) >c(Xi) -«A/4 >cq(1+1)(Xl) -6A/2 Vcq(i)(x.) eCq(.)(x.),

Vcq(i+l)<Xi)eCq(i+l)(xi>ViiN2 •

Combining (2.28) with (2.26), we now get

2•29 Cq(i) <*i> i Cq(i+1)<V "V2 - Cq(1+1) (Xi+l) +&M*

VVd'V SVi)0^' VCq(i+l)(Xi) S C,(i+l)^i>'

V cq(!+!)<*!+!> € Cq(i+l)(jti+l)* * £iN2'

and therefore we must have c ,. *(x.)+ - °° as i -* °°, for any c , .(x ) G
q(.i; 1 qvij i

C ,.v(x.), i = 0,1,... .
q(i) l '

•k

Now let KC {0,1,2,...} be such that x± -* x G A as i •* °°, iG K.

Then, by (2.4) (v), and lemma (2.19), there exists an integer N3 >_ 0 such

that

2.30 Icq(i)(x.) -c(x.)| <|c(x*)|/4 Vcq(i)(x.) 6Cq(1)(x±),
V i > N3, i G K,

and also, since c(«) is continuous,

2.31 |c(x.) -c(x*)| <|c(x*)|/4 Vi>N3, i€ K,

where c(x ) > - °° because c(*) is continuous on T. Combining (2.30) and
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C2.31), we obtain,

2.32 c,4v(x.) >c(x*) - |c(x*)|/2 >-f |c(x*)| >-«,

V c ,..(x.) G C ,.v(x,), V i > N , i G K,
q(i)v i q(i) i — 3

which contradicts our previous conclusion that

c ,.x(x.) -*•-«> as i -»• oo for any c ,.*(x.) G c , . (x ), based on the
q(i) i qvi; j- qv-w j-

hypothesis that A H A = (j). Hence A n a ^ and we are done. Q

Theorem (2.24) states that when the sequence {x } is infinite, it must

have at least one accumulation point in A, the set of desirable points.

Clearly, if x. -* x as i -^ °°, x GA. The reader may well wonder as to

the value of algorithm (2.9) when the sequences it constructs have more

than one accumulation point. Although at present, we cannot make a gen

eral statement, we can assert that it is sometimes possible to add to an

algorithm of the form of (2.9) a simple subprocedure which sifts out a sub

sequence, all of whose accumulation points are in A. In such a case, we

obtain an algorithm of value. In particular, we shall see that the above

assertion applies to the algorithm which we shall develop in the next

section.

With these preliminaries out of the way, we shall now construct a new

method of feasible directions, using function approximations.

III. An Implementation of the Polak Method of Feasible Directions

Consider the problem

3.1 min{(f)(x)|g(x) < 0} ,

-10-



where <|>; Kn -*• K1 and g: 1B-n -* 1R-m are continuously differentiable

functions. Let Q C 1R.n be defined by

3.2 ftx = {x|g(x) < 0} .

Now, for any x G Q and for any £ > 0, let the index set I (x,e) C {l,2,3,..,m}
x — x

be defined by

3.3 Ix(x,e) = {q G{l,2,..,m}|gq(x) >- e} ,

let S C TR be defined by

3.4 S = {hGlR^ilhil^ < 1} ,

and let 0: ft x 1R-+ -+ "R be defined by
x

0(x,e) = min max{< V<J)(x) ,h >; <Vgq(x),h >, q GIx(x,e)} .
hGS

Note that 0(x,e) < 0 for all x G n , for all e >^ 0. We can now state a

well known result.

3.5 Proposition: Suppose that xG Q solves (3.1), i.e. <f>(x) =

min{<J>(x)|x e ft > • Then for every e>0 0(x,e) = 0. •

The Polak method of feasible directions is an algorithm for finding

points x in ft such that

3.6 0(3,0) = 0,

i.e., it finds points in 0, which satisfy the optimality condition (3.5).

3.7 The Polak Method of Feasible Directions (see (4.3.47) in [10]).

Step 0: Compute an x G fi ; select parameters £„ > 0; a G (0,1), set i = 0,
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1 1Step 1; Set e = eQ .

Step 2: Compute 0(x ,e ) and an h(x. ,e ) G s such that

3.8 0(xj.,e1) =max{<V(j)(xi),h(xi,e1) >;<Vgq(XjL) ,h(xi,e1) >,

qG Ix(x±,e )} .

Step 3: If Qix.yS1) = 0, compute 0(x.,0) and go to Step 4; else, go
1 -l 1

to Step 5.

Step 4: If 0(x.,O) = 0, set x = x. and stop; else, set e = o^e

and go to Step 2.

Step 5: If 0(x.,e ) <_ - e , go to Step 6, else set e = o^e and go

to Step 2.

Step 6: Set X = 1.

Step 7: Compute

3.9 G=g(x± +Xh(xi,e1))

Step 8: If G < 0, go to Step 9; else set A = — and go to Step 7.

Step 9: Compute

3.10 *=(J>(x.+Xh(xi,e1)) -4>(x.) -•|<V(f)(xi),h(xi,e1) >.

Step 10: If t(i > 0, set X = — and go to Step 7; else, set x.+- =

x. + Xh(x.,e1) and go to Step 11.

Step 11: Set i = i+1 and go to Step 1.

The above algorithm is derived from a Zoutendijk method of feasible

directions [1] by means of two simple modifications. The first modifi

cation is to substitute the Armijo step size rule ip < 0 (see [11] ) for
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Zoutendijk's step size rule min^^+Xhfr^e1)! X>0} . The second is to
make the method time invariant by returning from Step 11 to Step 1 (Zou

tendijk's method returns to Step 2). With Armijo's rule, the step size X

can be calculated in a finite manner; with Zoutendijk's it cannot. The

reason for the second modification is that it results in an algorithm which

can be examined within the framework of theorem (2.2). Zoutendijk's origi

nal method requires much more complex machinery for analyses. Computation

ally, algorithm (3.7) is sometimes superior and sometimes inferior to

Zoutendijk's method (assuming, of course, that the Armijo step size rule

is also used to modify Zoutendijk's method). In practice, for best re

sults, one would tend to alternate between the time varying and time in

variant methods in the course of a long computation.

Now suppose that to compute <J>(x) and V<j>(x) we must use a subprocedure

which constructs two sequences, {<j>. (x)}~ ,{V <Kx)}jas(), such that ^ (x) ->
<j>(x) and V.(J)(x) -»• V(f>(x) as j + ". In constructing an algorithm which trun

cates these sequences we shall need the following hypotheses to hold (c.f

(2.4)).

3.11 Assumptions:

i) The set ft in (3.2) is compact.

x 1R i 1Rn
ii) For j = 0,1,2,..., $.: "Rn ^ 2 ,V.$: "Rn -> 2 are functions

such that given any y > 0 there exists an integer M(y) >. 0 such that

3.12 |(J>.(x) - <J>(x)| <y VxG nx> V (j» (x) G ^(x), Vj>M(y) ,

3.13 HV,(J>(x) - V4>(x)» < Y V x e fl v V.<f>(x) G V *(x), V j > M(y).
J x j j
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iii) Given any integer j >_ 0, there exists a w > - oo such that

3.14 (f>.(x) >w V (j).(x) G $ (X), V x G ft D
j ~~ 3 3 3 x

3.15 Definition: We define 0: ft x~Rn x"R + K and H:

ft x"Kn xTR+ - 2S as
x

3.16 0(x,u,e) =min max{<u,h >;<Vgq(x),h >,qG Ix(x,e).}
hGS

and

3.17 H(x,u,e) = { h G s|0(x,u,e) = max{<u,h >;

<Vgq(x),h >,qG ix(x,e)}} •.

Note: 0(x,u,e) and a vector h G H(x,u,e) can be computed by solving a

linear programing problem (see Sec. 4.3 in [10]).

We shall now modify algorithm (3.7) so as to make it correspond to

algorithm Model (2.9), and, in addition, we shall add a sifting subprocedure

to extract a subsequence {x.}. c. v all of whose accumulation points x will
1 1 ^ K.

ft
be shown to satisfy 0(x ,0) = 0. For the sake of convenience, we break up

the following algorithm into two subprocedures.

