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ALGONTTHM VERIFICAT ION

Ward Douglas Maurer

Introduction  -

Any experienced programmer is keenly aware of the seemingly

: infinite vmriety of errors that can creep into his programs, Many
programmers. dospair of our ever being able to clasoify errors in
‘programs by type. Now, however, it appears that algorit’hm verifi-
cation,== the mathematical proof that a given program has no errors
invit -- is finally within our grasp. It is our purpose here to
discuss the génerai problemf of verifying algorithms, Our methods
will be quite*general'purpose, applying to programs written in-
algebraic languages, business languages,'assembly languages, and
higher;level languages. At the conclusion of this paper, we give,

as examples, verifications of three FORTRAN programs, In a companion
paper {121 , we discuss applications to FCRTRAN, ALGOL, LISP, SNOBOL,
BASIC, HELiAC,-CDC 6400 assembiy language, and IBM 1130 assembly
language, Included in [ 12] are verifications by students of table
searching and sorting algorithms, list manipulation; prime number
calculation, Gauss and Gauss-Seidel methoos, tic-tac~toe and knvgnt'
tour programs, conversion from prefix to infix notation, and appli-
cations such.as amplifier cost minimization and computer dating,

Our' treatment will be rigorously mathematical, beginning w;th
the specification of programs, expressions, sﬁatements,.instructions,
and the like és mathematical objects much 11»& groups or vector sSpoces,
Ouwr fundamental notions are the cartesian product set or "p-set"

for short, and the functf#on on a p-set, or from one o-set te another,



! ) "2"

Using this as a basis, we shall define ulgomthms, we shall define
what 1t means for an algorithnm to be cor;r'ec’c., and we shall then
State and prove a fuﬁdamental verification theorem upon which all
. our later work is baged. This theorem allovs us to translate owr
intuitive notions of why a program uorks into “condition struc-

tures," which are collectlons of assertions =b.ut the v i ves of

’D

-

our p:?bgrz::,ne at any given stage in Lie coi enclon, Frovided Uhrnt
these ctructares satlsfy certuia fundaietal reqzz;?:r'sxr:zrt.-zi‘;n, our
verifilication thoorenm nscerts that our given ;:.J.,f:or'iti':ﬁ I
any of our results have heen Inderendently etudied by otherns,
The fundamental ~théorem on "pa-tial correctiess" of an 2l orithn
is due to Floyd [3];°a complercitary resnlt on tormination of al-
gorithms first appearcd in a paper by Manna Eo]. jleither of these
popers used the idea of a cai*tesian mroduct set os 'bsr.sic tc mo-
gramming, On the other hand, there hsve been a larg- _nwnber of
PaDET S not vrimarily concerned with verification of elrorithus,
in which this concefs‘c ms.‘oeeﬁ'stu.died, BElemcnts of a p-set zZre called
"state vectors" by HeCarthy 13§, "content funetions™ by Hlgot und
L.obinson [2], and sinnly '@fates" in an early pener of the author
[Eli. The "region of influence," or set of variables altered by oa
glven stateuent or instruction, wns first rigorously defined in [21.
The set of varizblcs used by a statement or instruction was Iirst
defined inlﬂ-lli; in this peper we also stressed the faet that = enr-
tesian product of arbitrary sets (of at lcact %wo elamouts), rather
hen of conies of the same domain, is the ngh mrasonable redel
for »rogramming, and also Introduced an exion “(Inter eal ed the
"finite support property" ) under vwhich the number of wvezrioiles In =2

program is allowed toc he infl -‘1te. This zllows ues To incliode every

f

nagex set cvor

square on every input and output tape as part of the

which the cartesian product is taken, and thus allows us tc ine ude
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Input-output in our model, answering a question posec in [13],
To our knowleige, the only work whieh has so far hecn done

in the

1=

on verification using & cartesian nroduct model is contained
doctoral dissertations of King [5] and Goéd ). Both of these
dissertations are concernéd with vrogram verificztion programs,
and both use MeCarthy's term, "state vectors,” In the prosent navper
we extend the concepts of "input region" and "output region” intro-

duced in [11] (renaming them effective domain and effective range,

respectively), which allows us to achieve certain simplifications.

In particular, we shall define a general concept of memory exten~
sion of a function from one p-set to another, with respect to which
the fundamental charscter of assignment statements boccmes clear,
Expressions, terms, factors, and the like are viewed as functions
from a set of staéé vectors into the real numbors, the inte;ers, or
in general, a set determined uniquely by the type of the given ox-
pression, A general combihatorial operation on such f::ctibns, whleh
we call the "star-ertension," allows functions for terms, Tor
example, to be built 1p from the fnetions for the factors con-
tained in the given terms, and is also quite generally anpnlicable
in programming longuages in the construction of complex state wvector
funetlons from sinpler ones in natiral ways, In [12] we delfne se-
~mantic extensipns of BI'y using and extending a nethod first sug-
gasted by ¥nuth (7]. This provides a method of defin’sng the semnn-
tics of a language in terms of its effect on the relevant v-set,
This is done directly, rather than indieectly ns i+ the so-calied
"Vienna mothod" (sce, 2. g., E?]), vhere PL=I prosrams 2rc fetined
as abstract trecs.

Algorithm verification is, of course, subj%ct to aerteln
well=lnowm limitat;ons.;St?ictl svealzing, & program has not been

verified until it has been checlked for +Lhe eff,cﬁs of roun’off
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error, truncation error, arithmetic overflow, and errors arising .
from approximations, In our mathematical model, thils corresnonds

to the fact that the sets over which the cartesian product is talken

-are not the real numbers with real ariftiv-etic operations, but
rather the floating point numbers for a specific computer, with

floating point overctions, Th:is possible for the same FOPTTAN

progran to give correct results on one computer and not on snother;

“thus our semantic specifications and our verifications must often
P

"be with respect to a specific JImplementation of a langucge, and not

meisly with respect to a specific language. A verified nrozram may
fail to work pfbperly due to errors in the compiler or interpreters
this éuggests that compilers and interpretcrs be the first large
programs to be themselves verified, and it is hoped that our nme-
thods will a2d-those seeking to work in this direction, & verified
program may even fail due to hardware errorsj the verification of
hardware 1s beyond the scope of this paper, although it is inter=~

esting that a specification of the perfornance expected of the

‘hardware may be obtained by using our methods, Finally, a lorge
number of well working programs cannot be verified beccuse, stated
simply, they do not always worl: properly; they are subject Lo the

rule of "garbage in, garbage out," and do not, for example, checl:

their input for all possible errors, In such cases i1t crn merely
be pointed out that these possibilities exist; or, altermtively,

Lalvd

1t can uerely be proved that Jf the input 8atisfies cer nin crites’-

of reasonahlencss *tlien the given »rogram is corrct,

Despite these cunsiderations, however, nlrorithm verifieatio:

" can become extremely useful, Verification of a2 »rosran coul” wer:

eagily toke the place of informal documentotion, This rould o llow
extensions to be made to a program without ferrs one nrrely eviends

the verification, There are mony practical situntions in whieh It
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is aifficult or exprensive to check that 2 ;iven corniter nrooman
has worked properlj} such ag in consumer eredit or vote co nting.
Under these conditions, some scrt of verification of nrosriiis is
necessary, and the vé st ecertain verification 1111 be o nileomtier
DN,
The use »f the connuter in the verifileatlon nrocess is 2

subject that 1§ Homd Lo ass.ooie inereasing in%vrtance, nartic lare

ES

ot g (na Its 0T
¢l 0US . 1S s 0

O]

since program verifications are so long =2nd

proved L;at a coi r'tfn prozram hns no errors in It if thore are

-

errors in the proof, We cnphasize, hovever, that verifyin

an al-
goritim should initjally be regarded as a human activity, Jjust as
programming is, Thét isy one writes a program in a language and
theu asks the compﬁter to eompile it before exccubling, and in the
samne way one wri g2s a proof In a verification language 2nd then

asks the computer to check its logic, The construction of proofs

of programs by cormputer is akin to mathenatleal thcorem yroving,
and may He“e by regarded as o seconc strge N thne sunjeet -~
lsomewhat like the construction vy combuter of progroms Llcnselves,
as the outnut of a geieral problen~Solving Mrosraii, o sSart
direction hee boen mede by King [5].

ono;wn verificntion prograus have other
the fact that, in pen-ral, they cannot be cxrected to ooinomrate U
ovir proofs, One of these has to Jdo with the use of nnthe aticol
Tacts In yproving rrograms eorrvect, When writing o ninc roniise,

) TSI

PR g ERON P . - ® R S I T A C e ey
0T cxenmle, she Tirst thiag we norrally Jo s S Tivide Ue corou-

' M., 2 3 PR I S, R T O bt e P g 2.
ein x, This 1dentity 111 De usa? Iin “he wroct thet The Clven sing

routine actually caleculates the =ina of xg a1t will not itoL7
be a2 con ence of any algoritiniec arguments Luvolring the oot len
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an elconent of a convergent seyuisnce mnd Llhwen Toops becls To erlei-
late the noxt elenent, then the fzct thot the sejumnca conv.rses

may he used in proving that the nlgorithn vorlkz properly. This
fact nust, }7,m=(ever, be sunnlied as input to the program veriflica-~
tion ¥rogram, aniecs ,} this is also a mothewwtical theorey nrover.
Recursion, rather surprisingly, is not fundamentel to cur
development of this subject., It is true thet we will soretimes be
reguired to verif‘y a recursive programg but for “he verilicrtion
of a prozram in a lengunge such as FORTRAN, vwhere recursion Is ot
allowed, recursive nethods are not necessary an? ure a»t s herc,
A;B.sb,‘We 8hgll mot be concerned with the formsl stri,tcf; re of the
- mrecdicate calcullis, or with sequential machires or Twring machiinz,
‘ Therefore, the prerequisites for understanding this ‘treatme:-zt or
the subject are nothing more than a knowledge of prograwmiing toch-
niques and a smzll amount of basic set theory, which we shell novw

review, (For the understanding of our program:ing langi-se zermntie

Bl

»-Jn
9

specifications in [15], 1t is necessary to be acguainted with
~and with the elements of context-free languzzes.)
| The notion of a set ‘and of a funection from one set toc amther
are taken as prinitive, If £ 1s any function, X is the domain of f,
‘and Y contains the range of f, we spéak Of the total function
£ XY, ,va X merely contains the domain of f, we speak of the
“partial function f: X~3$Y. If £: X=»Y and X! C X, we write f|X?
for the function g: X' Y defined by g¢x) = £(x) for all x ¢ X
(for which f is defined, if it is partial); this is the prestriction
of £ to X, If f: X=pY and g3 Y~»Z, then the function h: X=»Z
defined by h(x) = g(f(x)) is the composition of £ amd gj here all
these functions may be either total or partial, We write h=f e g
in Jthis case (rather than h = g 6 £y as followed by some authors);
| thus f @ g méans, intuitively, "first apply f, then apply g." '



The carsesian product XX Y of any two sets X ani ¥ 4¢ defined

as the set of all maps £: £1, 2} > XUY such that £(1) € X »nd

£(2) € Y5 1t may be interpreted as the set of all ordered pairs

b

(xy y) with x € X and y € Y. (We may equivelently se §0, 1} or
&:;y_g_, false} in place‘of 11, 2}). The certesian procuct Xlx ...ﬁ-:i:i
of any finite collection of sets Xi is defined ns the set of all
maps f: il, ceey NEP Xlx ...u.‘»(n such thet £(1) & Z{i, 1% 1 8n;
it may be interpreted as the set of 2ll ordered n-tuples (xl,...,x,._)
with x, € X,, 1&14n. Where 2 collection of sets Xy is indexed by
a set I, so that there 1s one set X; for eacnh 1 € I, the set j?I -
1s the set of all x such that x € X; for some 1 & I, and the set
| ‘i\;l; X, 1s the set of all maps f: Iep H— X, such that £(1) € X, for
.all 1 € I3 this may be interpreted as the set of all n-tuples or all
"infinituples" {xj}, wlth x, € Xif--for each 1 € I, dependins on
whether I is finite or infinite, (McCarthy writes ¢(yar, §) ([131,
P. 25) for the walle 0f the variable yar, or the contents of tle
- eell var, vass‘i'gned by the "state vector" g; in our terzﬁinology, we
would write simply §(var).) |
A relation on a set X 1s a subset of X & X, If the relation
is called R, we write xRy if the ordered pair (x, y) is in the
subset, A relation R is reflexive if xRx js always true and irre-~
flexlve if xRx is always false, It is symmetrie if xRy implies yhx
and antigymmetric if xRy and yRx imply % = y. It is trancitive if
XRy and yRz imply ¥Rz, IT is an equivalence relation if it is
reflexive, symmetric, and transitive; a partial ordering if it is
reflexive, antisymmetric, and tr: nns“cjve, and o optriet orderipp 1T

it is irreflexive, antisymmetriec, and transitive, For a atriet
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‘ordering, Ry implies that yRx is false, |

Let X be any set, A partition or a ggcmmg‘itioga’of X is a
collection of disjoint subsets of X whose union is X, Given any
decomposition 3 of X, there 1s an equivalence relation R on X,
under which xR? if and only if x and y belong to the same member
of the decomposgition b. Converskly, given an equivalence rela=’ .
tion Ry the collection of all distinet sets of the form {x € X3
xRy} for some fixed y 1s a decomposition of X, Thus there is a
one-~to~one correspondence between decompositio.nS of X and equlva~
lence relations on X,

Let 2 be any paftial ordering on a set X3 we mé.yvdefine the
corresponding strict ordering Dby x>y if x2 y and it is false
that x = y, Glven a strict ordering » , we may define the corre-
sponding partial ordering d by x2 y if either xDyorx=y .
Thus there is‘ a one-to-one correspondence between partial orderings
“and strict orderings of a set, If 2 is a partial ordering, then its
:lnverse'_(_ g defined by xsy ity ?_x, 1s a partial orderingj if
> 1s a strict ordering, then the strict ordering £ is defined simi-
lai'ly. In practice, if any one of the four orderings &, £, >,
and ¥ 1is defined, we shall consider the other three to be defined
in the obvious way,.

Let > be a strict ordering on & decomposition b of a set X,
Then > extends in the obvious way to a striet ordering of X itself
that i,x) y inX 1£ x €D and y €D , withD, €, D e, and
D >D mﬁ The same construction may be made with a partial
‘ordering, but the result 1s not a partial grderlng.

A set G together with a relation < on G may be called a direce
ted graph. THe::elements of G are called the nodes of the graph and
the elements Xy of G x G are called the links of the graph, If
x and y are nodes, then we say that there is a directed path "

-
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of length n from x to y if there exist nodes'"xo,,... cevy X 9 Xy = Xy

0
X =V with xi_l-) Xy for 1 &1 .‘. n, There is always by definition
e dlrected path of length zero from x to x, A directed poth 8f

- length greater than zero from x to x i1s called a dlrected cycle.

A graph with no directed cycles 1s called acyclic., (By "graph" wve
always mean a directed graph.,) In 'my graph, the relation R definzd
- by Ry if there exists a directed path (of length®:0) from x o ¥
is reflexive and transitive, and, if there are no directed cycles, |
it is also antisyrme‘tric end is therefore a partial ordering, Accor-

dingly, we sometimes refer to an acyclic graph as an ordered gravh.

