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ABSTRACT

This paper deals with nonlinear networks which can be characterized
by the equation f£(x) = y, where f(*) maps the real Euclidean n-space R
into itself and is assumed to be continuously differentiable. X is a point
in R" and represents a set of chosen network variables, and y is an arbitrary
point in R" and represents the input to the network. The authors first
derive sufficient conditions for the existence of a unique solution of the
equation for all ye R" in terms of the Jacobian matrix ag/ag. It is shown
that if a set of cofactors of the Jacobian matrix satisfies a "ratio con-
dition", the network has a unique solution. The class of matrices under
consideration is a generalization of the class P recently introduced by
Fiedler and Pt;k, and it includes the familiar uniformly positive-definite
matrix as a very special case.

The authors next consider the solution of the equation based on the
method of steepest descent. It is shown that the method always converges,
and furthermore, if f is continuously twice differentiable the rate of

convergence is of a geometric progression.
I. INTRODUCTION

It has been known that the analysis of general nonlinear RLC net-
works depends on the analysis of three one-element-kind subnetworks [1-5].
Furthermore, in analyzing the one-element-kind networks, it is important

to know the conditions under which the network has a unique solution.

7 Various useful sufficient conditions for existence and uniqueness of

solution have been found by many workers in terms of the element character-

istics [1], [4-10]. However, by and large, these conditions are rather



restrictive, and furthermore, they essentially imply that all nonlinear
elements must be locally passive.

In this paper, nonlinear resistive networks of the most general
form will be considered, which include passive as well as active elements,
nonlinear resistors as well as coupled elements. It is well known that

most nonlinear resistive networks can be characterized by the equation
f(x) =y (1)

where §(°) maps the real Euclidean n-space R® into itself. X is a point
in R" and it represents a set of chosen network variables, and y is an
arbitrary point in Rn, which represents an arbitrary set of input to
the network. The necessary and sufficient conditions for the existence
of a unique solution of (1) for all y € R" has been given by Palais [11,
12]. More specifically, Palais' theorem states that the necesséry and
sufficient conditions for the mapping f:Rn +R" to be a Cl~diffeomorphism
 of R" onto itself are: (1) £(x) is continuously differentiable, (ii)
det J # 0 for all x in Rn, where J = 3f/dx is the Jacobian matrix, and
(iii) lim IE@)I = = as Ixl+ @ , where I.l is the Euclidean norm. Note
that Cl-diffeomorphism implies that f—l is also continuously differentiable
which is of crucial importance in this paper.

Two special cases of eq. (1) have been considered recently. The
first one is a sufficient condition due to Ohtsuki and Watanabe [4], which
states that if the Jacobian matrix J is uniformly positive definite, there

exists a unique solution for all y ¢ R". The second deals with a sub-

~

class of the equation in (1), which is of the form

£(x) = F(x) +Ax = y (2)



where F ec;;n apd it represents a 'diagonal nonlinear mapping" of R" on-
to itself. For i =1, 2, -+, n, the i-th component of F(-) is a strictly
monotone increasing function of X;» which maps Rl onto itself. Sandbérg
and Wilson have shown [9] that the necessary and sufficient condition on
the n by n constant matrix A for eq. (2) to have a unique solution for all
F() ef;fn and all y e R" is that A be of class P _.

Class P0 and class P matrices wére introduced by Fiedler and Ptak
[13], when they considered generalizations of positive definiteness and
monotonicity. A constant square matrix is said to be of class Po if its
determinant and all principal minors are non-negative. Similarly, a
constant square matrix is said to be of class P if its determinant and
all principal minors are positive.

In this paper'the present authors derive fwo theorems which are
sufficient conditions for f to be a Cl-diffeomorphism. In this case, the
inverse mapping f-l is continuously differentiable, and hence the dependence
of solution x on input y is smooth. The conditions are stated in terms
of the Jacobian matrix {(5) = 3f/9x. The first is a direct generalization
of the matrix of class P, and the second represents a further generalization
of the first. Various remarks and examples are given to compare the results
with existing ones, and to illustrate further implications of the theorems.