3.18 Implementation of Algorithm (3.7)

Subprocedure I: Method of Feasible Directions with Approximations

Begin: Step 0: Select parameters ej >0, £Q >0, eQ >0, Xmin G (0,1],
ax G (0,1), a2 G (0,1), a3 G (0,1) and an integer jQ > 0;

2 _ 2compute an x0 G n ; set i=0, j=jQ, k=0, e "^

c-3 c3
£ = £0 '

Step 1: Set e = e .
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Step 2: Compute a<\>.(x±) e *.(x±) and aV^Cx^ e Vj$(xj.).

Step 3: Compute 0(x. ,V.(J)(xi) jG1) and avector Mx^V^x..) ,e )
GH(xi,Vj4)(xi),e:L).

Step 4: If 0(x.,V.<J)(x.),e1) =0, compute 0(x ,V.*(x±) ,0) and go
1 j X J

to Step 5; else, go to Step 6.

Step 5: If §(x ,V.<Kx±),0) =°> set x' =x±, set ^(x*) =<f\. (x±)
and go to Step 14; else set £ = c^E and go to Step 3.

Step 6: If 0(x±,V (f)(xi),e1) <-e1, go to Step 7;. else, set
£ = cl£ and go to Step 3.

Step 7: Set X = 1.

Step 8: Compute G= gfr^+XMx^V <Kx±) ,£ ))•

Step 9: If G < 0, go to Step 10; else, set X = X/2 and go to Step 8.

Step 10: Compute a$. (xi+Xh(x±,V <J>(x±) ,£1))e *j(x1+Xh(x±,Vj4>(xi),e )).
Step 11: Compute D= (J). (x±+Xh(xi,VA(*±) ,£ )) -^ (x±) "

|<Vj(()(xi),h(xi,VjcJ)(xi),£1) >.
Step 12: If D >0go to Step 13; else set x' = x±+Xh(xi,V^d)(xi) ,£ ),

set (Mx1) =(J) (x.+Xh(xi,V.(|)(xi),£1)) and go to Step 14.
Step 13: If X> Xm- /2J> set X= ^/2 and 8° to SteP 8J else set

x' = x., set <f>.(x') = (|>.(x.) and go to Step 14.
i J j i

Step 14: If (J).(x') - <|>.(x.) <" £2> g° t0 SteP 155 else> set 3=J+1>1 j 2 l —

2 2
set E = a_£ and go to Step 1.

2Step 15: Set x±+1 = x', set q(i+l) = j, e±+12 = e2.

Note that a V.(f)(x.) G V.$(x.) may already be available because of its
computation inJStep 17 and hence need not be recomputed.
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2Comment: Do not compute q(i+l) and e.+1. These quantities are

introduced only for the convenience of the proofs to

follow.

End: Step 16: Set i = i+1.

Subprocedure II: Sieve

Begin: Step 17: Compute a V <J>(x<) e V $(x').

3
Step 18: Compute 0(x', V.<j>(x'),e )•

Step 19: If (3(x',V.<J>(xt),£3) 1 - £3, go to Step 20; else, go to

Step 1.

3 3Step 20: Set z. = xr, set £fc = £ ,set p(k) = q(i).
3

Comment: Do not compute £, and p(k). These quantities are intro

duced only for the convenience of the proofs to follow.

End. Step 21: Set e = ajz ,set k = k+1, and go to Step 1. Q

We shall now show that Subprocedure I (Steps 0 to 16) of algorithm

(3.18) corresponds to the model (2.9), with the functions A (•) being de-
2

fined by the Steps 1 to 13 of (3.18), and with $.(•), e and a? in (3.18)
3 *•

taking the place of C.(-), £ and a in (2.9). The additional parameters

in Step 0 of (3.18) are used either to define the A.(*) or in the sifting

Subprocedure II, defined by Steps 17 to 21 of (3.18).

First, we must show that the maps A.(«) are well defined by Steps 1

to 13 of (3.18), i.e. that Subprocedure I of (3.18) cannot jam up before

reaching Step 14. We shall do this in the following lemmas.

3.19 Proposition: For any x G ft , there exists a p(x) > 0 such that
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3.20 I (x,£) - I (x,0) V e € [0,p(x)],
X x

3.21 0(x,u,£) =0(x,u,O) V£G [0,p(x)], VuGlRn.

3.22 Lemma: Subprocedure I of algorithm (3.18) cannot cycle indefinitely

in the loop defined by Steps 3 through 6.

Proof: Suppose that 0(x.)u,O) = 0 for some uG1R. . Then, since

I (x ,0) C I (x^E1) for all £ > 0, we must have
x i x i —

3.23 0 = 0(x.,,u,O) < 0(x±,u,E ) < 0,

and hence ©(x.^E1) =0. So that when ©(x^V^Cx^ ,0) =0, algorithm (3.18)

proceeds from Step 3 to Step 4 to Step 5 and hence to Step 14. Now

suppose that 0(x±,V (Kx^O) <0. It then follows from proposition

(3.19) that when £ has become reduced to the point where £ £

min{p(x ), - 0(x ,V.<j>(x.) ,0)}, which is a finite process, we shall have

0(x ,V.cj)(x ),£1) < - £ and algorithm will proceed from Step 6 to. Step 7.

Consequently, algorithm (3.18) cannot jam up in the loop defined by Steps

3 to 6. •

3.24 Proposition: Suppose that x. G ft , u G "R , e > 0, and j j> 0 are

such that 0(x..u.e1) <- e1. Then there exists aX(x±,£ )>0such that

3.25 g(x,+Xh) <0 VXG[0,X(x^E1)], VhGg(x .u^1). •
l

3.26 Lemma: Suprocedure I of algorithm (3.18) cannot cycle indefinitely

in the loop defined by Steps 8 and 9.

Proof: If in the execution of algorithm (3.18) Step 8 has been reached,
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•v 11
then by the test in Step 6, we must have 0(x. ,V.<j>(x.) ,£ ) £ - £ , with

£ > 0. It therefore follows from proposition (3.24) that, after a finite

number of halvings, X will be sufficiently small to satisfy G < 0 in Step

9. Hence algorithm (3.18) cannot jam up in the loop defined by Steps 8

and 9. •

We have thus established that Steps 1 to 13 of algorithm (3.18) define
ft

a map A.: ft -*• 2 (xT G A.(x.) with xT defined in Step 5, in Step 12,
3 x j l

or in Step 13, as may be appropriate). To show that Steps 0 to 16 of

algorithm (3.18) correspond to algorithm model (2.9), we introduce the

following correspondences.

3.27 Correspondence Table:

Algorithm Model (2.9) Subprocedure I of (3.18)

9( 1Rn

T ft
X

A.(.) Steps 1-13

CjCO v°
c(-) <KO

A {x G ft |0(x,O) = 0} .

To conclude that theorem (2.24) applies to Subprocedure I of algorithm

(3.18), we must show that the assumptions (2.4)(i)-(v) are satisfied. It

follows directly from (3.1) and (3.11) that the assumptions (2.4)(i),

(2.4)(ii), (2.4)(iv) and (2.4)(v) are satisfied. It remains to show thai:

assumption (2.4)(iii) is satisfied. This will require several lemmas.
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Definition: For any x G ft and any £ > 0, we define

3.28 B (x,£) ={x' GftJllx -xll <£>. D
x x

3.29 Proposition: Given any x G ft , there exists a p(x) > 0 such that

3.30 I(x',£) CI(x,0) Vx' GB(x,p(x)), V£G [0,p(x)]. D
XX x

3.31 Lemma: Given any x G ft and any Y > 0, there exists a p(x,Y) > 0

such that

3.32 0(x',£) < 0(x,O) +Y ¥ x' G B (x,p(x,Y)), ¥ £€ [0,p(x,Y)]-

Proof: Let x G ft and Y > 0 be given. We define m: "R -*-1ft by

3.33 m(z) = min max{< V(J)(z) ,h >;<Vgq(z),h >,qG IxCx,0)}.
hGS

Clearly m(') is continuous and

3.34 m(x) = 0(x,O).