A node g-of a graph 1s’ initj_.al if ?’-)x does not hold for any
node Z i"tv-is terminal if x = ¥ “oes not hold for any node ¥. in
elemenf x. 0f a set X with a partial orde» relation R (called a
partially ordered set) is mimimel if ¥R x impiies ¥ = x3 it is-
mipimal if x & ¥ inplies x = ¥. A partially ordered set hos a gmallest
element x if ¥2 x for all ¥3 it has a greatest eiement x if xe® ¥

. Tor all ¥. A sinmple orderirg,_ is 2 rarbial ordering for “:fhi()?.’l., civen
any two distintt elements x and y, either x® y or v 3 x. A minimal
element of a set with a simple ordering (called a gimply ordered §§_§)
‘must be its smallest element; a maximal element of such a set nmust
be 1ts greatest 2lememt., Smdllest and greatest elements are always
unique, -

A relation R satisfies the gchain condition (or finite chain
conditiog) if therc are no infinite sequences X1 Fpy Xy ey with

x"lx2, X Rx3, ees o If X is a set, R is a relation on ¥ which saiis

fles the chain condition, and X' is an arbitrary subset of ¥, then

X! must contain a minimal element, Otherwise, we could start with

an arbitrary element X3 since x. is not minimal, there exists x

1 %
with XqRX,5 since X, 1s not mininal, there exvists X, with L_,EJ’EXB, ~nad
we may continue ins e“-.nitely in 11q way, contr-dicting the. chain
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condition, TFor a simple ordering which satisfies the chain con~

dition, this implies that every subset has a smallegt element; 1, o,
? v 4 ?

that the given set 1s a well-ordered set.
Let &= EI V, and let s é‘. Since’S is 4 map whose domain

.43 M, ve may speal of S(x), for x€g M, or of SlM', for M'@ M., If
' & is intérpreted as a collecticn of n~tuplés, we may interpret

- 8(x) as the "x co-ordinate" of S, i. 6., as one of the f objects

which makes up the n-tuple; likewise, we may interpret SlI{‘ as an

m~-tuple for m& n, obtained by picking m of the given n objects,
'épecifically those in certalin fixed givén positions in the n—tu;nlé,

. and combining these into an m~tuple ,

Iet G be an o.rdéred graph and let A and 3 be subsets of G,
We say that A,ﬁ B if for each a € A there exists € Bwith ad b

‘in the strict ordering of G. We say that A B if for each a € A

there exists b & B with a® b in the partial ordering of G.
Let f3 X« Y be any function and let X! be a subset of X,

" We write £(X') for the subset Y' of Y defined vy {v & ¥: ﬂx-e pl
~ with £(x) = y§.

The null set will be demoted by ?.



 P=Sets and P-Functions

Oziz" fundamental model will bé | 153.sed on the cartesian vroduct
of sets (p-set) and the function on a p-set, or from one p=-set to
another (p-function). P~sets and p=functions ﬁrovide a wmified
approacn to prograrming sclence,

Computer memories and sets of variables are examples of index

sets M upon which to build p-sets A. = xe‘4 Vx

Instructions, (exscutable) statements, computers, computa-
tions, programs, algorithms may be interpreted as p-functions on a
p-set (that is, from a p-set to itself),

Messages, expressions, terms, factors, n-ary functions, predi-
catesg may be intarpreted as p~functions from one p~set to another,

DUFINITION. A p=set is any set of the form & = T, Vs Tor
some set M and, for each x € M, a specified set Vye (The V_ need
not all be distinct,)

DEFINITION, A total p~function is a function p: X - Z
where ,X and ,3 are p-sets, & partisl p-function is & functn.on
p: .3' -—);&', where A Cll, and ,8 and ,& are p=-sets, If X/
# -22, we speak of a (total or partlal) p-uunction from £ to 1

X
r 8 1 82 (= 4 )y We speak of a (total or partial) p-functlon
on 4. |

If M= ¢ (the null sét), ;CETILI v, has By definition one ele-
ment, which we denote by . If M had exactly one element X, with
V’x = X, then ;’5_{ Vx\_may ke identified with X3 any set X may be re-
garded as a p=-set in this sense, The most cormonly occurring p-sets
of this kind are called types. The type integer, for example, is
here identified with the set of all integers, for an ideal algo-
rithm, or the set of all integers which may actually occur (in

single precision) in a given conpmer, for an actual eho thm



" In an analogousvway, we may define the typés real and Boolean (or
LOGICAL);ain PL-I, a type 1s uniquely identified by a perticular
base, scale, mode, and precision, If M contains several elerments
x; for al; of %hich in = X for the same set X, then we also refer
to X as a type, and each X, 1s called a yariable, specifically a
variable of type X, or an X-variable, Thus a given set M may in-
clude integer variables, real variables, and so on,

If any sef. vV, = ¢, then 12;4 V, = ¢, and there are no
p-functions from it or to it whatsoever, If any Vx contains exact-
ly one elecment, it may he eliminated from discussionj specifically,
1f M' = 3x € M: V. bhas exactly one clement} and M' = M -~ M', then
there is a natural one~to-one correspondence between ;gh'v and
xeM? V.o We shall assume from now on that each V. contains at least
two elements, 1f V, contains exactly two elements, 1. e., 1f Ve =
{0, 1}, fon, off?, §true, falset, or the like, then x is called a
binary element of M, In a computer memory M, all the clements are
binary elements; they are such fpings as cores in core menory,

- flip-flops or "positions" in registers, and bit positions on tape
or disk, In order to represent integer variables or real variables
in such a mémory, one must use a trick which may be stated in gen-
‘eral terms as follows: if & = ;‘2;1 V_ and ﬁ is a decompositiovn of
ily then there 1s a natural one-to-one correspondence “etween 2 and
AN x’\:D V. ), and, for each D ¢ D , TED V, may be taken as the type
of D, Thus ve decompose our set of binary elements into words and
registerss the type of each word is the set of bit patterns that
may aphear in it,

Iet p be a total or partial p-function from 2i QEA'VX to
22 = xe‘B x+ Let A'D A and let A'U BD B'D B, Ve assign %o
each x € A' an arbwtrary set V g if such a get has not alrveady

been ass signed bec ause X € A, We now dellne a p-function, p', from
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_8' = JEA' v, to ,8' = #QB, V, by p*(S) = 8*, where S'(x) = 5(x)
for x ¢ B ‘(this is well-defined bececuse A% U B 2 B!), and, if S"
= p(SJA), then S'(x) = S"(x) for x € B, We refer to p' as a nemory
extension of p; 1t is total or partlal according as p is total or
partial, In what folléws, we shall use the same letter for both
functions when there can be no confusion as to meanings this re-~
flects the fact that when we add new elements to a memory, the
p-fx,zrlétions on that memory retain their character, In particular,
we have the following special cases:

(a) Bt = B, This allows us to define p~fimetions for expres-
sions, Ahy set X may be treated as a p-set, as mentioned ahovej;
if £: XY is an arbitrary function, it may be treated as a
p-function from the p-set X to the p~set Y. It may then be exten-
ded to a function pt § ¥, vhere 8 = TT v, for any set U vhich
contains an élement x with V = X, We shall refer to this p-function
as {f(x)}, it elearly depends on the choice of x é M, If X = Xlx ces
¥ X,9 S0 that the clements of X are n-tuples and f: X—Y is a
funétion of n arguments, then f may be extended to a function p:
8 > ¥, vhere { = ;"JM
Xqy eeey Xy With in =X, 14 1¢n, We shall refer to this p-func-

Vx for a set M which contains eleaments

tion as {f(xl, orey xn)}; 1t clearly depends on the choices of the
%43y which need not be all distinet, These p~functions are total or

partial according as £ is total or partial, If Y = integer, a
| function D 2 = Y will be called an integer p-~functions in an ana-
logous way, we may define real p-functions, Boolean p-functions,
and so on, The set Y may be called the type of the p-~function,

(b) At = Bt, This allows us to dei‘ine.czsv_l.gmnentd. Either -

the function £ or the function {i‘(x)} of the previous example may'

be extended, as above, to a p-~function q: ,&—)X g Where l e;r V
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for any set M containing an element x with V = X and an element
y wvith V. = Y, We shall refer to this fxmctlon s the assignment

<
{yé»f(xig; 1t clearly depends on the choice of x and vy, In parti-
cular, if X = Y, we may have f(x) = x, giving rise to thé assign-
nent {yé-x}. Or we may have x = y, which‘prbduces assignments of
the form §xe £(x)%; in particular, if ¢ &€ X and £(x) =:¢ is a con~
stant function, then yxec? is the correspond ing constant assignment,
In a similar way, wc nay define the assignment Sy%-f(xl, vooy xn5§;
it, too, clearly depends on the choice, in !, of the elements X
coey X and ye
Arother type of extension wvhich produces a p-function is as

follows, Let p;y 1£14n, be total or partial p-functions from
p-sets §, to sets xi, and Jet £3 Xy K ... ¥ K Y. Tet § =

v, 1et M = L{L 14, and, for this M, let ,8 T Ve The funce
tion g A- Y, dpf?ned by g(s) = £(p (o{ILEL), coey pn(S rIn)') will

T
XEly X
be called a star-extension f*(pl, ees Py ) o% £. n =], the star-extension

f*(pl) reduces to the ordinary comp081tion Py © f. Common examples of
star-extended functlons include:

{2) B: narv and unary operations., If f(a,b) = a+b may be in-

terpreted as addition on Y, then f*(e,e'), for any two p-functions
e and e! from & to Y, 1s another such function, which mey be
denoted by e+e!., If Y = Integer, then e+e! is an integor p-~function
derived from the integer p~functions e and e', The same construc-
tion will produce e-e!, e*e!, etc., as well as =e; and all of those
may be real p~functions, complex p~functioné, or, in general,
p~finetions of any type on which onerations are def ined, The pro-
cess of defining operations on ;25 Vx so as to nmake it look like'
integer or_ggg;, wvhere D is a word in a computer, each x & D is a
bit in that word, and each V, = {0, 13, leads to certain inaccura-

cles which are identified and analyzed as roundoff error, truncation
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grrar, and the like, It is not necessary, hovever, to have an
"exact" nodel of arithmetic operations in order to define
star-extensionss in an actual compnter, /e+e', Tor example, is the
star-extension of the actual addition funectinn defined on ;gD Vx’
token as the set real, vhere e and e' are real p~finctions (i. e.,
p-Tunctions of type ;{\I{) Vx).

(b) Relations. Let Doolean = {t-gue, falset. A relation on

a set ¥ 1s a subset R of ¥ x Yj if (yl, y2) is in this subset,

for yl, y2 X 7y werwrite yl R y2. There ig a :19.1;1;1':11 correspon-
dence hetween subsets of any set and maps from that sot into
‘Boolean; the image of an element in the set 1s true if ~nad only

if it is in the given subset, Thusy if R 1s a relation on Y and

‘e and e' are two p-functions of type ¥, then 'R*(e,e') is a Boolcan
p-function, which may be denoted by {eRe"}. Tnarning the arcument
around, {eRe '2- is a subset of & y Where 6 and e'! are p-functinns
on &. The clements of & may be ca..'Lied states, sinece they "de~
scribe the system" by assigning a value to each va.riéble; subsets
of l, or, alternatively, Boolean p-functions on /8, nay then be
called .§__1;_z_1_1:£ conditions, If x is any Boolean variable, the menory
eitension of the given correspondence behmen Vy and Boolean is 2
state condition Ixts these, together with the constant state con-
ditions firue} and §false? and the various {eRe'} as mentioned
above, constitute the fundamental state conditions of any p-set X.
These may be further combined by means of Boolean oncrations, which
are star-extensions of the well=knowm binary opcrations on the set
Boolean, such as and.and or., Thus if € and C! are any two stote
conditions, so are C and C' and C gr (', these being defined as
and*(C, C') and or*(C, C') respectively. Interpreting these as sub-
sets of 4 , we have C and C' = C A C! and C or ct=cuocr, simila',{»

constructions may be applied to the unary oreration not on the set
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Boolean (in particular, not C = .8 = C) an? to 2nd and or treated

as n-ary functions on Boolean,

Actual state conditions occurring in prograns may he rmuch
more complex than the ones mentioned above, For oxample, sunpoge
that we have a routine to take the variables A(1l), ..., A(T) ~nd
sbrt them, keeping the original values of the A(i) and putting
the new values in B(1), ..., B(N), The condition that the B(i) are
sorted is then Dl{B(i)< B(1+1)¢. The condition that the B(i) are
"the same" ag the A(i) is a bit harder to state. Let X = §1,...,u%,
and let G be the set of all one~to-one maps from X onto X3 then
the condition above is U (fﬂﬁA(i)*B(f(i))}). As an even more
complex example, let A bg an arbitrary data structiwre, such as,
for example, a pafticular S~expression in the LISP language., Fol-
lowing d'Imperio, we use the term "data structure" fof matheatical
expréssions -=- such as S-expressions in LINP == vhich are indepen-
dent of any particular conputer, and "storage structire" for a
particular method of repregenting a given data structure in a par-
ticular computer memory., In general, a data structure may he reprc-
sented in numerous,ways as a storage structure, and the fact that a
particular memory c&ntains a storage structure which represents a

given data structure is a state condition on tha »t menory,., Prograns
which operate on data structures will always heve state conditions
of tris kind associated with them,

In dendting the Intersection of two state eonditions, t?e
comna may be used in place of the word a 3 thus the condition
31=3,3=4% is the condition §1=3 and j=4¥. In grneral, we spasi of
a "set of conditions" Cl’ seey Cn, wvhen we mean their intersectiong
1f the Intersection C-of a-set of conditions "incTudeq" a2 particular

£

Cl, then, as subsets of,&, Ci:) C (not Cic cy), If 2 is a p~set and

L c §'- 3, then 4" may be called a gubcondition of 4. 1f &' is
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thought of as a B -expression on X and ps 48 —9,8 then the B-expres-
sion po §' will be denoted by p($'); this is also a subset of ,X,
namely p(3') = s ¢ d:3s1¢ ¥, pist) = st

(e) Arrays. An array x[alzbl, sesy an:brl], where the a, are
lower bounds and the bi are upper bounds, consists of a map x: 4
X1 % ees x X —> M, where X, = iai, By,79 *ve bi"; and M unerlies
a p-set A = :?II-I V_. The star-extension a*(e,y «v0y ), vhere each
ié e, (S) < b,
is then a p=~function whose values are elements xéM of thls array. In gen-

o5 1s a p~function whose values lie in the range a

3
eral, p-fb:actions of type M vill be called azddress funct*ons. It “

T 1s an arbitrary type =nd MIC M is the set of all elements of If
having type T, then a p-function of type MI‘ is a I=address function,
For example, if a is a redl array, and T = real, then a: X—)Mr may
be star-extended to the real address function a*(e), Address func-
tions allow us to define more general assignments than those dis-~
cussed _earlier; if 3 is a T-address function and e 1s a p-Tunction
of type T, we may define the ass.ignment %g(—g} as a function p:
2;-—),8, where p(S) = S' for S'(z) = S(z) vhenever z £ x = s(S8) and
St(x) = e(s), Bach assignment {ye¢e¢ as discussed earlier is an ns-~
signment §see2 for the constant T-addross function s(S) £ y3 the
more general type of assignment allows us to ‘assign values to sub~
scripted variables where the subsecript must itself be calculated,