The numerical method of obtaining the solution of eq. (1) is next
considered. Gersho [14] and Sandberg [10] applied the method of steepest
decent to obtain the global minimum of a scalar function, which yields
the solution of eq. (1), and they have shown that the method always converges

under the assumption that the conditions of Palais' theorem are satisfied.

In this paper, under a fairly general additional condition that f is



continuously twice differentiable it is shown that the rate of convergence
is of a geometric progression. Some computational difficulties underlying

in this method are also discussed.

II. THEOREMS ON THE EXISTENCE OF A UNIQUE SOLUTION

The two theorems of this section are the principal results of this
paper.

Theorem 1. Let f be a continuously differentiable mapping of R"
into itself, and let ék be the matrix consisting of the first k-rows and
the first k-columns of the Jacobian matrix g'= [afi/axj] for k =1, «--,n.
Then, for any y ¢ R" there exists one and only one solution of eq. (1) if
there exist positive constants ¢

> 0, €, > 0, -, €, 0 such that

1

det 42 det én
det é1 2 €12 det A, |2 %20 "TT|det A €n
~1 -n-1
(3)
for all € Rn

e

The above condition will be referred to as the '"ratio condition"
for convenience. Before presenting the proof of the theorem, two important
facts are pointed out. First, the ratio condition implies that the following

principal cofactors of the Jacobian matrix J(x) are non-zero for all X3
det ék(x) #0 k=1, 2, ***, n (4)

For convenience, this will be referred to as the '"cofactor condition".

Note that if the cofactor condition holds, it does not necessarily follow

" that eq. (1) has a solution.



For example, let

yy = fl(xl, XZ) =% cosh Xy

_ g2 dz
vy = £(xp5 x,) ’f cosh z.
0

Then,
cosh x2 xl sinh x2
J(x) =
1
0 cosh x
2

It is seen that det A, = cosh X, and det 42 = 1, which are nonzero for

1

all x. However, det 42/det A = 1/cosh X5 which does not satisfy the

1
ratio condition. It is easy to check that the equation does not always
have a solution because the range of f2 is bounded. It will be seen in
the proof below that if the cofactor condition is satisfied, the solution
is unique if it exists. Thus, the ratio condition guafantees, in addition,
that f is an onto mapping.

The second fact is that det J = det én # 0 implies that for any
y € R" there is a neighborhood of y where the inverse of g can be defined,
due to the well-known theorem on implicit functions in classical analysis
[15]. Hence, if g-l is uniquely determined globally, this global inverse
has to coincide with any of local inverses which are continuously differ-
entiable [15]}. Therefore, the fact that f maps R" onto itslef as a one-
to-one correspondence implles that £ is a Cl—diffeomorphlsm. Tt also has

to be remarked that the continuous differentiability of g_l impliés the

following: g-l satisfies a Lipschitz condition on any bounded region.



This local Lipschitzian condition will play an important role later in the
section on solution method.

Other implications of the theorem will be examined after giving a
proof.

Proof. It is easy to see that the statement of the theorem holds

for n = 1, since the condition |det él' = Idfl/dxll > €, implies that f,

1

. , . . 1 .
is a strictly monotone increasing mapping of R™ onto itself. Hence, the
theorem is proven by induction.

Under the assumption that the statement is valid for n = k-1, the

case of n = k is considered. 1In this case,

yi = fi(xl’ DY Xk_la Xk) (i = l’ tty k) (5)
or in vector notation
y = £(x). (6)

For the purpose of notational simplicity the following convention is intro-

duced:
= DY t = e o e t
%-k - [xl{ ’ Xk-l] X_k [yl’ ’ yk-ll ’
£ = [f P ]t €D
-k 1 > Tk-1
and hence
Yo = Ec &y %) (8)

where the superscript t denotes the transpose.
If the value of Xy is kept fixed, the mapping g-k of Rk_1 into itself

is continuously differentiable. Furthermore, it is clear that the mapping



f—k satisfies the ratio condition for n = k-1, and therefore g—k is a

Cl-diffeomorphism of Rk-l onto itself. Thus, x

| can be represented as a

function of Y_k and X, as follows:

-1
X = e O %+ )

Substituting this relation into the k-th equation of (5), is represented

Y

as a function of Y_g and x The dependence of ¥y on X, can be determined

K’
in the following way provided that the value of Y _x is kept fixed [16].