Now, since m(*) is continuous and because of (3.30), there exists a

p(x,Y) > 0 such that I (x',£) C I (x,0) and m(x') £ m(x) + y for all
X x

x' G B (x,p(x,Y)), for all eG [0,p(x,Y)]« Consequently,

3.35 0(x' ,£) < m(x') < m(x) + y = 0(x,O) + y,

V x' G B (x,p(x,Y)), V £ G [0,p(x,Y)3,

and hence we are done. I—I

3.36 Corollary: Given any x G ft and any y > 0, there exist a o(x,y) > 0

and an integer M'(y) such that
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3.37 §(x',u,£) < 0(x,O) + y V x' G B (x,p(x,Y)), ¥ u G V.$(xf),
x j

¥ j > M'(Y), ¥ £ G [0,p(x,Y)].

Proof: Since S is compact, it follows from (3.13) that there exists an

integer M' (y) such that

3.38 |<u,h> - <V<Kx'),h >|<Y/2 ¥ x' G ftx, VhG S,

¥ u G V.$(x'), V j > M'(Y).

Hence,

3.39 0(x',u,£) < 0(x',£) + Y/2 V x1 e ft v u e V.$(x'),
— x J

¥ £ _> 0, ¥ j > M'(y).

Finally, utilizing (3.39) and (3.32), where we replace Y by y/2, we obtain

(3.37). •

3.40 Lemma: Suppose that x G ft satisfies 0(x,O) < 0. Then there exists

an £(x) > 0 and an integer N(x) > Q such that for all x. G B (x,£(x)) and

for all integers j >_N(x), algorithm (3.18) satisfies 0(x. ,V.cf)(x.) ,£ ) <_ - £

in Step 6, and reaches Step 7, with £ satisfying

3.41 E1 > E(x)

Proof: Suppose that x G ft is such that 0(x,O) < 0. Then, by corollary

(3.36), there exist an p(x) > 0 and an integer N(x) >^ such that

3.42 0(x. .u.e1) <\ 0(x,O) <0 ¥x. G B (x,p(x)),
i — ^ IX

¥uG V.$(x.), ¥ E1 G [0,p(x)], Vj > N(x).
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Let E(x) =min{p(x), -^0(x,O)}. Then, by (3.42),
2

3.43 ©(x.^E1) <-E1 Vx. G Bx(x,E(x)), ¥uGVA(x±),
¥ e1^ [0,E(x)], ¥ j > N(x).

Since Step 6 of algorithm (3.18) requires that (3.43) be satisfied

with E1 = oE tZ, for some integer p_> 0, we see that if we set e(x) =

a£(x), then (3.43) can always be satisfied with £ =a£ £Q > e(x), for

some integer p, and hence we are done.a

3.44 Corollary: Suppose that x G ft satisfies 0(x,O) < 0, and suppose

that £(x) > 0 and the integer N(x) >_ 0 are such that the conclusion of

lemma (3.40) holds. Then there exists an integer Z(x) >_ 0 such that

3.45 g(x> +(I)Ph) <0 ¥x± GBx(x,£(x)), ¥hGH(x.,u,E1(xi,u)),
¥ uG V.$(x±), ¥ j > N(x),

p = £(x),Mx)+l,Mx)+2,...

where £1(x ,u) is the value of £ at which algorithm (3.18) passes from

Step 6 to Step 7, for the computed uG V^(x.^).

Proof: By lemma (3.40), for j> N(x) and x± G Bx(x,£(x)), £ (x±,u) >e(x) >0

¥ u G V $(x ). Let x. G B(x,£(x)) and u G V.<l>(x.) be arbitrary. Then

j ± 1 3 1
since the algorithm (3.18) ensures that 0(x±,u,£ (x±,u)) <- £ (x±.u), and

£1(x.,u) >£(x), we must have either <Vgq(x±),h >_< - £(x) for all

hG H(xi,u,£1(x.,u)), or else gq(x±) <. -e(x), q^{1,2,... ,m}. Since
B (x,e(x)) and S are both compact and the functions gq(«) are continu-
X

ously differentiable, the existence of an integer £(x) ^.0 for which (3.45)
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holds now follows directly, (cf, (3.24)) I I

3.46 Theorem: Suppose that x G ft satisfies 0(x,O) < 0. Then there

exist an e(x) > 0, an integer N'(x) >^ 0 and an integer V(x) 21 0 such that

V (x) &'(x)+l
3.47 *.(x.+ (i) h) - <f>.(x.) - (~ ) <V.<Kx,),h> < 0

Ji2 J1Z Jl —

&' (x)
3.48 g(Xi+ ( ± ) h) <0

¥ x. G B (x,£(x)),
l x ' '

. r(x) - a'(x)
¥ <fr(x.+ (~ ) h) G *,(x.+(y ) h),

J 1 Z J 1 z

¥ ^(x.) G* (x±),

¥ h GH(x.,u,£1(x.,u)),

¥ u G V.0(x.),

¥ j > N'(x),

where £ (x. ,u) is the value of £ at which the test 0(x. ,V.<b(x±) ,£ ) < - £

is satisfied in Step 6 of algorithm (3.18).

Proof: Suppose 0(x,O) < 0. Then by lemma (3.40), there exist an £(x) > 0

and in N(x) >_ 0 such that (3.41) holds. Now by the mean value theorem, for

any h G s, uG TRn, and X >_ 0,

3.49 (j>(x±+Xh) -<J>(Xi) -|X<u,h >
=X[ <Vcj)(xi+Xh) ,h >-I<Vu,h) >],

where X G [0,X].

Since B (x,e(x)) and S are compact, it follows from (3.11)(ii) that
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there exist an integer N"(x) > N(x) and a X'(x) > 0 such that

3.50 <V(|)(xi+Xh),h > <<u,h> +ge(x) ¥ x± e Bx(x,£(x)),
¥ u G V.$(xJ, ¥ h G H(x.,u,£ (x ,u)),

J i i !

¥ X G [0,X'(x)], ¥ j > N"Cx).

Since for uGV.4>(x±), <u,h ><-E^x^u) <-£(x) for all
he H(x ,u,£1(xi,u)), (3.49) and (3.50) imply that

3.51 (Kx^Xh) -<j>(x±) -\ X<u,h >
<X[ <u,h >+| £(x) --|<u,h >]
<-4 XE(x) ¥ x. G B (x,£(x)), ¥hG H(x.,u,£ (x.,u)),
— 8 i x

¥uG V<D(XjL), ¥XG [0,X'(x)], ¥j>N"(x).

Now, because of the manner in which £(x) > 0 and N"(x) > 0 were chosen,

it follows from corollary (3.44) that there exists an integer £(x) > 0 such

that

3.52
g(Xi+ (I )Ph) <o ¥x± GBx(x.,E(x)), ¥hG5(xi,u,£1(x.,u,))

¥ u G V.$(x.), ¥ j > N"(x), Vp> Mx),

where p is assumed to be an integer. ± V (x)
Let V{x) be the smallest integer satisfying (j ) £ X'(x) and

r(x) > &(x). Then, by (3.11)(ii), there exists an integer N'(x) > N"(x),

such that fo (x) -*(x)|<(\ ) X̂ f- for all xGfl^, for all *. (x) G$. (x),
1 £'(x)

for all j > N'(x), and hence, from (3.51), for X = (j ) ,we obtain

Jt'(x) 1 ^'(x)+l
3.53 (|).(xi+(Y) h)) -<$>.(x±) -(^ ) <u,h><
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i(|) I^-|e«]--(|) M|I<o.
¥ uG V.*(x.), ¥ <Mx.) e ^(x^,

¥(^.(x^ (|) Xh) G$.(x.+(IV(X)H), Vx. GBx(x,£(x)),
¥hGH(xj.,u,£1(xi,u), ¥j>N'(x).