4 generallzed version of the star-extension allows us to treat
functions with side-effects, Let Py 14 1£n, be total or partial
p~functions from p-sets L to sets Xi’ and suppose that each p
has a "side effect” pi which may he an arbitrary p-finction on
an arbitrary pe-set 8,. 1ét ¢8 E V “let- .8' -.Iq xr-let
M bé-thé union of all the. M arxi all the M}, and, for this M, let

1

2 l‘;{ Vx (It is assumed that the Xi are separate and disJoint

from both the M; and the M],) Let g: 8 <3 ¥ be defined by g(g) =
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f(pl(Sl(Ml), coey (6, [M )), vhere S8y =8 and 8, 4 = p, (5),
1£1<n, Let g': ,2 -> ,& be defined by g!(S) = pn(Sn), here the
sequence Sqy sesy 5 1s defined above., Then the pair (g, g') =
£2((Pys PI)y oeey (p» p!)) is the dynamic star-extenslon of the
pairs (pi, pi). If £ also has an assoeintrd side-effect £', we
define g!(s) = pr (5,))y and (g, g*) = (£, f')*((pl, Di), ceey
(pps pn)) is a still nore general form of d:memic extension, If
the slde effect functions pi and £ are the identity, the dynamie
star-eytcn sion reduces to the ordinary star-extension;y the more
general formulation allows us to treat such expressions as {i+j}
in ALGOL, for example, where i and j may both be references to
Aprocédures (i, e.y subroutines) with no arguments, possibly using
and/or setting the same data,

Both kinds of star-extension may be used to define the effec’
of ¢alling a function or a subroutine in FONTRAN or ueing a’pro~
cedure in ALGOL when the 9ctual parameters are tnken to be goneral
expressions, If f(x y eeey X ) 1s defined for x; of type T,, then
the functlon denoted in programming languosges by f(e,, ceey en),
where e, has a p<function of type T,y is actually f*(e,, cees 1)
This may be taken in either the static or dynamic sense, which
allows any of the ey to have side effects, The way in which a pa-
rameter 1s called detecrmines the type T, for that parameter, If T,
= real, Integer, or the like, we have: "eall by value" as in ALCOL
irf T = MU for U = real, integer, or the like, we have "call hy
Mddress" as in FORTRAN, Calling by name in ALGOL was originally
 defined as a function whieh transformed one ALGOL nrosram into
ancther so as to eliminate the ealling statorentsy buty, sing Jen-
senfs device, we can interpret this type of parameter usage ns ahove

by identifying the elements of Ti with p=-functions of tye I, Tor
U = real, integer, or the like. '
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Let P be a finite set of statements F, which make up a
program, From our discussion of assigmments, which are functions
from a p=set JL to itself, one might expect that, in general, each
F, would be of this form, But there is more to the story than that,
because each statement in a program not only performs some action —
indicated by a p-function -~ but it also indicates which statement,
if any, is to be performed next, This depends, in general, on the
values of the program variables, i, e., on the state S eig!, and
it 1s thus a function from Al into P itself, or a p-function of
type P,

DEFINITION, A program on a p~set jL ls a finite set P of
statements Fy,= (Pi’ Ni), where P1 is a total or partial p-function
on & ahd‘Ni is a total or partial function from & into P. The
funetion P; 1s called the program function of Fi’ and Ni is called

- the next-statement functiog of Fi’
A program 1s thus a finite set of funection pairs; but it is
‘also, in another‘sense, a single p-funetion, or, more precisely, it
1s 8o in two different and related senses,

DEFINITION, Let P be a program on & = ;ch V., let M =
MV {)\}, and let V) = Pj the set X = gw V_ may thus be identi-
fied with jLJt P, Then the execution function of P 1z then defined
to be the function f: TH>Y7 defined by £(S, Fi) = (Pi(S), Ni(S)),

~where F, = (P17 Ni). - ’

The motivation for this definition is not too difficult to
discern., Suppose that we are given an element 8 3 and a parti-
cular 'sta‘tement'l'-‘i- to be the value of \. Then, by executing this
statement, we get a new element of & 9 O a new configuration of

- the variables of the program; and we also get a new statement Fi,



- namely the_statement glven by the next-statement function Ni ap=-
plled to S. Thus, starting with an element of .8 X P, we obtain in
a natural way ahother element of & X P. This leads us to a
p-function on this expanded p-set, which will be_a partial function
if any of the P1 or the Ni are partial functions, We shall denote
the execution function of a program P by P itselfj this will gene-
rally cause no confusion, because_ in one sense P is a get and in
Atha other sense 1t is a function,

DEFINITION, Let P be a program on x. and let Fl be an arbi-

trary statement of P, The: wjg_t_;g_ of P with respect to Fl is
defined to be the p-function g: j 3 -73 as follows. Let S & & , let
0 = (S, F;), and set T,

defined, where P is here taken to be the corresponding execution

= P(Ti_l) for as long as this sequence is

function as defined above, If the sequence T N terminates because

some T, = (S FJ) for FJ = (Pj’ Nj) such that N (S) is not defined,
wé set g(S) =2, (s'y. If 1t terminates Beeauss PJ(S) 1s not defined,
or if 1t does not terminate at all, then g(S) 1s undefined. The
sequence Ti’ for as long as it is defined,‘ starting with any
(s, Fl).’ 1s the gomputation gsequence of S with respect to Fl. |
The computation of a program is the p-function obtained by
| viewing it, in a sense, as a single step., That is, a configuratién-
S 64 of the Variabies of the program is given; the program is then
run in the usual way, that is, its execution function is performed
over and over until the program exits, When this happens, we have
a new configurafion of the variables of the program, and the cor-
respondencé between the 0ld S and the new leads b0 a p-function on
3. Exiting from a program 1is defined by inability to find a next
statement; in barticular,‘ it is perfectly permissible for N, to be

i
a partial function in the degenerate sense that it is left completely
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undefined, In this case, F, = (Pi’ Ni) is an exit statement of
the program (and the valuGSAOf.Pi are immaterial), It 1s not ne=-
ecessary, however, for an actual program to have any exit statements,

so long as 1t has conditional exit statements F o= (Pi’ Ni) where
Ny is a general partial function, If all the functions Ni are total,
then it 1s Impossible to define a computation of the program,

We emphasiZe that any stafement in a program which is not an
exit statement may be taken as F1 in the.above definition, The
statements in'a program form an ordinary unordered set., When we
use the computation of a program P with respect to a statement Fl,
we shall generally denote it by P!, There is a more restricted de-
finition of a program which suffices for many purposes, although
it also has certain drawbacks, _

DEFINITION, An ordered program on a p-set ‘L 1s a finite
sequence P of gtatements F1 = (Pi’ N ), 14i%n, where P; is a
total or partial p-function on IL and N, is a total or partial
funetion from Jl into P, The unordered program Q o of P is the set
F} = (Pi’ Ni)’ for the P, as above, where N! = N, and, for 1< n,
we have Ni(s) = N&(S) whenever Ni(S) is defined and N:,:(S) = Fi+1
otherwlse, The execution function of P is the execution function
of Q3 the computation of P is the computation of Q@ with respect

to Fl. Other computations of P are those of Q.

An ordered program thus has a computation, without any qua-
lifying phrase' 1t has a first statement and a last statement, and,
in particular, it can have only one last statement, Most of the
statements in an ordered piogram may be specified by simply giving
a function Pi and leaving’Ni completely undefined,lsince in an
ordered program the "next statement" is by default the next in

order,
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In an unordered program we may easily distinguish gonditional
and unconditionel statementg., An unconditional statement F’i iz one

for which Ni is a constant function, This includes ordinary as-
signment statements and subroutine or procedure calls as well as
unconditional transi‘ers;‘ it also includes conditional assignments
such as (1f A = B then set C = D), A true conditional statement is
one for which N, has more than one value. A transfer is a statement
Fi for which Py is the identity function; most conditional statements
in practice are ¢onditional transfers, A brief digression about
~econditional quantities in programs may be in order at fhis point,

- If f: A-pB and g: BPC are functions, we may always speak of the com-
position feg = h: A=PC, When B is the set {tiu_g, falset, a special
situation arises, because the formal definition of the cartésian
product C X C is the set 'of maps from §0, 1} into C, An element of

C X C is normally thought of as an ordered pair (e, c'), but, as

the above discussion shows, it can serve as the function g in the
above composition equation, Thus, identifying §0. 1} with {true ;£alsek
in the obvious way, one can always speak of the composition of the
function f above yith the ordered palxf (ql, q2)’ where 4y 9o éR
for any set Q, If £ 1s a Boolean p-function, the result is a

' p-function of type Q. This construction may be used to obtain all
the conditional quantities that are found in programs. If Q = P,

we have a conditional transfer f € (Fi’ FJ), or if f then go to Fi
else go to Fy; if Q = peal or integer, we have the real or integer
p-function of a conditional expression, such as if £ then 5 else 7
(which is £ @ (5, 7)); finally, if q; and g, are p-functions on $,
we get a condltional assignment or the like,
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There is a 6ertéin analogy between a progfam in this sense
and a finite automaton as defined by several authors, which is |
a finite set of states with an initial state, a collectlon of
final stateg, and a method of getting from one state to the next,
Therevis a difference, however, between the two.concepts, because
the method of proceeding from one state of an automaton to the next
is despendent upon an input from outside the automaton, and the se=-
quence of these inputs is taken to be infinite, In contrast, the
method'of proceeding from one statement of a program to the next is
dependent upon the current element S &€ JL and in all practical
. cases Ag is large but finite. It is to be emphasized that the states
of an automaton-are analogous to the statementg of a progrém; pro=-
grams also have states, which are elements S & A g but these do not
figure in the analogy,

To the tyﬁes real, infegeg, and the like, we can now add the
type label, which is either the set of statements P itself or a |
separate set L together with a label mapping £: L~>P. Variable names
appearing in ASSIGN statements in FORTRAN are of this type, and the
: functibn‘Ni for an assigned GO TO X statement has the forn Ni(s) =
8 (K). Switches in ALGOL and computed GO TO statements in FORTTAN
cprrespond to mappings f: X~ P, where X = {l, cesy n}; if ¢ is a
p~function whose values lie in'this range, then f*(g), or ee f,
1s the fimetion N, for a go to statement which makes reference to
a swltch, By anslogy with the composition of a Boolean p-function
and. an ordered péir discussed earlier, we may vwrite this composition

as e e Cxl, esey X ), where each x_ is an element of P or, by ox-

, i
- tension, of L, so that (xl, evey X,) 1s the switch itself,
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Complet e Programs

e LI

ON. A program 1s complete if 1t has one statement

X = (PX’ 'NX)’ where PXV is the identity and NX is nowhere defined,
- and for every other statement F, = (Pi’ Ni)’ N, is g total finction,
DEFINITION, Iet P be any program, The completion of P is the
program obtained by adding to P a statement X = (PX, NX), where P
is the identity and NX is novhere defined, and redefining each of
the other statoments Fi = «(Pi’ Ni) of P to be (Pi’ N:;'), where I‘.’i(s)
= W, (8) vhenever X, (5) 1s defined oand m (8) = X whenever I, (5) is
- undefined, '
Clearly the completion of a program is corplete,
THEOREM., Let P be a program, let Fy be n stotement of P, ani
let Q be the completion of P, Then the computatidn of @ with respect
to Fl is the same as the computation of P with resvect to Fl. |
PROOF, Let TO’ eo ey ‘Tm be an arbitrary comnutation seqirnce
of P, whére B, = (5, F;). Set'T, = (8, F:{), vhere FY = (B, N‘i).
-Since W} (S,) is always defined for 0£1<m, the compitation sequence

- of Q beginning with T, includes T , ..., T, At this point, the

0 , |
computation sequence of P ends, and P'(S) = P'n'l(S'm), while the con~

putation sequenc'e.of Q. continues to Tm+1 = (P%(Sm), X). Dinece I,\ is
novhere defined, this computation sequence stops here, and Q¥(3) =
PX(P'rjl(sm)') = P(5 ) since P is the identity; i, e., Q@) = Pr(s),
- Sinilarly, if -TO beging an infinite computztion sequence of P, then,
since ail the ¥alues of the next-statement 3?1uictioz1s ir this se~
quencé are cefined, ‘che séquence wi ll also he a corpitation seguence
for Q. Hence in 211 cases the computation sequences of P an’ & are
the same, starting from (S, Fl), and hence the computations of P and
Q with respect ;to Fl are the same, This conpletes the proof.

- This theorem may. be used to sinplify the mrocfs of thecreus
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» comnlete program, a comnatation

”vTo,'..., T wblcb oe"Lns with T, = {3, F ) i1 end,y if 1t ends ab

Il, with T = (3¢ E K), and P'(o) = 8, where P! Ig the cmut tion
of P wzth vespect to Fv,xIn an incomplete yrogsram, it is necessar:;
B e . “ e ? Y

’to add one extra steprat the end, It is possible in many theorens

. about programs to assume that they are complete, because any progran

wh3ch 1s»ho£ complete may.be replaced by 1ts completion with no

change in its corputation,
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Languages

Let § be a finite character set, let ¥* he the set ol all

- strings of characters in Z, and let L & §* be the set of legnl
strings in some programming language, That is, each string in L
represents a program, In line with our previous discu-~si on, we
should like to associate a set My a set V for each x ¢ 4, and

‘a p=function on .3 = ;;g{ Vx wilth each such string, This may be
done along lines suggested by Knuth E1]. Knuth considers the
productions of a language and proposes the associatlon of granti-
ties of varlcus kinds with each symbol in the language. The ter-
minal symbols are directly associated with quantities, which nay
be integers, sets, or various other objects; the associations with
.non-terminal symbols are defined in terms of the productions hy
vwhich these are built up, We have seon how this may be done for

- a programming lang.age by means of star-extensions. Sbecifieally,
if tl and t2 are térms-in an expression e, and the string e is the
concatenation of the three strings tl, '+1, and T,y Then the
p~-function e! of e is the star-extension f*(t! 1 té), where f(a, b)
= a+b for integers or real numbers a and b, and ti and t} are the
respective p~func§ions of tl and ta.

