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ALGORITHM VERIFICATION

Ward Douglas Maurer

Introduction

Any experienced programmer is keenly aware of the seemingly

infinite variety of errors that.can creep into his programs. Many

programmers despair of our ever being able to* classify errors in

programs by type. Now, however, it appears that algorithm verifi

cation,— the mathematical proof that a given program has no errors

in it ~- is finally within our grasp. It is our purpose here to

discuss the general problem of verifying algorithms. Our methods

will be quite general purpose, applying to programs written in

algebraic languages, business languages, assembly languages, and

higher-level languages. At the conclusion of this paper, we give,

as examples, verifications of three FORTRAN programs. In a companion

paper JKl-'i we discuss applications to FORTRAN, ALGOL, LISP, SNOBOL,

BASIC, HELIAC, CDC 6h00 assembly language, and IBM 2130 assembly

language. Included in [12] are verifications by students of table

searching and sorting algorithms, list manipulation, prime number

calculation, Gauss and Gauss-Seidel methods, tic-tac-toe and knight's

tour programs, conversion from prefix to infix notation, and appli

cations such as amplifier cost minimization and computer dating.

Our treatment will be rigorously mathematical, beginning with

fche specification of programs, expressions, statements, instructions,

and the like as mathematical objects much like groups or vector spaces.

Our fundamental notions are the cartesian product set, or f,p-set"

for short, and the function on a p-set, or from one p-set to another.
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Using this as a basis, we shall define algorithms, we shall define

what it means for an algorithm to be correct, and we shall then

state and prove a fundamental verification theorem upon which all

our later work is based. This theorem allows us to translate our

intuitive, notions of why a program works into "condition struc

tures," which are collections of assertions ab-.jut the v..:'i: "v.es of

our program at any £iven stage in the co.-^ .\^-.-:.xo'a0 Provided that

these structures satisfy certain fiffidamental requirenc-nts, o;;r

verification theorem asserts that, our giv^-ii algorithm is' correct.

i-jany of our results have been independently .studied by others.

ThB fundamental "theorem on "partial, correctness" of an algorithm

is due to Floyd t3ljl'a complementary result on termination of al

gorithms first appeared in a paper by Manna u.oj» Neither of these

papers used the idea of a cartesian product set as basic to pro

gramming. On the other hand, there have been a larg? number of

papers, not primarily concerned with verification of algorithms ,

in which this concept has.been studied, Elements of a p-set are called

"state vectors" by McCarthy |VL3j, "content functions" by ISlgot 'and

Kobinson £2j, and simply "states" in an early paper of the author

[fnj« The "region of influence," or set of variables altered 'by a

given statement or instruction, was first rigorously defined in f2l.

The set of variables used by a statement or instruction was first

defined inf|l]jj in this paper we also stressed the fact that ?, car-

tesian product of arbitrary sets (of at least two elements), rather

than of n, copies of the same domain, is the ••ost r^psonablc- r.~del

for programming, and also introduced an axiom "(later cal" ed the

"finite support property") under which the number of variables in a

program is allowed to be infinite. This allows us to include every

square on every input and output tape as part of the index set over

which the cartesian product is taken, and thus allows us to inc'.ude
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input-output in our model, ans*jering a question posed in U31#

To our knowledge, the only work which has so far b«en dene

on verification using a cartesian product model is contained in the

doctoral dissertations of King [?J and Good I'-f-l. Both of these

dissertations are concerned with program verification programs,

and both use McCarthy's term, "state vectors." In the present paper

we extend the concepts of "input region" and "output region" intro

duced in fill (renaming them effective domain and effective rangef

respectively),'which allows us to achieve certain simplifications.

In particular, we shall define a general concept of memory exten

sion of a function from one p-set to another, with respect to which

the fundamental'character of assignment statements becomes clear.

Expressions, terms, factors, and the like are viewed as functions

from a set of state vectors into the real numbers, the integers, or

in general, a set determined uniquely by the type of the given ex

pression. A general combinatorial operation on such functions, which

we call the "star-extension," allows functions for terms, for

example, to be built up from the f'motions for the factors con

tained in the given terras, and is also quite generally applicable

in programming languages in the construction of complex state vector

functions from simpler ones in natural ways. In C12 1 we define se

mantic extensions of 3NF, using and extending a method first sug

gested by Knuth pj. This provides a method of defining the seman

tics of a language in terms of its effect on the relevant p-sot.

This is done directly, rather than indirectly as i- the so-called

"Vienna method" (see, e0 g., PI), where PL-I programs arc definc-i

as abstract trees©

Algorithm verification is, b<* course, subject to vcrtv.i.ri

well-known limitations. Strictly speaking, a program hp.x not been

verified until it has been checked for the effects of roundoff
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errory truncation error, arithmetic overflow, znd. errors arising

from approximations. In our mathematical model, this-corresponds

to the fact that-the'sets over which the cartesian product is taken

are not the real numbers with real arithmetic operations, but

rather the floating point numbers for a specific computer, with

floating point operations. 1$uis possible for the same FORTRAN

program to give correct results on one computer and not on another;

thus our semantic specifications and our verifications must often

be with respect to a specific implementation of a language, and not

merely with respect to a specific language. A verified program may

fail to \fork properly due to errors in the compiler or interpreter;

this suggests that compilers and interpreters be the first large

programs to be themselves verified, and it is hoped that our me

thods will aid-rthose seeking to work in this direction. A varif5.ed

program may even fail due to hardware errors; the verification of

hardware is beyond the scope of this paper, although it is inter

esting that a specification of the performance expected of the

hardware may be obtained by using our methods. Finally, a lurge

number of well working programs cannot be verified because, stated

simply, they do not always work properly; they are subject to the

rule of "garbage in, garbage out," and do not, for example, check

their input for all possible errors. In such cases it cr-.n merely

be pointed out that these possibilities exist; or, a.Iternatively,

it can uerely be proved that jj£ the input satisfies eer-'u::u criterrV

of reasonableness then the. given urogram is cornet.

Despite these considerations, however, algorithm verificatiou

can become extremely useful. Verification of a program coul" very

ea&ijy take the place of informal documentation. This would allow

extc2isions to be made to a program without fear* one rurely extends

the verification..There are many practical situations in which it
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is difficult or expensive to' check that a given computer r^o'jvcji

has worked properly, such as in consumer credit or'v^te co nting.

Uhder these conditions, some sort of verification of progrw.s is

necessary, and the most certain verification will be a :;r. thematic;

one.

The use of the computer in the verification process is a

subject that is bound to ass-no increasing i.i;.u irtance, particulaiwly

since program verifications are so long ?na tedious. One 1^.3 not

proved that a computer program has no errors in it if there are <

errors in the proof. We emphasize, however, that verifying an al

gorithm should initially be regarded as a human activit}', just as

programming is. That is, one writes a program in a language and

then asks the computer to compile it before executing, and in the

same way one writes a proof in a verification language and then

asks the computer to check its logic. The construction of proofs

of programs by computer is akin to mathematical theorem proving,

and may heTQ by regardful as a second stage in the subject —

somewhat like the construction by computer of programs themselves,

as the output of a general problem-solving program. A start in this

direction has b-en made by King £5jm

Program verification programs have other limitations, 'usiues

the. fact that, in genural, they cannot be expected to gw-no.-rnte th-.r

own proofs. One of these has to do with the use of nwth-e --aticr.1

facts in proving programs correct p When writ mug a sin?-, routine,

for example, the first thing we normally do is to ii"ide i'e urgu-•

ment by 2T and talus the roaninder, using the identity siu (rhv'Y) '--

sin x. This identity will be uso- in the urocf that the given sine

routine actually calculates the sirw. of x; hut it will not itsnlf

be a consequence of any algorithmic arguments involving the .g-r.^ io:

structure of this routine, uimihlarly, if an algoritJjn cr-lculates

,*..?/*.vT
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an element of a convergent sequence rrid. then loops back to calcu

late the next element, then the fact that the sequence conv.-rges

may be used in proving that the algorithm works properly. This

fact must, however, be supplied as input to the. program verifica

tion program, unless this is also a mathematical theorem prover.

Recursion, rather surprisingly, is not fundamental to our

development of this subject. It is true that wo will sometimes be

required to verify a recursive program; but for the verification

of a program in a language such as FOmTHAIT, where recursion is not

allowed, recursive methods are not necessary and :;-re not -<scd here.

Also, we shallunot be concerned with the formal structure of the

predicate calculus, or with sequential machines or Turing machines.

SDherefore, the prerequisites for understanding this treatment of

the subject are nothing more than a knowledge of programming tech

niques and a small amount of basic set theory, which we shall now

review. (For the understanding of our programming language semantic

specifications in [i2j* it is necessary to be acquainted with 3KF

and with the elements of context-free languages.)

The notion of a set and of a function from one set to another

are taken as primitive. If f is any function, X is the domain of f,

and Y contains the range of f, we'speak 0f the total function

f: X«^Y. If X merely contains the domain of f, we speak of the

partial function f: X->X. If f: X->Y and Xf C#, we write f|Xf

for the function g: X«-*Y defined by g(x) = f(x) for all x £ X1

(for which f Is defined, if it is partial); this is the restriction

of f to X'. If f: X-»Y and g; Y->Z, then the function h: X->Z

defined by h(x) = g(f(x)) is the composition of f and. g; here all

these functions may be either total or partial. We write h -- f o g

in this case (rather than h = g 6 f, as followed by some authors);

thus f o g means, intuitively, "first apply f, then apply g."

:'3Si"
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The cartesian product XX Y of any two sets X ant Y is defined

as the set of all maps f: {l, 2}-»XUY such that f (1) £ X rnd

f (2) fe Y; it may be interpreted as the set of all ordered pairs

(x, y) with x g X and y (J Y. (We may equlv^lently use $0, l] or

forueT false^ in place of ^1, 2$). The cartesian product X * •..*•-',.
of any finite collection of sets X^ is defined us the set of all

maps f: \l, ..., nj-*^* ...*X such that f(i) £ X, l*i£n;
it may be interpreted as the set of all ordered n-tuples (x ,.#.,x..)

with x € X , l&i&n. Where a collection of sets X. is indexed by

a set I, so that there is one set X. for each i 6 I, the set IJ ;C.

is the set o£ all x such that xfXj for some i 4 I, and the set

*TT X is the set of all maps f? 1-4 U X, such that f(i) £ X for
i€I x i£l i i
all 1 6 I; this may be interpreted as the set of all n-tuples or all

"infinituples" fx^, wjt-fcfi x^£ X for each 14 1, depending on
whether I is finite or infinite. (McCarthy writes c(var, %) C[33l,

p. 2?) for the value of the'var iable ya£, or the contents of the

cell var, assigned by the "state vector" ?; in our terminology, we

would write simply ft(var).)

A relation on a set X is a subset of X * X. If the relation

is called R, we write xRy if the ordered pair (x, y) is in the

subset. A relation R is reflexive if xRx is always true and irre-

flexive if xRx is always false. It is symmetric if xRy implies yRx

and antisymmetric if xRy and yRx imply x = y. It is transitive if

aRy and yRz imply xRz. It is an equivalence relation if it is

reflexive1, symmetric, raid transitive; a partial ordering if it is

reflexive, antisymmetric, and transitive; ;md n. strict ordering If

it is irreflexive, antisymmetric, and transitive. For a strict
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ordering, xRy implies that yRx is false.

Let X be any set. A partition, or a decflmposition It of X is a

collection of disjoint subsets of X whose union is X. Given any

decomposition duT of X, there is an equivalence relation R on X,

under which sRJf if and only if x and y belong to the same member

of the decomposition JOT. Conversely, given an equivalence rela**' -
* tion R, the collection of all distinct sets of the form fx € X:

sRy£ for sbme fixed y is a decomposition of X. Thus there is a

one-to-one correspondence between decompositions of X and equiva

lence relations on X.

Let > be any partial ordering on a set X; we may define the

corresponding strict ordering ^> by x>y if x^ y and it is false

that x =5 y. Given a strict ordering ^ , we may define the corre

sponding partial ordering ^by x^y if either x > y or x = y •

Thus there is a one-to-one correspondence between partial orderings

and strict orderings of a set. If > is a partial ordering, then its

inverse < , defined by x ^ y if y >x, is a partial ordering; if

^is a strict ordering, then the strict ordering 4£ is defined simi

larly. In practice, if any one of the four orderings <, £ , ,>,

and JV is defined, we shall consider the other three to be defined

in the obvious way.

Let > be a strict ordering onp decomposition d& of a set X.
Then ^ extends in the obvious way to a strict ordering of X itself;

.that is,xy y in X if x 6 D and y € D, with D 6 & , D € ob , and
x y x y

D ^D In S3* The same construction may be made with a partial
x y

ordering, but the result Is not a partial ordering.

A set G together with a relation^ on G may be called a dlrecr

ted graph» TBe::elements of G are called the nodes of the graph and

the elements x*$»y of G x G are called the links of the graph. If

x and y are nodes, then we say that there is a directed path *'
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of length ij from x to y if there exist nodes' x,......, x , xQ = x,

Xn = y' vitiJl xi-l"*xi for 1^»i^ n. There is always by definition
a, directed path of length zero from x to x. A directed path 6f

length greater than zero from x to x is called, a directed cyc3,e.

A graph with no directed cycles is called acyclic, (By "graph" we

always mean a directed graph.) In any graph, the relation R defined

by xRy if there exists a directed path (of length J^tO) from x toy

is reflexive and transitive, and, if there are no directed cycles,

it is also antisymmetric and is therefore a partial ordering. Accor

dingly, we sometimes refer to an acyclic graph as an ordered graph,

A node jfo£ a graph is' initial if y-^x does not hold for any
node JT: It is terminal if x-fry ^.oes not hold for any node y. An

element x: 6£ a set X with a partial order relation R (called a

partially ordered .§e£) Is maxima^ if yjfc x Implies'r ~ x; it is;
minimal If x£.y implies x = y, A partially ordered set has a smallest

element x if y ^ x for all y; it has a greatest element x if x^ y

for all y. A simple ordering is a partial ordering for which, given

any two distinct elements x and y, either xj; y or y>x, A'minimal

element of a set with a simple ordering (called a simply ordered set)

must be Its smallest element; a maximal element of such a set must

be its greatest element. Smallest and greatest elements are always

unique.

A relation R satisfies the chain condition (or finite chain

condition,) if there are no infinite sequences xl, Xg, x~, ..., with
x^Rx^, s^taL, ... • If X is a set, R is a relation on X which satis

fies the chain condition, and Xf is an arbitrary subset of X, then

X1 must contain a minimal element. Otherwise, we could start with

an arbitrary element x-j; since x is not minimal, there exists xp

with x-jRx^; since x^ is not minimal, there exists x with x^Rx^, mnd
we may continue indefinitely in this,way, contradicting the-chain
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condition. For a simple-ordering which satisfies the chain con

dition, this implies that every subset has a smallest element$ i. e

that"the e:^^ set is a werll-ordered set.

Let j£>= "W V and let S €r JL. Sincei-S is aVmap whose domain

is M, we may speak 0f S(x), for x£ M, or of s|l<If, for M'C M. If
£ is interpreted as a collection of n-tuples, we may interpret

S(x) as the "x co-ordinate" of S, i. e., as one of the & objects

which makes up the n-tuple; likewise, we may interpret sjll1 as an
ra-tuple for m^ n, obtained by picking m of the given n objects,

specifIcally those in certain fixed given positions in the n-tuple,

and combining these into an m-tuple.

Let G be an ordered graph and let A and 3 be subsets of G.

We say that AJl B if for each a 4 A there exists b ft B with a> b

In the strict ordering of G. Vie say that Ajfc B if for each a £ A

there exists b £ B with a ft b in the partial ordering of G.

Let f: X-^Y be any function .and let X1 be a subset of X.

We write f (Xf) for the subset yf of Y. defined by {y £ y:Jx £ Xf

with f (x) « yj.
The null set will be denoted by &.
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P-Sets and P-Functions

Our fundamental model will be based on the cartesian product

of sets (p-set) and the function on a p-set, or from one p-set to

another (p-function). P-sets and p-functions provide a unified

approach to programming science.

Computer memories and sets of variables are examples of index

sets 24 upon which to,build p-sets JL = TT v .
x£24 x-

InstructionsT (executable) statements, computers, computa

tions* programs, algorithms may be interpreted as p-functions on a

p-set (that is, from a p-set to itself).

MessagesT expressionsT terms? factors, n-ary functions, predi

cates may be interpreted as p-functions from one p-set to another.

DEFINITION. A p-set is any set of the form X = X\r V , for——— „ X^M x,

some set M and, for each x € M, a specified set V__. (The V need
x x

not all be distinct.)

DEFINITION. A totajL p-function is a function p: % -» & ,
where JL^ and ^g are p-sets. &partial p-function Is a function
p: J^ ->A', where i» ci, and i and I are p-sets. If &
4 42, we speak of a (total or partial) p-function from i to % .
If A = ^2 (~ ^)> we speak of a (total or partial) p-function

If M= 4> (the null set), TT V has by definition one ele-
x€M x

ment, which we denote by q. If Mhas" exactly one element x, with

Vx = X» then 3TU Vx^y be identified with X; any set Xmay be re
garded as a p-set in this sense. The most commonly occurring p-sets

of this kind are called types. The type integert for example, is

here identified with the set of all integers, for an Ideal algo

rithm, or the set of all integers which may actually occur (in

single precision) in a given computer, for an actual algorithm.
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In an analogous way, we may define the types real and Boolean (or

LOGICAL); in PL-I, a type is uniquely identified by a particular

base, scale, mode, and precision. If M contains several elements

xi for all of which Vx = X for the same set X, then we also refer

to X as a tvper and. each x is called a variabley specifically a

variable of type X, or an X-variable. Thus a given set If may in

clude integer variables, real variables, and so on.

If any set Vv = <£), then TY, V a <*>, and there are no
x x6M x » 7

p-functions from it or to it whatsoever. If any V contains exact-
° x

ly one element, it may be eliminated from discussion; specifically,

if M» = fx 6 M: Vx has exactly one element? and W= M- M1, then
there is a natural one-to-one correspondence between TT V and

x€M x

T^, Vx„ We shall assume from nov; on that each Vx contains at least
two elements. If V contains exactly two elements, i. e., if V =

i°j Qi &2£, off}, ftrue, falsej, or the like, then x is called a
binary element of M. In a computer memory H, all the elements are

binary elements; they are such things as cores in core memory,

flip-flops or "positions" in registers, and bit positions on tape

or disk. In order to represent integer variables or real variables

In such a memory, one must use a trick which may be stated in gen

eral terms as follows: if X= TT Vx and & is a decomposition of
tit then there is a natural one-to-one correspondence between >2 and

D^xeD Vx*» and» for each D^®' xTd Vx may vte taken as the type
of D. Thus we decompose our set of binary elements into words and

registers; the type of each word Is the set of bit patterns that

may appear in it.

Let p be a total or partial p-function from % = TT y to
* 1 x£A x

*2 = xVb Vx« I*t Af 3 A and let A» U BO B» O B. V/e assign to
each x 6 A» an arbitrary set V , if such a set has not already

been assigned because x £ A. V/e now define-a-p-function, pf, from
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H= x7a« vx to &&= x3>f vxby p,(s) =s,>where st(x) =s(x)
for x^ B (this is well-defined because Af UB^3'), and, if S"

= p(S|A), then Sf (x) = S" (x) for x £ B. We refer to pf as a memory

extension, of p; it is total or partial according as p is total or

partial. In what follows, we shall use the same letter for both

functions when there can be no confusion as to meaning; this re

flects the fact that when we add new elements to a memory, the

p-fauctions on that memory retain their character. In particular,

we have the following special cases:

(a) B* = B. This allows us to define p-functions for expres

sions. Any set X may be treated as a p-set, as mentioned above;

if f: X—>Y is an arbitrary function, it may be treated as a

p-function from the p-set X to the p-set Y. It may then be exten

ded to a function p: &->Y. where Jo = TT V for any set Mwhich
xcM x ——

contains an element x with 7 = X. We shall refer to this p-function
x

as £f(xj}; it clearly depends on the choice of x £ M. If X= X1 x ...
* Xn, so that the elements of X are n-tuples and f: X—>Y is a

function of n arguments, then f may be extended to a function p:

JJ, -> Y, where X = •)., V for a set Mwhich contains elements
7 XcM X

xl> •••* *& witl1 vx = Xi> •*•- i^ n# We siia11 refer to this p-func-
tion as $f(x,, •••, x )*$•; it clearly depends on the choices of the

x^, which need not be all distinct. These p-functions are total or

partial according as f is total or partial. If Y = integer, a

function pi X *-> Y will be called an integer p-function; in an ana

logous way, we may define real p-functions, Boolean p-functions,

and so on. The set Y may be called the type of the p-function.

(b) A1 = Bf. This allows us to define .assignments. Either

the function f or the function £f(x)} of the previous example may

be extended, as above, to a p-function q: ,&-*,&., where X = TT V
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for any set M containing an element x with V = X and an element
x

y with V = Y. We shall refer to this function as the assignment

-{y«~f (x)}; it clearly depends on the choice of x and y. In parti
cular, if X = Y, we may have f (x) = x, giv'ng rise to the assign

ment {y«-x}. Or we may have x ~ y, which'produces assignments of

the form $x«-f(x)|; in pa.rticular, if c &X and f(x) =:c is a con

stant function, then $x«-c£ is the corresponding constant assignment.

In a similar way, we may define the assignment ^y«-f(x1, . .„, xn>$;
it, too, clearly depends on the choice, in M, of the elements x ,

..„, x_ and y.
n

Another type of extension which produces a p-function is as

follows. Let p., I4i£n, be total or partial p-functions from

p-sets ^i to sets X, and let f: X- jc ... %X ~»Y. Let 2. =
Sh V let M- fi Mi» andi for this Mf let * =Si V ^ Ac
tion g: i-4y, defined by g(S) =f(p (SflO, ..., Pn(S|iy) win
be called a star-extension f*^, ..., p ) off. If n = ly the star-extension
f*(p,) reduces to the ordinary composition p- e> f. Common examples of
•••••*•• ' . _, -.-7—Ja?e^-• *-»,- i-

star-extended functions include:

•(&) Binary and unary operations. If f (a,b) = a+o may be in

terpreted as addition on Y, then f*(e,e'), for any two p-functions

e and ef from A to Y, is another such function, which may be

denoted by e+ef. If Y = integer, then e+e! is an integer p-function

derived from the integer p-functions e and ef. The same construc

tion will produce e-e1, e**ef, etc., as well as -e; and all of these

may be real p-functions, complex p-functions, or, in general,

p-functions of any type on which operations are defined. The pro

cess of defining operations on TT v so as to make it look like
x€D x

integer or real, where D is a word in a computer, each x 6 D is a

bit in that word, and each Vx =%0, l£, leads to certain inaccura

cies which are identified and analyzed as roundoff error? truncation
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eiyor. and the like. It is not necessary, however, to have an

"exact" model of arithmetic operations in order to define

star-extensions; in an actual computer, e+ef, for example, is the

star-extension of the actual addition function defined on if v ,
x*D x'

taken as the set real, where e and ef are real p-functions (i. e.,

p-functions of type \\ V ).