Hence (3.47) holds. Since V(x) > £(x), it follows from (3.52) that (3.48)

also holds, and so we are done. |—1

3.54 Corollary: Suppose that xG ftx satisfies 0(x,O) <0. Then there

exists an £(x) > 0, a 6(x) > 0 and an integer N'(x) >. such that

3.55 <f>. (x.+1) -4>. (x.) <-6(x) ¥4). (x.) G $. (x.) ,
¥ (^.(x.^) G (Mx.,.), Vx G B (x,£(x)), ¥ j > N'(x),

j l+l 3 1+1 1 x

and for all x±+1 =x±+Xh, hGH(x.,u,£1(xi,u), which algorithm (3.18) can
construct from the given x.., where e'(x.,u) is the value of £ for which

the test 0(x.,u,£1(xi,u)) <-£1(xi,u) is satisfied in Step 6.

Proof: Let E(x) > 0, N'(x) > N(x) > 0 and V (x) be such that (3.40),

(3.47) and (3.48) hold. Then, clearly, for all x± G Bx(x,£(x)), for all

j > N'(x), algorithm (3.18) will construct x.+1 = x±+Xh, with he
~~ % V (x)

H(xi,u,£;L(xi,u)) andX=(^)1>(-|) ,uG V*(x±). Consequently,
we must have

3.56 ^(xi+i) -fj(x±) 1(\ )±<u,h ><-(\ )±£1(x.,u)
1 *'<*> A

< - (~ ) £(x) = - 6(x)

•24-



¥ x € B(x,e(x)), ¥ u e V $(x ), ¥ <j> (x ) e *,(x ),

v <fr (xi+1) e $ (x±+1), v j > n»(x);

and hence we are done. [_J

3*57 Theorem: Subprocedure I of algorithm (3.18) satisfies the assumptions

(2.4)(i)-(v).

Proof: That the assumptions (2.4)(i), (2.4)(ii), (2.4)(iv) and (2.4)(v) are

satisfied follows directly from (3.11) and the correspondence table (3.27).

That assumption (2.4)(iii) is satisfied follows from corollary (3.54) and the

correspondence table (3.27). I I

In view of Theorems (3.57), (2.24) and the correspondence table (3.27)

the following is obvious.

3.58 Corollary: Subprocedure I of algorithm (3.18) will either jam up at a

point x., cycling indefinitely in the loop defined by Steps 1 to 14, in which

case x. satisfies the optimality condition 0(x.,0) =0, or else it will con

struct an infinite sequence {x.} which has at least one accumulation point

* * I—I
x satisfying 0(x ,0) =0.1 I

We shall now establish the convergence properties of the sequence {z }

sieved out by Subprocedure II of algorithm (3.18) from an infinite sequence

{x.} constructed by Subprocedure I of (3.18). For this purpose we shall

need the following propositions, the proofs of which we omit, either be

cause they are obvious or because they can easily be established by follow

ing the reasoning used for analogous results in the first part of this

section.
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Definition: For any x G JJ and for any e > 0, we define (i) the index set

I(x,e) by

3.59 I(x,e) = {q e {1,2,...,m}|gq(x) > - e},

(ii) the function ©: Ifc n x~R -* "R by

3.60 0(x,e) '= min max{ <V<Kx) ,h >;<Vgq(x),h >,q e i(x,e)},
hes

(iii) the function 0: 1R.n x"Kn x"R+ -"K1 by

3.61 0(x,u,e) = min max{ <u,h >;<Vgq(x),h >,q e I(x,e)},
h^S

(iv) the function H: 1Rn x"R+ -> 2S by

3.62 H(x,u,e) = {he s|0(x,u,e) = max{ <u,h >;

<Vgq(x),h >,qe i(x,e)}}. D

3.63 Proposition: For every x £ Q and every e ^ 0,

3.64 I(x,e) c i (x,e).

3.65 0(x,e) < 0(x,e)

3.66 0(x,u,e) <0(x,u,e) Vue V*(x), j= 0,1,2,.... Q

3.67 Proposition: Given any x € Q and £ >^ 0, there exists a p(x,e) > 0

such that

3.68 l(x',e) => I(x,e) ¥ x1 e B (x,p(x,e)) .•

3.69 Proposition: Given any x € 0, , any e > 0 and any y > 0, there exists
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a p(x,e) > 0 such that

3.70 §(xf ,£) >§(x,e) -Y ¥x' 6 Bx(x,p(x,e)) .D

3.71 Corollary: Given any xG^, any e>0and any y > 0, there exists

a a(x,e) > 0 and an integer J(x,£) > 0 such that

3.72 0(x',u,e) >0(x,e) -Y * x' e Bx(x,a(x,e)),¥ ue V.$(x'),
¥ j _> J(x,e) .LJ

3.73 Lemma: Suppose that the sequence {x±} generated by subprocedure I

of algorithm (3.18) is infinite. Then the sequence {zk> sieved out by

Subprocedure II of algorithm (3.18) is also infinite.

Proof: We see that according to Steps 19 and 20 of (3.18), Subprocedure II

sets z, =x. and k=k+1, whenever 0(x±,u,£3) >-£3, with ue^.^(x.),
where £3 = ak£3. Consequently, to establish the lemma, it suffices to show

that for any £3 >0there exists asubsequence {x^e K(e3)C *xi} SUCh

that

3.74 ©(x^u./e"3) >-e3 ¥u. €= Vq(i)*(x.), ¥iG.K(73).

We recall that according to lemma (2.19), we must have q(i) + °° as

ih- oo, since {x.} is infinite. Next, according to corollary (3.58), there

exists asubsequence {xj. GK such that x. +x asi^.ie^ and

0(x*,O) =0. Since I(x*,£) => lx(x*,0) for all £>0, we conclude that

3,75 0 >_ 0(x ,£) > 0(x ,0) = 0 V £ > 0,

i.e. that 0(x,£) =0for all £>0. Let I3 >0be arbitrary. Since
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*x + x , as i -> °° for i6L, it follows from corollary (3.71) (and because

of the fact that I(x,e) 3 I(x,e) ¥ x€ ^, ¥ e > 0) that there exists an
~ *—3

integer J(x,£ ) such that

3.76 §(x. ,u. ,£3) >. Q£x±9u±,e3) >§(x*,£3) -£3 =~£

¥u. € V /jN0(x.), ¥i>J(x ,£3) and i€K .
i q(i) i _ -1

Let K(i"3) ={ie K-|i >_ J(x*,£3)}. Then we see that (3.74) holds for this

index set K(£ ), and we are done. | j

3.77 Theorem: Suppose that Subprocedure I of algorithm (3.18) generates

an infinite sequence {x.}. Then every accumulation point of the sequence

{z } constructed by Subprocedure II of algorithm (3.18) belongs to the set

{z e a |0(z,O) = 0}.

Proof: Suppose that z -> z as k -> °° for k e K. Since by lemma (2.19)
3

q(i) -»• » as i+°°, and {zk> is infinite, p(k) -*• » as k+«> and £fc -> 0as

k -»• o°, where p(k), £3 are as defined in Step 20 of (3.18). Hence, from
Iv

corollary (3.36) we conclude that

3.78 lim 0(zk,uk,£3) <0(z*,O) <0 ¥uk eVp(k)*(zk).
k)£K

However, by construction, there exists asequence {^^q* (uk = v^O^)

for some j and i) such that ufc e V ~.$(zk) and

3.79 0>©'(VV^ 1-£k k=0,1,2,...

- 3and hence lim 0(zk»uk»ek) = °* Substituting into (3.78), we find that
k-*o°
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0(z ,0) = 0, and we are done, | J

We can summarize our preceding results as follows.