Some of the statements in a language, such as assismaent
‘statements, may be associated with p~functions in this way. Ano-
ther very common way to define a statement in a 1anguage is to spe-
cify how it could be eliminated from its program by changing the
program to an equivalent one, Specifically, we define a mepping
from L to another language L', which has fewer nroductiong than L.
The length of a result string in L' may be much greater than thnt
. of the string in L which produced it; but, in a comvuter, this

A}
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may not matter, because it is not necnssqry for the computer to
contain the entire rcsult‘étring; all we need is an algorithm by
which the characters of the result string may be successively
output, and often this is easily derivable from the orliginal string
in L.'The macré statements in PL~I brovide a good example of this
type of mapping, as do the programmer-defined statement types of
various exténdible languages,

Lhny well-known statements in programming languages are
suscéptible to both of these types of treatment., As we heve seen,
one of.thesé.is the procedure in ALGOL with naraneters called by
name., In general, any procedure call statement may be réplaced,
within a program, by the entire-procedure, with parameters sub-
stituted according to various rules dependent on the type of calls
this serves to eliminate proccdure call statements, Procedure calls
Inslde a statement are a bit trickier; one must decompose the state-
ment into parts., For example, z:=afb + f(c,d) + e~f, where f(x,y)
is defined by & complex program, would have to be replaced by

| something like z:=a/b followed by the statements of the progranm
suitably modified to-produce a value t for f(c,d), and then fol-
lowed by z3:=z+t+e-f, If we do decide to associate a p-function
wlth a procedure call, this mey be done in two ways. We may use .
the computation of the functilon being called, which is a p-function
on a set L;. gM’VX" and, by ldentifying the-parameters and the
value of the funetion as elements of M, we obtain a p~function of
type equal to thé type of the value; the combutation of the'func-
tion then serves as the side effect, Or we ¢an build a n-function
which effectively saves a return address, and consider 211 of our
statebmonts as memory eﬂensions to a set 2= x“ZM Vx for a2 single
global set M,vwhich includes the variables of the various nrocedures

or subroutines gs well as those of the main program,
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another statement type which may be treated in both of the
above ways is the iteration statement, If A, By and C are constants,
the FORTRAN statement DO n y=A, B, C followed by a group of state-
ments G, or the ALGOL statement for y:=A step C until B do G where
G may possibly be a compaund staterent or a block, may be repJ:aced,
within its program, by a number of iterations of Gy in each of whiech
any occurrences of the variable ¥ have been replaced by expressions
~of the form A+kC. If any cf A, B, or C is allowed to bo variable,
this will not worlk, However, in all cases we mcy replace iteration
statements in programs by Initialization, incrementation, znd con-
ditional transfer statements, In FORTRAN this is done by replacing
DO n y=A, By C by v=A and, if the following statement is labelled L
(where Xk

is added to the program if that statement is unlabelled),
inserting y=y+C (y=y+l if C is missing) and IF (v.IE,B) GO TC k im-
mediately following statement 23 this process must be done in order |
from innermost loops to outermost loops ending at the same statement,
In ALGOL this is done by replacing for w:=L1,I2,...,In do g by a
Series of statements dorresponding to the elements Li of the for-list
as follows, where g has been coded as a procedure within the current
block and the labels F and G are chosen dynamically as new symbols
not currently appearing in the given block ]
TYPE OF RESULTING

FOR=-LIST ELSMINT ALGOL STATEMENTS

e | Yi=e; £3
s Fs if (Y-z.Xsign(¥)>0 then

| Zo to Gy g3 y:=y+y; go to Fj; G:
R while 9.- F: vi=pj If =79 then zo to G; z;

go to F3 Gs

X step y until z v



ipgiLt

These ianguage transformations for iteration statements,
unlike those discussed earlier, never materially increase the
size of the program involved, For this reason, when we aré veri=-
fying a program or defining the semantics of a programing language,

we shall always assume that this particular transformation has

already been carried out, so that, in the resulting program, there
are no explicit iteration statements whatsoever,

We remark that every programming language has a "universal"
p-function pLé A >4 y Where A= ;EM Vyy as follovs, The set i
is the union of two disjoint subsets A and 3, The set A is the set
of all possible variable names which may appear in programs written
in the given'language; 1f x € A, then Vx is thevset of all poscitle
values tHat such a variable can have, The set B corresponds to the
- natural numbers, and, for each n € B, V, 1s the character set of
»the'givén language. Given S € &, ‘it is assumed that thg charactei's S(1)y eevy
S(n), for 1€B; ..., n€B, for some n, specify a program in the
'_given language, It 1s also assumed that the language contains an
EID statement orkits equivélent, so that by scanning the characters
Sfi); 5(2)y ..e, in the forward direction for a given state S, the
value of n above_may he determined (provided that S actually spre-
cifies a legal progrem)., In this case S also specifies a state of
the variables of the.program upon input, and p(8) will specify their
state upon output, The resulting function is partial in a rather
extreme sense, since only if a legal program is specified in the
set B is the function pL defined at all, This example may be exten—‘
ded to cover the case in which the characters of the source nrogran
are not contained in memory but are produced as~£he result of an
algorithm acting upon the characters of a program in a more complex

language, as discussed earlier,



Correctness

Let P be a program on ‘.and let P! be the computation of P
with respect to Fl & P. If X is either an ~lcwent or a subset of 3
and Y is cither an element or 2 subset of P, then we may idontify
a corresponding subset (X, ¥Y) of ¥ = ;P If Y = P, we abbre=-
viate (X, ¥) by X3 thus if " (o x we may =1so write $' € &.

(This is also true by memory extension, if }' is interpreted as a
Boolean p-funcilzlion onf.) If X = £, we have the conditions {)\::Fi}
for various Fi é6r, and{h:_Q} for various subsets Q € P. The specicl
condition (s, Fi)' 63: N;(8) is not defined} will e denoted by
fexit}; it is the condition that P has terminated.

We are now in nosition to ask the gquestions: What do we mean
vhen we say that P "works .properly"? One thing, of course, that ve
always mean 1s that it terminates -~ that is, it does not go into
an endless loof) or exccute an illegal instruction, (This is true
ie'v.en in continuously operating computers, which never actually s’top;
the overall program of the computer may not terminate, but it is not
this progra;m which we would want to verify, but rather the indivi-
dual, terminating com;ﬂutations which it performs,) It 1s also neces-
8ary, ho':rew/;ez", fox'.'; P.to "compute the right answers," a concept whose
mathematical formulstion 1s not at all obvious. Suppose first that
the. program P is supposed to compute a function f of n arguments,
regarded as a function from X R oo ® X Into ¥, This Implies that
" we have chosen certain special variables Xyy ooy x, €Hand .y €1,
where 8 = X v, such that Ve, = Xy) 181€n, and V= ¥, If the
asslgnment {y(-f(xl,...,'xn)} for these choices of y and the Xi’ or
the memory extension of this assignment to 3, were actually “the com=-
, putation of P with re§pec’c to some given starting statement Fl € P,

then P would certainly compute f properly, This, however, is too
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unrezlistic a condition to ask, In general, any program which com-
putes £ will use certain temporary variables, and when the nrosram

is finished these varizbles will remain set, Any memory extcnsion

-of iyef (xl,...,xn)}, howevez', cannot chanrce the values of any

-~

temporary variables,
Tet us weaken this a bit, Suppose thet 7 is an arhitrary
ele%nen’b of in, 1$i$n,. Then ‘xf 17 oo x =V, ¥ is a state con-
dition C Qx, an¢ sinilarly {y:f(xl,...,xn)} is a state coudition
¢t € 4. What we would really like to require of the computation P!
of P with respect to F,; 1s that P'(C)@ C'; that is, 1if 5 € C, then
P!(S) is defined and P'(S) & C', The condition that P'(S) be de-~

fined is, of course, the condition mentioned above that the algo=-

rithm terminctes. The statement P'(C)Q C! is clearly equivalent

to the intuitive condition that P computes fj; furthermore, it covers
the more general case where the "value" of f is expressed by the con-
ditions of several result variables, or when the mrpose or partial
purpose of f 1s to change the values of some or all of its input
variables. We formalize this discussion by making the following
definition,

DEFINITION. Iet P be a program on 4 g lot F

\

1 be a statement 6f

Py, let C¢ f, and let C' € 3, (Here C 1s a conditlon presumed to

hold before £hm’program -gtarts, while C! 1s a condition desired
after the program is finished.) Then P is correct with respect %o
Fy9 Cy and C? 1f P'(C) € C', where P' is the computation of P with

respect to Fie
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The basié £irst step in proving a program correct was first
stated in print by Floyd in D], although Floyd credits the idea to
Perlls and Gorn, It e‘ssentially involves dividing the correctness
problem into two parts,

DEFINIT Ig‘y et P be a program on 3, 1ot F, be a statement of
P, let C cx, and ]et ctc . Then P is partially correct with re-
speet to F19 Cy 2and CY if P'(S) € C* whenever 5 € C is such that
P'(s) is dei‘ined'.' (The terms "correct" and "partially correct" in
this sense are due to Manna Pel.)

Clearly, if we can prove that a program is partially correct,
then all we have to do to prove it correct is to show thot it
terminates ~- 1. e., that P'(3) is actually defined for a1l & & C.
Later, we shall dlecuss methods of proving that an algorithm termi-
nates. What Floyd showed is that the problem of partial correctness
can be settled by purely local arguments, i. e., arguments involvirg
"the flow of control from one statement to another in thé progran,
The basie idea 1s as follows, Iet Fi be a statement of the program
P, and let us assoclate with Fi a state comitlon 48 Ox. This iz
presumed to be & condltlon satisfied by the variables of the prog;am
just before Fi 1s executed, In particular, 4. is associated with Fe

1

If we start the program at F. with a state 5 € 31’ we should like

1
to prove that, as the pcrogrém proceeds, each (Si’ Fi) in the compu~
tation séquenqe 1; suéh that Si is econtained in xi' But this will
follow if for every palr of Btétements:"l?i and F j whieh are "aext

to each other" -- i, e.,, control passes from F to F, in the cxccu-
tion of the program -- the condition S é l Liplies 5 3 a 3 whenever
the next statement after (Si’ F,) is (u_s., F ). The fOl]O"alnf intui-~

t.gve, metaod may thon be used to prove a hrot,r am partilally correct:
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(1) Understand the program well enough that you car specify

_a condition ‘i for each statement F, = (Pi’ Ni)’ such that 31 is

i

~ the condition saticfied by the variables just before F, is per-

i

~ formed. Also, specify an exit condition C!,
.(2) Prove separately for each pair of statements Fi and FJ.
Q ' 9 o : Y =

that 54 6 ‘i implies Pi(ui) ¢ ‘j whenever Zli(si) Fj.
(3) Prove for each statement F, that if Ni(si) is not defined
!
and Sie 31, then Pi(si) €& c!,

The process of ldentifying which statements in o program are

i

"next to each other" is facilitated by defining the graph of the
program, | |
DEFINITION. Let P be a program on §. The directed zravh of
P is the directed graph,whose nodes are the statements F_T of P, and
such that Fi-) Fj if and only if there exists S € } wi‘ch_Hi(S) N Fj' |
A flowchart of a program (in complete detail) is a represen-
tation of its directed.graph.:An overall flowchart of a program is
a Tepresentation of the directed cranh of the program obtained by
- "ecollapsing” certain groups of-statsments of the original progran
into single statements; we shali return to this idea later when we
consider factoring of programs. Step 2 above now needg te be per-
formed oniy‘for each 1ink in the directed graph of the given progren,
- We could, if we wanted to, associate the coniitions jg.with the
- links in the graph, rather than with individual statementsj; this,
in fact, 1s what was done by Floyd in 13]1. Also, Floyd uses a nro-
gramming model bzsed on tﬁe predicate calculus, rather than our p=-set
model,
We now formalize the above arguments, -

DEFINITION, Let P be a program on x. A precondition structure

for P is a set of preconditions 31 & ‘, one for each statement F,

-

of the program, 'and an exit condition& C-x. The precondition




-3 -

v
~r’
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str uct-are is copustent if S & 48 implies P )€ ‘ i(
not defined, or P (s) € ‘ if II ( ) = j‘

THL0nEM (rloyﬂ) Let P be a program on 8, let Fl be a sctatorant
of P, 1e'c-cc._£, and let C'g¢d. Then P is pertially correct with
respect to Fy, C, and C* 1f and only if there exists a consistent
condition structure ,ai,ixx} Tor P with C C"l and'lx CCr.

PilOOF, First, let P be partially correct, We set xi egel %
 the set of all 84 sueh that' (Si’ Fi) appesrs as Tj’ O&jsn, in
. some computation seqguence Tny eeey Ty beginning with TO = (S, Fl)
for 3 6 C. Ve set‘ equal to the set of all 5, = Pi(Si), ‘where
g, -pelongs to some l and N, (8,) is not defined, If 5, € .8.. and
(S F ) = Tj as above, then N (S ) is defined if and only 1f § # n.

In tnls case, Tj+l iz defined and is equal to (P (657, 1, (.03

i1
setting I (3,) = F,, we have by definition P, (s, )s },. If 5 = m,
then by definition P.(S_,) 63}: and thus the given s«*.’c‘ etire is cor-

sistent, If 3 € C, then (S, Fl) = T, in a commitation SC, €186, 50

S € 31; thus CG‘_,. Finally, if S, € 3},, then 8. = Pr(3) Zox

J-O -~
actually a finite sequence T o) +++» Iy vhere T = (S', F!), then
P!(S) € C', Setting Fi = (Qg, N'), 0#3&mn, we have PI(S) = & M CLON
Ne show by w1«wzc:tion on § that S

that 5
some 5 € C, by the r]_ei‘i;r;ition of the computztion P'; this mrens et
5.-€ Ct since P is partially correct, Lnr’ thus .&J{C ct,

Conversely, let a consistent cond z‘t lon gtruacture exist hich
setisries the given conditions. Let S € C and let Ty = B, F:‘.)’ e
‘wish to prove that if the computation sequence beginning with T, 1is

é ", vihere 3' is the preccondition -

J
assoc;atea with F;., For § = O, S(') =3 6 C c.,8 3" i£f o 7 1 &,&3_1,
1 ! St NG n ¢ a6 = Fle =in
then £Q _1(93 l)’ j l(u )) j’ nd thus I..l( l), 15 e

‘the struecture ig corrrlstent, S' Q 1(\, l) é 8 Jz in pavti~
“t

cular, S' 62', and N'(") is not ueuaed. By tu@ corisistenc:” o the

v

structure, Q (S!) €A, € C'; 1, e,y P1(3) € C', This completes the
? e ? t

! 'DI‘OOf. S : : N
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The statement of this theorem may he considerably simnlified
by cons idering subse ts of T-= ,8 R P, rather than subsets of x. If'\
”‘. 3},} is a consistent precondition structure for P, then the
set 3' € T defined by (5,, F )‘?' if and only if 1"

"single subset of K g cozmrlsvné all of the original x . The concis=-
teney condition bocomes, approximately, P(J') € J*, vhere P is now
- taken as an execution funetion, This condition muét_ actually be
modified to take account of ,8X. If 7' A fexity, then, writing
T! = (3, F,) where F, = (P, N,), we have Pi(S)‘zx’,?but"I’i.(.S)

- (angd therefore also P(T!)) 1s not defined.

| | DEFINITION. Let P be a program on § and let Y = § x P. Then
a subset F'@ ¥ is a consistent universal condition for P if

P(X* -~ fexit¥) € I end, if (S, Fi) € 3' N fexit}, vhere F, =

(Pi’ Ni)’ then Pi(S) = 8" 1is defined, The set of a2ll such S" is
the exit gonditi.og of ¥', and, for each fixed F, € P, the set xi
of all 8; with (5, Fi’)' ¢ ' is the precondition associated with

Fi by ¥'. A program P with a consistent universal condition T

may be called a program on J*.
COROLIARY, Iet P be a program on 3, let F] be a statenent of

Py let C€ 4§, and let ¢t g L. Then P is partially cor-ect with
respect to Fl, Cy and C! if and only if there exists & consistent
universal conditien 7' for P whose exit condition is contained in C?
and such that C is contained in the precondition associated with I-“_‘
by §°. S } y

PROOF. If 8' is consistent; we may show that its exit con-
d:‘L‘z:ion)lX and the preconditions ‘ associated with the various I‘i
by ¥t form a consistent precondition structire, In fact, if o ex'
then (B4, Fy) €F's if (5,, F ;) € {exit}, where F, = (P, U 4 )y then,
s1nca’.f' is consistent, P (S ) [ 8X’ If (&.;, T )*{eyl‘t s then

| P(S., Fy ) = (P (Si), i]'i(o )) € 3'; vriting N, (o ) = PJ, this mplioﬂ

RS ;.\'. *
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P (S.) é 3 by the r;"».efi;‘lition cf the associntad nrecondi ‘
lhus, by ‘u)e theorem, P is partially correct. Conversely, if P is
partially correct, ve may set J' equal to the set of 211 T T&€ Y
whatsoever which ~ppear in computation seq:iences *-taz ting with
some (S, F,) for 5@ C. If T @ J' and T* fexity, then T is not
the last element of such a computation sequence, and thus P(T) is
defined and P(T) € J'. If T € §exit}, then, writing T = G, F,)
(Pi’ I, ), we have Py Ch )63 and svery element of &\
s shows tha’c 1' is conmstent, and also, since
i(b ) = P1(s), vbere the given computation sequence started with
(5, F ), it shows that 3 x & C' (since P is partially correet) and
C cﬂl as before, This completes the proof,

Partlal correctness may actuaily be used to charzcherize -
p-functions, Specifically, let p: X-)l be an arbitrary p-function,
| “and let n be a function which is nowhere defined, Then thers exisis

a program P having exactly one statement F. = (p, n). The set of

1
all.pairs (C, C!') such that P is partially correct with resncet %o
Fl’ Cy and C! may be used to specify p uniquely. Furthermore, this
set, or, equivalently, the condition V(C, C') whick is %true if and
only if P is partially correct with respect to Fqy Cy and Ct, is
expressible entirely in terms of prodicates, and may be used (as,
for example, in C3]) to specify the action of p within = predicate
célcu.lus nodel of programming.