(b) Relations. Let Boolean = -ftyue, false}. A relation on
a set Y is a subset R of Yx Y; if (y , y ) is in this subset,

for y , y^ %Y, wevwrite y R y . There is a natural correspon

dence between subsets of any set and maps from that sot into

Boolean* the image of an element in the set is true if and only

if it is in the given subset. Thus, if R is a relation on Y and

e and ef are two p-f'unctions of type Y, thenR*(e,ef) is a Boolean

p-function, which may be denoted by ^eRef}. Turning the argument

around, -£eRef£ is a subset of Z , wher^ e and ef are p-functions
on JL. The elements of $ may be called .states, since they "de
scribe the system" by assigning a value to each, variable; subsets

of JJ, or, alternatively, Boolean p-functions on X, may then be
called state conditions. If x is any Boolean variable, the memory

extension of the given correspondence between V and Boolean is a

state condition £x}; these,-together with the constant state con

ditions -firue} and ffalse| and the various {eRe1^ as mentioned

above, constitute the fundamental state conditions of any p-set X.

These may be further combined by means of Boolean operations, which

are star-extensions of the well-known binary operations on the set

Boolean, such as and5and or. Thus if C and C» are c.ny two state

conditions, so are C and C* and C p£. C1, these being defined as

and*(C, Cf) and or*(C, C«) respectively.' Interpreting those as sub

sets of ^ , we have C and C» = C r\ Cf and C or Cf = C u Cf. Similar

constructions may be applied to the unary operation not on.the set
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Boolean (in particular, not C =% - C) and to and and o£ treated
as n-ary functions on Boolean.

Actual state conditions occurring in programs may be much

more complex than the ones mentioned above. For example, suppose

that wc have a routine to take the variables A(l), ..., A(IT) and

sort them, keeping the original values of the A(i).and putting

the new values in B(l), ..., B(N). The condition that the B(i) ore
N-l • *

sorted is then \J\B(1)£ B(1+1)J. The condition that the 3(1) are
i-1

"the same" as the A(i) is a bit harder to state. Let X_ = {l,...,N$,
and let G be the set of all one-to-one maps from X onto X; then

N
the condition above is U ( O 4A(i)=B(f (1))^). As an even more

f£G 1=1
complex example, let A be an arbitrary data structure, such as,

for example, a particular S-expression in the LBP language. Pol-

lowing d'Imperio, we use the term "data structure" for mathematical

expressions — such as S-expressions in L3EP — which are indepen

dent of any particular computer, and "storage structure" for a

particular method of representing a given data structure in a par

ticular computer memory. In general, a data structure may be repre

sented in numerous ways as a storage structure, and the fact that a

particular memory contains a storage structure which represents a

given data structure is a state condition on that memory. Programs

which operate on data structures.will always have state conditions

of this kind associated with them.

In denoting the intersection of two state conditions, the
comma may be used in place of the word and; thus the condition

21=3,3=^ is the condition £i=3 and J=*f$. In general, we speak of
a "set of conditions" C^, ..., cn, when we mean their intersection;
If the inte>sectibh-C-of a-set of Conditions," includes" a particular
C±, then, as subsets of^C^C (not C^c CJ). If gu a p-set and
JL" c &' o £, then 1" may be called a subcondition of J', If i' is
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thought of ag a B-expression on JL and p: -o —» Ji, then the B-expres-
sion po j' will be denoted by p(i'); this is also a subset of JL\
namely p(i') = $S £ i:3S'£,£', p(S») = S>.

(c) A.ryays. An array x[a tb^ ..., an:b^3, where the a. are
lower bounds and the b^ are upper bounds, consists of a map x:

X^ ... xXn~»M> where X^^ = ia±J a1+1, ..., bl and Munerlies
a p-set A=TJMVX# The star-extension a*(ex, ..., en), where each
ei Is a p-function whose values lie in the range a. 6 e (S) £ b.,

is then a p-function whose values are elements x£M of this array. In gen- I
eral, p-functions of type Mwill be called address functions. If 3
T is an arbitrary type and ^ C Mis the set of all elements of 11
having type T, then a p-function of type 1^ Is a T-address function.
For example, if a is a real array, and T = real, then a: X-»flL may

be star-extended to the real address function a*(e). Address func

tions allow us to define more general assignments than those dis

cussed earlier; if s, is a T-address function and e is a p-function

of type T, we may define the assignment ?s_«-e} as a function p:
A->JL, where p(S) =s» for 8Hz) =S(z) whenever z t x = s(S) and
S«(x) = e(S). Each assignment {y*-e} as discussed earlier is an as
signment $s«-e| for the constant T-addross function s(S) 5 y; the
more general type of assignment allows us to assign values to sub

scripted variables where the subscript must itself be calculated.

A generalized version of the star-extension allows us to treat

functions with side-effects. Let p , \£ i*n, be total or partial

p-functions from p-sets Jr to sets X±f and suppose that each p.
has a "side effect" p|, which may be an arbitrary p-function on
an arbitrary p-set J .. X» 4,-^ V ™ *'± =l£q ^, let
H'bethe union' of all the,H± and all the M£, and, for this M, let

=^Sm ^x* ^ iS assumed that the xi are separate and disjoint
from both the M1 and the M[.) Let g: A-> Ybe defined by g(S) =
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f(p1(S1(M1), ..., Pn(Sn|Mn)), where S^^ =S -and S1+1 =p^),
l£i<n. Let g»: £ -^ X be defined by g« (S) = p (S ), where the

n n *

sequence S-^ *.., Sn is defined above. Then the pair (g, gf) =

f*((Pn» P4), ♦.., (p , p')) is the dynamic star-extension of the
j. x n n ' ' '

pairs (pi? p|). If f also has an associated side-effect ff, v/e
define g'(S) = «Pn(Sn))f and (g, gi) = (f, ft)*((p p.t), ...,

^pn> PA^ is a sti11 nare general form of dynamic extension. If
the.side effect functions p» and f» are the identity, the dynamic

star-extension reduces to the ordinary star-extension; the more

general formulation allows us to treat such expressions as i±+i}
in ALGOL, for example, where I and J may both be references to

procedures (i. e., subroutines) with no arguments, possibly using
and/or setting the same data.

Both kinds of star-extension may be used to define the effect

of (Sailing a function or a subroutine in FORTRAN or using a pro

cedure in ALGOL when the actual parameters are taken to be general

expressions. If f(x , ..., x ) is defined for x. of type T,, then

the function denoted in programming languages by f(e,n, ..., e ),
.i. n

where e has a. p-function of type T , is actually f*(e„, .... e ).
x in

This may be taken in either the static or dynamic sense, which
allows any of the e^^ to have side effects. The way in which a pa
rameter is called determines the type T for that parameter. If T

•*- i

= ££al> integer, or the like, we have« "call by value" as- in ALGOL;
if TA = 1^ for U= real, integer, or the like, we have "call by
address" as in FORTRAN. Calling by name in ALGOL was originally

defined as a function which transformed one ALGOL program into

another so as to eliminate the calling statements; but, -sing Jen
sen's device, we can interpret this type of parameter usage as above

by identifying the elements of T. with p-functions of ty^e M, , for
U = real, integer, or the like.
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Programs

Let P be a finite set of statements F which make up a

program. From our discussion of assignments, which are functions

from a p-set & to itself, one might expect that, in general, each

Fi would be of this form. But there is more to the story than that,

because each statement in a program not only performs some action —

indicated by a p-function — but it also indicates which statement,

if any, is to be performed next. This depends, in general, on the

values of the program variables, 1. e., on the state S fr#^, and

it is thus a function from & into P itself, or a p-function of
type P.

DEFpn^ION. A program on a p-set 1 is a finite set P of

statements T±7=* (?±9 N^), where ?± is a total or partial p-function
on X and -JX is a total or partial function from L into P. The
function P± Is called the program function of F,, and IT is called

1 I

the next-statement function of F .
JL

A program is thus a finite set of function pairs; but it is

also, in another sense, a single p-function, or, more precisely, it
is so in two different and related senses.

DEFECTION. Let Pbe a program on £= TL Vx, let W =
MV«0J, and let V^ =P; the set £= If Vx may thus be identi
fied with jLjL. P. Then the execution function of P is then defined
to be the function f: ^-*tf defined by f(S, F.) = (P (S), N(S)),
where F = (p w ).

x i 1

The motivation for this definition is not too difficult to

discern. Suppose that'we are given an element Q:% X and a parti

cular statement 'F± to be the value ofX. Then, by executing this
statement, we get a new element of % , or a new configuration of

the variables of the program; and we also get a new statement F ,
i*
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namely the statement given by the next-statement function N. ap

plied to S. Thus, starting with an element of X K P, we obtain in

a natural way another element of JL fi P. This leads us to a

p-function on this expanded p-set, which will be a partial function

If any of the P. or the N are partial functions. We shall denote

the execution function of a program P by P itself; this will gene

rally cause no confusion, because in one sense P is a set and in

the other sense it is a function.

DEFINITION. Let P be a program on X and let F be an arbi

trary statement of P. The: fcdamitafriori of P with respect to F is

defined to be the p-function g: X ~^X as follows. Let S£ X , let

TQ = (S, F-), and set T = P(T. ,) for as long as this sequence is

defined, where P is here taken to be the corresponding execution

function as defined above. If the sequence T. terminates because

some Tk = (S», F.) for F. = (P., N.) such that N (S) is not defined,

we set g(s);•» P.(sf>. If it terminates Because* P*(S) is not define^,

fcr if it does not terminate at all, then g(S) is undefined. The

sequence T^, for as long as it is defined, starting with any

(S, F ), is the computation sequence of S with respect to F .
x

The computation of a program Is the p-function obtained by

viewing it, in a sense, as a single step. That is, a configuratl6nm

Sii of the variables of the program is given; the program is then

run in the usual way, that is, its execution function is performed

over and over until the program exits. When this happens, we have

a new configuration of the variables of the program, and the cor-

reppondence between the old S and the new leads to a p-function on

X. Exiting from a program is defined by inability to find a next

statement; in particular, it is perfectly permissible for N. to be

a partial function in the degenerate sense that it is left completely
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undefined. In this case, F = (P , N ) is an exit statement of

the program (and the values >0f. P. are immaterial). It is not ne

cessary, however, for an actual program to have any exit statements,

so long as it has conditional exit statements F m= (P , N.) where

N^ is a general partial function. If all the functions N. are total,

then it is Impossible to define a computation of the program.

We emphasize that any statement in a program which is not an

exit statement may be taken as F in the above definition. The

statements in a program form an ordinary unordered set. When we

use the computation of a program P with respect to a statement F ,

we shall generally denote it by Pfft There is a more restricted de

finition of a program which suffices for many purposes, although

it also has certain drawbacks.

DEFINITION. An ordered program on a p-set A is a finite

sequence P of statements F = (p f N.), l£if n, where P± is a
total or partial p-function on X a*1** ff. is a total or partial
function from X into P. The unordered program Qo£ P is the set
FI = (P,, N»), for the P. as above, where N» = N and, for i < n,
•la i i n n

we have N£(S) » N^(S) whenever N (S) is defined and N»(S) =F
otherwise. The execution function of P is the execution function

of Q; the computation of P is the computation of Q with respect

to F . Other computations of P are those of Q.

An ordered program thus has a computation, without any qua

lifying phrase; it has a first statement and a last statement, and,

in particular, it can have only one last statement. Most of the

statements in an ordered program may be specified by simply giving

a function P and leaving N completely undefined, since in an

ordered program the "next statement" is by default the next in

order.
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In an unordered program we may easily distinguish conditional

and unconditional statements. An unconditional statement F^ is one

for which N, is a constant function. This includes ordinary as

signment statements and subroutine or procedure calls as well as

unconditional transfers; it also includes conditional assignments

such as (if A = B then set C = D). A true conditional statement is

one for which N. has more than one value. A transfer is a statement

F. for which P, is the identity function; most conditional statements

in practice are conditional transfers. A brief digression about

conditional quantities in programs may be in order at this point.

If f: A«frB and g: B-^C are functions, we may always speak of the com

position f*g « h: A-^C. When B is the set £true« falsely a special

situation arises, because the formal definition of the cartesian

product C X C is the set of maps from $0, 3$ Into C. Ah element of

C )t C is normally thought of as an ordered pair (c, cf), but, as

the above discussion shows, it can serve as the function g in the

above composition equation. Thus, identifying £o« lj with forue^falselr
in the obvious way, one can always speak of the composition of the

function f above with the ordered ftaiaE (q-, q_); where q., q2 6 Q

for any set Q. If f is a Boolean p-function, the result is a

p-function of type Q. This construction may be used to obtain all

the conditional quantities that are found in programs. If Q = P,

we have a conditional transfer f * (F., F.), or J,f f then go to F

else go to F,; if Q = real or integert we have the real or integer

p-function of a conditional expression, such as if f then J else 7

(which is f• (5, 7)); finally, if q. and q^ are p-functions on J,
we get a conditional assignment or the like.
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There is a certain analogy between a program in this sense

and a finite automaton as defined by several authors, which is *

a finite set of states with an initial state, a collection of

final states, and a method of getting from one state to the next.

There is a difference, however, between the two concepts, because

the method of proceeding from one state of: an automaton to the next

is dependent upon an input from outside the automaton, and the se

quence of these inputs is taken to be infinite. In contrast, the

method of proceeding from one statement of a program to the next is

dependent upon the current element S£ X, and in all practical

cases JL Is large but finite. It is to be emphasized that the states
of an automaton-are analogous to the statements' of a program; pro

grams also have states, which are elements S£ h , but these do not
figure in the analogy.

To the types real, integer. and the like, we can now add the

type label, which is either the set of statements P itself or a

separate set L together with a label mapping X: L~>P. Variable names

appearing in ASSIGN statements in FORTPJIN are of this type, and the

function N. for an assigned GO TO K statement has the form N.(S) =
.I .

S(K). Switches in ALGOL and computed GO TO statements In FORTRAN

correspond to mappings f: X-»P, where X = £L, ..., nj; If e is a

p-function whose values lie in this range, then f*(e), or e*f,

is the function ll± for a go to statement which makes reference to

a switch. By analogy with the composition of a Boolean p-function

and. an ordered pair discussed earlier, we may write this composition

as eo (x1? ..., xn), where each x Is an element of P or, by ex
tension, of L, so that (x , ..., xn) Is the switch itself.
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Complete Programs

DEFINITION. A program is complete if it has one statement

X = (Pxi-Nx)f where Px Is the identity and JSL is nowhere defined,

and for every other statement F, = (P. N,), N, is a. total function.
i I I * I

DEFINITION. Let P be any program. The completion of P is the

program obtained by adding to P a statement X = (P , N ), where P

is the identity and N^ is nowhere defined, and redefining each of
the other statements F. = (P., w ) of P to be (P , N1), vrhere Nf(S)

1 • • i l I i i

= N, (S) whenever N. (S) is defined and N» (S) = X whenever N, (S) is

undefined.

Clearly the completion of a program is complete.

THEOREM. Let P be a program, let F1 be a statement of P, ^,
let Q be the completion of P. Then the computation of Q with respect

to F is the same as the computation of P with respect to F .

.PROOF. Let T_, ..., T be an arbitrary computation sec?nonce
O m

of P, where-Tn = (S, F_). Set'T, = (S., Fj). where Fj = OF.1, N").
y ' . * J. I l7iF i i i

Since a^CSj.) is always defined for 0*l<m, the computation sequence

of Q beginning with Tn includes T . ..., T . At this point, the
u o7 7 m .

computation sequence of P ends, and Pf(S) = F" (3 ), while the com-
' mm7

putation sequence of Q continues to Tm+1 = (F" (S. ), X). Since IL is

nowhere defined, this computation sequence stops here, r\no. Qf(3) =

PX(]m(Si)) = ]m(Sm) since PX is the identity> *• e*> Q'CS) = -^fe).
Similarly, If TQ begins an infinite computation sequence of P, then,

since all the'values of the next-statement functions in this se

quence are defined, the sequence will also be a computation sequence

for Q. Hence in all cases the computation sequences of P am1 Q are

the same, starting from (S, F ), and hence the computations of P and

Q with respect to F. are the same. This completes the proof.

This theorem may be* used to simplify the proofs of theorems
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;about computations'. In --a complete program, a computation seqm^rice

T09 "•••»'*3a.which beSins with TQ = (3, F ) will end,- if it ends at
all, with T = (3?, X), and P»(s) = S»t where P» is the com-vyfcr.tion

m ;•' . ' 7

of P with respect to ?-, In an incomplete program, Mt is necessary

to add one extra step/at the end. It is possible in many theorems

about programs to assume that they are complete, because any prograi

which Ismhot complete may be replaced by its completion with no

change in Its computation.
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Languages,

Let £ be a finite character set, let £* lie the set of all

strings of characters in Z, and let L e £* be the set of legal

strings in some programming language. That is, each string in L

represents a program. In line with our previous discussion, we

should like to associate a set M, a set V for each x £ I-!, and

'a p-function on X =^T. v,, with each such string. This may be
done along lines suggested by Khuth £t]. Knuth considers the

productiona of a language and proposes the association of quanti

ties of various kinds with each symbol in the language. The ter

minal symbols are directly associated with quantities, which may

be integers, sets, or various other objects; the associations with

non-terminal symbols are defined in terras of the productions by

which these are built up. We have seen how this may be done for

a programming language by means of star-extensions. Specifically,

if *2 ancJ *2 are ^rms:"in an expression e, and the string e is the
concatenation of the three strings t , •+', and t~, then the

p-function e-» of e is the star-extension f*(t* t'), where f (a, b)

= a+b for integers or real numbers a and b, and tJ and t' are the

respective p-functions of t, and t .
1 2

Some of the statements in a language, such as assignment

statements, may be associated with p-functions in this way. Ano

ther very common way to define a statement in a language is to spe

cify how it could be eliminated from its program by changing the

program to an equivalent one. Specifically, we define a mapping

from L to another language L», which has fewer productions than L.

The length, of a result string in Lf may be much greater than that

of the string in Lwhich produced it; but, in a computer, this
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may not matter, because it Is not necessary for the computer to

contain the entire result string; all we need is an algorithm by

which the characters of the result string may be successively

output, and often this is easily derivable.from the original string

in L. The macro statements in PL-1 provide a good example of this

type of mapping, as do the programmer-defined statement types of

various extendible languages.

Many well-known statements in programming languages are

susceptible to both of these types of treatment. As we have seen,

one of. these is the procedure in ALGOL with parameters called by

name. In general, any procedure call statement may be replaced,

within a program, by the entire-procedure, with parameters sub

stituted according to various rules dependent on the type of call;

this serves to eliminate procodiire call statements. Procedure calls

inside a statement are a bit trickier; one must decompose the state

ment into parts. For example, z:=a/b + f(c,d) + e-f, -where f(x,y)

Is defined isy a complex program, would have to be replaced by

something like z:=a/b followed by the statements of the program

suitably modified to-produce a value t for f(c,d), and then fol

lowed by z:=z+t+e-f. If we do decide to associate a p-function

with a procedure call, this may be done In two ways. V/e may use

the computation of the function being called, which is a p-function

on aset *&t-^D^V^,- and, by: identifying..the"parameters and the
va3.ue of the function as elements of M, we obtain a p-function of

type equal to the type of the value; the computation of the func

tion then serves as the side effect. Or we can build a p-function

which effectively saves a return address, and consider all of our

statements as memory extensions to a set X= tr y for a single

global .set M, which includes the variables of the various procedures

or subroutines a.s well as those of the main program.
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Another statement type which may be treated in both of the

above ways is the iteration statement. If A, B, and C are constants,

the FORTPAN statement DO n 2==A, 3, C followed by a group of state

ments G, or the ALGOL statement fop ;jr:=A step C until 3 dp. G where

G may possibly be. a compound statement or a block, may be replaced,

within its program, by a number of iterations of G, in each, of which

any occurrences of the variable JJ have been replaced by expressions

of the form A+kC. If any cf A, B, or C is allowed to bo variable,

this will not work. However, in all cases we may replace iteration

statements in programs by Initialization, incrementation, and con

ditional transfer statements. In FORTRAN this is done by replacing

DO n 2=A, B, C by v=A and, if the following statement is labelled k

(where k is added to the program if that statement is unlabelled),

inserting v=£+C (^v+1 if C is missing) and IF (v.IE.3) GO TO k im

mediately following statement nj this process must be done in order

from innermost loops to outermost loops ending at the same statement.

In ALGOL this is done by replacing £px v:=Ll,L2,.. .,In do £ by a

series of statements corresponding to the elements Id of the for-list

as follows, where £ has been coded as a procedure within the current

block and the labels F and G are chosen dynamically as new symbols

not currently appearing in the given block:

TYPE OF RESULTING
FOR-LIST ELEMENT ALGOL STATEMENTS

£ v:=e; &

2 step x until z vz=x; F: If Qj-£}Ksign(£)>0 then

go to Gj g; 2:=2:+£; go to F; G:

£ while £ F: v:=£$ J£ -74 then >:o to G; g;

£Q to F; G:
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These language transformations for iteration statements,

unlike those discussed earlier, never materially increase the

size of the program involved. For this reason, when v/e are veri

fying a program or defining the semantics of a programming language,

J£e shall alwayg assume that this particular transformation has

already been carried out, so that, in the resulting program, there

are no explicit itejration statements whatsoever.

We remark that every programming language lias a "universal"

p-function pT: X -> X ,where X ~ TT y as follows. The set M
ij X6M X'

is the-union of two disjoint subsets A and 13. The set A is the set

of all possible variable names v/hich may appear in programs written

in the given language; if x £ A, then V„ is the set of all possible

values that such a variable can have. The set B corresponds to the

natural numbers, and, for each n 6 B. V is the character set of
n

the given language. Given S6<t, it is assumed that the characters S(l), ...»

S(n), for 1£B, ..., n€B, for some n, specify a program in the

given language. It is also assumed that the language contains an

EI© statement or its equivalent, so that by scanning the characters

S'tl), S(2), ..., in the forward direction for a given state S, the

value of n, above may be determined (provided that S actually spe

cifies a legal program). In this case S also specifies a state of

the variables of the program upon input, and p(S) will specify their

state upon output. The resulting function is partial In a rather

extreme sense, since only if a legal program is specified in the

set B is the function p defined at all. This example may be exten

ded to cover the case in which the characters of the source program

are not contained in memory but are produced as the result of an

algorithm acting upon the characters of a program in a more complex

language, as discussed earlier.



Correctness

Let P be a program on X and let Pf be the computation of P

with respect to Fn | P. If X is either an foment or a subset of %
i

and Y is either an element or a subset of P, then v/e may identify

a corresponding subset (X, Y) of $ = %jl P. If y = p, v/e abbre

viate (X, Y) by X; thus ifi'cX we may also write }i C 3.