3.80 Theorem: Algorithm (3.18) will either jam up at a point x., cycling

indefinitely in the loop defined by Steps 1 to 14, in which case xi satisfies

the optimality condition 0(x.,O) = 0, or else, it will construct an infinite

sequence {z, } every accumulation point of which belongs to the set {z E ^xl
Iv

0(z*,o) = o).n

IV. Solution of Min Max Problems Under Strict Concavity Assumption.

Let ft C TRn and ft C 1Rm be two compact sets defined by
x y

4.1 ft = {x e TRn|g(x) < 0}

4.2 fl ={ye H?n|c(y) 5 0},y -

where g: 1R n •* 1R S and £: TR m -* TR^ are continuously differentiable. We

shall suppose that ft is convex with interior. Furthermore, let f: K.

x R.m -J-Tt1 be a continuously differentiable function such that f(x,-) is

strictly concave for all x € V, where V is an open set containing 0^. Finally, we

define the function (f>: V -»• "R. by

4.3 <j>(x) = max f(x,y) .
yen
J y

We shall now show how algorithm (3.18) can be used to solve the problem

min{<f>(x) |x G Q },

i.e. how it can be used to find an x £ ft and a y £ ft such that
x y
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4.4 f(£,y) * min max f(x,y).
x£ft y€ft

x

To apply algorithm (3.18) to (4.3), we must specify a procedure for

computing the approximations <f>.(x.) and V.<Kx.) which (3.18) uses. For

this purpose, we shall need the following results. Let £>: V -> ft be

defined by

4.5 f(x,£(x)) = max f(x,y)
y€ft

y

Proposition: Under the assumptions stated, the function £(*) is well de

fined and is continuous. I 1

4.6 Theorem: The function <}>(•) is continuously differentiable on V and

4.7 V<f>(x) =Vxf(x,Ux)). D

We shall now show that given an x. e ft and an integer j we may com-

pute the approximations <$>.(x±) to (j)^) and uto V<b(x±) in (3.18) by any

subprocedure of the form below, provided that it satisfies the assumptions

of the theorem to follow.

ft

4.8 Approximations Subprocedure: A: ftx xfty -*• 2y; an T)Q €fty, an xeft^
and a positive integer j must be supplied.

Step 0: Set I = 0

Step 1: Compute a nA+1 e A(x,n^).

Step 2: If f(x,n£+1) 1 f(x,n&), set r\ =T^ and go to Step 4; else, go to

Step 3.
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Step 3: If SL+1 - j set r\ = Tin,-, and go to Step 4; else set £ = £+1 and go

to Step 1.

Step 4: Set <J>.(x) = f(x,n), set V.4>(x) = V f(x,n) and stop, d
3 J x

4.9 Theorem: For j = 0,1,2,..., and any x^ ft , let $.(x.) and V $(x )

be the sets consisting of all <j>.(x.), V.(J)(x.), respectively, which sub-

procedure (4.8) can construct starting from arbitrary points r\ e fi

Suppose that given any (x,y) eft x ft , with y i £(x), there exist an
x y

£(x,y) > 0 and a <5(x,y) > 0 such that

4.10 f(x',y") - f(x\y') > 6(x,y) ¥ x' € Bx(x,£(x,y)),

¥ y' e By(y,£(x,y)), ¥ y" e A(xf,y')

(where B (y,£) = {y' € ft |lly» - yil < e}.

Then, given any y > 0 there exists an integer M(y) 2. ° such that

4.11 |<|>.(x») " 4>(x')| <Y ¥x' €ftx, ¥^(x1) €^(x'), ¥j>M(y),

4.12 IIV.<Kxf) - V(J)(x')ll < Y ¥ x' e ft ¥ V <J>(x') e V *<xf), ¥ j > M(Y)
3 — x j j

Proof: For any x e ft , any nn e ^ , and any positive integer j, let

r(x,r| ,j) C ft denote the set of points n which can be computed by (4.8),

at which (4.8) stops, given these parameters. Because of the way <f>. (x)

and V.d)(x) are defined in Step 4 of (4.8) and because ft is compact, it is
J x

clear that to prove the theorem it is enough to show that given any

x G fi , any y' > 0, there exist an e'(x) > 0 and an integer M1^1) such that
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4.13 «n - S(xT)« < y! ¥ x' e bx(x,£'(x)), ¥ ne r(x',n0,j),

v n0 efiy, Vj>M'(Y').

Since (4.13) follows directly from theorem (A.2) in the Appendix,

we are done. | ]

As an approximation subprocedure which satisfies the assumptions of

the preceding theorem, we can use the following adaptation of algorithm

(3.7).

4.14 Approximations Subprocedure: An nQ G ft ,an xS ft^, a positive

integer j, and two parameters £Q >0 and a€ (0,1) must be supplied.

Step 0: Set I = 0.

= £„.Step 1: Set £ = -Q.

Step 2: Compute I 0\,e) = *P G {1,2,.. ,t} |cPCn£) 1" e>,

4.15 0.(x,no,£) = min max{ (V f(x,nJ,h >;
1 * hes y

<v?p(nJl),h >,p€iy(nre)>

and a vector h(x,n ,£) e S which solves (4.15).

Step 3: If 01(x,n£,e) =0, compute 01(x,njL,O) and go to Step 4; else

go to Step 5.

Step 4: If 01(x,nJl,O) =0, set T)A+1 =\ and go to Step 8; else,

get £ = oi£ and go to Step 2.

Step 5: If 01(x,n&,e) £- e, go to Step 6; else, set £=a£ and go

to Step 2.

Step 6: Compute the smallest integer r >_ 0 such that
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1 r -
4.16 C(nA + (f ) h(x,n£,£)) < o

and

1 r - 1 r+1f(x,nA + (7 ) h(x,n^,£)) - f(x,n£) - (j ) <v f(x,n£),h(x,nre) >

£ °-

i r -
Step 7; Set n£+1 = n£ + (^ ) h(x,n£,£).

Step 8: If £+1 < j, set I = £+1 and go to Step 1; else, set r\ = n^+1»

set v=f(x,nA+1), set u=Vfx(x,n£+1), and stop. LJ

4.17 Theorem: The map A(-,«) defined by Steps 1 to 7 of Suprocedure

(4.14) satisfies assumptions (4.10) of theorem (4.9). LJ

We omit a proof of this theorem since it is rather lengthy and since

it can be constructed in a rather straightforward manner either by utiliz

ing arguments similar to the ones used to establish corollary (3.54), or

by extending the arguments used to establish theorem (31) in [4].

When subprocedure (4.14) is incorporated into algorithm (3.18), we

obtain the following algorithm for solving the problem defined by (4.4),

under the assumptions stated at the beginning of this section.

4.18 Algorithm for Min Max Problems I.

Step 0: Compute an xQ € ft ,a yQ e ft . Select parameters X^^ ^ (0,1] ,

£Q >0, eJ >0, £q >0, £3 >0, <xe (0,1), 0]_ G(0,1),
a2 € (0,1), a3 € (0,1), and an integer jQ > 0. Set i= 0,

2 2 3 3k = 0, j = jQ; set £ = £Q, £ = £Q.

Step 1: Set y1 = y.

Step 2: Set £ = £Q.
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Step 3: Set x = x., Set Hn = yf and use Subprocedure (4.14) to

compute a vector nGft,avG$.(x.) and a vector u e V $(x )
y j i j -1-

Step 4: Set <j>.(x.) * v, V.<f>(x.) = u and y' = n.c J i J i

Step 5: Compute 0(x. ,V.(J)(x.) jE1) and a vector he H(x ,V <f>(x. ),£ ).
s 1 j 1 1 J 1

Step 6: If 0(x.,V.(j)(x.),£1) = 0,compute 0(x. ,V.4>(x ),0) and go to
1— i j i i j i

Step 7; else, go to Step 8.

Step 7: If S(x ,V.4»(x ),0)= 0, set x' =x±, set ♦j(x') =*j (x±),
J ,11V.(j>(x') = V.<f>(x.) and go to Step 17; else, set e1 = c^e

set

and

go to Step 5.

11 1 1Step 8: If 0(x.,V.<J>(x.),£ ) £ - £ , go to Step 9; else set £ - o^t

and go to Step 5.

Step 9: Set X = 1.

Step 10: Compute G = g(x +Xh).

Step 11: If G < 0, go to Step 12; else, set X = X/2 and go to Step 10.

Step 12: Set x=x.+Xh, set nQ =yf and use Subprocedure (4.14) to

compute a vector ne ft av e $, (x) and a ue V $(x).

Step 13: Set ^.(x^Xh) =v, V(^(x^Xh) =u, and y" =n-

Step 14: Compute D=<f>.(x±+Xh) -*j (xi} "2(Vj(})(xi) 'h *'
Step 15: If D>0 go to Step 16; else, set x' =x^Xh, set ^(x1) =

cj). (x.+Xh), set V.4>(x') = V.(j)(xi+Xh) and go to Step 17.

Step 16: If X> X . /2j, set X= X/2 and go to Step 10; else set
c — min

x' = x., set <j).(x') = *.(x.), set V <J)(x') = V<t>(x ) and go
l 3 3 x J J

to Step 17.