The differentiation of (6) yields

dy = J dx

or equivalently

dy_k dx

] g . . (10)
dyk dx

Since dy___k = 0 and since det ék # 0, Cramer's rule can be used to obtain

dyk det ék

dxk det ék—l '

The cofactor condition (4) implies that if the value of Y x is kept fixed,

an

Yic is a strictly monotone increasing or decreasing function of Xy for
§ew < X <. The ratio condition (3) implies that the range of Y, covers
the whole real line -« < Vi € =
* * * %t k
——— Let y = [yl, s Ypo1o yk] be an arbitrary given point of R .
For any value X, =8 there is one and only one point x(s) = [xl(s), teey

xk_l(s), é]t such that

* * t ’
[Yl, MY Yk_l, yk] = g(}f(S)). (12)



It 1is now clear from the property of the dependence of Y onx, =s
discussed in the preceeding paragraph that there exists one and only onc

*
value of s = s for which the following relation holds:

y o= £x(sh)). | (13)

Thus, the point g(s*) is the unique solution to the equation‘y* = £(x).
This completes the proof of Theorem 1.

Remark 1. Ohtsuki and Watanabe have shown [4] that the uniform
positive definiteness implies the same conclusion. It is no% difficult to
show that their statement is a special case of the Theorem 1. It has to
be noticed first that the uniform positive definiteness guarantees a global

Lipshitz condition for the inverse mapping g—l. There easily follows from

the derivation of the relation (11)

layl = ldy 0 =|det A /det A |-|dx | < |det A /det A | Ndxi.

-1

Then, it is evident that a global Lipschitz condition of f_l requires the
existence of the positive lower bound for the ratio of the two determinants.
Therefore, the uniform positive definiteness satisfies the ratio condition.
The consideration of the case of uniform positive definiteness
suggests to further pursue the question of whether or not afglobal Lipschitz
condition follows from the ratio condition. So far no answer has been
found. -
Remark 2. The class P matrix of Fiedler and Ptak is closely related
to the cofactor condition (4). If the Jacobian matrix is of class P for
all x, obviously the cofactor condition is satisfied. Howeﬁer, the co-

factor condition allows det gk to be either positive or negative.



For cxample, let

3
yy = fl(xl, xz) =x. + x

vy = £,0xp5 xp) = =x,

The Jacobian matrix is not of class P, yet it satisfies the ratio condition,
hence the cofactor condition. Therefore, the equation has a unique solution
for all y. In addition, it has to be noted that a matrix with positive

det ék’ k=1, 2, *++, n, may not be of class P. For example, in

>
n
o
[
w

one principal cofactor is negative. All these point out that the ratio
condition is a broad generalization of the class P matrix so long as one
deals with the question of uniqueness of solution of nonlinear equationms.
Sandberg and Wilson pointed out that class P matrix is useful in transistor
circuit analysis [9, 10]. It is then clear that the class of circuits
under consideration can include various forms of nonreciprocal and active
nonlinear devicés. The following example illustrates these points.
Example. A special case is considered, where a network consists of
transistors, junction diodes, linear resistors and independent current
sources. [If the Ebers-Moll model is used to représent transistors, all
nonlinear elements are voltage-controlled, although there exist nonlinear
couplings between elements due to the existence of transistors. The cut-
set analysis can be applied under the assumption that there exists a tree
containing all nonlinear elements. Then, it turns out that eq. (1) is of

the form



c..x, +d (14)
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for i =1, 2, ..., n, where bij’ cij and di are constants and Aj are positive

constants. In this case, the Jacobian matrix J(x) has the following form:

J = [b,. ¢. + c,, 15)
1) = by oy + eyl (
where X,
-1
r,= LM (16)
J lj

and Qj can assume any positive values for j = 1, 2, ¢+, n.