(This is also true by memory extension, if Jf is interpreted as a

Boolean p-function on J.) If X= J, we have the conditions iX=F^
for various. F^ 6 P, and $^=Q$ for various subsets Q€ P. The special
condition fj(S, F ) 6 2f: N^S) is not definedj will be denoted by
{exi-A: it is the condition that P has terminated.

We are now in position, to ask the questions What do we mean

when we say that P "works properly"? One thing, of course, tJiat v/e

always mean is that it terminates — that is, it does not go into

an endless loop or execute an illegal instruction. (T?ils is true

even In continuously operating computers, which never-actually step;

the overall program of the computer may not terminate, but it is not

this program which we would want to verify, but rather the indivi

dual, terminating computations which it performs.) It is also neces-

sar:^ however, for, P to "compute the right answers," a concept whose

mathematical formulation is not at all obvious. Suppose first that

the. program P is supposed to compute a function f of n arguments,

regarded as a function-from ^fi ... * X^ into Y. This implies that
we have chosen certain special variables X-, ..., x ••£ K and y £ 21,

where X=^J* Vx, such that Vx =X±, l*i£n, and Vr =Y. If the
assignment £y^f(x1,...,xn)J for these choices of y and the x., or
the memory extension of this assignment to J, were actually the com
putation of P with respect to some given starting statement F £ P,

then P would certainly compute f properly. This, however, is too
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unrealistic a condition to ask. In general, any program which com

putes f will use certain temporary variables, and when the pro-rata

is finished these variables will remain set. Any memory extension

of jy^ff (x>,... ,3^)J, however, cannot change the values of any
temporary variables.

Let us weaken this a bit. Suppose that v. is an arbitrary

element of VY , liiin. Then fx,=v., ..., x ~v \ is a state con-
•*•£ 11 n n^

dition C 4A j and similarly ty-~f Cx. >#..>3Cn)J is a state condition

Cf C J. What we would really like to require of the computation P1

of P with respect to F± is that P'(C)C C»; that is, if S 4 C, then

P»(S) is defined and P»(S)* C*. The condition that P'(S) be de

fined is, of course, the condition mentioned above that the algo

rithm terminates. The statement Pf(C)C Cf is clearly equivalent

to the intuitive condition that P computes f; furthermore, it covers

the more general case where the "value" of f is expressed by the con

ditions of several result variables, or when the purpose or partial

purpose of f is to change the values of some or all of its input

variables. We formalize this discussion by making the following

definition.

DEFINITION, Let P be a program on i, let F be a statement of
P, let CC i, and let C» CJ. (Here C is a condition presumed to
hold before fha .program starts, while Cf is a condition desired

after the program is finished.) Then P is correct with respect to

F1, C, and C» if Pf(C)C C»f where P» is the computation of P with
respect to F,m
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fortiaa, Correctness and Floyd's Theorem

The basic first step in proving a program correct was first

stated in print by Floyd in £3^, although Floyd credits the idea to

Perils and Gorn. It essentially involves dividing the correctness

problem into two parts,

PEFII*ITIOI\u Let ? be a program on jj, let F be a statement of
P, let CC <&, and let C* Ci. Then P is partially correct with re
spect to Fx, C, and C» if P* (S) € C* whenever S(C is such that

Pf(S) is defined. (The terms "correct" and "partially correct" in

this sense are due to Manna fyO*)

Clearly, if we can prove that a program is partially correct,

then all we have to do to prove it correct is to show that it

terminates— i.e., that Pf(S) is actually defined for all 3 < C.

Later, we shall discuss methods of proving that an algorithm termi

nates. What Floyd showed is that the problem of partial correctness

can be settled by purely local arguments, i. e., arguments involving

the flow of control from one statement to another in the program.

The basic idea is as follows. Let F. be a statement of the program

P, and let us associate with F. a state condition X C £• This is
presumed to be a condition satisfied by the variables of the program

Just before F± is executed. In particular, J is associated with F .
j- 1

If we start the program at F with a state S.^X, we should like
to prove that, as the program proceeds, each (S., F^) in trie compu

tation sequence is such that S± is contained in JJ,. But this will
follow if for every pair of Statements F., and FA which are "next

to each other" — i. e., control passes from F to F in the oxocu-
i 3

tion of the program — the condition S. 6 J, implies S . & 1 whenever
1 i 0 3

the next statement after (S,, F.) is (3., F.). The following intui-

tive method may thon be used to prove a program partially correct:
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(1) Understand the program well enough that you car. specify

a condition J. for each statement F = (P ,N.), such that 4, is

the condition satisfied by the variables just before F^ is per-
i

formed. Also, specify an exit condition Cf.

,(2) Prove separately for each pair of statements F. and F.
i j

that 3, *!. implies P, (3 4) < J4 whenever N, (3.) = F..
11 ii j ii j

(3) Prove for each statement F. tint if N.(S.) is not defined
l ii

and S £ J , then ^±(S±) ( C»,
The process of identifying which statements in a program are

"next to each other" is facilitated by defining the graph of the

program.

DEFINITION. Let P be a program on j. The directed aranh of
P is the directed graph whose nodes are the statements F. of P, and

i

such that F,-»F. if and only if there exists S 6 X with IT. (3) = F..

A flowchart of a program (in complete detail) is a represen

tation of its directed graph. An overall flowchart of a program is

a representation of the d5.rected grr.^h of the program obtained by

"collapsing" certain groups of-statements of the original program

into single statements; we shall return to this idea later when we

consider factoring of programs. Step 2 above now needs to be per

formed only for each linfc in the directed graph of the given program.

We could, if we wanted to, associate the conditions M. with the

links in the graph, rather than with individual statements; this,

in fact, is what was done by Floyd in £3j. Also, Floyd uses a pro

gramming model based on the predicate calculus, rather than our p-set

model.

We now formalize the above arguments.

DEFINITION. Let P be a program on A. A precondition structure

for Pis aset of preconditions 1. 6J), one for each statement F^
of the program, and an exit condition JL O&. The precondition
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structure is consistent if 3 €Xs implies P (3) ( A. ^ N*(S) is
i i • X 1

not defined, or P,(j3) < J. if N (3) = F..
i J i j

THEOREM (Floyd.). Let P be a program on Xy let F be a statement

of P, let Cci, and let Cfc<J» Th©n P is partially correct with
respect to F^, C, anci Cf if and only if there exists a consistent

condition structure {A^iJt for pwith Ccl aiid'Jy C Cf.
FkOOF. First, let P be partially correct. We set JT e.ival to

the set of all S^ such that' (3^, F ) appears as T., 0 A 3 jf n, in
some computation seq..ience TQ, ..., Tm beginning with T ~ (3, Fn )

for 3 £ C. V/e set J equal to the set of all S„r ~ P (S.), where
jw a i i

$ .^elongs to some JL and N. (3.) is not defined. If S. € J . and
•*-•• -- -«. i i ii

(5 , F ) s T as above, then N (S.) is defined if and only if 3 ^ m.
j. j. j ii

In this case, T +1 is defined and is equal to (P.. (3.), IT. (3.));
setting IJVC3 ) = F ,we have by definition P.(S.)C J.. ±S 3 = m,

-*• i J 113

then by definition P. (C.)4l.P, and thus the &ven structure is cor-
llA

sistent. If 3 f C, then (3, F ) == TQ in a computation sc • e^ce, so

that G(6 i 5 thus C©i . Finally, if SY §> J,r, then 3,. = P'(3) ."or
JL 7. A A ."«.

some 3 6C, by the definition of the computation P* 5 this n?.-uxr th^.t

Sy 6 0' since P is partially correct, end. thus £,, C Cf.

Conversely, let a consistent condition structure'exist which

satisfies the fjiven conditions. Let 3 4 C and let T =. (8. F, ). \!e
0 1

wish to prove that if the computation sequence beginning with T0 is

actually a finite sequence T , .... T , where T = (S», F»), then
0 7 m7 m m7 m

Pf(S) ( C. Setting F» .= (Q,, NJ), Ofjfm, we have P'(3) = 0 (S»).

We show by induction on 3 that S\ 6 J", where lf is the precondition
3 3 ^3

associated with FJ.. For ,1 =0, 3^ =3 $ CC^ - i^; if CJ^ ft,!;..,,
then fq (SJ ), IT« _(SJ )) = T r,nd thus :jr (si ) = Pi. ..inco

3-1 3-1 3-1 3-1 0 3-1 3-1 3 .
the struct Tire is consistent, S» = Q. , (S! )$£t. Thus, i:i parti-

A> j j—-'- 3—1 j
cular, 3« $**, and N«(3») is not defined. By the consistency of the

structure, ^CsO.igXc C»j i. e., P»(S) 6 C». This completes the
>proof* •• »
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The statement of this theorem may be considerably simplified

by considering subsets of *$ =X* ?, rather than subsets of X* If >
**i7 X* *"'s a consis^en,fc precondition structure for P, then the
set 2' iS defined by (s1, F ) 4 $f if and only if 3^ ^ is a
single subset of J comprising all of the original JL. The consis

tency condition becomes, approximately, ?(£*) C Jr, where P is now

taken as an execution function. This condition must actually be

modified to take account of X^ If Tf 6 V/| Cexitft. then, writing
T* = (3, F1) where Fi = (Pi, l]±), we have P (S))6 J ,,Tmf IT.CS)
(and therefore also P(Tf)) is not defined.

DEFINITION. Let P be a program on X and let $ = jg K P. Then

a subset ^cjis a consistent universal condition for P if

P(J* - jexitfr) c JP and, if (S, F ) £ J' #1 {ejdt}, where F. =
CPi, Njl), then P ©) = S" is defined. The set of all such 3" is
the exit condition of J», and, for each fixed F £ P, the set X.
of all Sj with (3^ FJL') § V is the precondition associated with
F± ]£L V* A program P with a consistent universal condition Jf

may bo called a program on J.

COROLLARY. Let P be a program on J, let F be a statement of

P, let CC X9 wO. let Cf C-4. Then p is partially correct with
respect to F , C, and Cf if and only if there exists a consistent

universal condition X* for P whose exit condition is contained in C,

and such that C is' contained in the precondition associated with ?

by$«. ~

PHOQF. If JP is consistent, we may show that its exit con

ditional and the preconditions i associated with the various F.'
A i i

by 3* form a consistent precondition structure. In fact, if S 6 X ,
then (Si, F^) g-Jt. lf (Sif F^} 4 {Qxit}t *here F± = (P±, IT ), then,
since T is consistent, PJL(S1) €$x. if (s,, Fj[) ^ fexitf, then
HS±, ?t) = (P1(S1), fl^)) € 3M siting K1(S1) « F., this implies
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P. (3.) 6 X *oy the definition of the associated -oroco.no i tion X .
x 5 3

Thus, by the theorem, P is partially correct. Conversely, if P is

partially correct, we may set J» equal to the set of all T £ *J

whatsoever which appear in computation sequences starting with

some (3, Fx) for 3 < C. If T e 3ff and TA fexitfr, then T is not
the last element of such a computation sequence, and thus P(T) is

defined and P(I)J}», If T £ |ex£t}, then, writing T = (3 , F.)
a ii

with F± = (Pj[, i^), we have P (S.) £ J , and every element of 1^
is of this form; this shows that tf* is consistent, and also, since

p^CSi).=/Pl(S), where the given computation sequence started with
(3, F1), it shows that Sx C C» (since P is partially correct) and
CCjJ as before. This completes the proof.

Partial correctness may actually be used to characterize

p-functions. Specifically, let'p:X^X be an arbitrary p-function,
and let n be a function which is nowhere defined. Then there exists

a program P. having exactly one statement F = (p, n). The set of

all pairs (C, Cf) such that P is partially correct with respect to

F-p C, and C» may be used to specify p uniquely. Furthermore, this

set, or, equivalently, the condition V(C, C») which is true if and

only if P is partially correct with respect to F , C, ^.n<l C, is
expressible entirely in terms of predicates, and may be used (as,

for example, in (^J) to specify the action of p within a predicate
calculus model of programming.

The convention that a program P with a consistent universal

condition $» may be called a program pji tf1 is fundamental for nany
of the definitions of objects which are associated with a program,
to be defined in the sequel. For the sake of generality, each of
these will be defined with respect to a program on JJ», rather than

a program on 4. TTo generality is lost in this way, because any pro
gram P onl may be viewed as a program on 71 .= £(S, F ) £ gf. P:
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:P. (3) is defined!, and this is the largest J1 upon which such a

definition could be made. As an example of the idea of defining

ob3ects associated with a program on $% v© now redefine the graph

of a program in these terms.

DSFIjITIQI!. Let P be a frogranr on^T1 C Jt * p« The directed'

graph of P is the directed graph whose nodes are the state-ifrAr. ?.

of P, and such that F ^ F if .and only if there exists (3, F ) £
i. j j.

J» with nr(S) i?.
i i

It will be seen that the directed graph of the program P

on 5f has the same nodes, and some, but not: necessarily all., of the

same links, as the directed greLj)h of the program P on J. Thus, for

example, the directed graph of the program P on $' may show us that

certain statements are never executed, or that certain branches are

never taken; these will not appear in the graph. This information,

can sometimes be helpful when proving that a program terminates.

The use of programs on ^f allows us to use the consistency of

J1 to prove things about the given program, such as termination. Jut

it does much more than this: it allows us to forget about the possi

bility that.some of our functions P. might be partial functions,

•because, in a program ony, this never happens. Every P. in such a

program is defined on every state S belonging to the precondition

jL associated with F = (P , N.) by^f*. This condition is, conversely,

a constraint upon our construction of y in the first place. For

every P. involving a subscripted variable, for example, unless our,

language contains automatic subscript range checking (such as 2.MG0L

or the -ON 3"JBSGRIPT?a.!iGS feature of PI.-I), we must have a precondi

tion at that point which constrains the subscript to be within its

proper range. For every P. involving an integer variable', wc must

show that there is no integer overflow, and the same for float 5.:ig

point.
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Effective Domains and Ranges

Floyd's Theorem still does not tell us how the consistency

of a precondition structure is verified. In particular, it sr.ys

nothing about the verification of conditions which are unchr.uged

by an instruction. If IL is the constant function 11. (3)r F., we
i i j7

might have the condition K < ft as nart of both &. and &,- where P
i 3 i

is the assignment $L<-GCD (I,J)}. In this case, we might verify the

condition T, < N as part of i, lay arguing that P. is defined as a
• • 3 i •

p-function on TT ?v for a set Mincluding only the variables I,
x6M x . '

J, and Ii, and that, in any memory extension of this p-function to

a larger memory including the variables K and I?, \re must therefore

have 3'00 - 3 (K) and S!(N) = 3 (IT), where 3f = p(3), hy definition

of the memory extension. The condition K<ft is the condition 3(11)

<3(1T), z.nZ this is therefore the same rg the condition 3f (jrXS'O'").

This argument is complicated by the fact that the condition "'.'.< ;?

actually might not be preserved; in particular, IC migrt be a co.mt

variable, and we might have coded the GCD function in such a way as

to increase K by 1 each time GCD is used in o^der to count the total

number of times it is used. This implies that we need a general way to

identify the variables used by a particular p-function and the variables

set by that p-function. This will now be done for general p-functions.

DEFINITION. Let p: k -»4«, where $ = Tt, V and i« = IT . V .
1 * . x£M x *• x£Mf *•'

and let £n C i. The effective range f(p, X") is the set fx eirf: 3 3
€i", Sf = p(S) is defined, but not (3(x) = 3f(x))"$. The effective

domain fl(p, i") is the set {x^M:^, Sp € i», y£ p(p,l"), 3< =
p(S1) is defined, 3-^z) = S2(z) for all z /: x7 z £ 11, but not (3.J (y)
= S^(y) where 3£ ---- p(3^)£. We write f(p) for p(p, JO -uid A(p) for A(p, J)

These concepts of effective domain nnC effective range are ex

tensions of- the concepts of input region onO. o.itnut region as do-

fined by the author in Df]. The asrer!;ion "not (3 (x) = 3«(x)-)n is



tatan to include the possibility tut"3 (x) ic not downed (Vcc u-o
x.$ _M)j .it,isvmore.'general than the assertion "3 (x) ^3(x)IT. ;-i.;;i-

i^r^^^e^^erticm "not. (Sj(y) =3^(y) where 3^ - p<^))" Ir t,/:cn
to include the possibility that p(S0) may not be defined. Clear-

;~«».<>,;»....? *• ft'; ^- '• i, '- "»••'• j •?.-,-:•. f .s^, i„ ? c »";?$' .«*'.-, 3». ' *;

Mpt&p), It %« »' bist z fe H, ties xe p(p, J") iter :-e->i.trai-y jf\
SiMSESIf. let i2 =1J-A vx, let i2 =TTB Vx, let A'3A, lot

A' UB=, B« OB, let ^ = IT , ^ let ^ =1^, Vx, ™i let
pts ^1 ~*^2 ^ the corresponding memory extension of p: i ->-Sp.
I«t #1 C^1* we nay reS^<* ijasa subset of ^ ' by treating it
as a Boolean p-function and performing a memory extension. Then

fCpSi? =fCP, A^_3 andA(p',i») =A(pf-g'{).
PJIQEE. We write 1* for the contftfCi'^" viewed as a subset of

JL^. Let x$ (̂p, i»). If x6B, then, for all S £ i» 3(x) is d(
fined and S(x) = S'(x), where S» = P(S). Let (J e 3*; by the defi

nition'of the memory extension of i", there exists .3 £ %" with Q(a)

= S(a) for all a fc A. Therefore, Q(x) is defined, and, if Q« = p*(Q),
then Q«(x) - S'(x) =S(x), by definition of p». Therefore, x £
p(PS -ij). If x£ B, then Q'(x) =Q(x) and thus again x £^(p, S");
therefore;iin all cases, x &f>(p, &'p implies x $ f(p, ^»). Con
versely, let xf p(pt, ^«), then, for all Q £ -$*, Q(x) is defined
and Q(x) =Q«(x), where Qt = pt (q). If x£ b, then x£ p(p, £"}
because p(p, -g») is defined as a subset of B. If x 6 3, then each
S 6 J" is of the form q(b for some Q€ J}**, and S(x) = Q(x) = Q*(x)
=S'(x), where S» = p(3). Therefore x $ f(p, £»); thus,, in all cases,
x 4 f>(pf, i ») implies x$ p(p, Jt«)f and this,, together with the
previous result, rives p(p, JJ ") = p(pJ j»).

u

Now let x £ A, x£ A(p, i»)j then, for all S , S2 6j» vith
S1(z) - S2(z) for z * x, ze A, we have 3£(y) « S|(y) for all y £
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f(p, J8»), where S£ =P(S ), S^ =p(S2). Let Q1, ^ £ 4* be such
that Q1(z) == Q2(z) for z ?* x, z £ A1, and let 3^^ = Q-Ja, 32 = Q2|A;
then Sn(z) = Sp(z) for z ? x, z £ A, and, setting O1 = pf (Q ), Q^ =!

p'(Q2), we have Q£(y) =S£(y) =S»(y) = Q£(y) for all y £ (>(pf, J5 T{)
* f(P> 4LT|). Therefore x $ A(p», J8"). If x { A, then Sx = QJa =
Q2|A =S2 and again Q£(y) =S£(y) « S£ (y) = Q£(y) for all y£
f(pf, XT{). Hence in all cases x£ A(p, i ") implies x £ A(p, X")•
Conversely, let x^ 4(pf, in )$ then, for all Q-, Q 6 ^* with

Q1(z) = Q2(2^ for z * x9 z £ A1, we have <J»(y) = QMy) for all y &
p(pf, -$£), where Qjr = pt(Q ), Q£ = pt(Q ). If x <£ A, then x $
4(p, -&"), because A(p, J?") is defined as a subset of A. If x £ A,

then let S1, S2 &X" be such that S (z) 5* S (z) for z ^ x. By the
definition of the memory extension of £", there exist Q,, Q &^V
with S1 = Q1|A, S2 = Q|&, and Q^z) = Q (z) for z 4 A. Then Q (z)
= Q (z) for z ^ x, z € A', and thus, setting 3' = pCS^, S| = P(S2),
we have S|(y) =Q£(y) = Q£(y) =S£(y) for all y 6 p(p, i J) =
pfe1, ,8"). Hence in all cases x £ A(pf, i J) implies x £ A(p, ^ £),
and this, together with the previous result, gives A(p,-?f!) =

A(pf, «&•!)• This completes the proof.

This theorem shows that effective domains and effective ranges

are invariant under all memory extensions. As a. corollary, we give

an upper bound to the effective domain and range of an assignment.

COROLLARY. Let £a«-b} be an arbitrary assignment, let A be the

set of all variables in the definition of a, and let 3 be the set

of all variables appearing in the definition of b. Then A ($a«-b?)

CA and p(fa«-b?) C B.

PROOF. The assignment £a*-b? is defined as the me:v ory exten

sion of a function p: TT y ^ TJ Vx. By definition of the effective

domain and range, A(p) C A and P(p) C B. By the theorem-, this re-

mains true for any memory extension of p.
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IJote that we cannot, in general, show that A(-fa«-b}) = A or

ptta«-b}-) = B. Thus for p = {X«~X|, we have A = ?xj and B = ?X"£,
but A(p) = <|> and p(p) = <£. In general, p(p) = fa will be true only
for the identity function p (and A(p) = ^also), whereas we will

have A(p) = ty whenever p is any constant assignment or combination

of constant assignments.

The converse of the above theorem is true when X lias the

finite patching property and the finite support property.

DEFINITION. Let X = TT v and let i" C X. Then X" has the
XtM x

finite patching property if, given 3 ,S2 6 X and the finite set

•M» C H, the state 3- such that S (x) = 5, (x) for x £ M and S^ (x)

-•»«,., *uJ. «*, Jr. r L „. ^ ^4 m-
perty if for each 3 ,S2 61" we have «£x£ Ms 3-(x) ?* S (x)? is finite.

The finite patching property is equivalent to the "elemental"

patching property in which M' is restricted to have one element.

If X1 has the finite support property, then the finite patching

property is equivalent to the general patching property, in which

M1 no longer need be finite. If M is finite, the finite support

property is obvious, and if X" has the finite patching property,

then it must be of the form JX, VI for some choice of Vf C. V for
X6M x xx

each x £ Nf and is thus determined uniquely by the choice of the V^.

If M is infinite,and has the finite support property, it must be a

subset of {s £ i : jx'€ M: 3(x) t SQ(x)} is finite^ for some fixed
SQ 6 X$ if it also has the finite patching property, then it must
be the intersection of a set of this form with T„ V1 for some

x£M x

choice of V' CV„ as before. Note that a set of the form TT -V-f
x x x«M« x

for M1 C M may be identified with 1T v». where V1 has exactly one
x£M X7 x

element (not zero elements I) for each x£ M1^.
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LEMMA-. Let pi £-• X!', where ^s^Vx»^2M(, and let ^' Ĉ
have the finite patching property and the finite support property.

Let S , S2 € i", and let S« = p(S1), S£ = p<&2). If S1|A(p, £") =
S2(A(P, A"), then S«|p(pf I") =S£|p(pf i").