Step 17: If 4>.(xf) -<J>, (x±) <-£2, go to Step 18; else, set j=j+1,
2 2

set £ = a„£ and go to Step 2.

Step 18: Set x x= x', set yi+1 = y".

-34-



Step 19;

Step 20:

Step 21:

Step 22:

Step 23:

Set i = i+1

Compute 0(xf,V (f)(x'),e3).

If 0(x',V <f>(xf),£3) >_ - £3, go to Step 22; else go to Step 1.

Set z. = xf , set y. = y..
k k J i.

3 3
Set £ = a E , set k = k+1, and go to Step 1.

4«19 Theorem: Algorithm (4.18) will eigher jam up at a point x±, cycling

indefinitely in the loop defined by Steps 2 to 17, while constructing an

infinite sequence {y'.'} C ft , in which case x. satisfies the optimality con

dition 0(x., V f(x.,£(x.)),0) = 0 and yV + £(x.) as j + °°, or algorithm

(4.18) will construct infinite sequences {z } and {y,} such that if zfc -»• z

and y. -*- y as k •> °° for k e K C {0,1,2,...}, then y = £(z ) and 0(x ,
K.

V f(x ,y ),0) = 0. LJ

Proof: By theorem (3.80), if algorithm (4.18) jams up at an x^ then x±

solves problem (4.3). Also by theorem (3.80), if the sequence {z } is in

finite, then every accumulation point of that sequence solves problem (4.3).

It now follows from theorem (4.9) and the fact that j + °° that y" + ^(x±)

as j -*- °°, when (4.18) jams up at x., and that y = £(z ) when iz,} is in

finite. •

V. Solution of Min Max Problems Under Concavity Assumption

As in the preceding section, we assume that we are given three con

tinuously differentiable functions, f: lRn x TRm •* "R- , g: "R -* "B- and

£: lRm->TR.t. We shall suppose that ft and ft are defined as in (4.1) and

(4.2) respectively, and are compact, that ft is convex with interior, and
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that for every x £ V, f(x,#) is concave, where V is an open set containing

ft . Finally, we define <{>: V -*• 1R. as in (4.3), and address ourselves to

the problem (4.4).

Since f(x,*) is no longer assumed to be strictly concave, as in the

preceding section, theorem (4.6) does not apply, and hence we must modify

our approach. In the present case, the following result holds.

5.1 Theorem (Danskin [12]): Let <{>(•) be defined as in (4.3), with f(-,-)

continuously differentiable and f(x,») concave for all x G V, then cj>(') is

directionally differentiable on V and, given any x ^ V and any h^ K ,its

directional derivative at x, in the direction h, is given by

5.2 4>'(x,h) & lim ♦<***>-»« =max <Vf(x,y),h>,
a+0 a y€Y(x) X

where

5.3 Y(x) = {y e ft |f(x,y) = <J)(x)}. •

The following result is easy to establish.

5 4 Theorem: Suppose that x e ft satisfies <f>(x) = min <f>(x), withx ^
X

<{>(•) defined as in (4.3), and suppose that the assumptions stated in (5.1)

are satisfied, then

5.5 0(x) = min max{max <V f(x,y),h >;<Vgq(x),h >,
hGS y€Y(x) X

qe lx(x,0)} = 0,

where S, I (•»•) are defined as in (3.3) and (3.4), respectively. LJ
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Because (j>(*) can no longer be assumed to have a gradient, algorithm

(4.18) cannot be used directly for finding points x € ftx which satisfy (5.5).

However, as we shall soon show, it is possible to combine parts of algorithm

(4.18) with a penalty function method, to produce a new algorithm which can

be used for finding points x £ ftx such that 0(x) = 0.

5.6 Definition: Let fP: "R nxT^m x [0,1] ^"R1 be defined by

fp(x,y,U)) =f(x,y) -f ilyll2,

and let 4>P: Vx [0,1] -> 1R1 be defined by

cj)p(x,w) = max fP(x,y,o>).
y^V

Then for every to e(0,1], fp(x,-,(o) is strictly concave and hence Vx<pP(-,ai)
exists and is continuous for all u> 6 (0,1]. Our penalty function method

depends on the following assumption and result.
TD 1

5.7 Assumption: Suppose that for j=0,1,2,..., $P: ftxx(0,l] •* 2 and V^

ft x (0,1] -+ 2 are such that given any y > 0, there exists an integer

N(y) >^ 0 such that

5.8 |<j>P(x,03) - <j>P(x,u»| <Y Vj>N(Y), *xe ftx, V u> € (0,1],
v <t>p(x,w) e $p(x,w),

J -J

5.9 HV.(}>P(x,w) - V (j)P(x,0))(l < Y Vj > N(Y),V x e ft V u e (0,1],
J x

V V.<|>p(x,a>) e V.$p(x,w).
J 3

5.10 Theorem: Suppose that {xj.}^=0 CQ^, {wi>iJ=0 c CO, 13 and {e^^o
c (O,00), are such that x. -»• x , w. I 0 and e. 1 0 as i + ».
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Also suppose that for i = 0,1,2,..., j(i) is an integer such that j(i+1) >.

j(i) +1, i=0,1,2... . If for some Vj(±) *P(xi,(i>±) eV^ (1)*P(xi>w±),
i = 0,li2,...,

5.11 0(xi,Vj(i)cJ)P(xi,wi),£i) >-£±, i=0,1,2,...,

then

5.12 Q(x*) = 0,

where 0(*) is defined as in (5.5). |_J

The proof of this theorem requires the following lemmas.

5.13 Lemma: Suppose that {x±}"b() C^ and (w^q C(0»13 are such that xi "*
and oo. + 0 as i -*• °°. For i = 0,1,2,..., let £P(x.,w ) C ft be such that

i i ^ y

5.14 fP(x, ,SP(x.,cO,oj.) = max fP(x,y,w),
1 -1 x 1 y€ft

y

Then

5.15 lim d(£P(x.,u) ), Y(x*)} = 0,

where Y(x ) is defined as in (5.3) and d(£,Y(x )) = min # il^-yll.
y^Y(x )

*

Proof: First we note that Y(x ) is compact, and hence that the quantities

d(£P(x.,0).), Y(x )) are well defined,
ii

Since f^',*,*) is continuous, it is uniformly continuous on the compact

set ft xY(x*) x [0,1]. Consequently, since x± •* x and uk I 0, given any

u > 0, there exists an integer N > 0 such that

5.16 fP(xi,y,wjL) >_ fP(x*,y,0) -u Vy€Y(x*), Vi>N.
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It now follows from the definition of the £ (x.,w.) and (5.16) that
i 1

5.17 fP(x, ,£P(x.,gO,oj.) > fP(x.,y,oj.) > fp(x ,y,0) - y
i iii — i i —

V y G Y(x ), Vi>N.

Since y > 0 in (5.17) is arbitrary, and since fP(-,•»•) is continuous, (5.17)

yields,

5.18 lim inf fP(x. ,£P(x ,w ),0) ) > fp(x*,y,0) Vy e Y(x*).
i-KXJ -1

Since (5.18) implies that any accumulation point £ of £p(x ,0^) satisfies

£* e Y(x*), (5.15) must hold. •

00

5.19 Lemma: Suppose that {x.} C ft and {w.}._n C (0,1] are such that
- 1 i=0 X x

x + x and U). + 0 as i ->• °°. Then, given any y > 0, there exists an integer

N 21 0 such that

5.20 <Vj(J>P(xi,03i),h> <(J>'(x*,h) +Y Vj>N, Vi>N, Vhes,
V V.<J)P(x.,oj.) e V.$p(x.,<0,

where <J>'(*,0 is as in (5.2).