For the notational simplicity, the following conventions are used:
B=[b,.], C = [c..] 17

and §k and gk denote the matrices consisting of the first k-rows and first
k-columns of B and C, respectively. The notation gk (il, iz, Ty, ij) for

1 i< 12 < el < ij < k denotes the matrix consisting of the first k-rows
and first k-columns of a matrix which is obtained from C by replacing its

. -th, i

il—th, iz—th, ey ij—th columns by the corresponding i -th, ...,

1

2

ij—th columns of B, respectively. The following formula is easily derived:

det qk = det Qk + 2 : & det gk(i) + e

i<k
+ E Cil Ciz bl Cij det gk(ll’ 12’ .'.’ ij)
11<12<-~-<1j <k
+ + Ly tg *°" T det gk (1, 2, ---, k). (18)

) -10~



The necessary and sufficient conditions for J(x) in (15) to satisfy
the ratio condition (3) without taking absolute values are the following:
(1) det gp >0 forp=1, 2, *++, n, (ii) det gp (il, cees ij) > 0 for

p=1, 2, «++, n, and for any i ee < ij < p, and (iii) det gp (il, cecy,

1

(i N ij) >0 forp=1, 2, *+*-, k-1 and for

ij) > 0 implies det C 1’

p+l
il < eee< ij P

Note that the ratio condition is now represented in terms of the
signs of constant matrices. Therefore, it is easy to check whether or
not the ratio condition is satisfied. For example, if § is a nonnegative
diagonal matrix and C is of class P, it can be seen that the conditions
stated above are automatically satisfied. In this case, det gp (é =1,...,n)

are principal minors of det C and are all positive, and hence condition

(i) is satisfied. On the other hand,
det gp(il, ***y i) =b, ., b, , e+« b, . *D

where D is one of the principal minors of det C and is positive. This,

together with the fact that bi >0 (=1, *+-, n), imply that conditions

i
(ii) and (iii) are satisfied.

In the case of n = 1, conditions (i) and (ii) are equivalent to the

relations b11 > 0 and €11 0. Hence, the necessity and sufficiency follow

immediately because gy > 0.

To prove the necessity and sufficiency 6f conditions (i), (ii) and
(iii), it is assumed that the statement holds for n = k-1. Then, the
ratio condition det {k 28 g 0 requires that the right-hand side

of (18) is not less than € " ek'>0 for any positivevvalues of Cys vevslye

 Therefore, there follow det gk>'0 and det Qk (il, ceey ij) > 0 for any

-11-



11 < eee < ij'f k. Furthermore, substituting Ly = 0 into (18), and

comparing it with

det ‘Ik-—l = det Cq t e Lg det gk_l(l) + -
+ . Z ] Ly Ly "ttty det Ck 1(11,12,...
i) <o <1j <k-1 "1 72 j

+ . + l;l ‘:2 e oo Ck—l det gk—l (1,2, sy, k"‘l)

it is easily seen that condition (iii) is necessary to guarantee the

existence of a positive lower bound for det J /det Jk 1°

The sufficiency is also easily seen by noting that the value of

det gk is not less than its value for T = 0 due to condition (ii). Imn

this case, the ratio of det J

I = 0 to det J is a ratio of one

x “k-1

with nonnegative coefficients, det C, + ---

polynomial inlgl, Cy

ooy Ck-l
IR .
il .o i i oo 1 + «.., to another polynomial of the same
2 : (2) X
kind, det gk 1 cee + d,; . 1 gil . ;ij + oo, It is easy to
see from conditions (i) and (1ii) that there exists a positive constant

., > 0 for which

k
det Ck det gk-l 2 €
and
dil?. i dgz? i
1 R T

for all il, cee, ij. Therefore, the ratio is not less than e > 0

regardless of the values of Ty *ts Typs Gye This completes the proof

-12~



of the statement concerning this example.