The mnven"tion that a program P with a conzistent universal
condition §' may be called a program on ¥ is fundamental Tfor rany
of the definitions of objects whith are assoeiated with 2 program,
to be defined in the sequel, For the salec of generality, each of
these will be defined with respect to a program »n §', reotier £hnn
a program on }. Ho 'reneralibr is lost in this wa 1y, because sny Pro-

gram P onx may be viewed as a progras on Yt = i(S-, Fi) € Axp:
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‘fPi(S)‘ is defined}, and this is the largest %' upon which such a

defini tion could be mede, A an example of the idea of defining g
objects zssociated with a program on ', we now redefine the graph
of & program. in these terns,

OIFIIITION. Iet P be a frogram-an3'€ LK P. The directed
graph of P is the directed graph whose nodes are the stotensnis
of P, and such that F —}r if snd only if there exists (5, F,) €
' with N, ©) Fj.

It w1IL'l. be seen that the directed graph of the crogram P

H 2

L

on ¥ has the same noles, and some, but not nccessarily nl1l, of t7

3

o

same links, as the directed graph of the program P 0‘13 Thus, for
exanple, the directed zraph of the program P on T mey s'how us thn®
certain statements are never cxecited, or that certain bhranches are
ﬁever takens these will not appear in the graph, This iaforiation
can gometimes be helpful when proving that a program torninstes,
The use of programs on J' allovs us to nse the consistency of

T to prove tlings about the given prograr, stch as Terminution. Jut

it does much more than this: 1t allows us to fLorget nbout the posrci-

- bility that some of our fimetions P, might be psrtial functions,

i

‘because, in a program on §', this never happens, Lvery P, in such a

program is defined on every state S belonging to the precondition
31 associated with F = (Pi’ Ni) by ¥*. This condition is, conversely,
a constraint upon our construction of ¥' in the first place, Tor

every P, involving a subseripted variable, for example, unless our

lansua,,e cnnta"ns outomatic subseript range cheecking (=uch rs 2:)L4GCIL

or the Oi ZUB3CRIPIT.LIGE featnre of PL~I), we must have a nrocen?i-

fiote

Tion 2% that point which constrains the asubsecript to be wit'in its

' proper range, For every P, involving an integer varilable, wc muct

i
shov -that there 1s nn integer overflow, an? *the same for floating

voint,
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Effective Domains and Ranges
Floyd!'s Theozjeni st1ll does not tell us how the coasisten ney

of 2 precondition ctructire is verified, In orrticular, ift oiys
¥ ’

nothing about the verification of conditions which are unchnige

i i
- night have the condition K € ¥ as part of both Si and Kj, vhere P,

by an instruetion. If I, is the constant finetion . () = F e
i )

is the assignment L€ GCD(I,T)}. In this case, we might verify the
condition ¥ € W as part of X by arguing that P is defined cs a

p~function on ';ZM Vv, for a set M including oniy the variables I,
Jy ang L, and thét, in any menory oxtension of this p-function to
a lﬁrr‘or merory incliding the varianles K and N, we mast therefore
heve $'(X) = 5(X) and 8t(1) = 3(), vhere 81 = p(8), br definition
of the memory extension, The condition K< ¥ is the condition 3 (I)

> ra thao eondcition O (") <320,

It

<5(i7)y and this is therefore the sem
This argument is complicated by the fact thrt tie condltion i1 & T

it e o co.nt

{
<

acteally nizht not be preserved; in particular , K mi

variable, and we night have coded the GCD function in such a o) as

n

to increase X by 1 each time GCD is used in order %to count the totel
number of tvime‘s it is used, This implies that ve need » genz-;ral way o
identify the 'variablés used by a particular p-function and the variables
set by that p-,-funcfion. This will now be done for general vp-fimctions.

| DEFINTTION. Let p: & -> 38!, where § = T V. and 4! = - T Vx

and let A" ¢ 3, The effective range P(p, S") is the set Sz €iits H 3
€A4", S = p(38) is defined, but not (S(x) = 5¢(x))}. The effectlive

domain AP, 4") 1s the set {xéM:HSl, 5,€ 8", v¢ (J(p,-ﬂ"), 3 =

p(S ) iz ¢efined, 3 1(2) =8,(2) for all z # x, z € I, but not (! (y)

= '(Y) “here 54 = p(..;é)% We write e(p) for p(p, A) «nm A(r) ror Ay 4.
These concepts of ef “cc z doemaln ond elTective venge are -

tensions of* the concepts of input »e~ion end o.ubout resion no do-

fined by the author in ["]. The as-ertion "not Cx) = ‘(")\“ is
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J.‘; kgn L.o inclg,;de tx‘e ')oqsiold t*' ’“a (x/ ic not de? ed (Meciuge
¢ x) it s, morc/ --xne”"l unzn the asoc*tlon "S(x) # S(")". -
ly, uhe 2 erf:ian "not (S'(y) ”'(,,r) There 2‘, = p(S, ))' ir Tl

j:q j.nr'luﬁe uhe poos{ u:. 1»; that p(o ) may not De (ef‘ cd. Clenr-

»& a& ﬁu&v «ﬁxwh f(Pg & }*ﬂx ?(p’; 3**‘) and A(p, 3 J <

'A(p,g’,,). If x € M dut x € M, then x € piv, X") ﬁb. arditrany ,8"'.
CILOREH, let &, = T, V., et 4, = ;g'érB V., let A'94, Lot

A'U BDB'D B, let .8 }};’A,V,let A, = T\ Vs aad let
p': ,Rt '*,3' be the correspondinu MEMCTY extonelo-l of p: .81"932.
Let 25{ C ‘3'1; we may regard .331 as a subset of ,Ri
as a Boolean p-funetion and performing a memory cxtconsion. Then
Ppty 4 = plo, 47) and Adpt, 31) = Alp, 81).

' P“OOF We 1ru’ce 3* for the conddfhm 31 viewed as a subset of

t, Let x¢f(p,,3 ). If x € 8, then, for all 5 € 47, 5(x) is de-

by treating it

'fix:f.ed and S5(x) = 3'(x), where S' = p(s), Iet Q & 2*‘* by the defi-
- nition of the menory extension of ,8" there e:arlsts £ ,3" WL
= 8(a) for all a € A, Therefore, Q(x) is defined, and, if Q' = p'(Q),
- then QP (x) = 8'(x) = 5(x), by definition of p'. Therefore, x ¢
P(p' ,8."). If x ¢ B, then Q'(x) = Q(x) and thus again x ¢,'p(p, 3 ");
fherefore, An all cases, x e p(p, &) inmplies x ¢ p(p, 8"). Con~
versely, let x ¢ P(p' _8 "), then, for all Q ¢ 3* ) Q(x) is defined
~and Q(x) = Q'(x), where Q' = p'(Q), If X$ By then X¢ F(p, Xg)
' because f(p, 2'1'-) 1s defined as & subset of B, If x € B, then eack
S € ,83‘_ is of the form Q(B for some Q € ,8*, and S(x) = Q(x) = Lt (x)
=s'(x), vhere S1 = p(53). Therefore x ¢ f’(p, ,Z") thus,. in all cases,
x ¢ p(pnt, g ") inplies x § p (D, gt "), and this, together with the
previous result cives p(p, 3 ") = p(p; X").

Now let x € A, x € A(p, X"), then, for all 5., S, € £Y with
S (z) = S, (z) for z # xy z € A, we have Sy = °'(,y') for all y €
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F('p, P ‘i), .wheré Si = p(Sl), Sé = p(SZ). Iet Ql, % € ,3‘; bPe such
that Q(2) = Q,(2) for z # x, z € A", and let S, =@ |4, 5, = Q|45
then 5, (2) = S,(2) for z # x, z € A, and, setting Q! = p'(3,), €} =
P'@Q,), ve have Q!(y) = 81(y) = 83(y) = Qi(y) for all v € p(p*y 47)
= p(p, Xa'l). Therefore x ¢ A(p'y 8Y). If x € A, then S, = Ql]A =
Q)4 =5, and agaln QI(y) = 8{(y) = 81(y) = QI (y) for all y €

?(ps, b 7). Hence in all cases x¢ A(p, .33‘_) implies x ¢ A(p, ,8"3'_).
Conversely, let x¢ A(p!, 23); then, for all Q;, Q, € §% with
Qi(Z) = Qz(z) for z # x4y 2 £ A', we have Q]"(y) = Qé(y) for all y &
p(p’, 23), where QJ'_: p'(Ql), QW = p'(Q2). If x ¢ A, then x ¢

A(p, _&'J'_), because A(p, 2:_;-) is defined as a subset of A, If X € 4,
" then let Sl’ S, € 33’_ be such that Sl(z) # 82(2) for z # x. By the
definition of the memory extension of X;, there exist Ql, Q2 € 8-’3'_
with S, =_Q1|A,'-32 = Q2|E, and Q,(z) = Q,(z) for z ¢ A. Then 2, (z) |
= Q2(Z) for z # X, z € A'y and thus, setting 81 = p(8,),y 8} = p(S,),
we have S5!(y) = QI(y) = QI(y) = 8)(y) for ally € p(p, &7) =

plp?, ',&'i). Hence in all cases x ¢ Alp'y, .3 3‘_) implies x ¢ A(p,y, & 3‘_),
and this, together with the previous result, gives A(p, f'i) =

A(p!?, 3'3’_). This completes the proof,

This theorem shows that effective domains and effective ranges
are invariant under all memory extensions. As a corollary, we give
an uprer bound to the effective domain and range of an assigient,

COROLIARY, Let Ja€ bt be an arbitrary assignment, let 4 be the
set of all variables in the definition of a, 'md let B be the set
of all variables appearing in the definition of b, Then A (§aéDb%)
CA and p(Ja<b?) C B,

PROOF, The assignment $a<b? is defined as the me: ory eztea-
sion of a funetion p: TN V, > QB V.. By definition of the effective
¢ormain and range, A(p) < A and P(p) € B. By the theorem, this re-

malns true for any nmenory extension of Pe

e
R 2
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Yiote that we cannot, in general, show that A(§aé-b¢) = A or
pHa€eb¥) = B, Thus for p = {X¢X¢, we have A = {X¢ ~nd D = iX%,
but A(p) = ¢ and pp) = ¢. In general, p(p) = cp will be %true only
for tlﬁe 1dentity funetion p (and A(p) =‘<f7 also), whereas we will
have A(p) = 4) whenever p is any constant assignment or combination
of constant assigaments, |

The converse of the above theorem is true when 43” has the
finite patching property and the finite §uppor.t property.

DEFINITION, Let & = TV, and let 8¢ 8. Then 8" has the
finite patching property if, given Sl’ S, € 4 and the finite set
M! ¢ M, the state S, such that 83 (x) = 8, (x) for x € M and 83 (x)

3
= 8,(x) for x ¢ ! is a member of 3", 8" nas the finite support nro-

: " e o - 2 oS 1
10 5o € 4" we have {xeii: ol(x) # Sz(xﬂ is finite,

The finite patching property 1ls equivalent to the "elemental"

perty 1if for each S

patching prof;erty in which M! is restricted to have one element,
If g” has the finite support property, then the finite patchning
' property is equivalent to the gencral patching property, in which
Mt no long'er need be finite, If M'is finite, the finite support
property is obvious,'and if ,&" has the finite patching property,

| then it must 'be of the form TrIV for some choice of V' c V for

XEl

each x € M, and 1s thus deternined uniquely by the ch01ce_ of the V1.
If M 1s infiniteyand has the finite support property, it must be e
subset of §S € 8 : §x€M: S(x) # 8 (x)} is finitet for some fixed

‘ S € ,3 1f it also has the finite patching property, then it nust

be the intersection of a set of this form with TU. V' for sone

Le}{
choice of V', C.V as hefore, Note that a set of the form TT -V}'c
for M'c M may be identified with ;{FEFM V!, vhere V: has exac ulj one

element (not zero elements!) foi‘ each x & M,

\



- 42 -

LEMA, Tet p1 - § = L‘, whére 3=J%V§,%mx, and Let 3" ¢ 3
have the finite patching property and the finite support vroperty,
Let 5, S, € 3‘; and let S! = p(s,), 83 = p(s,). If S,|A(p, &) =
sz[a(p, 4“)y then Si‘f(p, 1 = Sz'lg(p, 4.