IftOOF. Let X= {x 6 M: S1(x) 5* S2(x)}. The set Xis finite
because X has the finite support property, and we may thus write

X= \xv ..., x^. Let \J± £ X" , 0£i£n, be defined by U±(z) =
S1(z) (= S2(z)) for z^X, ^fej = S1(x ) for 3>i, and ^(x^) =
S^xJ for i*i. These IL are in A because X bas the finite

patching property, and u*Q = S_, IT = S2; also IT. , (z) = U. (z) for
all z j* x , l£l£n. Let D| = pCl^), O^i^n. If there existed

y 6 f(Pf £"> witk Ui-i(y) ^ ui^), we would have x± £/Kp, £"),
but this is impossible, since S-te^ / s2^Xi^ and> by hypothesis,
S^Mp9 £') =S2|A(p, A"). Therefore IT^I p(p, X") = Dj|p(p, A")
for each i, l^i^n, and thus SJ[lp(p, jl") = U»lp(p, X") = u^\^(p,D
= S'tp(p, X%K). This completes the proof.

The finite support property is necessary for this lemma5 in

fact, one may construct an easy coimterexample whenever the finite

support property does not hold. The finite patching property is

not necessary; for example, the removal of exactly one state S from

% does not alter the conclusion of the lemma. At present, no more

general necessary and sufficient condition is known.



- 1*3. -

THEOREM. Let p: X-»!', where X = TT f V^, $ = TT, Vx,
and let -&'' C -^ have the finite patching property and the finite

support property. Let A= A(P> X!) CA1, B= p(p, X") C B1. Then p
agrees on X with the memory extension pf: X -^ X! of a function

f.. X0 -*ii, where JQ - ^ vx, I4 = £B V
PROOF. Let S £ Ji", let IT = SJ A, let S» = p(S), and let IT' =

Sf|B. We define f: X0~*X ^by setting f (U) = IT1. This makes f well
defined by the lemma; if S £ X'' is any other state with IT = SjA
and if S» = p(S-), then IT* = S*JB. Furthermore, it is clear that
each IT £ X is the restriction to A of some S 6 XU. If Pf is the

memory extension of f to a function from X to X , and SM£ X ,

then let p(S") = S and p'(S") = S'j if z 4 B, then S(z) = S"(z) =

Sf(z) by definition of B= p(p, Jl"), whereas if z £ Bthen S(z) =
IT*(z) = Sf(z) by definition of IT'. Therefore S. =* S1, and hence p

and p* agree on X ; this completes the proof.-

.SSStiUX? Let pri ~>X', where 1 =TT^ Vx, i' =JB, Vx,
and A1 is finite. Let A= A(p) C A*, B= p(p) C B*. Then p is the
memory extension to a function from 2 to X of a function f:

•V-*i6,,,he,e VS*aV^ =£bV
This allows us to specify functions by specifying their ef

fective domains and ranges and their underlying functions f as above.

It also allows us to define memory restrictions? which are the op

posite of memory extensions.

DEFINITION. Let p: X-» X', where X = Ig^, Vx, X* =iT, Vx,
and letM'CA'UB', M» D A (p, i") for some i^C X. Then the
memory restriction of p to M* on X' is a function f: A)~"^ ^qj
where \ =^T y^, 'i« = IT Vx, A=A' OM'f B=B« AM«, de
fined for each SQ 6 JL such that SQ =s/a for S 6 .8" by f (3Q) =
P(S0)|B.

The above fcbrollary then pays that, if A' is finite, any
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function p: TT fVx-> ^ V is the memory extension of a suitable
memorj'- restriction — namely, one that includes p(p). Memory re

strictions of p which do not include p(p), however, are quite common,

For a jirogram-which computes a function f(x, ..., x ) - y, the

memory restriction of the program to M1 -- $x , ..., x , yj will be

precisely the assignment ^y«-f(x., ..., xn)\* The statement tint

this program computes this function is precisely the statement that

this mr-> :ory restriction is equal to this assignment. Two programs

may be called equivalent over Mf if their memory restrictions to

M1 are the same; this implies, in particular, that their effective

domains are both contained in IP.

Function references in programs in which the arguments of the

function are allowed to be arbitrary expressions (of the proper

type) provide still another example of the use of star-extensions.

If t. is the type of the i-th argument of a function f(x_, ..., x ),

and p : A*—^ t. are the p-functions corresponding to certain ex

pressions *£ of type t., then f*(p1, ..., p ) is the p-function

corresponding to the use of f with arguments p., ..., p . This may

be the star-extension in either the static or the dynamic sense.

An expression of this type is normally treated in programming Ian-

guages as equivalent to a single variable for the purposes of com

bining quantities into expressions. Just as we have formed g*(e_,e?)

= e +e2, for example, where g is the ordinary addition function of

two variables- and e. and e2 are p-functions, so we can likewise form

e1+f(x1, ..., xn) = g*(e-, f*^* *.., Pn^» provided that the types
of all the given expressions are properly connected with each other,

since f*(p-.* •••, Pn) is a function whose domain and range are such

that it. may take the place of e in the above construction.
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Consistency Calculations

We now show how to calculate consistency of state conditions

using the concepts of effective domain and range. For this pin-pose

we need a generalization of the Composition Theorem which wo intro

duced in l\\]m This theorem gives relations between the effective

domains and ranges of two given functions and the effective domain

and range of the composition of these two ffunctions. Our first

result is as follows.

TIECK5M. Let f: J -»1 and g: jj -*Jj and let f o g = hi
0 0 11 12
*L^4^, where & has the finite patchinr nrone~t-..- -nd tbe finite
±2 X '

support property, run' further suppose that p(f, i ) n A(g, 5n ) = <f>.
Then, for any y£ p(g, ip, we have S (y) - S^(y), where 3^ - g(:^ )
and S^ - h(S1) for any S7 * ^,* '

HP-OOF. Let S1fe -8 and let 3.J - f©^. Let x 6 Mz, J ); then
x ^ p(f, JL), and, since S- 6 i and Sf 6 & , v- huve g (x) = S«(x).
In this way we see that S )A(g, 4 ) = S» )A(g, A ), and we ray now

•*- J. JL JL

apply the lemma of the preceding section, obtaining 32(p(g, £„) =
S^if(g, J^), where S2 =g^) and S£ =-• g(S') - g(f(S )) - MS ).
This completes the proof.

We shall now apply this theorem to the preservation of a state

condition.when an instruction is executed. Let %* C X *>"- ~ ctate

condition;'then JJ1, as mentioned before, may be viewed ..s a function

f: A->4true? false?, with f (S) = true if an-" only if 3 £ V. As i

Boolean p-function of this form, £* has an effective domain A(i*);

«^> ^m V then ^U1) =1^ II: 3 S1 £ i», 32e «-J«, vrith 3, (a)
= S2(z) for all z ?£ x?. The effective domain of a state condition •

which is defined in terms of a set of variables Mf is contained in

IP j because it is by definition a "lenory extension -of a Boolean
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p-function on £f = TT v . We have M&* U&")C &(P) U A(JTI) and,
x£M' x

£08* H A,") = A(j£f)n A(i")« For the more general notion cf effective

domain, &(V9A")7 where £" c i, we have AU',in) cA(i'); also, we

always have Atff, Jf) = <fr.

Now let F. = (P., IT.) be a statement of a program P on 'J1 c

i x P and let 1 be the associated precondition, so that P : X ->J5..
i ' ill

Usually ,1 will be expressible as the intersection of a collection

of state conditions, among which will be some which are noh changed

by F.. Letting P be a typical such condition, we wish to prove the

consistency of including ^f in the collection of state conditions

whose intersection is the precondition %£ associated with some F.

in the range of If,. To do this we must show that S £ %>x irnnlies
i

p1(g) e p.
THSCHEM. Let f z &->i, where 2 has the finite patching propert -

and. the finite support property, let i* c £, and suppose that p(f, £*)
HA(iO = $. Then S € J' Implies f (S)C i f whenever f(3) in defined.

PROOF. Let 3Q € lf, let S« = f (S ), cinO. define g: 4 -*i uy
g(S) = f(3) for Q6 V and g(5) = S« for 3 £ i*. Then p(g, .8) -
P(g, Xf) = P(f, i1); also f may be replaced by g in the conclusion.

It is thus sufficient to replace the hypothesis by p(f, %) 0 MP) r:
(j), and under these conditions A(f,i) OMl\, &) = <p since A(£', £)
CA(JJf). The theorem now follows from the preceding theorem by con

sidering Jjf as a Boolean p-function; the range of if, ta?:en as -yr-'-'t,

is a cartesian product of one net, which is the effective range of

Af, and the cone1-.sion of the preceding theorem thus reads 3 ••- 3j^,

where S? is the truth value of 3. 6 if am 3^ is the t-uth value of

f (3 ) 6 &'• The proof is completed by obvious .changes of notation.

This theorem Implies, in particular, that a state condition

is preserved whenever the variables involved in the state condition

do not appear on the left side of an executed assignment. Thus, for
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example, if $I+J< Y\ is a statu condition asruciat-. d v5th th^ as

signment £L4-J-E$ as part of a precondition, then \I+J< J"? ;: y "»

used as part of the precondition for the next statement (provided

that there is no other way to get to this statement directly), sincr

the variable L does not occur in. this condition. Here the as-ignncn*'

{L+>J-Kj may be replaced by any p-function whose effective range is

fL}, even if this effective range is with respect to the condition

fI+J < K} itself.

More complex functions P. occurring in a program may consist
l

of several assignments A,, ..., A, performed one after the other.

In this case, P. *">&•-*% is the composition A., o ... « A. . This

fact is itself a useful byproduct of the way in which we have de

fined assignments; the determination of the result of performing

two successive assignments from their character string form is

quite complex and involves a large number of special cases. The

following theorem gives an upper bound on the effective domain and

range of such a composition; we state it for general p-functions.

THEOREM. Let f: %.-*>X'2 and g: ig-*^ and let f og ^ h:
A-^i-. Let Xl ci , J' c JL, and suppose that 3.^ il implies
fCS^ 6 Q whenever f (31) is defined, Then A(h, 4^ ""it A(f,iJ[) ^
A(g, ip and p(h, i£) C f (f, ^ 0 f(g, ip.

""• -*** th**tif *i =x% V *2 =2% Vx' 23 =̂ V
where II., I-L and ML are not necessarily the same, there is more

that we can say. For example, A(f, ij) C Ii^ and A(g, i£) Cl^, so
that the theorem implies A(b, X[) C11^ U1^; but clearly, by defi
nition, 4(h,i.») C M^. Similarly, f>(f, -l») c ^ and p(g, iJp c1^,
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then the theorem implies p(h, i») C M u IL, but by definition we

have p(h, i£) C I-L. Note also that we may extend f, g, and h to
p-functions f», g1, and h» on X = TT„ V where MO M u 1<L U I-L,

x£M x l 2 37

and the effective domains and ranges will, as noted earlier, be

preserved under these memory extensions; but this fact does not re

duce the proof of the theorem to the case M = IL = *L, because we,

may have h1 £ fog1 and, in particular, we do not necessarily have

f(f'• £', ip C JL. (For example, the composition of $Y«-x£ and
{Z<r~ti is \Z<r-X\ if we take 1^ =Jx|, 3^ =fttf, and IL =5s>f but
not if we take these as p-functions on X = TT y for X, Y. Z £ K.)

x6M x 7 '

and let S* = f(S) be defined; then Sf Ci'? and, if 3" = g(Sf) is
defined, we have S" = h(S). Let x f p(f, &p, x * p(g, ip; then
Sft)is defined and Sf(x) = S(x), and likewise S%jis defined and 3" (x)
= S'(x) = S(x). Thus x ^ p(h, £'), which shows that P(h, i«) C
f>(f, J£) u p(g, ip. Itow let x i A(f, ip, x <£ A(gf ijp, and let
U, V€i£ be such that U(z) = V(z) for all z t x. If y £ P(f, i'),
then U'(y) = V'(y), where U' = f (U), V« = f(V), since x £ A(f, J«).
If y 4 f^, -8{), y s* x, then U'(y) = U(y) - V(y) = V'(y). Hence
Uf(y) =V(y) for all y ^ x, and, in addition, U1 = V1 if x 6 P(f, %p
By exactly the same arguments, if U" = g(Uf) = g(f(U)) = h((J) and

V" = g(V') = g(f(V)) = h(V), we have U"(y) - V" (y) for all y ^ x,
and, in fact, U" = V" when x £ f(g, ip —and also when x € p(f, £ '),
because in this case U» = g(u') -g(V') - V" since U' = V. But

f(h> i{) C p(f, i|) Up(g, &p, as was shown above, and this means
that U" =V" whenever x € p(h,iJ). Hence x{ A(h, i£), and thus
A(h, Ip c A(f, *£) k) A(g, ZJ ). This completes the proof.

cpROLIARX. I«t f^: i1^1-^i1, 1*1* n, and let f - f * ...ofr.
Let Ai-lc ^i-l> 1- i£n> an(1 suppose that 3. . 6 i? 7 implies
fi(Si-l)£ ^i whenovor f1(S1_1) is defined. Then A(f,&«) C
0t ACf^ij.-O and f(f, i^c 0 ^(f,,^^).
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In particular, if the f are assignments, the same principle

holds as before in proving that a given state condition is pre

served by f = f- • ... 4 f: namely, this will be the case whenever

the total collection of variables •* # :^eto£y the f. is disjoint

from the collection of variables involved in the given state con

dition.

In the general case, it is helpful to distinguish the current

value of a variable as we follow a path from its initial value.

This may be done by denoting the current value of J, for example,

by IJ, or the current value of KAPPA by IKAPPA. As an example, con

sider the following sequence of statementsj with a condition given

at the beginning and at the end:

CONDITION J+1=I*I (1) 11=1 1J=J

14*1-1 (2) 11=1-1 1J=J

J^J-2*I (3) 11=1-1 1J»J-2*(I-1)

I{*I*I ft.) 1I=(I-1)*J:-1) 1J=J-2*(I-1)

CONDITION J = I (?) (I-1)*(I-1)=J-2*(I-1)

Suppose we are asked to verify that if we start at the top of this

sequence, under the given imposed condition, we arrive at the bottom

with J=I. We write the statements (1), (2), (3), ft), and (?) in

that order; in each case we use current values. For example, in

statement (3), we are setting J to J minus twice the current value

of I, 1a4•i•^lat"We.-Ba^e• ©ailed II, fchich is 1-1. The expression

J-2*(I-1) thus becomes the current value of J, or IJ. At the end,

we need only verify that (i-1)2 = j-2(i-l) follows from J+l = i2;

setting 3=i2-l, we obtain (i-1)2 = i2-l-2(i-l) = i2-2i+l, which
is true*

There is another method of verifying a sequence like this,

which is due to London ffl] and is known as back substitution. In
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this case, we start from the final condition and work backwards,

modifying the condition each time, rather than the values of the

variables. When we come to an assignment 3£f*e, "w*herG X is a vari

able and js is an expression, we replace eac^ occurrence of v, in

the current condition, by e_. Thus in the above case we would write

CONDITION J+1=I*I

I^I-l ft) J-2*(I-1) = (I-1)*(I-1)

Ji-»J-2*I (3) J-2*I = 1*1

If-*1*1 (2) J - 1*1

CONDITION J = I (1) J = I

in which the statements (1), (2), (3), and ft) are written in that

order. The end result is exactly the same as *j)efore. Both the for

ward and the backward methods are extensively discussed in ICing \5j

and Good p*3 •
It may happen that a statement P. in a program is itself the

computation of another program with respect to some starting state

ment. The second program may be a subroutine, or it may merely be

a section of the first. In this case, we may assume tiiat this seeo::.

program already has a consistent precondition struct Lire 5 the fol

lowing theorem then gives an upper bound on the effective domain

and range of such a computation.

TimiEM. Let P be a program on $' C X * P, lot F- be an ar

bitrary statement of P, let P1 be the computation of P with re

spect to F.., and for each F. £ P let JL be the associated Brecon-

dition. Then f(Pf, in ) is contained in the union Of all p(P., £.),
while A(Pf,,41) is contained in the union of all £(P , %.) and
ail &(UVX±).

vie note that the inclusion in this theorem of the effective

domains of the next-statement functions Ify is essential. For exam-
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pie, consider the ALGOL assignment i:=j££ :i~n then 0 else 1. The ef

fective domain nf this a-sig-iment clear!:' includes m -nd n. The r.ssigi

ment can, however, bo realized by the following t'tree--top programs

1. If m -- n, go to step 3.

P. Set 1 ~ 1 an-l exit (II (S) is nowhere defined).

3. Set i = 0 and exit (N (S) is nowhere defined).

In this program, the functions P., do not include m ruv"! n in their
1

effective domains. In particular, P is the identity, and its ef

fective domain is therefore the mill. set. However, m and n -.r~ in

the'effective domain cf the function IL.

PI.OOF. It is sufficient to assume that P is complete, because

the given computation of P is the same as the corresponding compu

tation of the completion of P, rmr* similarly the f> and the --;..:-^s

of A(I7., zp are preserved when we take the completion of P.

Let 8 £ i1 and let Pf(G) be defined. This implies t'-it there
exists a computation sequence Tn, .... T. with T^ - (3, F )? setting

U' K 0 1

Ti "^ Ci> ?i)j '7here Fi = (Pi» ^ ve :°rive 3k = P'(3). Let x ^
'HPi* ^i? for a11 i? we Elust shoy Sv^ ru Gfe)« ^ fact* ve show
S (x) ~ 5(x) inductively for all i, showing at the s~me time, as in

Floyd*s Theorem, that S± is in tJie precondition £» associated with
F| byjj1. These statements are clearly true for i - 0; we r.ssir.e thry
are true for i = 3 < k. Then S € P and SJx) = S(x)j since x £

P(Pr *P> and since Pj(S3) =s3+i» we hav* 'Vl00 " 3j,(x) " G(x)>
rind also, by consistency, S4., & SI ., for 3<k. This completes the in-

duction and thus x $ j>(P», i )$ therefore o(Pf, i ) is contained in
the union of all the p(P±, %p. How let x $ f(P , i ) and x <fe AC;.,
it) for all Fjl = (P^ l^), and let S, S» 6 Jn be such that 3(s) =.
S»(z> for all z ;f x. Let TQ = (S, F ), T» = &', F ), -nd consider
the computation sequences Tn, T , ... and T ' > Tj_? •••* ^efi.uid by
T = P(T4 _), TJ = P(T! .,), for as lon;~ as these are V.ef innd. We

3- i-1 ' i i-I 7
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set T. = (3., G.) and T! = (S!f Gj). We prove inductively on i the
i i i ill

assertion that the following statements are true if T. is ^afined:
i

(a) T'.is defined; (b) G. - GJ; (c) 3,, SJ ci!, where £[ is the
i i i i i i i

precondition associated with G. ••• GJ; (d) 3J(s) = Sf(z) for all .*:
i i7 i i

5* x; (e) if x is in the union, over all 3<i, of all p(Pf., J£l), wh-:-rr

G = (P», HJ), then 3. = SJ. These conditions are clearly true for •
J .1 j ii

i = 0, including the last which is vacuous. Suppose they are true

for i = k, and that T, _ is defined; then T. . ~ P(T, ), so that 3,
7 k+1 7 k+1 k 7 "--1

= PMS, ) and G, . _ = IV (S. ). In articular. G, is not the exit state-
k Jk k+1 k k 7 K

ment, and since G, = G', we may define 3» _ = R* (3') and G* , - I'L'K.O,
7 k k7 k+1 ^: k k+1 ••'. x

which proves (a). Since T, (z) = T*(z) for all z ^ x, and x £ AC:,f, S>'),

we have ^'(S^) = H*(S£), i. e., G = G« ,which proves (b); (c) then
follows from the consistency of the precondition structure. If z €.

P(pk7^k)7 then> sinCG pk(V =sk+iand pk(3k} := sLv :md cinee z*
A(P£, ^») with Sk, 3£ £,$£, we have S (z) -S£+1(z). If z£ f>(P£,
J}*), z 5* x, we have Sk+1(z) =3 (z), S£+1(z) =S£(z), and since S^Cs)
= S*(z) by the induction hypothesis, we have S, ,n(z) - 3*,(z). Hence

k 7 •£+! k-»-l

in all cases 3. (z) = S/-(z) for z 5* x, which proves (d). If x is

in the union over all 3<k+l as given in condition (e), then either

x is in this union over all 3<k, in which case 3, =3* and S, =

P^.(Sk) = P£®£) =S^ ,or else x$ f(P£, i£), in which casa the
above argument shows that likewise 3, « = 3.j* , proving (e) end. com

pleting the induction. In particular, if one computation sequence

terminates at T , then the other terminates at Tf, where 3 - P'(S)
m' m m

and Sf = PKS1). Conditions (d) and (e) for i = m now show that S (z)
m m

= S'(z) for z ^ x, and if x 6 P(P% ^7) — which means, as proved
above, that x is in the union of all fO^*^.?)* and, in particular,
in the union of all p(P»f 2p —then Sm - S£. Thus x $ A(Pf, &),
and this shows, finally, that A(Pf, J8 ) is contained in the- union of

all A(P., it.) and all-Z(N., iL), completing the proof.
JL 1 X •*•
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The above theorem does not prove as much as we might like.

Specifically, it allows, the effective domain and range of a com

putation to include the effective domains and ranges, respectively,

of certain statements in the given program which make reference to

temporary variables and registers. For the effective range, this

is unavoidable} temporary values will normally be set in this way,

and, as long as they really are temporary — i. e., they are not

variables whose values are needed later on — this does not affect

the result' of the program. For the effective domain, it is a bit

surprising; we should not like to see garbage entering our calcu

lations and affecting.our result. This, however, is normally taken

care of by examining the condition' structure of the given program.

In any event, if this program is used as a subroutine of some other

program, the consistency calculations in the second program will be

affected only by considerations of the effective range in the

subroutine. It is also true.that given any program whatsoever we

may, theoretically, introduce an irrelevant assignment £u«~v£, ^or

variables U and V which are not referenced anywhere else in the

program, and V then becomes part of the effective domain of any

computation of the program provided that the assignment {uVV? is

executed in every computation sequence.
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Global Conditions and Sufficient Substructures

The specification of a state condition at every point in the

program is actually not necessary. We now consider ways of making con

sistency easier to prove.

Suppose first that associated with each statement F. we have

a state condition J, =4.,., /| ... O J,, • Then it is necessary only
1 •*.-»• ik*

to show, for each J^,, that S6 X. and \(S) =F implies Pfe(S) 6
X>.. This is true because under these conditions ?k(S) will be in
all JLa, for fixed i, and will thus be in their intersection, which

is precisely X±» This type of argument .is similar to multiple mathe
matical induction, in which several propositions are being proved

simultaneously and all of them may be assumed to hold in the case k

when proving that each of them holds separately in the case k+1.