Proof: First, we note that for 03. > 0,

5.21 V/ (x ,0) ) = Vf (x ,CP (x ,w)),
X 11 Jv i X J-

where EP(x.,oj.) is defined as in (5.14). Next, since V f(-,0 is uniformly
ii x

continuous on the compact set ft x ft , given y > 0, there exists a 6 > 0
x y

such that
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5.22 Vf(x',y') -Vf(x,y)H <—^_ ¥xe ft ,Vye ftx x 2^ x y

V x» € Bx(x,6), Vy'e B (y,6)

Also, because of (5.9), there exists an integer N' >_ 0, such that

5.23 IIV.(J>P(x.,oj.) - V f(x.,SP(x.,0J.))II < -~= ,
jT i i x i* v i* i — r, n

zyn

V V,<t>P(x.,uO e V.$P(x4,oj.),V j > NT, ¥ i > 0.
j l i 3 i l ' — —

r i

Now, from lemma (5.13) we conclude that there exists a sequence ty /._«

, *
C Y(x ) such that

5.24 lim H£p(x,,(d.) - y.» = 0
•^™ i i Ji

Since V f(«»») is uniformly continuous an ft x ft , because of (5.22) and

(5.24), there exists an integer N >_N1 such that

5.25 HVxf(xi,£p(xi,a)i)) -Vf(x*,y )! <-^= Vi>N.
2v n

Consequently because of (5.23) and (5.25) and since llhll" £ yn for all h ^ S,

5.26 | <Vj({)P(xi,a)i),h >- <Vxf(x*,yi),h >| <
»Vj(J)P(xi,a)i) - Vxf(x*,y.)iiyn"<

<{!IVj(|)P(xi,aJi) - Vxf(xi,CP(x.,0Ji)II + il Vxf(xi,5P(x1,a)i)) -
- Vxf (x*,y.)il}v^r< Y Vhe s, ¥V^x.^.) e V^x.,^.),

¥ i > N, ¥ j > N.

Hence,

*5.27 <V.cJ>p(x. ,a).),h > <<Vf(x ,y,),h> +Y
J 1 1 x i
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Imax <Vxf(x*,y),h >+y=4>f(x*,h) +y
y€Y(x*)

Vhes,Vi>N,Vj>N,

which completes our proof. I I

Proof of theorem (5.10): Suppose that (5.11) holds. Then, making use of

proposition (3.29), of lemma (5.19), and of the continuity of Vg, we

conclude that, for the given sequence {V .J^x^io^}, given any y > 0,

there exists an integer N" >_ 0 such that

5.28 - £. _< min max{ <V. (. s<J>P(x. ,w.) ,h >;<Vgq(x ),h >,
1 h€S ju; i i

qeix(xi)£i)}

< min max{ <V. ,. v<f>P(x, ,«.) ,h; <Vgq(x,),h >,q€ I (x ,0)}
~hes jd) i i i *

< min max{<j>f(x ,h); <Vgq(x.),h ),q6 I (x ,0)} + Y/2
~hes x x

* n it "ft<min maxU^x ,h), < Vgq(x ),h),q€ Ix(x ,0)} + Y
h^S

= 0(x*) + Y Vi> N".

Consequently,

5.29 lim - £ = 0 £ 0(x ) £ 0,

and hence we are done. 1—1

The following algorithm constructs sequences {x.}, {o^}, {V <J> (x^,ui/)s

and {£ } which contain subsequences satisfying the assumptions of theorem
i

(5.10).

5.30 Algorithm for Min Max Problems II.

Step 0: Compute an x e ft^ and ayQ £ ft . Select parameters Amin G (0,1],
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Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step 11

Step 12

Step 13

Step 14

Step 15

£Q >0, eJ >0, £q >0, e3 >0, oi0 >0, ae (0,1), cl_ e (0,1),
a2 e (0,1), a3 e (0,1), 3e (0,1) and integers jQ >0, kQ> 0,

and e > 0.

3 3Set E = £ , to = 0)Q and k = k .

Set i = 0 and set q(i) = kQ.

Set j = jQ.

Set yf = y±.

o ' 1 1Set E = £Q.

Replace f(-,-) by fP(-,.,0)), set x=x±, set nQ =y1 and use

(4.14) to compute a vector n G ft , a v £ <f>p(x.,io), and a

u e V.$p(x.,o)).
J i

Set <J>P(x ,oi) = v, V.<f>P(x ,0)) = u and y' = ri.

Compute 0(xi,V.(})P(xi,a)),£1) and an heH(xi,V (J)P(xi,w), e)
If 0(x ,V.<()P(x jU))^1) =0, compute 0(x±,V.4?(x±,u) ,0) and
go to Step 10; else go to Step 11.

Step 10: If 0(x.,V.4>P(x.,Oj),O) = 0, set xf = x ,set <f>P(x',U)) =
£ 1 J 1 1 J

<J>p(x.,U)), set V.4)P(xf,U)) =V.(j)p(xi,03), and go to Step 20;

else set £ = a..£ and go to Step 8.

If 0(x.,V.(|)P(x.,OJ), E1) £- E1, go to Step 12; else set

£ = OLE and go to Step 8.

Set X = 1.

Compute G = g(x.+Ah).

If G < 0, go to Step 15; else set X = X/2 and go to Step 13.

Replace f(-,-) by fP(-,•,w), set x=x.+Xh, set nQ = y» and

use (4.14) to compute a vector n e ft a v € $p(x.,U)), and a

u G V.$P(x. ,03).
3 i
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Step 16:

Step 17:

Step 18:

Set (J)p(x.+Xh,03) = v, V.(j)P(x.+Xh,o)) = u, and y" = r\.

Compute D= <f>P(x +Xh,0)) - <{>p(x.,03) - - X<V <{>P(x ,0)) ,h >.
j l J i ^ j i

If D > 0, go to Step 19; else set x1 = x.+Xh, set

(|i?(xf,u) = (j)P (x.+Xh,03), set V.(J>P(x',03) =V cf>p (x±+Xh,03), and
j 3 1 J «*

go to Step 20.

Step 19: If X > X . /23, set X = X/2 and go to Step 13; else set
c — min

x? =x., set ^(x'.w) =4>P(x ,03), set V cf>p(x',03) =V<pp(xi,w),
1 J J 1 J -J

and go to Step 20.

Step 20: If 6P(xT,0)) - ({)P(x, ,03) < £ , go to Step 22; else set j = j+1,
1 j j 1 —

2 2
set £ = a„£ , and go to Step 21.

Step 21: If j - q(i) > e, go to Step 22; else go to Step 5.

Comment: The test in Step 21 is needed because algorithm (4.18) can

jam up at a point x. such that 0(x ,V f(x ,£P(x ,03)) ,0) = 0.

Step 22: Set x x= xf, set y±+1 = y", and set q(i+l) = j.

Step 23: Set i = i+1.

Step 24: If j >_ k, go to Step 25; else go to Step 4.

Step 25: Set V.<|>P(x. ,03) =V <J>P(xf ,03).
J «J

Step 26: Compute Q(x±,V.^(x^w) ,£ ).

Step 27: If 0(x. ,V.<j)P(xi,03) ,£3) >_ -£3, go to Step 28; else go to
Step 4.

Step 28: Set z^ = xi and set yk = y±.

Step 29: Set 03 = 3w, set £ =a£ ,set k= k+1 and go to Step 3. I—!

Note: Instead of the test in Step 21, it is computationally more

1 3
efficient to test whether £ <_ £ and j >_ k whenever

0(x. ,V.<J>P(x. ,03) ,£ ) = 0. Our reason for not including this
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test in our algorithm is that it introduces additional loops which make

the resultant algorithm considerably harder to understand than algorithm

(5.30). o

Proceding as in the proof of theorem (A.3), it is possible to show

that Suprocedure (4.14), as used in the above algorithm constructs elements

in sets $p(x,o)) and V.$p(x,o)) satisfying the hypotheses (5.8) and (5.9).

Because of this and because of theorem (5.10), algorithm (5.30) has the

following property.