PROOF. Let X = §x € Mz S, (x) # 8,(x)%, The set X 1s finite
because X" has the finite support property, and we may thus write
X =9§%y veuy e Lot Uy € £, 0414 n, be defined by Uy (z) =
5,(2) {=8,(2)) for z 4 X, U, (x,) = Sl(xj) for 3>1, and Uy (%) =
S,(x,) for J%£1, These U are in 8" vecause $" has the finite
- patehing proverty, and Uy = 8,, U = S,j also Ui_l(z) = Ui'(z) for
all z # X, 9 1£1i4n, let Ui = p(Ui), 04£14¢n, If there existed
v € {,(p, 4" with Ui_l(y) ;éAUj'_(y)', we would hsve X, € Alp, 3"),
but - this is impossible, since Sl(xi) # Sz(xi) and, by hypothesis,
Sl{A(p, 4" = Sz\A(p, L"), Therefore Ui_llf?(p, X") = Uj'_\f(p, P3P
for each 1, 141€n, and thus Si\((p, 4 = U(')l(>(p, 4" = Ulfl\f(?, )
= Sg'lf(p, A"), This coiipletes the proof,

The finite support property is necessary for this lemmaj in
fapt, one may construct an easy counterexample whenever the finite
support property does f'qot hold, The finite patching property is
not necessarys fbr example, the removal of exactly one state S from
3" does not alter the conclusion of the lemma, At present, no more

general necessary and sufficilent conciition is Imown,

IR
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THOREM, Let p';g'éz,where.z’ = EA'V X’;=Q;E;'V
and let ‘Kv c ,X have the finite patching property an;z the finite _
support property. Let A = A(p, A ecay B= f(p, 2" c B!, Then p
agrees on X” with the memory extension p': A -'),8' of a function
£: £, *‘9,86, where ,ZO = ;(;"A V., 48 = f& V.

FROQF, Let S € 8", let U= SJA, let St = p(S), and let U! =
S1|B. We define f: 3,24 ! by setting £(U) = U'. This makes f well
defined by the lenma; if S, € 8" 1s any other state with U= S ]a
and 1f 81 = p(S1), then Ut = 0!13 Furthermore, it is clear that
each U € ,4 1s the restriction to A of some S € 8", If pt is the
memory extpnsion of £ to a function from 1 to 3 , and S"€ 3"
then let p(s") =S and p'(S") = Sts if z ¢ B, then 5(z) = 5" (z) =
St(z) by'defin:itidn of B = p(p, .3"), whereas if z € B then S(z) =
Ut(z) = St(z) by definition of U', Therefore S = S', and hence p
and p' agree on $'; this completes the proof. -

CORGLIARY:-let pe- & —> 8/, vhere 4= EA' Vi 4 = XGB' Voo
and A! 1s finite, Iet A = A(p) € A, B = p(p) € BY, Then p is the
memory extension to a function from ,3 to ' of a function f:
,30'4‘)2', where ,2 Ve &)= éB V..

This allows us to speclfy functions by specifying their ef-
fective domains and ranges snd their underlying functions f as aktcve,
It also allows us to define memory restrictions, which are the op-
posite of memory extensions,

DEFTNITION. Lot p: & > 4/, vhere § = o Ve B =T, v,
and let M' € A' U B!, ' D A (p, ") for some £"c 4. Then tre
memory restriction of p to M! on ,g“ is a function f: ,80-9 3,3,
where ,& xeA Vo 3' = éB x,A-—-A'(n Mty B=B'N U, de-
fined for each S, € 80 such that 5, = sfa for s ¢ 3" by £34) =
-p(S4)| B.

The above ¢orollary then says that, if A' is finite, any
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funetion p: ;g;, - ;2%, V is the nemory extension of a suitabic
menory roetr1ctlon -~ namely, one that ineludes f(p). Menmory re-
strictions of p which do not include p(p), however, are quite common,
For a program which computes a funetion f(xl, ceey X ) = y, the
meriory restriction of the program to M' = le, coey Xpy yi will be
.precisely the ascignment {ye—f(xl, ceoy xnyi. The stztement tha

thls progran conputes this function is nrecisely the statenent that
thig meory restriction is equal to this assignment, Two programs

may be called equivalent over IM! if thelr memory restrictions to

1' are the samej this innlies, in particiler, that their elflective
domains are both contrined in 1,

Function references in programs in which the arguments of the
function are allowed to be arbitrary expressions (of the proper |
type) provide still another example of the use of star-extensions,
If t, is the type of the i-th argument of a funetion f(x 13 eees X ),
and p : jL -4? t are the p~functions corresponding to certain ex-
press;ons ®y of type ti’ then f*(pl, coey pn) is the p=-function
~eorresponding to the use of f with arpuments Pys eeey Py This may
be the star-extension in either the statiec or the dynamic sense,

An expressilon ofythis type 1s normally treated in programming lan-
guages as equivalent“to a single variable for the pur poses Qf com=
. bining quantities into expressions. Just as we have formed g*(el,e2)
= e te,, for'gxample, where g is the ordinary addition function of
two variable§~and e and e, are p-functions, so we can likewise form
@1+ (Xyy ooy X)) = g*(el, £%(Pyy csey Pp)), provided that the types
of all the given expressions are properly connected with esch other,
since f*(pl, cees pn) is a function whose domain and range are such

that 1t may take the place of e, in the above construction,



oggietegcz Calculetions

We novw show iw.ow to ealeulate consistency of state ennditions
uging the concepts of effective domein and range, For this purpese
we necd a gener:l "wtim- of the Composition Theorem which we intro-
duced in Dl] This theorem gives relations hotiween the o Tective
domains and ranges of two given functions and the effcetive <omain

and range of the composition of these two Tonetions, Cur first
result is as followz,

TILREM, Iet £: 4 >4 and g: ,3 —58 and let £ o g = he

1 l
Xl*) 32, vhere 81 hos the Tfinite pm,ching, nroperty and the findite

sunnort, property, ani further suppose that p(7, 8 )n Az, 3.2 = b,

-

Then, for any y ¢ F(g, ﬁi), we have 02 (v) - 5} (y), vhere 3, s )
and 82' = h(Sl) for any S e § 1 |
FLOOF. Iet 5,€ §. ond J.et S} = £(8,). Iet x € Alg, 8 )3 then

2
x ¢ p(f, 31), a_hd, since 5, € ‘21 ane 83'_ & ’31’ e have Sl(x = S}'_(x).
In this way we see tiat Sl’ Alg, 2 l) = Si’A(g, .21), and we my now

apply the lemma of the precading section, obtaining S,lf(g, 31)
S(g’lf(g’ l;l)“,‘where 5, :~g(81) and 5} = -g(S:;.) = g(£f@ )) = h(,J .
This completes the nroof,

We shall now apply this theprem to the pres ervation of a rtate
eondition when an instruetion is executed, Let R'c & b o~ ctrte
conditiony then 8', as mentioned before, mny be viewed -5 » Tunctio.

£: 3 > $true, false?, with £(5) = true if en” only if 5 € A, 4e -

Boolean p~-fmetion of this formy 8% has an effective dornin A(g'),

i
1t d = Q;‘}vf Vs then A(4Y) = 3z ¢ 12 9 5, € 3", 5,¢€ §-31, with 5. (a)

= 5,(z) for all z # x¢, The effective domzin of » state condition .
which is defined in terms of a set of veriables M! is contoined “n

M?, because it is by definition = neory extension -of a Boolean
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p-function on §! = J‘ilg;f' V_. We have ARt u ") A(4t) v AB") cne
ABrNn 2") = A(S1) A AQ"), For the nore general notion of effective
domain, A(2', "), where 8" c 4, we have A(8', 3") c A(R'); =lso, we
zlwvaye have A(4', 8') = ¢.

low let F, = (Pi’ Wy ) be o statement of 2 progrem P on ¥t C
4 x P and let xi be the ::ssoointed precondition, so that Py 8 -)8
Jsually Ai will be expressible as the Intersection of = c:.ﬂ.l-::ct:?.on
of state conditions, among which will be some which are not chenged
b;,? Fi. Lett’ing 4 be 2 typieal such condition, we wish to prove the
consistency of inciuding &' in the collection of state conditions

whose intersection is the precondition p P associated with some T,

Cod

in the range of ;e To do this ve must show thot § € g innlies
P, (o) € 4.

THECREYM, Let f: 2 -),Z, vhere 3 has the finite votching npropert
and the finite support property, let 3! c §, snd suppose thrt p(f, &)
nAd) = ¢. Then S € 4! inplies £(5)C 8! whenever £(5) in defined,

EROQF. Iet Sy € 8%, let 8! = £(5 ), and define 14 vy
g(s) = £(8) for S € 8§ and g(s) = st for S ¢ £, Then ‘D(g, H

f(g, 1) = f(f X"); also f may be revisced by g in the conelncion,

1

It is thus sufficient to replace the hypothesis by P(f‘, n A(X'.)
¢ and under these conditions P(f, 4)n A(%’_, %) =¢ since A3, R)
- CA(f'). The theorem new follows from the preceding theorem by con-

sicering &' as 2 BDoolesn p-functions the range of X' tatte
i1s a cartesian produet of onc set, which is the effec”ive rrmgé of

Ar, =nd the concl sion of the preceding theorem thus rends S, = S
- where 82 is the truth v:ﬂ.*c of 5,€ 4" anl S! is the t~ath vlue of

1 2
4 - .
£(5.)€ 8. The proof is comnleted by obviouns ehmnges of noknhior,
1 ] . : g
Tiils theoren '?.Wm”ps, in particular, thri a stohe condition
is weserved vherever the variables involied n the stote conditlion

do not appear on the lelt side of an executed assignment, Thus, for
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exniple, 1f I+TLY$ 15 a statu covition ascociat d il 4e ng-
v ? O L SeDQLaTT G T o N

signment §L€J-K¢ as part of & mreconiition, tlen SI‘S-J' <X v @

/
used ag vart of the precondition for the aext stetement (o

~ A
b\.

AT
‘J.\»

't there is no other way to get to this st

stenent directly), ninece

(.h

the verilable L does not oceur in %hiis condition, Ilere the na-

}..h

N
~oTion
- SR

{L(-J-KZ- nsy be renlaced hy any D-Mic*‘ion vhose effcective ranre is

{L}, even 1if this effective range is with respect to the condition

' $1+7 < KE 1tselr,

I‘Iore complex functlons P occurring in a prosram may concist
of several asslgrunents Ajy eeey Ak performed one after the other,
In this case, Pi::t_.,ﬁ —3 1s the composition Ay © ees @ A . This
fact is itself a useful byproduct of the way in which we have de=~
fined assignmentsj the deﬁermination of the result of performing
two successive assigmments from their character string form is
quite complex and involves a large number of special ccses. The
following theorenm gives an upper bound on the effective domain ~id
ré.ngé of such a coumpositiong we state it for general p-functions.

TIEROREM, Let f:'Xl'-r,X:; and gz 4, =8, and let fog = h:
.28 ., 1et ,ﬁi C'gl’ ,8;" c ,32, and suppose that oléXi implies

1 73 >
£(s,) € ,&é vhenever £(3,) is defined, Then A(h,..,;f) € A(f, .8:'!_)0 .

Mgy 33) and F(h,ﬁ') cpiE, 81 u pley 32

' Tote; thatsif 8, = Doty V0 32 = T, T2 8, = ;&% Vs
where Ml, 1/12 and I\% are not necessarily the same, there 1s nore |
that we can say. For example, A(f, 1) c If and A(g, 23 ci, so
that the theorem implies A(h, ,gi) ciy v M,; but clearly, by defi-
nition, 4(hy £1) € ). Sinilarly, p(f, 1) e 1, and plg, 81) < 15,
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then the theorem inplies P(h, ﬁi) c M2 U 1.13, but hy definition wve
~ have P(h, 2') c 1'-13. Hote also that we may extend f; g, and h ©o

p~functions i", g'y and h! on & = V, wvhere M D 1\41 U,V i,

and the effective domains and‘range}scei:ill, as noted earlier, be
preserved under these memory extensionssy but this fact does not re-
duce the proof of the theorem to the case Ml M2 = NB’ because we .
may have h' # £1o g' and, in particular, we do nhot necessarily hnve
p(fte g1, Xi) c M3. (For example, the composition of §Y4X{ and

{2 <Yt is 12 <X} 1T ve take M = 3XE, M, = §¥%, and My = §2%, but
not if we take these as p~functions on £ = 1T, v, for X, ¥, Z € l.)

Xé
PROOF.LetX Vey £, = T v & v.LetseS'

:'eMl x? x5112 Vxs eM3

and let 8' = £(5) be defined; tlen e 2 ana, if 5" = g(8'1) is
defined, we have S" = h(S). Iet x ¢ pls, 2 1, x¢ pla 42); then
S{%)is defined and S'(x) = S(x), and l:ﬂrew:Lse S')is defined and 8" (x)
= 8'(x) = S(x). Thus x 4 p(h,X )y which shows that p(h, ls)c
p(fy 41) v P(g,.gé). How let x ¢ A(f, 41), x ¢ A(g, 82), and let
U, Vv eﬂi be such that U(z) = V(z) for all z # x., If v € p(L, 3'),
“then u () = V¥ (y), where U' = £(U), V! = £(V), since x ¢ A(f, & ).
Ity ¢ f(f 41 ), v # x, then U'(y) = U(y) = V(y) = V! (y). Hence
U'(y) = V'(y) for all y # x, and, in addition, U' = V' if x ¢ p(f, .85_).
- By exactly the same arguments, if W = g(U') = g(£(U)) = h(U) ~nd
Vo= g(vr) = - g(£(V)) = n(v), we have U"(y) = V"(y) for all y # x,
and, in fact, W' = V" vhen x ¢ ple,y & 4) == anc also when x € p(f,$ '),
because in this case U" = g(U!') = g(V') = V" since U' = Vt, But
plhy £1) p(£, b4 1) v ple, 4 1)y as vas shown above, and this menns "
that U" = V" whencver x € p(h,g )o Mence x ¢ A(h, 8! ), and tims
A(h, X ) C &ff, 3') vV A(g, /3.' )e This eompletes the proof.

COROLIARY. let f,: §, —78 y 1€1£4 n, and let f = i‘lo cee®f .
Let 8! R .31 -1 1% 1£n, end sunpose that 3 Byq € .3 implie
| £ (Si 1) € 2 ! vhenever £y (Si l) 1s defined, Then A(f,ﬂ
u A(fi,l;{_l) and o(f, 8)c U pf,, 21 ),
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In nartlcular, if the f are assignments, the same nrinciple
holds as before in proving that a given state condition is pre-
served by £ = fl ¢ ,..6 f o3 namely, thigdggll be the case wienever
the total collection of variables "f? ‘seta by the £, is disjoint
from the collection of varicbles involved in the given state con-
dition, |

In the general case, it 1s helpful to distinguish the current
value of a variable as we follow a path from its initial value,
This may'be done by denoting the current value of J, for example,
by 1J, or the current value of KAPPA by 1KAPPA, As an example, con-
sider the following sequence of statementsy with a condition“given

at the beginning and at the end:

CONDITION J+1=I*I (1) 11=1 1J=J

14 I-1 (2) 1I=I-1 1J=J

J & J=2%I (3) 1I=I-1 1J=J-2%(I-1)

I& 1*1 &) 1I=(I-1)#{=1) 1J=J=2*(I-1)
CONDITION J = I ©(5)  (I~1)*(I-1)=J=2%(I-1)

Suppose we are asked to verify that if we start at the top of this
seqiience, under the given imposed condition, we arrive at the bottom
,ﬁith.J=I. We write the statements (1), (2), (3), (%), and (5) in
that order; in each case we use current values, For example, in
statement (3), we are setting J to J minus twice the current value
of I, or'what wé-Bave oallad:1I, which is I-1. The expression
J=2%(I-1) thus becomes the current value of Jy or 17, At the end,

we need only verify that (1-1)2 = J=2(1-1) follows from j+1 = i2,
setting § = 1%-1, we obtain (1-1)2 = 12-1-2(i-1) = 12-21+1, vhich

!

is trueo' »
‘There is another method of verifying a sequence like this,
which is due to London [§] and is known as back substitution. In
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this case, we start from the final condition and work backwards,
‘modifying the gondition each time, rather than the values of the

variables, When we come to an assigment y e g, where y is ¢ veri-

e
ol

able and @ 1s an expression, we repluce euc.. cccurrence of ¥,

the current conditioh, by ¢. Thus in the abhove case we would write

CONDITION J+1=I*I

I€=~1I-1 () J=2#(I=1) = (I-1)*(I-1)
J € J~2%T o (3) J=2*I = I*I

I € I+ (2) T = I*I

CONDITION J = I Q) J=1I

in which the statements (1), (2), (3), and (4+) ore written in tlnt
order, The end result is exactly the same azs iefore, Both the for-
ward and the bach.a.rd nethods are extensively discussed in Iling t5'J

and Good [4].