It may happen that a single condition X occurs in this way

as <&,., for all i (and some j. depending on i). Such a condition

may be called a glofeil condition. Global conditions in programs are

very common. Usually they are conditions on variables which are not

changed at all during the course of a computation. Ift such a case,

the global condition is automatically true over the entire urogram

provided it is true at the beginning, and it does not need to be

verified separately at each stage. It can, however, be used in the

verification of other conditions. If we have set K equal to 1, for

example, prior to a section of a program, and we never change K

within that section, then {K=lJ is a global condition for the given

section; it does not need to be verified separately for every state

ment of the program, but if, for example, we have $Nf»N+K$ as an

assignment in this program, we may consider it equivalent to

£l7^f»IT+l|. This is particularly important in the case of subscripted
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variables, because when we use such a variable our p-functions

will not even be defined unless the subscripts are within their

proper ranges. This fact is often expressed as a global condition.

Not all global conditions are of the form discussed above.

We may, for example, have a global condition of the form 1^0,

where I is given an initial value greater than zero and the only

statements of the program which change I either increase I or give

it new constant values greater than zero. We may also have con

ditions which hold because of some initialization carried out at

the beginning of the program; these conditions are not quite global,

because they do not hold throughout the entire initialization sec

tion of the program. The considerations discussed above, however,

still hold when applied to the remainder of the program. Generali

zing still furtjier, we may have a condition which holds globally,

but such that the proof of this fact involves recourse to the other

preconditions which we have constructed for the program. As remarked

above, there is no "circularity" or other impropriety in t?ae use of

oneacondition to verify another,tfbllowed by theanseoof"the second-

to verify the first? just as this would be permissible in a multiple

mathematical induction.

We now pass to the consideration of substructures of a con

dition structure, i. e., the association of preconditions with only

the "important" statements in a program.

DEFINITION. Let P be a program onj'cix P, and let U±»\i
be the associated consistent precondition structure. Any subset of

this structure which includes Xj, is a (precondition) substructure for Pv
If *H, is a substructure, a control patfo of "UL is a path in the graph

of P whose initial and final nodes are associated with preconditions

belonging to
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To show that a precondition structure is consistent, it is necessary

only to verify a condition along an arbitrary link F.-^ F. of the graph of

the program. To show that a substructure is consistent, it is necessary to

verify conditions along control paths. Specifically, we have the following

definition and theorem.

DEFINITION. Let It be a substructure for the program P on I*

Let F', ..., F1 be a control path of X. Let X be the precondition associated

with F', and let i" be the precondition associated with Y\ Let^, 0£• i£ m,

be defined inductively by setting <f* =Jf and £'± =lpi_1(si_i):Si_i ^i-i

and Ni.1(Si_i) =FiJ* The*1 the given control path is consistent if X^C %%x
and if, for each s±^1€i[_1 (1 € ±£ m) for which Ni-1(Si_1) is defined, so is

P. -(S. ..). The substructureTt is consistent if all of its control paths are

consistent.

THEOREM. Let P be a program onJl, let P? be the computation of P with

respect to F- £ P, and let J1 CA,X' c<J* Tnen p is partially correct with

respect to F-,&, and JJ" if and only if there exists a consistent sub

structure li for P which contains the precondition*-, with*1 cX^r and

preconditions &. for each F. such that N. is not total, with S. 6X" for S.
3 3 J 3 3

in any such j(. whenever N.(S.) is not defined.

PROOF, (a)-^(b). This follows directly from the corollary to Floyd's

Theorem, since an entire precondition structure may be regarded as a

substructure of itself; the distinct control paths of this "substructure"

are exactly the links in the graph of the program, and the consistency

condition for such a path is precisely the consistency condition for the

original precondition structure.

(b)-^(a). Let S1 £j(' be such that P^S1) is defined. This



- 57 -

means that the sequence T- = (Gf, F_), T. « iJ(T. n) for i > 0,
O J- a X—X

terminates at some Tv £ £cxjtj. Let !-< . ..£i be the-values of
i in this sequence such -that T., -- (S •, F1) for FJ asaoeiatea' with

i i i i

a precundi tion .. X. in the given s' astrideture. From the c - dition

on the substructure, we clearly have i~ -~ 0, i^ -- k. Further..1.ore,

for'each T. , T. .19\.*9 T, , Of J<n, the corresponding ?l ,
X3 , 1o"1 xo+i AJ

F] .n « • ••« F! is a control oath for the r'~en subatruct :re.

V/e show inductively that each 3! € £. J by hypothesis, 3 J :~ cf

«jtfC£ =Jjjf . 0u-.nose, inoactively, that ?. .-= (S! , Fi ) whore
SJ € J* ? "^e conditio?! of consistenc--' on the control path F? ,

Fi juii .*.» Fi then says precisely that S! 6 Xi • Thus, in
h1 *J+1 • " ^l+l Vlparticular, Tfe = T, = (S! , P£ ) with S» £ JE , and, since T^€

{exi^, we have by. hypothesis Pf(Gf) =SJ j &CX". This com-
pletes the proof.

This theorem applies to an arbitrary substructure; in geaeral,

however, it will not he easy to apply it arbitrarily, because the

consistency of a substructure requires the consistency of every

control path, and there may be an infinite number of these, la par-

ticular, the application of the theorem to the substructure consis

ting of the initial ana terminal nodes alone, within the a; a^h of

the program, arao aits to the obvious but relatively uselcrs atatorant

that one may verifying a urogram by loohing at every poasi'ble com**

putation sequence; What we nood is a condition on substructures

which guarantees that the total number of ^isti'-ct cu.itrol uaths

be finite. The following definition nnc. t'v orem-are based 'on an

observation najte by several authors which seeus to have first ap

peared in print in King's thesis ZSj*
D3FI rITI0N. The substructure %, for the urogram P is suf

ficient if W. obtain an acyclic srz.nh by •removing frou the -ra-h of



- 58 -

P the nod.es associated with preconditions of &U and all Iinvs in

volving these nodes.

TiriCKSM. There are only a finite number of distinct control

paths of a sufficient substructure.

PROOF. Each of the control paths, aside from the ends of the

path, involves distinct nodes of the graph, for if any two of rue so

nodes were the same, then they and all nodes occurring between them

in the path would constitute a directed cycle in the graph of the

program after the nodes corresponding to the subatruct are "vera re

moved, contradicting the definition above. F.ach control natb is

therefore indoafed by its beginning, its end, and a distinct finite

subset of the finite graph of the program, and. the ftotal number of

such paths is therefore finite, completing the proof. We remarh tbat

a substructure which is not sufficient must have an infinite nurber

of control oaths orovided that fron ever^ rt?tomrnt F ef t-^ ->rc~x

gram there is a path to a termination statomant n.nO, similarly there

is a path from the start statement of the program to F . This if

reasonable conduit:'on, since any F. not satisfying theso conditions

may be eliminated from the program if it is to be -rove^ correct.

Thus, in a sen.se, tlie' condition on a substructure of being sufficicir

is "best possible" at this point.

There are many ways of obtaining a sufficient substructure

without drawing the graph of the program, such as J

(1) Associating a precondition with ev^ry backward transfer

in the program.

(?) Associating a precondition with every label in the p.-ogram

(this doesinot work in assembly languages if constructiovis involving

a current location symbol * — such as *+3 — are allowed).

(3) Associating a .precondition with every junction statement

•i f.
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in the program, a junction'statement being one which can be reached

from more than one immediately preceding statement (this always

gives only a finite number of control paths which need to be

looked at, but is sufficient only in the presence of the graph

connectedness condition mentioned above).

0+) Associating a precondition with every branch (or condi

tional statement) in the program^ the same considerations hold as

.in the previous case. Note that by associating a precondition with

every junction statement and with every branch, vre obtain, a bonus:

every statement not a junction or a branch is contained in exactly

one control patfe of the resulting substructure,' again provided that

the graph is connected as defined above. Thus in a sense there is

no wasted work in this case.
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Tor:3 I Al,-;oriu

^e that our programs,
or same, our cn-a tiences, terminate. It is

clear that ill always be the c -hen there are no directed

cycles in :ranc acted cycle-in tieigraph

°£ a ••$ called a lovp. Most loops in programs have "con

trolled, uts" which advanc •'-•• certain range until they

reach t" 2t For a loop tu cuted from I = 1 to 1 - 100,

-;e :;' is f&3$, Ck=2|, ...? fl~10<3jj
ie pro - progresses, states i u tg in the computation

sequent >gre.< ively h >f these subsets of X , and this

^act -w that the program ^ses normally."

2f ins two loops, one the other, and each

one ixir the same controlled variable I, then our conditions

felons of t ;ram cc er ^, which restrict A

to be 'Irst loop or withi] . nd.

We us led to the general concept of a collection of

su = <&>'p> together with an .order relation" on this col-

...ie above example, l ve had $I=j}i$I==kJ for
•3kfe-, • condition that the program progi sses normally as

becomes the statement: if T £ 3T. and P(T) £ X,

then we must have VJ & \J., (We note, for later consideration, that

enough, because we might have $ a ^f*.) The
3^ cf the example is &, but this is clearly not

..a*c for ;'«*».. . ght h*.ve take: conditions fl-I&

#$M«*fi€ •:...—ition that; th*r<s &rtft no infinite decreasing

<*# ae*a 9i«^3tfta^^^ a stronger
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namely, that given any X there exists for it an absolute upper

bound on the lengths of all ordered chains starting with X. • "<#e

therefore make the following definition.

DEFINITION. Let G be an arbitrary directed graph. We say that

G k&s locally bounded chains if for each g £ G there exists a na

tural number ]> such that no directed path beginning at x has length

greater than £.

A graph with locally bounded chains must be acyclic, because

a graph with directed cycles has infinite directed paths. It may

therefore be considered as a partially ordered set, and for each

x £. G, the corresponding £ is also the bound for the lengths of

ordered chains starting with x. In particular, any finite acyclic

graph (or partially ordered set) satisfies this-condition; so do

the natural numbers in descending order5 so do the strings in any

programming language in descending order of their lengths5 so does

any collection of finite sets in descending order of inclusion. Any

finite or infinite disjoint union of graphs with locally bounded

chains also has locally bounded chains.

We first examine the case in which we may actually require

that X >.J , which is essentially the case examined by Floyd [3J
in his discussion of termination of algorithms.

DEFINITION. A forward progress stricture for a program P on

•5 C X & P is an ordered class of state conditions J,c3' having
locally bounded chains, and such that (S, FJ) fi X implies P(S, Ff)
= (P^(S), N£(S))$ *$ >%± whenever N^(S) is defined.

The Forward Progress Lemma may now be stated.

LSMMft* Let P be a program on 3* C X * p, let Pf be the compu

tation of Pwith respect to F± « (Px, N) 6 P, and let Sf CtT'ft-U^Fj.
Then Pr(Jf) is defined (i. e., P'(S») is defied for each S^fc^1)
if and only if (S», P-), for each S» € 1% is contained in one of
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the state conditions of a forward progress structure for P.

-PRQOF. First of all, suppose that P'CJ*) is defined. Let

S € Jf; then there exist states T , ..., T £ J £ P, such that

TQ =(S, P1), T± =Ptt1-d) for lllik. Since <f* CTA U=F^,
we have T 6 Jf, and since P is a program on 3P, we have therefore

T^X1, Ofl^k. We construct a graph from the sets of the form
$Tj| for all T.. appearing in all such sequences, setting $T.$->

|rj if and only if T =PQ^). This graph has locally bounded
chains, because in fact the only chains starting at $T.J lead

forward through the finite computation sequence which contains T.,

and the length of this sequence may therefore serve as the local

bound. For each Ti = (Sj, PJ), where F» = (P», N»), if Nr(Sf) Is

defined, then T = P(T )is defined, and P(|Tj|)> faT.}. Thus
the given graph is a forward progress structure.

Conversely, suppose that the indicated forward progress

structure exists. Let S 6 J% TA = (S, P ), T; = P(T, ) for :*
0 7 1 7 i i-1

i ^ Oj we must show that the sequence T terminates. Since %C
i

2f Q{M$> |y we have TQ « Jtj since P is a program on X* we
therefore have T < 3* for the entire computation sequence T..

By hypothesis, TQ is contained In some X In the forward progress
structure, and there is an upper bound, £, on the lengths of

paths starting at J . We proceed by induction on b, starting

with an arbitrary T = (S», PO in this computation sequence,

where F« - (P», IP). If jb .-= 0, then X is terminal, which implies

that N"(SO is iv.t defined, so that the computation sequence ends

with T... Otherwise, consider P(T ) = T f we Ix-ve T -£ X > 7.,

and hence there is a directed path from X to X • This -oath ma- be
~3 k

combined with an arbitrary path starting^ at X to form a path whose

length is not greater than £, and hence the bound on the lengths of

paths starting at JJ is strictly less than b. uy the inductive hy

pothesis, the sequence starting with T^ ., is finite, and thus the
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sequence starting with T. is finite. Ir. par"'":i,v..Vvr, ~.:..~ seviencs

starting with T is f5.nite5 this completes the or oaf.

The termination condition given above, involving locally

bounded chains, is equivalent to two seemingly u.ore a'en.oral ter

mination conditions proposed by Floyd in C8j. The first of these

is the finite chain enedition. An example of r graph which has this

condition, but not the locally hounded chain c- •-aition, is the set

of all natiral numbers in descending order, together with •» , "-here

we write fi*«^ n for every nat/ral number n. One nay even choose

any countable ordinal number whatsoever and view the set of all

ordinals less than it, writing a-^b whenever a ^ b, as a set with

this condition. We have shown that for each terminating aleurlthm

there exists a forward progress structure defined as having locally

bounded chains, and all of our actual examples will be r>2 this derm.

However, if a forward progress structure were defined -ore generally,

to have merely trie finite chain condition, existence of s" ch a

struct ire would still guarantee termination of the -algorithm as

above. To see this, wc use an indirect proof. Let Jt ^c- klipA subclass

of the forward progress structure consisting of state conditions 4.

such that each of them contains an e.Vment T from which t^a se-
0 ' ' *

quence T. - P(T. _), I £» 0, is infinite. Then'It must contain a
1 1-\JL

maximal element, since, as we saw before, we could otherwise con

struct an infi:n:te chain inductively. Starting from this maximal

element <J. and its associated T , we coulu" immodtatelv dative a

contradiction by considering P(TQ)a

The other condition introduced by Floyd is "^ip.t of wc ll-orderin

This is equivalent to the finite chain condition -vo-aide- that the

given set — in this case, the forward progress stv act ,-re — ?.r.

already simply ordered. It tlierefore follows from our nrevlous

argument that the existence of a well-ordered fo?"wa^d u<-o^ress
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structure Is sufficient for te^ulnatl ?u. Can-a: sei;*, \-a ~r.~ r "• •jr.—r

construct, for any terminating algorithm, a '•'eH-ordere^ forward

progress structure with locall ' bounded chains. This can be done '

by slightly modifying the proof of the Forward Progress Lemma;

however, the easiest proof is probably the following. Let \XJ *°g

any forward progress structure5 we construct a new -truer. a-»e Vfc.-$r,

in which the U.. are indexed by the natural numbers, by writing

T6 lit. whenever T tf X •? -^or which the local bound b associated

with X is *» and ^i^^i ^ 1> 3* xt U n:n; eriS^ to 3C' that
the jt. form a forward progress structure for the same algorithm,

aiid^ of course, the ^L arG well-ordered.
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Imposed Order and xformal Progress

The f orwar d nr ogre s s cond;' t ion X ^ X i° '10t ^ea11y ver y
O ~

useful. In many situations, all that we can ;:et is X £l X,. • -T'1or
example, let J be the controlled^ variable in a loop, lot X* '"f the

state condition $J-i$ over some range of the integers i, 'uvd lot

F(Sw, F ) «X for (S . ?,.,) € X. If the only stata^ents which
ili. lil j -a '" .L

affect J are of the form J4rJ^j where £ is constant, then car

tainly 3 2tX» but' f* :ls Suite P°-^ib!e that X =7.. This will
be true if F.n = (P , IT ) -here P is not cf the form J*-«7ac. Of

course, in such a ease the program may not ter: in;te at all; spe

cifically, it may get stuck in an ondless loop inside the original

loop, provided that the Inner loop does not contain, any st'ter.:e::ts

which increment J. The termination of the program in this case

depends, then, on whether there are any directed cycles left in

the program if the links corresponding to ^uch statements r'.aa re

moved from the graph. If this condition holds, where J.i X as

above, then the program should terminate. This argument motivates the

following definitions of Imposed order and normal prograss ^tuctura.

VSFIimXQll. Let P be a program on J ? and let J» CXX P Cp
Is not necessarily a program on^$?). Consider the graph defined as

follows: its nodes are the elements of P.. and F.-^F if and only if

there exists T £ $', T = (S, F ), with P(T) = (3 ?, F ) £ 3Tr.
i 3

Suppose that this Z'rrA'ph has no directed cycles, i. e., is an

ordered graph. Then we say that *Jf imposes an order on P.

ByJlrtPIft i. Consider any element X, of r forward progress struc

ture. Then the graph of the above example has no Unas whatsoever,

and thus has no directed cvcles. Therefore J . imposes an ^C'yr oa. P.
l

EXAMPLE 2, Consider the following urogram T-->t su::r.v\g"the

real numbers A(l) through A(ft): SUMf-Oj A: SUMt*SUK+A(I')$ 14-1*1$
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&£.*£& trhen go to A$ STOP. (Mote that we have purposefully for-

gotten to initialize 1$ we will return to this point later.) Tn:h

program has the following graphs

This is not an ordered, graph, since it has a directed cycle. How

ever, for any integer k, the state condition $J-kl imposes a-~ ordor

on 'the given program. In fact, the graph of the above definition is

Ilote that this graph is obtained fron the graph of the program by

removing certain links; we may say, informally, that the condition

£J=kl "cuts the graph" so as to leave an ordered graph regaining.

DEFINITION. A normal progress structure for a program P on

J C 4 K P is an ordered class of state conditions 3 C rSt having

locally' bounded chains, such that each J. inposes an order on P, ••.rC.

such that (S, F!) 6 3, implies P(S, Fj) = (?!fc), N!(S)) € 3 > 7
7 1 i 7 i 1 7 1 3 1

whenever N*(S) is defined.

BXAMPIE 1. A forward progress structure is always " n^r.ial

progress structure. The condition 'J. > T implies 2. - 3 5 and
0 i "3 i

each 3". imposes an order on P, as mentioned ;• a tre e-^Lvle ',">'-rG.

133 AMPIE 2. Consider the program given above for suiting the

real numbers A(l) through A(n). Let us consider the state conditions

Ci ~ ^I-ifc for all i. If/foe order these in the usual way, i.,.e.,
C. > C wh.or.ever i > j, then the conation 3" ^ T. as • Vvc ir sa-

-*• J .1 .1

tjsfiec. Specifically, for s.ny (S, F O £ 3 , if F1 is the -tat^?y.:i:;
k t k.

I*-1+3.,. then P(G, F7») € 3. > 7^? and if F.1 is ant tlv'r r:V->er—..t,
• - j -*- .1^

thon P(3, F») € T.. As nenticned a'!>ove, each CJ. i-v>pr — ->-'-" or
7 k 1 ' i '

on P. The. collection1 of all the C. as abov^ -'oc-r, '--nt-have locally
1

bounded chains, because i etui booone indefinitely large. Wo nay,
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however, construct a normal progress struct".re in the following way.

Let C1 be the state condition on the urogram oountor X that restrict,

it to indicate the statement X4t* 1+1 or any nroc'-'ling arate:un-,t. let

the complement of C in j^P be C"| let CJ = C, A C» •-
*!

C. O C". We order the C! and th CT! by a^-rw.fvirv, first, thrt1 1 1 v - • • 7 7

°1 * Ci+1 f°r e&Cih^i SD "^'^ &7 Fj)^::€| where F, i~ the state
1*1+1 then P(S, F.)E c"+1> co -^? second, that CJ < U« fcr cac
i £n, so that if (8, F.) f c» where F. is the If statement then

i i 1

P(3, F )JC{> C% In all other cases (S, ?,).£ K implies Pfc, FJ

6 IC, where K is any C! or any C!. This structure has locally b-.adcO

chains, because for any i I n the chains go fro:; C'^C" -* C -^
i~ i-f-l i-M^

a'*0^c^ Cn+1' an* t:iere t]~i0^r stoP? '"kereas if ij|n the onl?
chain is C*~^C" of length 2. Each CJ and each C; imposes an ardor

on P. and the CJ and the C" therefore constitute a normal nrogress
i i

structure.

It may seem that we have done more work titan we somehow should

have| and this, in fact, is true. The given loop has the controlled

variable I, and we will shortly be proving some theorems which

guarantee the existence of a nor-nal progress structure whoar ver we

have a controlled expression (which generalizes the idea of control!^

variable) satisfying certain very goaaral conditions. Normal —ogress

structures are important because, as we shall show, the normal

progress condition is necessary nn{i sufficient; when there are no

clearly visible controlled expressions, it may be necc-ssar;, to fall

back on the general normal progress concept, which'is, in nny ^vent,

easier to work with than forward progress. Vte recall that in setting

up the above loop, we did not initialize I. Nhat we have effective Im

proved, then, is that, e/ven if we don't initialise I, the ,;:ven

program will always terminate, even though the answers may be wrong.

This condition may be important, as when a programmer wish.es, without
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having set'-aup anytpreconditions for his pro..ran, to make"a debug

ging-run with the secure'..knowledge that it will n»at loop anulessly.

FXTtitPIfi 2l» ^ Uft; change the preceding example by -wVivig a

new statement at the beginning which initializes I to 1. In this

case, the C! and the CI1 of tho preceding example do not constitute

a normal progress structure. Specifically, let (G, F ) g ^^, whore

F is the new first statement. Then P(S, F )€ C^ , becau.-e I h: s

been set to 1; and we may not have C J C , specifical"y when i^ 1.

To remedy this, let D be '.the condition that the program co aator .

indicates the new first statement, and let Dj -,C! - D, Trl \ Cl! - D.
7 i, i 7 i i

We write D< D.J; then the DJ and the D1.', order ed in the sama way
j, i i

that the CJ and the CJ were, together with D < Df. forms a nor:, al
i i » , I7

progress structure.

We now state t}« Normal Progress Lemma.

LBMMA. Any program having a forward progress structure has

a normal progress -structure and conversely. Any element of any set

belonging to either struct are may be taken as an element of some

set belonging'to the other.

PROOF. As we saw in Example 1 above, any forward-'it* ogress

structure is a normal progress struct-ire. Converse l3r, let {'!..$ he

a normal progress structure; for each J» ajy> each F. & P wo ''ef'ne

11 ~^i ^ ?^"F3B l^e order ^te Tj . "by specifying tliat X.-t^ Jc •»
if '&a)>'5c in the given -normal progress structure,, or if Zn -" ^
and F, > F, in the order which is imposed by^£~ on the ~rarh of

Da " a

the program. Then the J(J involve exactlv the same elements T 6

&XP as do the X. The structure 3 J^as locally •»,> aided chaw ns;

i ' fact, if Jo is the hound associated with a partic alar 2f. -'k tho

noiririaZ progress structure and jrj Is the numl^er of atata.^ats an

the program, then bn is the bound as-eclated with any o~" the 3 '̂•
for this value of i. If (8-, *£)'fr34,, where F£ = (±>f ;jj)f and
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HK3) is defined, then P(S, F») = (S», F£)f X,^, where 3^C ^
andf^C^? here aither^^, in which case ^ >3±J, or else
X ~ %i in 1/hich case there is a directed path (of length 1) from
F to F in the graoh of the program which indicates- F V F in the

^ n no

order imposed Ijy J. on P, and thus again 3^> Ty T1^ completes
the proof.