Remark 3. As pointed out, the ratio condition is needed to guarantee
that the range of ¥, covers the whole real line, hence f is an onto mapping.
Based onvthis, one can state the following corollary of Theorem 1, which

is of the Sandberg-Wilson's type [9]: Let f be of the form

£ = FGO + 4G (19

where f(-) € T}n, and in addition each component of F is continuously
differentiable and admits a positive slope everywhere. Then, for any

y € R" there exists one and only one solution of eq. (19) if é(f) is
continuously differentiable and the Jacobian Sélag belongs to the class
P0 for all x.

It is clear that the Jacobian matrix 3§/8§ of eq. (15) never
vanishes, and hence the cofactor condition is satisfied. The nature of
F(.) guarantees that f£(-) is an onto mapping, and this replaces the ratio
condition. Sandberg and Wilson considered the case where é(f) is a linear
function as in eq. (2) (Theorem 6 of [9]).

Remark 4. The following corollary is also immediate: Let f be of
the form (19), where the i-th component of §(°) is a continuously differ-
entiable function of X:s which maps R1 onto itself. Then, for any ye R"
there exists one and only one solution of eq. (1) if é(g) is continuously
differentiable and the Jacobian matrix aé/ag belongs to the class P for
all X.

In these two corollaries, det J never vanishes, and hence Cl—dif—

feomorphism is guaranteed.

Theorem 1 can be further generalized. By applying interchange of

-13-



rows and of columns to the Jacobién matrix, the following theorem can be
easily proven.
Theorem 2. Let f be a continuously differentiable mapping of R" in-
to itself. Then, for any y ¢ R" there exists one and only one solution
of eq. (1) if there exist two permutations (il, iz, cee in) and (jl’jZ""jn)

of (1,2,...,n), and there exist positive constants Cl >0 82 >Q...,e > 0 for
n

which
i, i
i det.;[<jl j2>
1 _ 1’ 32 ]
)
a3
il’ 12’ ceey in
det J 3 j P
d , , ot
11 iz T >e  for all x e R (20)
) > Tn-1)
det J ( . . ee 4 )l
Jls JZ’ ’ Jn—l

-th, ---, i, ~th rows and jl-th,-o-

j_., ceey, lk
where J[ 3 is composed of the il

~ jl’ cee, jk |
jk-th columns of the Jacobian matrix J, in these orders.

This theorem allows the use of a set of non-principal cofactors in
the ratio condition, thus enlarges applicability.

Remark 5. Consider the special case of eq. (1):

) =Ax+w=y (21)

where A is a constant matrix and w is a constant vector. The ratio

condition in (20) of Theorem 2 is equivalent to the condition det A # 0.

This can be seen as follows: For the constant matrix case, det J det

i, .. o1
A # 0 implies that there exists at least one cofactor, det J jl - jn 1)
N N 1’ >“n-1

-14~



which is nonzero, for otherwise det J would be zero. Thus, the last
condition in eq. (20),

i, +ee, i I

det J n det J 2 e 0
jl’ R | Jl’ R Jn—l

is automatically satisfied. The same argument can be used to the second
to the last condition in eq. (20), etc. Therefore, the statement in
Theorem 2 represents the necessary and sufficient condition for the
existence of a unique solution of eq. (21) for all y ¢ R".