5.32 Theorem: The sequences {z,} and {y, } constructed by algorithm

(5.30) are infinite. If for k G K C {0,1,2,...}, zfc -»• z and yfc + y as

k -> oo, then 0(z ) = 0 and f(z ,y ) = max f(z ,y). •
y^y

Since proving theorem (5.32) would amount to substantially retracing

the steps followed in proving theorem (4.19), we shall content ourselves

with a brief outline of the arguments to be used in proving (5.32). First,

it is necessary (and rather easy) to establish a result similar to theorem

(4.17). That is, assuming that f is replaced by fp in Subprocedure (4.14)
ft

to define a map Ap : ft x ft x[0,l] •*• 2 y, it is necessary to show that if
x y

(x,y,o)) G ft x ft x [0,1] is such that y does not solve max{fP(x,yf ,03) :
x y

yf £ ft }, then there exist an e(x,y,w) > 0 and a 6(x,y,u>) > 0 such that

5.33 fP(x\y"9u') - f^x'.y'V) >.6(x,y,(o)

¥ x' £ B (x,e(x,y,o)))

¥ yf e By(x,e(x,y,u>))

¥ a)' € B(o3,e(x,y,u))) H [0,1],

¥ y" G AP(x',y',(of).
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This fact can then be used to establish a result analogous to (A.3), and

thus it can easily be shown that Subprocedure (4.14), as used in algorithm

(5.30), yields approximations satisfying (5.8) and (5.9). It then follows

from theorem (4.14) that the sequences {zfc} and {yfc} must be infinite.

Also, theorem (5.10) applies to yield that 0(z ) = 0. Finally, we can

deduce that f(z ,y ) = max f(z ,y) from (5.8).
y^fty
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Appendix: A Property of Subprocedure 4.8.

If we ignore the instruction in Step 4 of (4.8) "Set VACx.±) =

V f(x,,ri„.,)", we see that (4.8) is simply an algorithm for solving the
x i x+1

problem

A.l max{f(x,y)|y e fty}

for a given value of x. As we shall now see, its most crucial property holds

even when f(x,*) is not strictly concave, for all x of interest. We shall

only assume that f(x,*) is concave.

Let ft c"Rn, ft C 1Rm be two compact sets defined as in (4.1), (4.2)
x ' y

respectively, with g: lRn^1R3, C: "K™ -TR* continuously differentiable,

and let f: 1Rn xlRm -1R1 be continuously differentiable. Suppose that

ft is convex with interior and that f(x,«) is concave for all x e V where V
y

is an open set containing ft .

For any xeft ,any nQ e ft ,and any integer j>0, let r(x,yQ,j) Cfty
denote the set of points n which can be computed by Subprocedure (4.8), at

which Subprocedure (4.8) stops, (i.e. given x,n0,j ,T(x,Ti0,j) is the set of

all points n which could conceivably be used in setting <f>. (x )= f(x,n)).
ft J

For any xe ft , let Y: ft •> 2y be defined by
y x

A.2 Y(x) = {y € ft |f(x,y) = max f(x,n)}.
y neft

y

A.3 Theorem: Suppose that given any (x,y) e ftx xfty, with y^ Y(x), there

exists an £(x,y) > 0 and a 6(x,y) > 0 such that

A.4 f(x\yM) - f(x',y?) > 6(x,y) ¥ xf e Bx(x,E(x,y)),

¥ y' e B (y,£(x,y)), ¥ yM € A(x',y').
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Then, for any x € ft and for any Yr > 0, there exists an £'(x) > 0 and an
x

integer Mf(x,Yf) ^ 0 such that

A.5 Dn - nMI < Y1 v n E Y(x.), ¥ x. e b (x,e'(x)),

¥ nT € r(x»,n0,j), ¥ n0 e a ¥ j >m'(x,y').

ft

Proof: Let L: ft x 1R •> 2 y be defined by
x J

A.6 L(x,a) = {y e ft |f (x,y) _> (J)(x)-a},

where, for x £ ft ,
x

A.7 <Kx) = max f(x,y).
y€ft

y

We begin by showing that, given any x £ ft and any y1 > 0, there exists an

a(x) > 0 such that

A.8 L(x\cc(x)) C U B0(y,Yf), ¥ x* e B (x,a(x)),
y€Y(x) y

where B (y,Y*) = {y1 G & |lly'-yll < y'}. Suppose, therefore, that for

some x e ft there is no a(x) > 0 for which (A.8) holds. Then we can con

struct sequences {x.} C ft {y.} C ft and {a.} C R such that x. -»- x,
n i x' •'i y i i

*

y -*• y and a. I 0 as i •>• °°, satisfying

A.9 min By.-yB ^.YT, i = 0,1,2,...
y^Y(x) x

and

A.10 f(x.,y.) >^ <Kx.)-a., i = 0,1,2,...

(Since Y(x) is compact, (A.9) is well defined). Consequently, (A.9) implies

that y £ Y(x). However, since x. -*- x, y. •> y , a. -»• 0 and <}>(•) and f(«,0 are
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it it

continuous, (A.10) implies that f(x,y ) « <j>(x) , i.e. that y ^ Y(x),

contradicting (A.9). Consequently, (A.7) must be true. Next, we show

that given any x ^ ft and any a > 0, there exists p(a) > 0 and a a(a) > 0

such that

A.11 u B°(y,p(a))c L(x',a), ¥ xf € b (x,a(a)).
y€Y(x) y X

Thus, we assume that x ^ ft and a > 0 are given. Since f(*,0 is
' x

uniformly continuous on ft x ft , there exists a p(a) £ (0,y'1 such that

A.12 |f(x,yT) -f(x,y)| <f Vy'e B°(y,p(a)), ¥yeQ
z. y y

and hence

A.13 f(x,yf) ><Kx) -7T Vy'e B°(y,p(a)), ¥y€o
1 y£Y(x) y

Since •- u B (y,p(a)) and ft are compact, the function $: ftx ~* K ,
y€Y(x) y x

defined by

A.14 |3(xf) =min{f(x',y)|y € U B°(y,p(a)')}
ySY(x) y

is uniformly continuous on ft . Hence, and because from (A.13) $(x) >^

<{>(x) - -j, there exists a a. (a) > 0 such that

A.15 3(xf) ><f>(x) -|a ¥x' eBx(x,a(a)).

Since <J>0) is continuous, there exists a a(a) e (0,a1(a)] such that

A.16 <Kx) 1 <Kxf) -jo ¥ x' € Bx(x,a]-(a)).

Consequently,
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A.17 fCx',yT) > P(xf) 1 <Kxf) - a ¥ x' e b (x,cr(x)),

U XB°
y^Y(x) y

¥ y' e U B,°(y,p(a))

But (A.17) implies (A.11), and hence (A,11) must be true.

Now, for a given x, let a(x) be such that (A.8) holds and let

p = p(a(x))G(0,Yf]» cr = a(a(x)) be such that (A. 11) holds for a = a(x).

Let B = (compl U B (y,p)), then, since B is compact, it follows
y^Y(x) y

from (4.10) that there exist an £!(x) e (0,a] and a <5(x) > 0 such that

a.18 f(xf,njl+1) - f(xt,nil) > 6(x) ¥ x' e Bx(x,e'(x)),

¥n^ el, ¥ r\l+1 € A(x',yf).

Let m = min min f(x,y) and let M = max max f(x,y). Let
x^ft y€ft x£ft y€ft

x J y y y

x1 € B(x,£*(x)) and n G ft be arbitrary. If nQ e u B (y,p), then,

since by construction in (4.8), fte'^o+i) 1. ffr'^o)* for ^ = 0,1,2,...,

(where x is replaced by x'), we see, making use of (A.11), that

A.19 Tio e L(x',a(x)) C U B°(y,Yf) ¥ 5, >0
* ^(x)

Hence suppose that ru £ b. Then, if we let Mf(x,Yf) be the smallest

integer such that Mf(x,Y)<$(x) >^ (M-m), we find that because of (A.18), (A.19)

must hold for all I >_MT(x,Y). Consequently, with e'(x) > 0 and MT (x,y) ^ 0

defined as above, we see that (A.5) holds. I—1
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Conclusion

We have shown in this paper that, when well known methods of feasible

directions cannot practically be applied to certain problems because of

the great cost of precise function and derivative approximations, it is

possible to insert into such methods stable and efficient approximation

procedures which do not disrupt the convergence properties of the original

algorithm. We have also examined the exact nature of the calculations to

be performed when 9uch an algorithm with approximations is to be applied

to a constrained min max problem. The approximation procedures described

in this paper are quite general and it may be hoped that they will find

their way into many algorithms when frequent precise function and derivative

calculations are not practically feasible.
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