COROLIAItY. Let P be a program on $* C ^* p? •let pf be the
computation of P with respect to F = (P , N) 6 P, and let J# C
3'A iX=aF.j$r. Then P'Oi') *s defined if and. only if (3*, F^, fox-
each Sf fijj1, is contained in one of the state conditions of a

normal progress struct -ire fqr P.

We shall turn part of this corollary into a definition. A

statement F± of a program P on 3' will be called an entry point
for.a normal progress structure for P if (S?, F^), for every

S'C^I-e (where j§ is the precondition associated with F. byU'5,

is- contained in one of the state conditions of tliat normal progress

struct'.ire, A normal progress structure for which, every statement of

the program is an entry point will be called universal. A program on "3

has a universal normal progress structure if and only if it always

terminates when started in W 5 a program on'CJ = ^lXP has a universal

normal progress structure if and only if its computation is a total

function. As we have seen above, any program whose graph is ordered

Satisfies this condition.:
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Any finite or infinite disjoint union of normal progress

structures is itself a normal progress structure. It is therefore

possible to set up different normal progress structures for dif

ferent subsets of A. One can also parametrize a normal progress

struct ire, so that its size or its structure depend on the values

of variables which make up the condition j>f,

A universal normal progress structure for a program p on J*

is a normal progress structure which includes (S, P ) for every

S 6 ic A program has a universal normal progress structure if zr.&

only if its computation is a total function — i. e., it always

terminates. As wo have seen above, any urogram whose graph is or- .

dercd has a universal normal progress structure, which is, l;n fact,

a finite forward progress structure.

A forward (or normal) progress sequence is a forward (or

normal) progress structure which is linearly ordered, i. e., for

every ^± and ^L either ^ ^ *•!» *± -Xj or ^ (, *$y Any
finite or countable forward (or normal) progress structure may be

re-ordered so that it becomes a forward (or normal) progress

sequence; in the finite case this follows from Szpilrajnfs theorem

on partially ordered, sets, . while in the countable

case it follows from a relatively easy generalizations any graph

with locally hounded chains may be mapped in a one-to—one, order-pre

serving manner onto the. natural numbers; in.'descending orders -This ....

map may be constructed inductively on the local bound for 'chains.
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ffhe Verification Theorem

THEOREM. Let P be a program on *$* C A X p> let pt oe the

computation of Pwith respect to F - (p , i,^ ) £ p? and let £9 QXi
J*C J» Then P(&«) C J" (i. e., for each S£ i', P(S) is defined
and is in & ) if and only if there exists a normal progress struc

ture £3T f for Pwith each *$ C 7', such that (Jf, P ) is con
tained in the union of the X, and in addition we have^l C A-,,
where JL is the precondition induced by the consistent universal

condition $' at F , and S" g J** for each 3" such that (3", F.) 4
I7 3

3" for some F. for which the corresponding ?I.(B,!) is Jiot defined.
i z

PROOF. This now follows immediately from Floyd1 s Theorem

t£&&r~ and the Normal Progress Lemma given above. VJe note that in

both of the subdivisions of the correctness problem for algorithms,

the given techniques — consistency in the one case,- c'rj- normal

progress in the other — are not only sufficient, but necessary

as well.

In applying the Verification Theorem, we need one further

construction which wc have not discussed as yet: the idea of fac

toring a program into sections.
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Factor Graphs, Factor Programs» and Sections

Let G be. any graph and let jj be a decomposition of G. There

is then an induced graph structure on j$ , in which, if D € W, Do 6

t&? then ^n^Dp if and only if there exist G£ D and Go C D with
G1*^Gp. We call this graph the factor graph of Gwith respect to J9.

Let P be a program on *$C% )* p, and. let Jj be a decomposition

of P. Let D|^ then we may make D into a program on Jc V as fol-
±j

lows. The elements F ' g D are associated with r»nirs (P * C3 ), whore
1 i i

P is as before while Q.(S) = N (3) whenever N (3) ftB; we take
i , i 1 i

Q.(S) to be undefined whenever II. (S) $ D. Guch a program is called

a section of P. If F. § D, then F.. is an entry (or *n entry point)

of P if and only if there exists F g P, F £ D, with F.-^F^ in P.

Now suppose that ^ is such that each section D £ Jphas at most one

entry. Let IX,£0 have no entries and let F £ D-. For each D£&
let Pp be the computation of the section D with respect to its entryj

if it ha.s one5 otherwise PD is the partial fimction defined, nowhere,

unless D = D-, in which case we take P^ to be the computation of D7

with respect to F.. Let jL he the precondition associated with F.
1 wl x - l

by $*. If 3 £Ji. and F is the entry point of D, we define JL: J-*$f
by !^(S) = D1, where the computation sequence T , ..., T^ of P

starting with T = (S, F } ends with (S», F») for some F'6D?

(clearly, of course, then F8 = FQf). Then the factor program of P
on & with entry F is defined to be the program whose statements are
the pairs (PD, 1^) for all De|f, The graph'of this factor program
is the factor graph of P with respect toJ».

Sections of a program are somewhat analogous to. cosets of a

group with respect to a subgroup, except that they do not all have

to be the same size. However, just as a factor group is a set of

cosets under an induced group structure, so a factor program is a

set of sections under an induced program structure.
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TiiCQREH. Let Q be the factor urogram of P on &with entry

point F . Then the comautation of Q with respect to that clamant

D 6 <SB which contains F^ is the sane as the computation of P with

respect to F7.

PI.OOF. Let the two co?.irutations mentioned in the theorem be

denoted by Q» and. Pf respectively, and let T , ..., 1 be any com-
n

putation sequence for Q, with T, = (G , DJ), in which D1 contains
j. i i. x

F ; by definition, F is the entry for D.J. We have Q(T\.) - (3....,,
•*" J- -i- .Wr-W

Di+1^ 0^14 n, and ^'fe^ =-- P£(Sn), where D» = (p», :;»); we must
show Pf(3A) = Pf(3 ). Here P! is the computation of tha section DT

u n n i x *_

with respect to its entry F», and this means that t*:erc is a com-^

putation sequence T. . for this value of i, O^j^m , a -ch that T.
-*- J 1 ."L 0

= (S±9 F»). We have T±m =. (5", F») for so»io F" £ D«, aid J!" (a'') is
not defined in the section Dj, where FT! = (P,!, i;n): t: '~r. moans a.'at

cither ir(S") is not defined in the program P, or else I??(3") ----- Fr

in P for some F» 4 D! and hence F1 £ HJ(Sj == Df „ In this 2, fctcr
T i i 1 i-f-1

case, we have P,f(S") :•= P](3.) = S -, and also FM-»Ff in P, which

implies't}pt F1 is the entry of D! n; hence T .. ~ Cp» (.••:»»), h1T (?:"))
i+l i,n-p*i 7

=Cltl' Dhl) =Tl+llo* H6nc6:*lid sequence TQ0, "..., T^, J£Q, ....,
• «», T^« oo., T„r. is the computation secne-iice of P start? n/- "^ th

' UU' ' Ilia x ^ >.> • -
n

I00 := C30, F») =(S0, Px). If I?f(SM) as above is not defined in P,
then i- n and ?V(SV) = P'(3 )$ since Tnr, is tar. end of the' given-

n

computation aequehee of P, we also have Pn(o") •••- Pf(GQ), and thus

Conversely, let T*, .,., T* be any. comVvatat ion rer nonce of P

starting with Til = (S», F-); we renumber the Tf - - MT0-r. Get mu 07 1 7 . "i - - - •• ~ ^

•-• T« If T» = (SJ, FJ) with FJ £ D has be-n --onunborea rs T ., , wa
0 ill- i x 3k'

ren^bor T«+1 = <S« P«+1), with ™ 6 Dv, as * if Dt •, D ,
or as T ,- setting m = k, if D ^ D : If T1 has been reriurl^rsd

j >'J~)V 2 a y z •

as T^k' we set n " 3 '-ld % "r k» Tlmr- ';':ae sequence T! has boen re-
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numbered as TQ^, •..., T^ , T10, ..., ..., TnQ, ..., T , and,
setting each T. . - (3 . ., F. .), all F. . for each fixed i, O^J/m^

belong to the same member D| of the decomposition. Setting F^ =

(FT, If), we have TPCS^ ) ^ DJ in P, for i ^ n, "and hence tf'CS^ )
i 1 'i

is undefined in D»j if i = n, then N" (S ) is undefined in P and

hence also in D^. Thus in either case TiQ, ..., T^ is the compu

tation sequence of S,n in D], and P!(S._) = F'(S.. ) = 3. ^ n for

1 J- n, where PJ is the computation of Dj9 while if i ~ n, P'(3 -)
1 . i n iiv.»

.= P!t(G:in- ) = P,(S0)o If H™ = (S£, FJ) is the computation sequence

of 3^ in %.«wt§ now show inductively that T1! = T.~? this is clear
0 1 3.0

for i = 0. If T" - T.n, then, writing F" -- (P1!, I?i) and using the :

definition of a factor program, we have P".(Si0) = 3..., Q, as ah-ve,

while 33*1(&^0) - F>\ T, completing the induction. In particular, T^ =

Tnd and Q«© J = P^Sn0) ,= PJ(3 ). This completes the'proof.
TIipORBiq. Let P be a program on V C J> x P, and let Q be the

factor-program of P on $ with the entry F, 6.D, D£<!0. 3uppose
that D is an entry for a normal progress struct ire on Q, raid, like-

wise, for each section P. 6 ou, its'entry F is an entry for a normal

progress structure onD., Then F Is an entry for a normal progross

'structure on Pe •"

PE20F-. Let.T = (S,* F.) 6 T. We so ale to prove that the com-

•putation sequence beginning with T0 must terminate5 under those

conditions, F will be an entry for a .normal progress structure on

P. Since-F-. is- the entry of D , there is. a computation sequence

T0 =T00'T.01>•••••»• T0mQ inDr if ^0m0 ^ not t3ie ™* of 1;hG ori~
ginal computation sequence, the next element of this sequence is

^10 ~ ^10' ?10^ "'/il0I'fJ F-,r> if? the 0T^;I'7 ''^ *• *cw section of •*-.he
program. Since this is an entry, f or a normal progress structure for

that section, there is a commutation sequence T-,~, Tn.,, ..«,, T-, .

in that section* The original computation sequence may thus be



- 75 -

written T -• T_,'•.•, T- , TnA, .„., •*., -uid this corresponds,
0 00 ^O *^

as in the proof of the preceding theorem, to a computation sequence

T00, T10, ..., in the factor program Q, where T = (S, D^). 3ince

D is an entry for a normal progress structure ou Q, this sequence

must terminate, and this means, again as in the pr^oed.1 ng proof,

that the original sequence must terminate. This completes the- -roof.

This theorem may be used in analyzing programs having sections

or factor programs which have ordered graphs. As we have seen, any

program with an ordered graph automatically has a universal normal

progress'structure„ In a typical case, a program might have three

sections, such that the first and third are ordered but the second

is not, while the factor program is. likewise-ordered. Thus normal

progress of the entire program is equivalent to normal nrogress of

the second section alone.
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Controlled Expressions

Controlled expressions in programs are the natural general

izations of controlled variables in rOP.Tk/UT and ALGOL — i. c.,

variables which appear in DO statements and for statements. The

generalization is necessar}' because in some program3 control is

exercised not by a single variable but by several, which-combine

in some way to form a single controlled expression.

DilFlUITIOHo Let Y be any set with addition (and therefore

also with multiplication by positive integers), ordered in such

a way that if a, b, c fi Y with c <> 0 ther-j exists a positive in

teger k such that a-f-kc >. b. Let P Ik a program on 7# CJt * P> -nd
let es jL -^ Y. Suppose that for any statement F. = (P . IT .) of P9

ill

if (S, F1)i T- fexit>o then efP^SllietS), Suppose also that
there exists c{I, c ^ 0, such that an acyclic graph is obtained

by removing from the graph of the program all links F4->F4 such

that (S, F^) ♦'!y and ^(S) = F. implies e(P..(S)) & e(8) + c. Then
© is a controlled expression for P. If x & H and the expression e

defined by e(S) = S(x) for all 3 (J is a controlled expression

for P, then x is a controlled variable for P.

The, axiom given for the set Y is such that the integers, the

reals, or the rationals will satisfy it. Another possible set Y is

the set of all floating point numbers on a given computer in which

the fraction part of the number is strictly bounded (1. e., fits hito

a given maxiiaizm number of bits) but the exponent part is unlimited

in size, unfler the usual rules of floating point addition. As we

have mentioned before, size limitations on numbers in actual com

puters may be handled by specifying, as a precondition for ever:'

statement in a program, that every variable involved in that state-
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rnent lies within the limits specified by the given computer.

The two axioms for controlled expressions are generalizations

of the usual properties, of controlled variables. The first axiom

says that a controlled expression must be monotonically increasing.

Note that it is not necessary for us to develop a dual theory of

monotonically 'decreasing expressions, because if e is a decreasing

expression then -e (1, e., the expression f: J&«^i defined by f(S)

= -«(S) for all 3 j J) is an increasing expression. Although the.

monotonic condition is the usual one, it is by no means necessary;

we may have, for example, a controlled expression which proceeds

erratically, or "two steps forward,, one. step back" toward its goal;

such an expression is not covered by this definition. The second

axiom says roughly that the values of e do not converge; clearly,

if the successive values of e \rere y , y , ..., where the y. con-

'stitute a monotonic sequence converging to' y £ Y, vnd the only test

condition in the urogram on e asked whether its value was greater

than y, for example, then e would not satisfy this axiom, end, in

fact, our program could enter an endless loop. Note that if Y Is the

integers then we may always assume c ~ 1, replacing the condition

e(Pi(S)) fc e(S) +c by e(PjL(S)) }> e(S).
The following three theorems state that a mo gram with a con

trolled expression always terminates provide' that this expression

satisfies some additional'condition. It should bo noted that ~' con

trolled expression for a program P is one which satisfies the condi

tions given in the definition over the entire range of statements of

P. Many programs will have DO loops, for loops, or the e'. wvalaet,

and each of these will have a controlled expression, but these will

not be controlled expressions for the entire program; rack one will

only l>o a controlled expression, for its own loop. It ha nec-saar;;

in such a case to factor the g}vc:n prog?-an i-.t.-- s- c•!-.:'.•>•'* h; which
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the loops are (some of) the sect ions 5 each loop can now be proved

terminating, and thus the entire program terminates.

THEOREM* Let P be a program on $* CA &p> let es X *+ Ybe
a controlled expression for P, and for each F. 6 P let J|. be the

precondition associated with F byf, Let efs J,«£Y be such that

each fa is contained in^e^e'J and such that^(ef, jj )ftp(P , J.)
= ^ for each 1 . Then P terminates when started in 3*»

This condition generalizes the most natural condition for a

controlled variable; that it be bounded above, preferably by a con

stant. For any actual computer, where Y is the set of possible con

tents of a computer word, such a constant always exists, namely the

largest element of Y. If the upper bound Is not constant, we hypo

thesize here that it be "effectively constant" in the sense that it

can never, change during the course of a program. It is clearly pos

sible for a loop from 1 = 1 through N to be an endless loop if

inside it we keep jacking up the value of HB

PBOOF. Let i > 0 be an integer, let b & Y, and consider the set

^ib =f(S> Fk) fi Ts Qf (s) =b^d *>~*c < e(3) £ b-(i-l)c|>, where
c is the constant appearing in the definition of the controlled

expression e. We order the ^ by writing J±h > 3-a if i < j (note
the reversal of order) and b = d. Under this ordering we shall now

show that the X^ constitute a universal normal progress struct'ire

for P. The structure is certainly universal, because if e(S) = a and

e«(S) •-- b, fte any (3, F ) §H«, then by hypothesis a < b, but there

exists a positive integer k with a+kc y b; we then have (3, F.) £
J

ife where i is equal to the least integer k haying this property.

The structure also clearly has locally hounded chains, becau.se from

any^ib the onOy'chain goes from Xb-*$t , h-*...-fr,J ^-..j r^-'lb "»i-l?b "°#-"8r^2b^^Ih
hence £ is the associated local bound. Let (3, F ) g 4. , c-nt. ±z'c



- 79 -

P(S, F.) « (Sf, FJ); it is sufficient to show (G *, FfJ £ 7 for

m^ i. Setting F. = (P4, Nj, we have S* - P. (3), and if $. is the.
J j j o .0

precondition associated with F. byjj', we have S € o.. Thus £(ef, & )

0 f>(P ,& )= (j) implies e»(S) = e»(P.(Sj) ^ e'(Sf) == b; also, by the
definition of a controlled expression, e(P.(3))> e(3), :uid thus, by

*}

the definition of the 3 . , we have m £ i. This completes the nroof.'
mo

THEOREM. Let P be a program on 3» C i^P, 3.et o; i ~» Y be

a controlled, express! on for P. and for each F, £ P let 2. be the
i i

precondition associated with F, by 3'« Let e?s %-* Y be such, that
1

£(e*, j^.) n P(P_,, i,) - (j? for each 5 , and suppose that an acyclic

graph is obtained by removing from the graph of P all links invol

ving nodes F. - (P., Ik) € P such that (3, F.) € J1 and. e(S) > er(3)
111 7 i

implies that N (3) is not defined. Then P terminates w.hen started

This condition is sometimes easier to spot than the previous

one. The definition of a controlled expression implies that In any

controlled loop it should be impossible to escape literem entat ion of

the controlled expression-- by some'minimum increment.' The present

theorem says that if in addition it is impossible to escape compa

rison between the controlled expression and some upper bound, and

transfer out of the loop if it is greater than that upnor bound,

then the loop must terminate.

PP.OOF. Let£*3L.? be the universal normal progress struct re
• lb

of the preceding theorem. Let Q be the set of all links in P which

arc removed from the graph of P by the hypot1bsized, construction,

and corresponding to each Fk ^ Qwe consider ?^ = $(3, Fv) £ 3f?
e(S) ^ e«(S)}. We write 3» >1 for allJ_f and all 1^y while ?£
>3^ if and only if Fv > Fm in the order imposed on the ^r'\ph of
P - ) by the fact that it is acyclic. Finally, let ?V : ?& >;V
£3f* e(S) ^ e«(S)$and p £ c#, and write 3' >'?» lor each 3,».
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We shall show that the expanded ordered structure cc 'prising the

X, 9 the 3S and 'J? constitutes a universal normal nro^ress atruc-
io k 0

ture for P. The structure is certainly universal, since if (S, F. )

€ V and e(3) < ef (3) then (S, F. ) is in some 7. while if c(3) *

ef(3) then (3, F, ) is In 1? if F C Q and is otherwise in s< me 37.
ic Ok k

The structure has locally bounded chains because any cliain ston-ting

with X- can have no more than i elements before it rets into the
ib c

^k °r ^0' and any" chain *n tlie T? °sin have no more elements in it
•than there are statements in the given program. If (S, ?.) A T , ,

^ ib

then either P(S, F^) g \h> 7ib as before, or else P(3,°F ) g
?k >^ib °r 3q> ^ib- If (S> V € ^» then> settins F- s CP., IT.),
we have e(P (s)) £ e(S) £ e'(3), and "so P(3, F.) cannot be in In

«* 0 lb
therefore, either it is in J^ ^ 3», or else it is in 3T£, whore there
is a directed path (of length 1) from F to F. in the graph P - Q

J k

and therefore V > 'J'. Finally, if (3, F.) £ 7», where F - (? t-iJ
ic 0 3 0 • j 3 t'i

then N (S) is undefined.* This completes the proof.

pcPtOLIAftX. let P he a program on J» c Ix P, let e: J -fr Y
be a controlled expression for P, and for each F £ P let J. be the
precondition associated with F. by J1. Let e':^-^Y ho such tht

Afe% 'i'^f^J ^2 ='4 for each J , and suppose that an rowolic
graph is obtained hy removing from the graph of P .?.!! links invol

ving nodes F 4 P such that the corresponding J. is contra -ed ~hi
$e<e'$. Then P terminates when started in $f.

JE22E- The condition that i. is contained in $e <o»} clearly
implies, vacuously, that 2^(3) is not defined for each. 3 for which
(3, F^gtJ1 and e(3)>e*(S), because there arc no such 3. The
corollary thus reduces to the theorem.

We may, use the corollary, rather than the pran^'ln; •theorem

when the test or tests within a. loop are of type "canal" or "un~
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equal,1' rather than "greater than" or "lens than," or when they

involve auxiliary quantities not -irectly related to '•!•>«•> controlled

variable. It is more closely rehated in spirit to t-e first -vf "-.he

above-- theorems than to the second, and in fact is much easier to

use than this first theorem because the c ••;--''ition e<e' only needs

to be verified on a sufficient substract -ire. This can V done at

the same tiwe, ana using the same lachluery, as when consistency is

checked. As an example, consider the following algor'thm for summing

the real numbers A(l), ..., A(n)s 1^*0} 3Uhr4*0; As I^*I-k1$

8UM<»S0M+A(I); i£ I^n then ao to A; 3T0P. We can then associate

with the label A the precondition I < n, and prove this consistent5

since an acyclic graph is obtained by removing the statement I4-!-:-!,

the Corollary may he applied directly.

TH5QRSM. Let P lie a program on J»C i<P, let e: 4 •> Y be

a controlled expression for P, *wid for each F. £ P let 4^. be the

precondition associated with F^ by 3?. I«et ers JJ^Y he such that

each 4. is .contained in fe<e*l and such that $ef (P. (3 )) < ef (3)

for each P.. Then P terminates when started in Jf.

This theorem is occasIona.il1y necessary when working with two

indices which are moving toward each other — one always-increasing

and the other always decreasing. Note that it is necessary for only

one of the two to be a controlled, expression.