Remark 6. The ratio conditions in Theorems 1 and 2 have a network
interpretation. Consider an n-port resistive network with port current
and voltage variables defined as follows: Yy = il, Yy = 12, cee, y =1

n n

Xy = Vi Xy T Vg, cve, X, =v. The ratio condition 'in Theorem 1 can

l’

then be interpreted in terms of n specific driving-point characteristics:

Al
det A, = 1
~1 Avl
v2, ey vn = const.
det 4, a1,
det A Av
~1
il = const.
v3, ey, vn = const.
S it ee it s et ettt eeteatsartcaanennes
det A Al
~N = n
det én—l Avn

i cee, i = const.
1’ > Tn-1

Similarly the ratio condition in Theorem 2 can be interpreted in terms

of n transfer and/or driving-point characteristics:



det

1y
N [N
=
n
>
[
e
b=
]
(o]
Q
=1
n
cr
: .
e
“H
l.—l

il, 12
det J ) ' AL
Jl’ JZ 12
_ = i. = const.
i Av, i
1 Py 1
det q
i vjk = const., k # 1,2
il, T, 1
det J\ . . AL
“\J1> "7 1y n
i, cre, i Avj i; = comst., k # n.
n k
det J\ . ..
Jl, ? Jn_l

IIT. SOLUTION METHOD

Gersho pointed out [14] that it is an old technique in numerical
& -
computation to convert the problem of solving the simultaneous nonlinear

equation (1) to the one of minimizing the scalar function

g = [£m -y | (22)

The applicability of the method of steepest descent to this minimization
problem and its convergence behavior have been investigated by various
authors [14, 15], [17-19]. 1t is assumed in this section that the function

f satisfies the conditions of Palais' theorem stated in the first section.

-16-



Then, "g(g)“ + » as [|x]| + = and hence the level sets

{x : g(x) <c} (23)

are bounded for all c. The gradient of g(x) is given by

vg(x) = 23°(x) {(£G) - y) . (24)
It is clear from Palais' theorem and eq. (24) that the gradient vanishes
if and only if x is the solution of (1). All these imply that the
épplication of the method of steepest descent yields a convergent algorithm
{10, 14, 15].

In this section, the speed of convergence is considered under a
fairly general additional condition that f is continuously twice differ-
entiable. There are available many forms for the method of steepest
descent, and for definiteness, Curry's algorithm [17, 19] is selected as
one of the representatives. This algorithm generates a sequence of points
K=1, 2, «- starting with an arbitrarily chosen initial point

L

X , of which one cycle of iteration is described as follows: (i)

) O8N )

Calculate the gradient at x If this vanishes, then x is

» Vg(x
the solution to be found, and hence the iteration terminates here. If

otherwise, go to the next step. (ii) Evaluate the behavior of a one-

dimensional function

k
m () = g™ - arg ™)) (25)
for X > 0. Find the first stationary point at ) = Ak' Thus,
m&(x) <0 for 0 <A< A and m&(kk) = 0. Set
k+
O 100 g 26)

-17-



and go back to the step (i).

It is clear that the sequence {g(§(k))} is strictly monotone
decreasing. It is shown later that the convergence of the value of g(g(k))
to zero is of a geometric progression. That is, there exists a positive
constant alsuch that 0 < ql< 1 and

k+1 k
g < agx™) (27)

for k = 1,2, <++. It has to be reminded here that the inverse f_1 satisfies

' * *
a local Lipschitz condition. Let x be the solution to be found, fx) =y.

*
Since the set of points f(x ), f£(x +++» is contained in the

bounded set {g : “g—y" j'ug(g ) - vy} , there exists a positive constant

H > 0 such that

® ) )

1 <t ™) - fah =

=1 [ea®) -yl = nieG®)nt? (28)

From (27) and (28) there follows

© o<t k=12, 00 @9

I 2

1/2

where B = H[g(g(l))] > 0, and q, = [0!1]1/2 and hence 0 < o, < 1. This

2

*
demonstrates that the speed of convergence of {g(k)},to the solution x

is not less than some geometric progression.