It may happen that a statement Pi in a wogran 1s itselfl the

computation of another program with respect to come starting stote-

- -

ment, The second program may be 2 subroutine, or it Iy nerely de
a section of the first. In this case, we mey amsume that “7ks secon
program clready has a cons istent precondition structures; the fol-
loving theorem then gives an upper bound on the effective domain
and range of sueh a computation, A ,
LLIMEM, Let P be a progran on 3' € 4 % P, 1ot L F, be an or-

bvtr'lr;,r statement of P, let P! be the compntation of P with rTe-
spect to Fl, and for each F. € P let x be the assoclated precoi-
dition, Then @(P!, 3 ) is contained in the union of all P(P., .8 Y,
while AP, J ) is cor\tained in the union of all A(Pi, x;) and
all A(ii, 31>° ’

" Ue note that the inelusion in this theorem of fthe ef’ective

!

domains of the next-statement functions Hy 1s essentlal. For exom-
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ple, congider The LLGOL assignment 1:=if ni=n tlien 0 glse 1, The ef-
il

=51 -

-

o 3 - ~ 2 ~ o~ b “ 1 EIRNN [Yay ey
fective dorain of this ceasigiment elen iretides oo nd o1,

L

ment can, hovever, hHe realized b the follovwing tiwee-atep vroriome

1. If m = ny go To step 3.

D

. et 1 =1 ant exit (?5 (8) is nov-'he'co delined),

3. Set 1 = 0 and exit (X (u) is *10.'1vrc= Aefincd).

In this program, the fzmc‘tions Pi do not include m »nd n in tholr

effective domains, It vartienlar, P is the Ifdsatity, =20 I1ts of-

1

fective donnin is therelore the null set, llovover, moand n mre in
the eff‘ective doroin of the function M.,

PLOCT. It is sufficient to neeme tlot P ois complote, bechuse
the given compuitction of P 1s the same as the correspondiing coini-
totion of *the cozépletion of Py ond sinilarly the Pi end tihe viloas
of A(: 21) are preserved when we trlte the eon pletio
Let 3 € 3., an® let Pr(3) De defnnd, This irmlies = nt there

xiste a computation seiyuence Ty seey Ty with T, = (B, T )5 setting
\ -

Ti = (34 F'), vhere (P:!L, 1‘733_), ve tave 8, = P'(3), Let x

V(Pi’ L ) for all i; we must show Slr(x) = 3(x), In fect, e chov

S‘i(X) = o(x) inductively for 21l 1, showing at the srne i e, 23 in
\

Floyd's Theorem, thet O, is in the preconiltion 8: associnted with
Fi by Tt, These stautenents are clearly true for 1 = O3 we nrzeure Lheor
are true for 1=3<%, Then S, € X' anad (x) = 8(x)s since x ¢

J
P(PJ’ 8.‘])’ and since PI(8,) = ? VE ng,ve 55 () = 04(}:) = 5(x),

| I3 j+1 J
and also, by con 1steﬂcy, 5341 4 83 1 for j<k, Thiz co mrc’cm che in=
duction and thus x ¢ p(PT, 21), therefore p(P?, ,81) is contuined in
the  union of all the f(P'i, 2 ). Now let x ¢ f(Pi, Xi) and x & A(-.,

3.) for all F = (P M. ), L.nd let 8, St € ,2 be such thrt 3(z) =
3t(z) for allz;!x. Let T )= (8, F ),T(‘J: "',
the computation seguences To, T19 oo and TO', T4y eoey delined by

T, = P(T ), P(’“' ), Tor as lonz as tun

T’l), ~ndl consicfer

(‘)

3 e are el innd, Ve
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set T, = (s, Gi) and T} = (85'_’ Gi), We prove inductively on 1 the

ascertion that the following statements are true if TL ie Gafineds

| '(a) Ti, 1s Aefined; (1) G = G:{; (e) 5 §? S:i 68% where 2: is the

precondition associated with Gy - Gl (@) 3,(z) = ":'L(‘.) i‘or a1l =

# x3 (e) if x is in the wnion, over all j<i, of all f(P;,, 31), vhore
; d

G;j = (P% I'), then 5, = S1. These conditions arc clearly true Tor -

i=0, :T.nclnrilng the last whlch is vocuous, Suppose they are true

=k that - s dafineds t = T‘ go T at o
for i = ky and that T, . 1 fined; then T, . P( ), 0 t 5, 5

= P1(8)) and G .. = 1@, ). In rartienlar, G is not the exit sinte-
aent, and since &, = G, ve mry dcfine Sf bl T P.,'_(.:)') Y G' tg = Z‘~'.' (S,'),
which proves (a), Since Ty (z) = C(z) for a1l z # x, 2nd x ¢ AC! 2'),
we have W} (Sy) = (1), i, Cay Gk+1 = G, vhich proves (b); (c) then

follows from the consistency of tie nrecondition structure, If z €
P(PI;,,,S};), then, since P'(S ) = 8,9 ond PI@EL) =8t .,
(Plt:, .&I'c») with 8 Sy o' 6.8 Ty WO have 51 (z) = 5 (z). If z ¢ (—‘(P}:_,

- 81;)’ z # x, we have Sk+1(z) = u (z), S

nd since x €

Hl(Z) = 8 (z), snd sinee Sk(z)

= SI'I(Z) by the‘induction hypotnesis, we have S (z) = 5t Lol \.,). lience
3 3 = 1 23k ~ 1 s
in all cases °k+1(Z) Sk+1(z) for z # x, \.Cl.LCh proves (d). If x is
in the union over 211 j<k+l as given in condition (e), then either
x is in this union over all j<k, in which case 5, =5 and © =

k+1
P'(w ) = P'("') = S' 1! OF else x & f( ’ Bl'c)’ in which eas» the

k)

aboye grgument shows that lilcewa.oe S S}; +1? proving (e) znd c‘om-
pleting the induction, In particular, if one computation sequence
terminates at.Tm, then the other terminates ot TI;, vhere 5 = Pr(S)
and 81 = P*(8'). Conditions (d) and (e) for 1 = m now show that S _(z)
S'(z) for z # xy and 1f x ¢ P(P' . ) -~ which means, ~as proved
above, that x is in the union of all f(Pi’ Xi), and, in pzzrt:'.cular,
in the union of all P(P_{-’ gi) ~— thens_ = Srr';" Thus x § A(r?, _81),
and this shows, finally, that A(P?, A,) is contained in tre waion of

all A(Pi’ g—i) and all A(Ni, Zi), completing the proof,
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The 'above theorem does not prove as much as we night like,
Specifically, it alloWs~the effective domain and range of a con-
putation to inclade the effective domains and raunges, respectively,
of certain statements in the given program which malke reference te
temporary varlables and registers, For the ef "ective range, this
1s unavoidablej temporary values will normally be set in this way,
and§ as long as they really are temporary -- i, e., they are not
variables whose values are needed later on -- this does not affect
the result: of the program, For the effective domain, it is a bit
surprising; we should not lite to see garhage entéring our calcu~
lations and affecting.our result, This, however, is nornally taken
care of by examining the condition structure of the siven nrogram,.
In any event, if this program is used as a subro:tine of some other
progran, the consistency calculations in the second program will be
affected only by considerations of the effective ronge In the
subroutine, It ié also true.that given any program whatsoever e
may, theoretically, Introduce an irrelevant assigmment {U%—V%, Toxr
variables U and V which are not referenced anywhere else in the
program, and V then becomnes part of the effective domain of any
computation of the program provided that the assignment {UeVE is

executed in every computation sequence,
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Global Conditlons and Sufficient Substructures

The specification of a state condition at gvery point in the
program is actually not necessary. We now consider ways of making con-
sistency easier to prove

Suppose first that associated with each statement Fi ve have
a state Conditionx »8 41 N eee N Iik « Then it is necessary only
to show, for eachl 1q0 that 5 6 &_and Nk(S) F, implies P, (3) 6
‘13. This is true because under these conditions Pk(S) will be in
all ‘Ej’ for fixed i, and will thus be in their intersection, which
is precisely xi' This type of argument-is similar to multiple mathe-
matical induction, in which several propositions are being éroved
simultaneously and all of them may be assumed to hold in the case k
when proving that each of them holds separately ih the case k+l,

It may hanppen that a single condition .8 occurs in this way
as jlij for all 1 (and some ji depending on i), Such a condition
may be ca;led a global condition, Global conditions in programs ore
very common, Usually they are conditions on variables which are not
" changed at all during the course of a computation, If such a case,
the globgl condition is automatically true over the entire rrogram
”providedvit is true at the beginning, and 1t does not need to be

verified separétely at each stage. It can, however, be used in the

verification of other conditions. If we have set K equal to 1, for

4]

exanp’e, prior to a section of a program, and we never change

within that section, then.{RhJ! is a global condition for the gi

s
3
=3

section; it does not need to be verified separately for every state-
ment of the program, but if, for example, we have {N(-N+K! as an
assignment in thils program, we may consider it equivalent to

{_Nerm}. This is particularly important in the case of subseripted
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| variables,jbeééuse wﬁen we use such a variable our p~functions

will not even be defined unless the subseripts are within their

proper ranges.3This fact is often erxpressed as a global condition,

Not all global éopﬁitions are of the form discussed above,

We may, for example, have a globel condition of the form I > O,
where. I ié given an initial wvalue greater than zero and the only
Statements of the program which change I either increase I or give

}it new constant values greater than zero, Wé mry also have con~
ditions which hold because of gome initializetion carried ot at
the beginning of the programj these conditions are not guite glomsl,
because théy do not hold thfoughout the entire initialization sec~
tion of the pfogram. The considerations discussed atove, however,
still hold wheﬁ appliéd to the remainder of the program, Génerali-
zing still further, we may have a condition which holds globally,
but such that the proof of this fact involves recourse to the other
preconditions which we have constructed for the program., As renarked
above, there is no "éircularity" or other impropriety in the use of
one~condttion to verify &nother,tfdllowed hy the usé0f the sétond-
to verify the'first, Just és this would bhe permissible in a multiple
maihematical induction,

We now pass to the consideration of gubstructures of a con-

dition structure, i, e., the association of preconditions with only
the "important" statements in a program, .

| DEFINITION, Let P be 8 program on P'c ‘ X P, and ;l.et {fi,lxz
be the assbciat;ed .c.:dnsistent precondition structure. Any subset of
‘this .s.tructur'e‘which inélddeé:xi i a‘ (precondition) ‘é%;fméfuie for P.
If Y 1s a substructure, a goutrol path of W is a path in the graph
of P whose~iﬁitial and final nodes are assoclated with preconditions

belonging to u.
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To show that a precondition structure is consistent, it is necessary
only to verify a condition along an arbitrary link Fi-} F 3 of the graph of
the program. To show that a substructure is consistent, it is necessary to
verify conditions along control paths. Specifically, we have the following
definition and theorem.

DEFINITION. Let ¥ be a substructure for the program P on }.

Let F('), ceey FIL be a control path of . Let 8' be the precondition associated
with F('), and let 8" be the precondition associated with Fl;. Let x;_, 0&£ié m,

be defined inductively by setting :6 = §' and 3i = {Pi_l(si_l): S;1 &3]!__1

and N = F;} Then the given control path is consistent if xt:lcx"

1-154-1)

and if, for each 51-1€3i-1 (1£& 1€ m) for which N _1) is defined, so is

1-1684
Pi—l(s i-l)' The substructure Y is consistent if all of its control paths are
consistent.

THEOREM. Let P be a program onx, let P' be the computation of P with
respect to F, € P, and letl' C},. ,8" cd. Then P is partially correct with
respect to Fl,,&', and ,8" if and only if there exists a consistent sub-
structure‘ufor P which contains the precondition .81, with 3 'c 31" and

preconditions “j for each Fj such that N, is not total, with Sj él" for Sj |

3

in any such xj whenever Nj (8.,) is not defined.

h|
PROOF. (a) =P (b). This follows directly from the corollary to Floyd's
Theorem, since an entire precondition structure\may be regarded as a
substructure of itself; the distinct control paths of thés "substructure"
are exactly thé links in the graph of the program, and the consistency
condition for such a path is precisely the c-onsistency condition for the

original precondition structure.

(b) =P (a). Let S' 6‘8' be such that P"(S') is defined. This
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esns that the seqience T, = G, 7, ) T, = (T ) for 19 0,
terminctes at sore T, 6 ; x.t%. Let i®< ...(:L be the ‘v luecs of

1 in this seqnence s:ch that .l._‘ = (Si’ T1) for T'Y reancinted —rith
. i

JIJ-

a preccndition | in the given 5?‘:,>str':.1c1;1re. From the ¢ diXian

-2

on the subctract we, we clonrly have iQ 0y 1, =k, Turilior.nre,

- ) A . .~ I TN -t
for each Is.9 T, 219 eenn Ty g 0&j4n, e correspomding 7, ,
L.+ +1 : L
' t J . '] . . N ) [
F 1.+19 *%°? F is a2 control path for the ;iven subehract e,

1341
Ue sholr kn"uct.a.\re"v that each 5! € }' $ - Iymothesis, B8 o= I

ey

8ACA -8, sumose, induetively, et T, = (B!, FI) e
io I lj .L_?
. o 1
5! € ,81 ; the condition of consistency on the control pnth FI

! then says precisely that S} € x; . Thus
g+ ; L j+l

=T, = P 3 - ante sinea T
particular, T, = T, (Sim, -:{m) 7ith 5! € jim’ ané, since T, €

. ' , . L B
§exi‘t s e have by hypothesis P! (') = binﬁ X;TCX . This con~
pletes the »roof,

This theoren applies to an arhitrer;: anbstructure; in se:eral,

nowever, 1t will not be easy to apply it arbitrzrly, becouse the

]

., 4 o 3 -
onelregency of eveTy

consistency of a sibstructure reqguires the

cont»ol path, and there may be an infinite mwther of these, Lo par-

ticular, the epnlicatlion of the %theorem to the sibstracliire conciz-
ting of ’t':he initial and terninal nodes alo:-le, vithiin e o anh of
the program, amo m;ts tc the obvious but reiotielr uselcors statary nt
that one nay "‘JCI’in sing o vrosrar by lookiang at every noralble cdms

putition sequenfes What we nond is a condition on cubsh» ctimwes

soarantees Thint the totul mumber of Iistinet contyr»l notihs
be Tinite, The following definition 2nd thvorem are ‘roed o1 an
observation nagte by- several authors which seens to have Tirst op-
peared in print in Xing's thesis U].