WtOOF. This follows immediately frea the first theorem abo-re

by realizing that, under the given conditions, e-e? is a controlled

expression which is bounded by the constant %ro. We could, of

course, have formulated the second theorem above in this wa^ as well

We note, on the general subject of controlled express! .,.0,

that the condition e (P (3))> e (3) for a c ntroll.ee ex ••osaion e

Is immediate for airy p.^ for which PO-h* $>.) DAfe) ^ <£ 9 where i, is
the precondition associated with P,. In fact, iw tils' ca-w --0 h ve

e(P.(S)) = e(S) for all 3 6 Jl .
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The Skeleton of a Program

DEFINITION. Let P be an arbitrary urogram, and let F be a

statement of P such that there does not exist any statement F. fi ?
1

with P.^Fj in the graph of P. Then F. is an. initial statement of P.
i' 3 2 :
Any initial statement F. of a program P may be removed to form

a new program Q in which the f mictions P. and II are the same as

before. In particular, we cannot have 11.(8, F, ) - F. for any (6, Fn ),
1 l 7 k ;} 7 k '

for that would imply F -^F in the graph of the program. Thus each

N. may be defined in Q exactly as it was in P.

DEFINITION. The skeleton of a program P with no initial state

ments is defined to be P; the skeleton of a program P containing

the initial statement F. is defined, recursively, to be the skeleton

of the program Q obtained by removing F. from P as ab--vo.

The process of finding the skeleton of a urogram consists,

therefore,, in successively removing Initial statements from the

program until there are none left. The removed statements, heaevcr,

need not all be initial statements of the original program. In parti

cular, the skeleton of a program whose graph is ordered is the null

set, because the smallest element of such a urogram will always be

an initial statement, and when this is removed the resu.lt, if non-null,

will still be ordered and will thus have a smallest statement of

its own.

TuT.QREM. Any program always terminates if and only if its

.skeleton always' t^rmiria£es ; 'oe -.

This theorem is used mainly in con ootion with c^ntroll'-d

expressions. Any controlled expression must be mo *ctn-nic$ it is

therefore unlikely that any expression will ever oe a controlled

expression for a program in which it is initialized, because its

value before initialization is presumably unknown* and night he
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larger than its value after initialization. By restricting our

attention to the skeleton of the program, we avoid this problem

because the initializations in a program are normally not part of

its skeleton.

PRpOff. Let T , T-, ..., bd an arbitrary computation sequence

of the program P whose skeleton Q always terminates; we show that

the given computation sequence terminates. If any T- = (S., F')

for FJ £ Q, then the sequence beginning with T terminates, so we
x

may assume this is not the case. If T does not terminate, the
i

program statements appearing in this sequence repeat themselves;

thus there is some smail4stal,j, 1< j, such that T, = (S , F») for

ifc^iJ and F» = FJ. Let F» be the first of the F» i £ k & 3t
^ i 3 m k'

that is removed from P in the-course of forming the skeleton; if

*7 = F], we may take F* = Ff, and so in all cases we may assume
k I7 k y

k^ i. But now we obtain a contradiction: Ff should not have been

removed, because F,f , is in all cases defined and Ff „->F* in the
k-1 k-1^ k

graph of P. This completes the proof.
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FCKIRAIT

We shall now apply Our general theorems on cuntroli ed ex

pressions to the specific case of DO statement*-• •' ,„ .

D-LiFIirmON. Let P be an ordnr(=:d urogram on & = TT. V^, with
° x£e x7

statements.£l, ..., ft . Let I denote the set of integers between

-p and q, inclusive, and if i, J 6 I, we define 1 ©j to he that

member of I which, is congruent to i+j modulo p*c. Let x 6 II be such

that V2 - I, and let n^z i-» I, n^: i ^ I, il: i-» I. :iheu the
FQhThAl: iteration £pQ J*,x = n^, iv,, n~? (or fhO ff x - n , rv$ when
ever n^ is the constant functioa n (g) 2 1) is the ordered program

with statements f*Q, ..., ^, where P, , ..., Pn '^a the -h t a-la:
of P, whereas PL is f'e'assignment Jx^-n^ , f ._- Is t"w •^wga-acut

?xf-xfcnJj, and P . is the conditional 5if x£ n^ then, ao to pi .
«. ^j- # n~'-^ c*" 2 "• " • •— i

More explicitly, PQ(3) ~ ,>' where 3f(x) ,-- n (3) -r/- 3rCz) -
S(z) for z / x, with 11 (3) = R; N (3) ;•• f* , iu th* Fa..::?!•: itera-

'•' .L n n*J*i

tion whenever IL(3) was undefined in P; P (3) - 3 f ahorc Sf (x) ~
n J-.+2

SW*n,(S) and 3«(z) = S(z) for z ^ x, with N Al (8) = It 0: and
j * n. J. n-*-<'

Pn+2 is the identity, while N+2fe) ~ Pi whenever S(x)^n2(S) and
Nn+?(S) is otherwise undefined.

The following theorem on termination of FOhTP.Ah iterations

is sufficient, hut is far from being necessary; it embolics, ho.vcvor,

most of the usual restrictions on FOhTRA^S" iterations made ]>-- actual

FGriTFiAIJ systems.

TH;.QTlEi-L Tne Ffh-TRAK iteration $20 f?, x -: n,, n. 5 n.} will

always terminate, provided that the following con ."It:* can ar-v II

satisfied:

(I) The origins 1 --vd^red. r^ora^u P '.?'•:: yr'' !;er A• tes.

(?) Tne f action n- s w::ir*,los a (3 ) > 0 for all J*
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(3) For any S, we have "-(3) + n^(S) < q.
0+) For any S, we have n (S) + ni (S) < q.

(5) For any i, l£i£n, if P (S) = S«, then 3f (x) = S(x).

(6) For any 1, l$i*n, we have i^(P (S)) = i^(S).
Roughly, a FORTRAN iteration terminates if it contains no

non-terminating inner loop; if the increment is always positive

(a well-known special "FORTRAN condition); if there can be no arith

metic overflow when the controlled variable is incremented; and if

neither the controlled variable nor its maximum value is ever changed

in any of the statements of the loop. It is not necessary for the ,

initial value of the controlled variable to be less than or equal

to its "maximum" value; and it is not even necessary for the in

crement to be a constant, a.s long as it remains strictly positive.

PnOGF. Consider the decomposition of the •given FClThATf itera

tion into |FQ|, {fx, ..., Fn|, jFn+1|, and fF)v^i. Since none of
FQ, F -, F p ever branch to themselves, and since, by hypothesis,

the original ordered program always terminates, it suffices to con

sider the factor program. The graph of this factor program is

n+2

We may place the precondition fx< q-nJ| at the statement P in this

program. The consistency of this precondition follows from the fact

that FQ sets x to n^, and iL^q-n^ by condition (3) above; whereas,

if we go from F 2 to P, we have x £* ru, and n^q-n by condition
0+) above. We have e„(P!(S)) = e(3) for all 3 by condition (?)

above, where P* is the computation of the original ordered program,

and thus£x<q-n-J is likewise a precondition for the statement F J/T,
which sets x to x # n^ . Since ru ^ 0, we have -p £ x Cz+n, < q3 and
thus x% n. = x + ru.
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For termination, it suffices to consider t^e skeleton of

the given program, so we may eliminate F from considerat.ion. We

shall show that a controlled expression for the remaining section

Is exs ^*"^Y, where Y is the set of all integers and e (3) - 3(x);
then we may apply the first of the above theorems, si' ae we have

shown that x ^ q everywhere, within the loop. The set Y of al" in

tegers certainly satisfies the conditions on the set Y-given in the

definition of a controlled expression. Of the conditions or e,r, we

may verify the first for the three remaining statements; in fact,

we have shown above that e (Pf(3)) ---- e, (3) for all G, -and e, (P , (3))
xx x n~'*I

> ex(S) Since"the 9 addition is equivalent in this case to the +
addition^ and ex(Pn+?(S)) z: ex^) -follows frou the fact that P^,
Is the identity. The minimum Increment c. may he taken to be 1, ana

if we eliminate P ^ from the graph of t.he program, it becomes

acyclic; here P^ may be eliminated because the two f:rms of addi

tion are the same here and because of condition (6) ab-ve# This com

pletes the proof.

There are a nmiber of generalizations which may be made. Con

dition (3) is actually superfluous, although if we-eliminate'it we

add a rather uninteresting case: the initial value is extremely

large (q, for instance), and the first time through the loop this

becomes negative by overflow; but eventually the loop terminates

anyway, as this negative number is repeatedly increased. Condition

(6) could be replaced by n^P^S)) £ n^CS), and the proof goes
through i£ueh as before, except that the third, of the above theorems.

is used rather than the first. Condition (?) eoia'd also be replaced

hy 3f(x)»* S(x), but this would complicate-the discussion of integer

overflow, and condition (h) would have to be changed to make iw> for

this.
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Storage Allocation

The assignment of elements of a particular set 11 underlying

a p-set ^J, = *TJ V to variables in a program is known as storage

allocation. Computers generally impose size and accessibility limi

tations on M; storage allocation provides compatibility in this

regard between a program and. the computer it rims on. Typica3.1y we

have a particular subset M* C M of "allocatable memory," where tf*

= ^c^, ..., cJ, and each c^ is: a cell with address or index i,
l£i£m. Storage allocation then consists in the assignment of r_

v

cells to each variable v in the urogram, where r is the storage

requirement of v, and is 1 for integers and real numbers, ? for

complex and double precision nuiibers, n, for single real, or integer

arrays, of dimension n, and so on. The address of the first of these

cells (almost always the first« by convention) then becomes the

value of the address'.function associated with that variable. The

address function in turn is the fundamental fauction associated with

any variable, and is used to produce expressions and assignments In

volving that variable.

Three types of storage allocation have been identified (in

PL-I, for example): static, automatic? and controlled. The address

function associated with any variable under static allocation is a

constant function. Allocation of such variables may proceed by as

signing to each variable V ofIthis type the cells with addresses

2 through £+rv~l, where £ is the value of a counter Jc which is ini

tialized to zero, and then adding r to the value of k so tb^t it

Continuously contains the address of the first avail a ale cell. If

a program uses static allocation and also non-static allocation,

then the statically allocated cells may, if desired, b-r removed from

what we specify to bo our allocatable memory.
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Controlled allocation involves the use of explicit executable

statements which perform allocation. With each, variable of this

type there is associated an address cell which, at all times, con

tains the address of the variable — that is, the address of the

first of the r cells allocated to the variable v. If the address

cell of v is a*-,, and r = 1, the address function for v. is then

a(S) ~ 3(a„). For a single real or "integer" array of dimension rx,

where r = n, a subscriMted variable use involves v end. an integer
v

p-function e, and the associated address expressionais f(3) = 3 (x)

+ e(S). The address cell is itself subject to static allocation,'

at least if the name of the variable is const suit, as it is in alge

braic languages (but not, for example, in SHOBOL, where new variable

names may be invented dynamically by programs). The contents of the

address cell are changed by allocation statements, which are exe

cutable. There are also de-allocation statements, which do not

change the contents of the address cells directly, but keep track

of the available space for future allocation.

Automatic allocation is a concept that was used in ALGOL

and has been carried over to PL-I and various other languages. It

involves the Interpretation of declarations in a block of the given

program as executable allocation statements, and the process of

exit from that block as ah executable de-allocation statement. It

allows some of the r„ to be variable, and with each v such that r
v * v

is variable {in a given ./block, other than the first such) there is

associated an address cell; but if r is constant, or if v is the

first variable in its block such that r is variable9 no address

cell need be assigned and access to variables is therefore faster

than it is using controlled allocation. Instead of an ao dress cell

for each variable, we have an address cell for each block level.
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We shall denote the cell for block level 1 by B^,- i.^0; in addition.

we have another special ceil L which gives the current block level

plus one. The B. thus form a stack; this stack is "potentially

infinite," although usually in verifying an algorithm in a parti

cular language we find that either an arbitrary maximum number of

B. has been given, or else that the B^ are themselves allocated,

using linked allocation.

Initially, when the program is started, L and BQ are set to

zero. Every time we enter a block, L is increased, by one, to the

new value 1, and B. is set to B4 n- plus the sum of all the r for
v —7 i i—± e v

variables v declared in this block. Every time we leave a block,

L is decreased by one. Thus the "topmost" B. (where i is the cur

rent value of L) always gives us the address of the first available

cell. The address function associated with a variable v such that .

r is constant, where v is defined in a block at level i (1. e.,

with L having the value 1), is then f(S) = S(B,) + k , where the

constants k are chosen for the variables v in much the same way

as in static allocation. This is true whether v is being referenced

in the given block at level i or in a subblock (or sub-subblock,

etc) at a level j,Ji. The variable name v may be associated with

the block, allowing different variables In the same program to have

the same name provided that ea.cb of them is defined- in a dif-V^nt '

block.

A1variable r -must depend on the values of variables defined

in blocks j, for j.^i<> The address cellafor the- corresponding v is.

set in the following way. Initially, when the block is entered at

level i, B. is set to B. _ piUs the sum s of all constant r for va-
1 1+1 "~ - •" y

riables v declared in this block. We now proceed to treat those v

for which r is variable. The first such v has an associated index
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It. ss, swMthi^htis constant^ and therefore it does not require an

address cell, Having treated this v, we now increase B. by r ,

if there are any- more remaining v with corresponding variable r ,

we treat each of these in turn by setting the corresponding address

cell to the ourrent value of B. and then increasing B. by the cor

responding r © When this process is finished, B. will contain the
V . A •

address of the first available cell.
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Standard Subroutines

The line between a section of a program and an Internal

subroutine of that program is not sliarply defined. Often a pro

gram will have "subroutines" which look raore like sections than

subroutines. We now define a type, of subroutine which'is entered,

and which exits, only in the "normal"-way. '

Let P be a urogram on *S# C £ * p> where X ~~ I. V, and let
x

.v» • •>.-•-<• :r r,x & M be such that V = P. A statement F. =• (? , IT ) of F s/ach
X 1 ' i' i

N^(S) = 3(x) is an indirect transfer to £, and x is an indirect

transfer yariable. In this case, if P is taken as a program on X,
there will be a link F «-£F for every F. £ P. "formally, a program

with an indirect transfer to & will be equipped with a global con

dition restricting the values of x, to a certain subset of Pf namely

the set. y. of all possible return addresses-. The graph of P as a

program on the universal condition Jf includi u; this global condition

will contain only those links F.-^F. (for this F.) wVre F € U.
l 2 i j

Let Jfifbe a decomposition of P, let D. fij&l and let x £ II.
. i i

Suppose that for each F. . = (P.., Ik ) £ D we have IT, .(3) ♦ D.
^J -J1J 1 J.J * 1

implies H, . (3) = S (x ). Then D. is1 a standard subroutine of P at

level 0 end x. is the'return address variable of D.« If D. is com-

plete, Its exit is an indirect transfer to its ^otarn address vari

able. If D Is-not complete, it may have various "conditional In

direct transfers." An instruction F^ - (Pv, :p $ D^ calls D^ at
?i« ^ agflir^gyi'ta P^^.a-^-lf iq(S-)^F^and P (s) - G» where
3f(s^) r Fm. More generally, ;.D " is-a standard subroutine of Pat
igyeik if'for each F^ « (p^, n ) j Dj, we have Ik ,(3) 4 D^ Im
plies either H. .(3) = 3 (x,) or F. . calls a •standard subroutine p

£ V at level k» < k at its entry with return to some other state

ment of D^; and, again,.x, is the return address variable of D.r
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Standard subroutines' in this sense are non-recursive and.

cannot have error exits. If a subroutine which does have error

exits is used in a program, It can be treated as a standard sub

routine by imposing a consistent universal condition which guaran

tees that the error exits will never be taken; the links to these

may then be eliminated, from the graph of the given program. If

Fi = (Pi> V oalls D* at P3 and f(V ,rr,?xjfc> then F-t i? thereby
completely determined, and we write F - ?CALL F .V. Such a c*11

i * i9
statement, of course, does not pass any narametors.

The simplest way of handling parameters to a 'subroutine is

by assigning them values when the subroutine is called. Using this

method, we associate certain variables x,1? „,., x.v g':•! with D.,

and call them the assignee? parameters of D.. If e. .:^-» Vv for
l£3im1, the aligning call statement |CaJJh F_,(e^? .,., e^' )>
consists of the composition, in order, of the assignments Jx.^»e. \9

l£3$,n±, followed by {CaLL F.J is defined above.. This method of
passing parameters is always sufficient whenever the paraawtrrs are

called by value, as is the case, for example j in ShOBOL k (al:h:.ugh

we have not, as mentioned earlier, taken recursion int.' accaant).

Calling by value d6cs not allow us to return val vos of -wre-wtars,

but we'can easily modify our scheme to allow this by intreducing

returned uarameters y , ..., y associated with Z . if a s
0 il i^i i i.j
J«*il for l£j^n.? and a (3) =• z implies V CI for all 3 c:A

A A .J /_• V • •
A J

all J, l£j£n , trien the assl^ning-returninr: call statement

fCALL Fi(eil, . „., e^ 5a^, ..,, ain )J consists of th- exposi
tion of |CALL F/e , „.„, e^ )}, as above, with the as- g. wants
ya^^y.^ in order, for 1j£ J j£ n.. It is quite rer:sis« ible for
the same variable to occur b:>th r-s x.T>, and as v., , i*a*r:., ^b^n ♦

so that a variable may he either used or returned 07* w.th. IM.s

type of call is essentially that which is used.an JOVIAL.
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It is always immediately allowable for a parameter of .?.

subroutine to be a labej. parameter — i. e., an alament xtf 11

with V = P. If 3(x) - F. £ P is the entry of a subroutine D.,
x I i

and if we have uniquel;)' associated a (possibl;;' null) set of

formal parameters with D/, our label parameters can indicate

subroutines; if they nxe restricted to indicating subroutines,

they can then be used in this way, so that, for example, we can

have a call stateaent which calls 3(x). A parameter of this type

;nay be called a functional parameter. In some languages, such-as.

3h0!G0L, it is perfectly permissible for more than, one /reaction

(with its own set of n^rameters) to be associated with the same

starting Instruct* on F. £ Pf in such a case we awlll have a set X
1

of all oossible subroutines, where a subroutine consists of a

starting location together with a set of .formal parr meters; a

functional parameter in such, a system is an element x g hwtth V

= X. It has long bean known that any system capable of herliing

functional parameters is automatically capable of handling v-?rc.~
~ i'

meters called by name in the ALGOL sense. In £Iace of a par-a-S'ter

that is to be called by name, we simply substitute a f wnctional

parameter which references, a subroutine -that -computes it (this is

sometimes known as Jensen's device). Thus assiga.ing-ret -ruing call

statements may be extended, to coyer all of the normal ra^os cf

calling subroutine parameters.

Host language^, however, use calling sequences« rather than

assigning and returning,, Let D., be a'standard subroutine of P, with

n arguments a^, ..., a. . A calling sequonce for 'j\. Is an m -turle

(x.-, ..., x. ) of actual parameters, and an element xg II such

that V is the set IT. of all calkins sequences for D. is a call.ww

se'-: uence 1ndlcator for D.,. The sequence cell statement ^ hiLT F. C'1a)J,

for h£€ %, is thr. (~'auction F. - (P., hj where :r,(3)£ ?., and P, ~
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fFE«-Xjf••fhs*-q..Jr, vfcera fCALL F^fr ret-ar.w to 7..^ D,,
x. Is the return address variable of D., and a. is the ca?ling

i 11

s e queue e indieator f or ~DA,

Tiie main advantage of celling sequencer over assigning wad

returning is that the calling statement using a cilia.;- s«-.-.,cnce

does not involve so many assignments (and can therefore, pres.ur-.lly,

he processed by tvc computer in a shorter time). The disadvantage,

of calling sequences is that the formal parameters are -ore cc; -O.ex.

An assigned formal val ue narameter, for ex-'wile, is' si •.•ply a.: cle

ment x. . £ M'*ith the usual associated program function p such that
A J

'p(S) = 3(x. .); a sequence parameter, on the other hand, if it Is a
lj

value parameter x , has a program function p given by r*(3) =
A,J

K (j) where h - 8(q ). That is, we take the value 3(q^.), which Is

an a.-tuple specifying a calling sequence5 the 3-th el onent of this

calling sequence is then the desired value. The elements x.. . of a
•i 2

calling sequence h»= (x.», ..., x. ) do not all have to be values?
1

in fact j their form is determined by the specification gr'ven with

the subroutine definition as to whether' its various parameters arc

to be 'called by value, by location, or by name. For a call by value,

x. . is simply a member of the corresponding type set. For a call by

location, x. . is an address function, and the address function a of

the corresponding parameter is given by a(S) - f(S)', where f = hv(j)

(where, as before, h, --• S(q )). For a call by name, x.. „. is a pro-

ceuure, as before.
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Verification of FORTRAN Programs

V/e shall now proceed to verify a number of examples df FOR

TRAN programs. We shall actually be verifying sections of FOPTRAN

programs; these may then be included in complete FOKThAlJ programs.

Each exit statement will be denoted by CONTINUE; if the given

section is included in a larger program, CONTINUE will ordinarily

be replaced by the first statement of the next section, or by

P2TURN,. STOP, or CALL EXIT.

Each of the given sections may be factored into subsections;

these subsections may then be further factored. T2ne subsections

are defined by comment cards which contain C.1x beginning in column

1, -where j. is an integer denoting the level of subsection and x

is an optional identifier. The main-section being verified Is taken

as level zero. Each section at level n may be broken up .into

subsections at level n-f-l. "Each Cjj, card defines a section at level

J, which is made up of the contiguous executable statements rnncd.ng

from this card to the next Ck or CJcx card for k < j,. ^ach Cjx card

for constant J and x defines a section at level j, which is not made

up of contiguous executable statements; hut Is the union of several

collections of contiguous statements each of which ranges from a

particular Cjx. card to the next CJc or Cloc card 'for k / J,.

For any section which has a controlled expression e, this

expression appears after C£ or CJx, separated from t'wls by a blank.

Wh«-.t>nT> or not there is a controlled expression, sr comma' may follow;

afterl.this c'ojnma-lthesetis either the word -GLOBAL, "followed by aB

global condition or conditions for this section so parsted by ooana$,

or the word COLD, followed by preconditions for the first ex. cut :air

statement of this section separated by commas, or both. On any such

cord, If the last uon-blank character is a comma, a continuation
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card is to follow, which may be any comment card and which is

scanned following its first blank. Preconditions for statements

which are not the first statement of a section or a contiguous

piece of a section may be given on a comment card with the word

COIJD in columns l-**.

In the proofs of consistency we make use of a path list. All

paths relevant to junction consistency are enumerated in order of

their initial statements, and, within this, in order of the res.ilts

of their branch statements, successively. For each path we give Its

starting statement, the assignments and conditions along the path,

and its final statement. Each junction statement, which must be

numbered, is given by Its statement number in parentheses; for the

initial and terminal statements, which may not be numbered, we give

expressions of the form (£)+i or (l)-j,, which refer to the statement

obtained by counting forward or backward, respectively, £ executable

statements from the statement numbered jL. Assignments are given as

they stand; for a conditional statement, we give the condition which

is satisfied if the particular branch appearing within the path is

taken. This condition appears in parentheses to identify it as a

condition. After the path list, we give the proof of consistency;

in this proof, the value which a variable assumes at the beginning

of any path is denotediby; an underlined lower case' representation.

Thus the initial value along a path of I is 1, of KAPPA is kappa« etc.

The proof of normal progress of an algorithm consists in

verifying, for each section, either that its graph is ordered or

that the given controlled expression is actually a controlled ex

pression according to the definition given earlier.