It has been well known [15] that the convergence of {g(g(k))} to

*
zero and the one of {g(k)} to x satisfy the relations (27) and (29) if
g(x) is a quadratic function with a positive definite Hessian matrix.
*
(k+1) e "

Goldstein has shown that there exists an index KO such thatl|g

-18-



< 02“ g(k) - 5*“ for k 3_K0, where 0 < u, < 1, under the assumption
that theAHessian matrix is positive definite at the solution g* [18]. The
Hessian matrix of g(x) at §* is th(g*) g(§*) and hence is positive definite.
Therefore, the fact that the speed of convergence in a meighborhood of 3*
is of a geometric progression follows from Goldstein's result. The impor-
tance of (27) is that this holds globally, but not in a neighborhood of
5*. Thus, the speed of a geometric progression is assured from the
beginning of the iteration.

The proof of (27) is useful to make an underlying computational
problem clear, and hence is included herein. Let S be a level set defined

by

s = (x: g0 < gy (30)

The set S is compact and all the points of the sequence {x(k)} belongs to
S. Since the continuous matrix q(g) is non-singular for all x ¢ S, it is
easy to prove the following assertion: There exist two positive constants

Y1 and Yo such that Y1 > Yy 2 0 and

vy llzll 2 13560 2] 2 vyl =l (31)

for any x € S and for any vector z.

It is seen from (24) and (31) that x ¢ S implies

legeoll < 2 vy 1ea™) -y (32)

the right-hand side of which is a constant denoted by Y3 hereafter. Now

let G be the set of points defined by

¢=1{x: |z - z| < v for some Z e S} (33)

-19-



then the set G is a compact set containing the set S. By making use of
the fact that g(x) is continuously twice differentiable it is easy to

prove that there exists a positive constant K > 0 for which the relation

vg(g) - vg(m |

| A

Klg - n] (34)
holds for any £ € G and any n € G.
The following relation is readily derived from (25):
m () = - <Vg(zc(k) - Wg(zt(k))), Vg(zc(k))> =
1 g®)1? - wea™ - vex®) - v ™),
vg ™)) (35)

where the notation {(:, + ) denotes the usual scalar product. Then there

follows from (24), (31) and (35)

m (0) = - wex%1% = - 4 155 (£ - 3,}u2
< —aviiea®) g2 o o0y 25 ™). (36)
1f 0 <A <1, then g™ < Y, from (32), and hence
x5 es5ceand x® - Avg™) eq. | (37)
Therefore from (34) |
T - aa®) - e <l wea®) (38)

for 0 < A <1. >Combining this with (35) and applying Schwarz inequality,

the fpllowing relation is obtained:

ml () < - Ivg (x ¥y 12 + ka Ilv,.;(,g(k))ll2 (39)

for 0 ¥~ A < 1. Hence the relation
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0 <Acx< A, = minimum (1, 1/2K) (40)

implies
m ) < -3 e <o 1)
from which there follows
0 < Ay <A (42)
Then, from (25), (36), (41) and (42)
g™ - g™y =m0 - m ) 2
A
o
3mk(0) - nﬁc()‘o) = —/; ml'(()\) dx >
A
3—‘2’||vg()§(k))||2 > 2 Y; g(}f(k)) (43)
where
0 < ZAO yg < 1. (44)
Therefore,
ey < a - 2 vh) 8™ (45)

2

for k = 1, 2, **°, and the constant o, in (27) is 1 - ZAOYZ . Thus, the

1
relation (27) has been established.

Due to the desirable speed of convergence, the application of the
method of steepest descent seems very attractive. However, difficulties
are often encountered in the one-dimensional search problem of finding the
first stationary point of mk(A) [20]. 1In this respect, it might be

preferable to fix the value of X instead of finding A, in each cycle by a

k
search procedure [18-20]. This is possible if a number X in place of the
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unknown Ao can be found so that 0 < i < Ao. If this is the case, the
one-dimensional search problem can be eliminated by taking Xk = i for
k=1, 2, ---, and furthermore the beautiful property of convergence of a
geometric progression is preserved. The determination of i,however,'
might cause another computational difficulty. The present authors will

provide another iterative solution method based on piecewise-linear models

of physical networks in a forthcoming paper [21].

-22-



(1]

(2]

[3]

[4]

(5]

(6]

[7]

(8]

(91

REFERENCES

C. A. Desoer and J. Katzenelson, 'Nonlinear RLC Networks', Bell

Sys. Tech. J., vol. 44, pp. 161-198; January, 1965.

E. S. Kuh, "Representation of Nonlinear Networks', 1965 Proc. NEC,
vol. 21, pp. 702-706; 1965.
P. P. Varaiya and R. W. Liu, "Normal Form and Stability of a Class

of Coupled Nonlinear Networks,'" IEEE Trans. on the Circuit Theory

Group, vol. CT-13, pp. 413-418; December, 1966.
T. Ohtsuki and H. Watanabe, ''State-Variable Analysis of RLC Networks

Containing Nonlinear Coupling Elements," IEEE Trans. on the Circuit

Theory Group, vol. CT-16, pp. 26-38; February, 1969.

T. E. Stern, '"Theory of Nonlinear Networks and Systems,'" Addison-
Wesley, Reading, Mass.; 1965.

R. J. Duffin, "Nonlinear Networks (I, II, and IIb)," Bull. Amer.
Math. Soc., vols. 52, 53, and 54, pp. 836-838, 963-971 and 119-127;
1946, 1947 and 1948.

L. 0. Chua and R. A. Rohrer, "On the Dynamic Equations of a Class

of Nonlinear RLC Networks', IEEE Trans. on the Circuit Theory Group,
vol. CT-12, pp. 475-489; December, 1965.
A. N. Wilson, Jr., "On the Solutions of Equations for Nonlinear

Resistive Networks,'" Bell Sys. Tech. J., vol. 47, pp. 1755-1773;

October, 1968.
I. W. Sandberg and A. N. Wilson, Jr., "Some Theorems on Properties

of DC Equations of Nonlinear Networks," Bell Sys. Tech. J., vol. 48,

PP. 1-34; January, 1969.

-23-



(10]

{11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[(19]

[20]

I. W. Sandberg, "Theorems on the Analysis of Nonlinear Transistor

Networks," Bell Sys. Tech. J., vol. 49, pp. 95-114; January, 1970.

R. S. Palais, "Natural Operations on Differential Forms," Trans.

Amer. Math. Soc., vol. 92, pp. 125-141; July, 1959.

C.A. Holtzmann and R. W. Liu, "On the Dynamical Equations of Non-

linear Networks with n-Coupled Elements,' 1965 Proc. of the 3rd

Annual Allerton Conference on Circuit and System Theory, University

of Illinois, pp. 533-545; 1965.

M. Fiedler and V. Ptak, ''Some Generalizations of Positive Definiteness
and Monotoricity,'" Numerische Mathematik, vol. 9, pp. 163-172; 1966.
A. Gersho, ""Solving Nonlinear Network Equation using Optimization

Techniques," Bell Sys. Tech. J., vol. 48, pp. 3135-3138; November,

1969.

T. L. Saaty and J. Bram, '"Nonlinear Mafhematics," ﬁcGraw-Hill, New
York, N. Y.; 1964.

E. S. Kuh and I. Hajj, "Nonlinear Circuit Theory: Resistive Net-
works," to appear in Proc. IEEE. |

H. B. Curry, '"The Method of Steepest Descent for Nonlinear Minimization

Problems," Quart. Appl. Math., vol. 2, pp. 258-261; 1944.

A. A. Goldstein, "Minimizing Functionals on Hilbert Space," Computing
Methods in Optimization Problems, Academic Press, New York, N. Y.,
PpP. 159-165; 1964.

A. A. Goldstein, "On the Steepest Descent," J. SIAM Control, Ser. A,

vol. 3, pp. 147-151; 1965.
J. Kowalik and M. R. Osborne, 'Methods of Unconstrained Optimization

Problems," Elsevier, New York, N. Y.; 1968.

24—



[21] T. Fujisawa and E. S. Kﬁh, "Piecewise-Linear Theory of Nonlinear

Networks," to appear.

"‘25"" 14



	Copyright notice 1970
	ERL-288