For the pirrposes of the proofs, we define a^junction structure

to be the sufficient substructure consisting of all junction

statements of the given program, togrther with Initial md tormina!

statements. A junction path is a control path of this struct-re.
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EXAMPLE 1 —Inner Product. The following rout wee sets •>:>

equal to the Inner product of the vectors A and B of dimension m.

In the comments, we use SUM(F(K), K, A, 3) to denote 2L F(k); thus

we have SIJM(F(X), K, A, A-l) = 0 and SUM(F(K), IC, A, 3) -• F(B) +

SUMtF(K), K, A, B-l) for B&A.

CO, GLOBAL If .GT. 0, N .LE. m

REAL AGs), B(&)

CI

1 = 1

3 = 0

CI I, COW S = uUM(A(K)*3(K), K, 1, 1-1), I .01. 0, I .Lh. :;

3 S = S + A(I)*B(I)

1=1 + 1

IF (I .IE. JT) GO TO 3

CI, COIJD S --= 3UMCA(K)*B(K), K, 1, 11)

CO^TINIE

Under the global conditions JT>0 and Njfjn, the single terminal con

dition is that S has been properly calculated as the ?nner product,

There is one junction statement, namely the statement 3, and thus

a junction structure has been completely specified. The semantics

of F0RTPA1T tell us that I and N are integer variables and that

A(l), ..., A(IT), 3(1), ..., B(N) are real variables. Statement 3,

which references A(I) and B(I), is valid only under the conditions

I .GT. 0 and I .LE. m, and these are given by the preconditions at

this statement and by the global conditions.

Proof of Consistency. There are three junction paths: (3)-?,

(3)-l, (3); (3), (3)+l, (3)+2, (3); ond (3), (3)+l, (3)+?, (2)*3.
The path list is es follows:

1. (3)~2$ I - 1; S = 0; (3).
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2. (3)J S = 3 + A(I)*B(I)i I - I + lj (I .Igf K)j.(3).

3. (3)', S = S + A(I)*B(I)-, 1=1+1; (I .GT. N)-, (3)+3.

For path 1, we have by definition S = SUM(A(K)*B(K), K, 1, 0)

= 0; I .GT. 0 because I - 1; and I .La. N because IT .GT.'O, by the

global condition, and 1=1 {and the fact that IT is an integer).

For path. 2, the final condition I .IE. IT follows from the conditional

(I. LEG. N) after I has been modified. We have I = JL+1 ^ ° because

£>0, and. S = £ + A(i)*B(i) = SUM(A(K)*3(K), K, 1, J,-l) + A(i)*B(£)

= SUM(A(K)*B(K), K, 1, D = SUM(A(K)*B(K)f K, 1, 1-1). For path 3?

we have I ~ £+1, £-el>n but i£li* which, since X is an integer, im

plies 1 = n; and, just as in path 2, we end-with S - oiJM(A(7C)*B(lO,

K, 1, jt), which is thus SUM(A(K)*B(K), K, 1, IT).

The global conditions IT..GT. 0 and IT .LE. m involve only IT,

which is not changed by any statement of the computation; they are

therefore truly global. This completes the.proof of consistency.

Proof of Normal Progress a The CO factor program and the first

and third CI sections have ordered graiiis. The second CI section

has the controlled variable I; we verify that it is actually a con

trolled variable by noting that the arsign-uout I •-- I + 1 is ••ho only

statement, of this section for which I is in •'•"e effective r go, a./.

for this statement ?i we have S«(I)> 3(1) whore G» - p/3); -no. that
by removing this stai:nerrt fro:a the gran;-, af the section ""^ '^taiu

a grant: with no directed cycles. We may now a^ply •'""-•n sec.a.iu con

trolled expression theorem, because by removing the 7:d r-"utc r-nt fro.:

the gran": of the program we also obtain an ^oyclia graavh. ah:* s a am

ulet s the. verification.'

For an extra: ;ely slamV a-oar:.::: such as. t'.la ot, ':'•:•• is

a wcV.-hnown. altarnafve e.ethol of •a-if'.c-h'a:, which •:; h-

called "the enumeration method." It c-resists of raao"ug.' a.-;

putation sequences' er-lloltly. Ji thiacas-., the length - -f

:f\ r>-^ '-.
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computation sequence ?.s 3^+3, and. its elements Oe "•":' rr> u r««a

U „ a A — A
A

O- m I ~ 1, b "r 0
2

31
%i r, i r> - Sl'CAG0*3Ck)

fei
(l£i£h)

S3i+1g I = 1+1, s = £ (A(k)*B(k)) (l£i6j»

j-O31-* 31+1
(lii^J-0

srcA(kD3I^S S^^^^tt"
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SXAMPBB 2 — Euclid's AiUpr&tfcffl. The following rout hue uses

Euclid's algorithm to find the greatest common divisor (GCD) of

the positive integers M and N.

.CO, GLOBAL M .GT. 0, N .GT. 0

CI

I = M

J '= N "

CI -(I+J), CORD GCD(M, W) = GCD (I, J),

C 0 .LT. I, I .IE. M, 0 .Iff. J, J .IE. II

1 IF (I - J) 2, If, 3

2 J = J - I

GO TO 1

3 I =• I - J

GO TO 1

CI, COM) I = GCD(M, N) /

h CONTINUE

Under the global conditions M > 0 and IT > 0, the single terminal
i

condition is that I has been properly calculated as the GCD.

There is one junction statement, namely the' statement 1 (?iotice, in

particular, that statements 2 and 3 are not Junction statements),

and thus a junction structure has heen completely specified. It is

assumed that I, J, M, and IT are integer variables. In t3ic. proof we

need certain elementary facts about the GCD function.

LEMJtA. Let GCD(M, IT) be the greatest common divisor of the

positive Integers Mand N — i. o., the greatest intf.'gar I such

that I divides M and I divides i\f. Then:

(a) If a > 0, then GCD (a, a) = a.

(b) If a > 0, b > 0, and b-a > 0, then GCD(a,b) ~ CCD(a.,h-a).

(c) If a > 0, b > 0, and a-b > 0, then GCD(a,b) - uCD(a-b,b).
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PBOCgr. (a) a divides a, and nothing larger than a may divide a.

For (b), we notice that GCD (a, b) divides a and b and. therefore di

vides b~a| likewise GCD (a, b-*a) divides a and b-a and therefore

divides (b-a)+a = b. Thus GCD(a, b) 6 GCD(a, b-a) £ GCD (a, b), and

this means that GCD(a, b) = GCD (a, b-a). The proof of (c) is simi

lar to that of (b).

Proof p/ Consistency. There are four junction -oaths: (I)-2,

(1)-1, (1)5 (1), (2), (2)+l, (l); (1), (3), (3)+l, (1)5 CD, CO.

The path list is as follows:

1. (D-25 I = K; J = IT; (1).

2. (i)j (i .nr. j)1 j = j-:i| dl. •'.!).

3. (1)5 (I .GT. J)5 I = I - J? (1).

If.. (D? (I*J)|r fr).

The first path may be immediately verified. The conditions

0 0LT. I and I .IE'. M in path 2 and the conditions 0 .LT. J and

J .LB. IT in path 3 follow because the respective variables are not

changed within the given paths. The condition J .LlI. II in path 2

follows from J = Jw£ < X (from 0 < I = X) £ g = ITj the condition

1 .123.. M in path 3 follows from I = £-J[ < £ (from 0 < J = Jfi ± n

= Mo The condition 0 .L2T. J in path 2 follows from 0 < j^ (from

I-iMoO^) = J$ the condition 0 .Iff. I in path. 3 fo" lows from 0 <

irJL (**om X~i®^X) = I. The condition GCD(M, IT) ~ GCD (I, J) fol

lows, in path 2, from GCD(M, IT) = GCD (1, J,) = GCD&, J.-I) (by (b)

of the lemma) - GCD (I, J), and in path 3 from GCD (II, IT) ~ CCDQi, J[)

= GCD(1-J,, jp (by (c) of the lemma) == GCD (I, J). T2ie condition I =

GCD (II, IT) in path + follows from GCD(M, IT) - GCD (£, j,) - GCD &., 1)

(from (I=J)) = •£ (by (a) of the lemma) = I. The global conditions

If .GT. 0 and -IT .GT. 0 Involve only h* and II, which are not changed

by any statement of the computation: they ara t'o^efo^o t^u"-

global. This completes the proof of consistency.



- 102 -

We remark that the conditions I .LrJ. M and J .IS. IT at step

1 were not necessary in order to set up a consistent precondition

structure. They will, however, be used to verify that the algo-

r ithm t erminates.

Proor of Normal Progress. The CO factor urogram, and the first

and t/iird CI sections have ordered graphs. The second CI section

has the controlled expression -(I+J")| we verify that it is actually

a controlled expression by noting that the assignments I •• I - J

and J - J --I are the only statements of this section whose affec

tive ranges have non-empty intersection with, "he effective domain

tl, J} of the expression -(I+J), and that, e^ch of these statements

increases the va?-a of -(I+J) 5 and that hy removing these ?tr.tom':ntc

from the graph of the program we obtain a graph with ao directed

cycles. We may now apply the corollary to the second coa-.troiled

expression theorem, because at statement number 1 we have -(I+T)

^0, and removing this statement leaves a graph with no directed

cycles. This completes the verification.

The enumeration m-athod of the preceding example docs not

work in this example. Indeed the*:*e is no simple formula which, rives,

for arbitrary II and •IT, the number of steps this algorithm will taho.

(There is a recurrence relation, of course, which /Ives thla number.)

We note that there orris ts a verification of huclid's a'. aorithm In

W}i th- version given there is much more complex than --..he pre pven
hare. In this connection it must ho remembered, that ?».;. alaorr'tlrm

may bo programmed in different ways for dirhferant comuuta: 3 aa* an

different lan^uaaes, -Uid must he ve^i^ed ^ai-.T-n^h^ "-.~* t'-o '-;-,<*

size of the proof given here is smaller thr.a that of f£l, an' ~ a;

algorithm is much simpler5 also, It is actually f.-«-tor i- sa^o casus,

as vhen calculating the GCD of two adiacont 7ibo.:.iccl n-T'i:-:rs9 It
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would., however3 give r isehtb certain difficulties in practice, the

•most obvious of which is that It wou^d take n, steps to calculate the

\GGD of the numbers n and 1.
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EXAMPLE 3. "*" iteming. The following routine merges the

sorted arrays A and 3, of lengths Mand JT respectively, into a

hew sorted array C of length M+Itf. All arrays are assumed to be

sorted in ascending order. In the comments, we use ASC(P, Q) for ''

the state condition in which the first Q elements of. tm array ?

are sorted in ascending order; thus A3C(P, 1) is always true,

ASC(P, Q+l) - '(ASC(P,Q? tm& P(Q+1) > P(Q)), for Q> 1, and

ASC(P, Q) implies A3C(P, R) for 1£ R < Q. We use HiTOCX, X) to

denote the state condition that there is a one-to-one correspondence

£, such that S (g) ~ S (yj where S belongs to the given state eondl-.

tion and y - f(s), between A(1), ..., A(X), B(l), ..., 13(1"), on

the one hand, and C(l), .-.;, C(X+X), on the other (this is the con-

dition. tli&t the elstents of the array C are the elements of A and B

in some new order)0 We use IKHGECv, X) to denote the state condition

that the first X elements of A and the first X elements of B have

"been merged Into the first X+X elements of Cj thus I^-.GS(X, X) =

(H3RM(X, X) ^d ASC(C, X+X)), .' ' '

.CO, GLOBAL• ASC&, M), A3C(A, lO, M .GT. 0, h .GT. 0

CI

J,-* 1

•J -«hl

K « 0

CI K, COED feU4(I-l, JXL), E=:I+u-2, I .LE6 II,. J 0K. IT,

C &=p-CR.,C\SC(C,'''Kj., C(K) .IEV:]3(J), C(K) .Lul. A(I), I^.GT. 0)
1 K"= K +.1

• HP1 (A(I) .LT. B(J)) GO TO 3

C(X) - 33(J) ; ' •

X --= J + 1

••;'•' IF (J .IE. IT). GO TO 1 • •



:h.u^M:a:uh . ';' -105- ••

.:' ;Cp]fel^M(l-l, J^l^;fei+J-2, I .IE.'.M,- j'i N>1, •
. C;ASd'̂ fc),C(K) .IE. A(I), KVOT. 0 "/ T'

•' ^h^h:''^'-^;l ic +•!.,. / ;;•". ^

:'V-a:'ct0WA(i)--' -'-• ' •'•'•-•'••; • * ••:•'.';
;i|-i l + l - ,i.-

•\-%'--(i .ie.#" m);-6b $o 2
'. GO TO £ •,•••;..'

.. 3 i G(K) = A(I)

f i =i + i
W (I ..L£. M) GO TO 1

C0» PSRM<I-1, J-1), fe-I+J-ifi, I = 24+1, J* .IB.-.-T,

C ASC(C^ K), C(K) .LS. B(J), K .GT. 0

^ ic == K + 1 N

d:00 a B(J)

• • . ,'• . J" '= J + 1 " •;• '

-±P:''(J .IE. Ii) GO TO V

: ci9pQiw-m'Mi-i93:-i)9 i^i+j-a, x = m+i, j = ikl,
C A3C(.C,. K), JERG3(Mf .10

5 COIJTIIuE ••

l&ider.the global conditions M.GT. 0, N .GT. 0, A3CU, Ji), ?nd:
A£C(B, IT) -•* i. e., assuming that the i&rayslA And-. B of positive

length are initially in ascend ins order — tjiere are savoral ter

minal conditions, among which is MI&Gilfrf^ N), which, by a-ir uefiai- "

tion of MEKC&i, implies that the arrays A and B have beer nroperly

nerged into'the array C. Statements 1, 2, and + are Jmictlan

statements (and statement 3 is.not); therefore, we have a J5"action,

structure, it Is assumed that I, J, K, H, and N are integer variables

, and that A(l),'-...., A(H), B(l), ..., B(I'J), C(l), ..., C(M+:;) are

real variables (this assumption depends on the valo.es of h' and II

another proper dimensioning of A,3, and C).
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Proof of Consistency.. The conditions X .GT. 0, IT .GT. 0,

ASC(A, M), and AGC(B, IT) are global because they involve only i:

and IT and the elements of the arrays A and B, end. none of these

are changed by any statement In the program. There are nine

• Junction paths: (l)-3, (D-2, (D-l, (1); (1), (1)+1, (l)+2,

(D+3, (D+S (1)5 (1), (D+l, (D+2, (l)+3, (D++, (?)5 (1),

(1)+1, (3), (3)+l, "(3)+2, (D| (1), (1)+1, (3), (3)+l, (3)+2,

Pf)5 (2>, (2)+l, (2)+2, (2)+3, (2); (2), (?)+!, (,->)+£, (?)+3,

(2)++, (5)5 Cf), (lf)+i, ft.)+2, (+)+3, ft-); and (>+), Cf)+1, (>-f)+2,
ft-)+3> (?). The path list is as follows:

i. (D-3; i = a; j = ij k --- o; (1).

2. (1)5 K .-= K+l; (A (I) oGR. B(J)); C(I;) = B(J); J - J+l;

CJ -lEe N)j (1).

3. (1); K = K+l; (ACI) .(23. B(J))$ C(K) - B(J); J - J+l5

(J .GT. 10$ (2).

If. (D5 K - K+l; (A(I) .IT. B(J)); C(K) = A(I); I 1+1;

(I .IE. ;•[); (l)i

5. (1); K =•: K+l; (A(I) .Iff. D(J)); C(I ) - A(I); I ~. 1+1;

(1 .GT. M); (+).

6. (2); K - K+l: C(K) - &(I); I = I+1. (I wIB# *;). (?).

7. (2); K - K+l; C(K) - A(I); I - 1+1; (I .GT. ?Q; (5).

8. (If); K = K+l; C(K) = B(J); J - .J+l; (J .IS. /); (If).

9. Of); K - K+l; C(K) - B(J); J •-• J+l; (J .GT. h)? (J).

The first path may bo immediately verified, ana, in parti

cular, IC-0, so that the second comment line ho Core statement i.;ybcr

1 is satisfied. The following conditions hold at the bogi^ni r and

end of the same oath because the variables in than are not olr iged

within that path: I .IE. M, paths 2 and 3$ J .IE o IT, path.s 1, .-.„ .1 —
... - •> °
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Proof of Consistency. The conditions K .GT. 0, I-l'.GT. 0,

ASC(A, H), and AGC(B, IT) are global because they involve only K

and. IT and the elements of the arrays A and B, r-.nd none of these

are changed by any statement in the program. There are nine

junction paths; (l)-3, CD-2, (1)-1, (1); (1), (1)+1, (l)+2,

(1>3, (D++, (!);(!), (1)+1, (l)+2, (l)+3, (1)++, (2); (1),

CD+1, (3), (3)+l, (3)+2, (1); (1), (i)+i, (3)? (3)...i, (3)+?,

ff-)} (2), (2)M, (2)+2, (2)+3, (2); (2), (?)+!, (2)+r:7 (?)+3,

(2)++, (?); ff), ff)+l, ff)+2, ff)+3, ff); and ff), ff)-l, ff)+2,

Cf)+3* (?). The path list is as follows:

1. Cl)~3? I = 1; J = 1; K 0; (1).

2. (1); K = K+l; (A (I) .OR. B(J)); C(K) - B(J); J - J+l;

CJ .IE. N); (1).

3. (!);• K = K+l; (ACI) .GE. 3(J)); C(K) == B(J); J -. J+l;

(J .GT. N); (2).

»f. (1); K - K+l; (A(I) ,Iff# B(J)); C(K) - A(I); I - 1+1;
(I .IE. If); (l)i

?. (1); K= K+l; (A(I) .IT. D(J)); C(h) = A(I); I ~. 1+1;

(I .GT. M); ff).

6. (2); K - K+l; C(K) - 1(1); I = I+l; (I .IB. M); (2).

7. (2); K - K+l; C(X) - A(I); I = I+l; (I .GT. /'); (?).

8. ff); K = K+l; C(K) - B(J); J - .J+l; (J .323. ../); (if).

9. ff); K - K+l; C(K) - B(J); J - J+l; (J .GT. n); (?).

The first path raay bo Immediately verified, anu, in parr.i-

cular, TC-0, so that the second, conrrmit line he Core si: tuuant a aabor

1 is satisfied. Tne following conditions hold at the bof.-i-:ni \r and

end. of the same path because the varh bios in than arc .not c'.a u'-ed

within that path: I .IE. H, paths 2 and 3; <X .IE. 17, p* ths + ar.-l -$
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J = N+l, paths 6 and 7$ I = M+l, paths 3 and 9; C(K) .Lh. A(I),

path 2; and C(K) .LB. 3(J), path +. The condition K .GT. 0 In'

paths 2 through 9 follows from the initial condition h = 0 or

K .GT. 0 in each case and the fact that each of these paths con

tains the statement K - K+l. The condition J .1*',. M in paths 2 and

8 and the condition I .IE. M in ^aths + and 6 follow froa -die. cor

responding conditions (J .Hi. NO and I .IE. M) appearing with.in

these paths. The condition J = IT+1 in paths 3 and 9 and tha con

dition I - M+l in paths 5 and 7 follow from the corresponding con

ditions (J .GT. 11 and I .GT. M) appearing in these paths and the

conditions J - j+l, J. i IT and I -- i+l, i £ M respectively. The

condition K=I+J-2 follows from I - i+l, J - J., K =-. k+l --= (i+J,^2)+l

= (i+D^-j-2 - I+J-2 In paths If, *, 6, and 7 -id from I = i, J =

i+l, K =r k+l * (i+i-2)+l = i+Q+l)~2 = I+J-2 in naths 2, 3, % an^

9. The proof of A3C(C, K) in all paths separates into two caes.

If k = 0, t3ien K - k+l - 1 and ACC(C, K) Is always true. Otherwise,

we must derive AGC(C, k+l) from A1>C(C, k). This follov;s from C(k)

.IE. B(i) = C(k+1) (by the statement C(K) - B(J) in Its c:ven po

sition) in paths 2, 3, p>, and 9, and. from C(k) .IT.. A(i) ^ C(k+1)

(by the statement C(K) •-- A(I) in Its £iv<--n position) in p-

6, and 7. The condition C(K) .IE. A(I) in paths »f and 6 fellows

from C(K) - CQc+1) - BQ) .IE. BQ-;-l) (from the global condition

ASC(B, U) with J. £ If) = B(J). The condition C(K) .IE. B(J) in ?-':

2 and 8 follows from C(K) = C(te=l) == A&) .IE. A(i+l) (i'ru ^ the

global condition AuC(A, M) with i £ H) -• A(I). The c uah'.tlon c V)

.IE. A(I) In path 3 follows from C(K) - C(k+1) ••= h(j[) .IE. A(i)

(from the condition (A(I) .05. B(J)) or (A&) * 33Q))) - A(I); the

condition C(K) .151. h(J) in path ? follows from CCO - CQ:+1) ••••• :.(i)

< BQ) (from the condition (A(I) .LI. B(J)) or (A(i) < BQ))} - B(J)

s +, ;,

-*!<«=>
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It ?etmiiis to verify the condition H3RM(3>-1, J~l).'This\ /-h

Will be done for paths 2, 3, 8, &ad 9§ a siiailar argument holdfr a

for-paths **, ?^ 6, and 7,. with A and. B reversed, I and J. reverss§r

ajid MaiioV ft reversed. Weare gi\ren PSKM(i-l, i-D* and, .therefoi-ef '

a one-to-onecorrespondence •£ whose domain iricludes A(l), ...*

A(i*l) and fr(l), ...j BQ-1) and whose range includes' C(I) tlxrough

C($:>. We iaust show HRM<^~i, j,), and to do this we construct a rim

function £r by* sotting %*(£) - £(i) for £ in the domain of £, and

i£r(BQ)) = CQg+l). Thus £' is a one-to-one correspondence whose :.- .

domain is A(1). through AQ-1) and BCD through BQ), and whose

range is C(l) through CQ£+1); it satisfies S (x) == S (^) where £ is .

the -image: of 2, because £ does so and. because S(BQ).) = S(C(k+l).) .

from the statement C(K) = B(J) carried out when K = k+l and J ~Q.

This completes the proof of consistency.

Proof of'Norma3, Progress. The CO factor program and. the. first

and third CI sections have ordered graphs. The second CI section

has the controlled variable K; we verify that it is actually a con

trolled, variable by noting that the various assignments of the form

K = K+l are the only .statements in this section for which K is in

the effective range, and if P is any of those statements we have

S<IC) > S(K) where 3* = P, (S); and that by re:uovinr sill these state-

ments from the graah of the section we obtain a graph, with no di

rected cycles. We rary now'apply the corollary to th.o second, con

trolled expression theorem, because at each stat-aient of our+ur_e-

tion structa.re the given preconditions' imply K £ M+hT, and h'+U in

volves only variables which are not changed la the proa;ran. This

co 'nlotas the v^r*"^ic^tlon.
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