DEFITITICN. The substruct. :r-e'&. for the wwogrm P iz guf-

ricient if Wb obtain an acyclic graph by rensving fro- the :ra~h of

< LA
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P the nodes associntod with preconditions of?L and all TLinvs ine
vo’lvmb these nodes,

TICREM, There are only a finite number of distinet contral
paths of a sufficient sudbstructire,

P“OOF. Each of the control paths, as’de frori the ends > t'e
path, involves distinct nodes of the graph, for if any two of t'ese
nodes werc the same, then they and all nodes oceurring hetween ther

in the path wonld costitute a directed cyele in the couh

)
[

)
@]
e
P
N

{

progran after the nodes corresponding to th

moved, contradicting the definltlon a2bove, Iach control n»atl is

L

.

therefore indemed by its beginning, its end, snd a distiact finite
subset of the finite graph of the mrogram, =nd the Botal number of
such patns is therofore finite, completing the ~roof, We ramrk thnod

)

a substructure which is not sufficient must hove zn iafiaite vrmler

*f
»

of control paths provided that from every choteirnt

e

of The o~
gran there Is a path to a termination statement and sinilarly thero

s i

v

b

i1s a path from the start statewent of the program to Fi. This

reasonzvle condition, rince any Fi not satisfi-ing these conlitingg

ney be elirrinated Ifrow the program if it is to be ~rove” correct,
Thus, in a sense, the condition on o substvictire of being cufficiont
is "hest possible" at this point,

There are neny ways of obtaining a sufficient subeiruct ire
without irawing the graph of the program, such as:

(1) Associzting a precondltion with every bockward irsisfer

n the progran,
(2) Associa bing a preconci tion with every label in e w-o - ran
(this doesinot.work in assenbly languages 1l constructions lavolving
a current locativn cymbol * ~- such ag *+3 ~= are 21lowed).

(3) Acsociating a precondition vith every juuciion statemont
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in the'prdgrém, a junction‘statement being one which can be reached
'from more than one imwediately mreceding statement (this always
gives only a finite number of control paths which need to be

looked at, but is sufficient only in the presence of the grach

conneciedness condition mentioned above).

(4+) Associating a precondition with every branch (or condi-

ot
)

onal statement) in the program; the same considerations holi as
.in the previous case, Note that by aséociating a2 przcondition with
every junction statement and with every branch, we obizin a bonus?
every statement not a2 jJunction or a branch is eonfained in exactly
one control path of the resulting substructnure, again provided that
the graph is connected as defined above, Thus in 2 sense there 1ls

no wasted work in this case,



eruminatiop of Alzorithms

We now turn to the question of proving that owr programs,
or what 1is the seme, our computation sequences, terminate., It is
clear that this will always be the case when there are no directed
eyclee in the graph of the progran, A directed cycle-Iin the graph
ofarpedgram dg ¢alled a Joop. Most loops in programs have "con-
trolled varisbles" which advance through = certain range until they
rre.ach Thelr goal, For a loop to be executed from I =1 to I = 100,
we may consider the state conditions §I=1%, §1=23, ..., §I=100%;
as the progran progrevses, the stotes appesring in the eomputation
sequence are ?rogressively in each of these subsets of ‘r, and this
fact may be used to show that the program "progresges normally.™
If the program contains two loops, one after the other, and each

one Involving the same controlled varisblie I, then our conditions

)]

must also be conditions of the progran counter A, whieh restriet A
to be within the first loop or within the second,

We are thus led to the general concent of a collection of

s .vﬁ‘\zz‘
"‘ %

lection, In the above example, ve would have had iIzﬂ-é iIzk} for

3 ® P, together with an order rélationion this coi-

J@k, and the condition that the program progresses normally as
examined above becomes the statement: If T § ‘3’1 and P(T) € :E.,
then we must have ., & g e note, for later consideration, that
this is st1ill not enough, because we might have Y. = Yz.) The
collection ’;‘Ei of the example ls finite, but this ts clearly not
_‘:,.nﬁ"aﬂmys £op mpze, we m,gm have talen the conditions {Irk}

B WAL e wmbare ¥y G desesuding ‘oxder, m«omwm
:m‘t»ﬁﬁﬂas e Mdi‘tion’ tnqt ‘i;hm-e aTe N Minj e &Mmasing
wmeﬁo%—mcmts 31. &L - mo; hwem, satisfies a sbromger ‘i

R 508 ﬁwﬂmwamrm,mmmw ,_‘_

;3

e . s g Ay =t o £ e S R T
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namely, that given any ?i there exists for it an ahzolute upper
“bound on the lengths of all ordered chains starting w:‘.tﬁ 3’1., We
therefore make the following definition, o
bEFIN ION, Let G he an arbi\trary directed graph, We éay that
G has loecally bounded chains if for each x € G there exicts 2 na-

tural number b such that no directed path beginning at X hac lanzth
greater than D, | |

A graph with locally hounded chains musrt be acyelic, ecouse
a graph with directed cycles has infinite directed paths, If maly
therefore be considered as a partially ordered set, and for each
X € Gy the corregsponding b is also the bound for the lengths of
ordered chains starting with x, In particular, any finite zcyclic
graph (or partially ordered set) satisfies this conditilonj so do
the natural numbers in descending orders so do the strings in any
programming .language in descending order of their F_en‘gths; so does
any collectioh of finite sets in descending order of inelusion, Any
finite or infinite disjoint union of graphs with locally hounded
chains also has locally bounded chains, ,

We first examire the case in which we may actua iy req/uire
that 33 )?i, which 1s eséentially the case examined by Tloyd )
in his discussion of termination of algorithms. . ‘

DEFINTTION, A"fg:ygg_rd progress structure for a program P on
Teci R P 1s an ordered class of state conditions 3’1 ¢ 3 heving
| locally bounded chains, and such that (S, F;) & 31 implies P(S, Fi)
= (Pi(S),.Ni(S))e ’33)‘3-1 whenever N;(S) is defined.,

The Forward Progress lemma may now be stated. .

_ IEMMA, Let P be a program on T ,8 Y P, let P! be the compu-
tation of P with respect to Fp = (Pyy N,) € Py and let 1’ c In 'U::Flz .
Then Pt () is defined (i, e., P'(3?) is definzd for each S1 &R ")
if and only if (87, Pl)’ for each o' € 4, is contained in one of -
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the state conditions of a forward progress structure for P,

- PROOF. First of all, suppose that P'(§') 1s defined, Iet
S € 8'; then there exist states Tys ooe9 T, € A x P, such that
To= (5, F))y T, = P, ) for 1§14k, since G T i\r},
we have Toé 3’, and since P 1s a program on X', we have therefore
T, & T, Oéiﬁk, We construct a graph from the sets of the form
i’.l‘} for all T, appearing in all such sequences, setting {Ti}"
iTj}‘if and only 1f T,
chains, because in fact the only chains starting at {Ti} lead

e P(Ti). This graph has locally bhounded

forward through the finite computation sequence which contains T 59

and the length of this sequence may therefore serve as the local

bound, For each T, = (51, F}), where F} = (P!, Nf), I WD) is

defined, then Tyer = P(T ) 1s defined, and P({T '§)> {T} Thus

the given graph is a forward progress structure.
Conversely, suppose that the indieated forward progress

strueture exists, et S @ &7, T = (5, P e Ty = P(T, ) for &

1 ¥ 0; we must show that the seque*lce Ti terminates, since ' €
3’ Q '§X=Fl§, we have TO & 3’; since P is a program on ‘S’, we

" therefore have T &€ J' for the entire computation sequence Ti

By hypothesis, T, 1s contained in some 33 in the forward progress
s’crueture, and there is an upper bound, b, on the lengths of
paths starting at 3 We proceed by induetion on b, starting

~ with an arbitrary T g = = (87 $o Ft ]

where F; = (Ps, r-r;). If b = O, then 33 is terminal, which implies

that NE (S.!i) is n.t lelinedy so that the computation sequence ends

’

) in this compitation sequence,

with T.. Otherwise, consider P(I ) =T_ .3 we luve T 1€ 31) 3T

.9

3 j+1 it : J

and hence there is a directed path from ’33. to 31:’ Thie path oo be
to forn = »ath wrose

combined with an arbitrary path st:t«rting\at 3'1_
length is not greater than b, and hence the bound on the lengths of
paths starting at jk is strictly less than b. 3y the inductive hy=

pothesis, the sequence starting with T is finite, and thus tle

T3+l
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1.

sequence starting with T, is finife, Ir moriin-dnr, Tl =8 ence

sterting with TO is finite; this completes tl oroof,

. . .

The termination condition

iven ahove, Lnwvelving loenlly
boundes chailns, ic eqnivalent to two secningliy nore feneral fore

minatinn eonditions proposed by Floyd in E’J. The firat of {hese

-

is the finite chain en-fdition, Ain oxarple of » graph which hos Shis
ondition, but not the Iocally bounted eholn eo-2ifion, s the setl
of all natwral numbers in descending order, togetnor vith 88, vhere
ve write @ =P n for every nat. rel nmber n, Gie noy eve:n chjose
any co:mitable ordinal number vhatsoever and view the oot of 217

ordinals less then it, writing a<P b vhenever ~ D b, az 2 set with

this condition, We have shown that for ench terninting 2l--»3itim

tlere exicts = Torvard orogress structre delflned as having Joecclly

bounded elwing, ~nd 11 of our ~etual examples will be o7 this Torm,
Hlorevery il 2 forward nrogress siruct wre were define’ niere renerally,
to have nerely the finite chala condition, existence of ¢ ch =

struet ire wounld still guainntee ternination ~F the -1 wriths as
above, Vo fee this, ve use an Indirect proof, Let lL Shat cibelngs
of the forward progress s»rzctuve consisting of rtate cnnCit’ons 1!{
such that each of them eoniasing on eloment TO Tros whiieh % go- h
guence Ti 22 P(Ti~l)’ 1Q 0, ic in: injte Thon W must cont-in o

maximel element, since, 2s we saw before, we could otherwiece con-

struet an infinite chain induetively., Starting From this mavinnl

'.Ja
d'
D
l"’
J
~4
N,
Q2
R
<2
(.

element 1!1 and 1ts 2ssociated T o e conl? dmme
contradiction by ecensidering P(io).

The other condition inty

rofuced by Floyd ig el of wrlil-ordering

This is equivalent t- the finitz chain conition ~wovwide” that ihe
civen set -~ in this ease, the forws»d proyress atr ot v -~ in
zlready gimply ordered, It therefore follov: from our nrevic s

ergunent that the oxistence of o rell-ondorcd formrax' nosnrens
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, - ; PR R ~ e, e . -
etrictire ia sifficient Tor ter-i ation, Tonmvaeli s, o ars v e

congtruct, for any termivating N.,:orithm, a2 vo 1l ~ordered Torwerd
progrese structure with locall - bf.mnﬂc»ri‘ cining, Yhir enn be dong
sLlg jiols g I the Forvar: Progoress lenmag
1ightl; 1ifying the proof of the Forwaxr< Prog I 3
however, the easiest proof is rrobvably the Tfollowing. Let {:Jl} e
any forward progress structure; we construet 2 new -~truect e {ﬂ 9
in vhich the u arc indexed by the natursl auwmbers, by wwiting
T8 'u, whenever T € 3' for which the loecal bound b ac=rociated
with ’3 is 1, and u -)1‘, if 1»j. It is now ensy to se. thnt
the ‘u form a for mrd progress structure for the sane ~lgoritihn,

'

zhdy of course, the ’u are well=ordered,
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Impoced Order and iformsl Progresg

The forward v»rogress cond’tion 'x > 34 ie ot rerlly very
]

J -

eful, In many zitastions, all thot we con ot 18 33 > 3-7' Tor
exsmnle, let J be the contreolleq variable in o loop, Iot J. o the

state concition {J‘zi} over sone vaage of the integers i, -7 lof

P(S, o Fm) € ?j for (u,l, ﬁ”) € G I7 the orly statoente whiek

I

affect J are of the Turm J € J'+c, vhore ¢ is counstnut, then cer—
trinly J, 2 3,, but it Ls quite poncible that ‘3’ 'I Thig will

bo true If ¥ = (Pr s il ) vhere P 15 ot of % ?oz'*n J€= g, OF
i P :

[t

coarsey in guch & case the nrogroim wey not tey Lo-te b o113 are-
cificaily, it nay et stueck in »n endless loop innide the ovipinn

loop, provided that the inner loop does pot conte i nny scrherents

vhich increment J, The termination of the neogram In this cosz

-

denends, then, on vhether there are 2ny directed cycles lef® in
the program if the links corresnonding teo cuch shiatenente e re-
moved from the graph, If this condition holds, vhere 3 2T as

-

above, then the program should terminate, Tihls f'zrg;u.me.mt rotivates The

following definitions of imposed ordar and neriml nrozress obeuetioe,

DAFTHTITION, Let P he a2 program on 2 ; ond let J* C A)t p (P

is not .eccssarily a vrozram on Q'). Consider the ;rarl Jelined

followzs its nodaus ore hthe ele:f"_entr‘ of P, and ¥
there exists T € 8/, 7 = (8, F ), with P(T) = (3', ¥,) & J*.

oo

Supvrose that this granh has no dlI‘:’.‘:C ted cycles,
ordered graph, Then wve say that ' imposes an order on F,

-"‘ N\
INPRIN nr

<

. &e Consider any eleront ? of » forvard »osress olruce

ture, Then the granh of the above exauple hng ne lin's whnicoever,
za¢ thus h~s no Airected cyeles, Therofire 3; ipses ~n odlcr o P,
Z.‘.I\’_'mI‘L.. Consiier the followine proyram Tor sonion Lhe

real numbers A(l) through A(@): SUM€0; At SUMESIM+A(T); Té I+,
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1f T4y then go to As 0TOP, (llote that we huve purposefully for-

gotten to initialize Ij we will retiorn to this noint later,)

program has the following graphs

e X XX ¥
\—/

This is not an ordcred graph, since it hes o “irected cycle, Yor=

ever, for any integer %k, the stote condition 3J=k% invores on ordor

on the ziven vnrogram, In fact, the graph of tie ~bove aesfinition 1is

Note that this graph is obtained from the gravrh of the procram by
removing certein linkss we may say, 1m“ormﬂl_Ly ‘:.Tnat the e-ndition
§T=kt "cuts the graph" so as to leave an ordered g,r h orenalining,

DZI'INIT 101, A normal progress structure for a program P on

T c L x P is an ordered class of qmtc conditions 3' C It having

locally obounded chalnsy such thet each :( iposes an order on P,

such that (S, _,) € 3 implies P(S, Fi) = (‘{(w, 1*’«’5‘:55)) € ’37. >3
whenever N'(S) is c,v,ef:ned, ”
SXAMPIL 1. A Torward nrogress structire ig alucys = noyonl

progres: ctructare, The condition Xj >7X. 1:**77cs ’;3 2% s oo
i
e

.,J ’_v.

each '31 Imposes an orcder on P, ns mentioned n e

oo AMPIE 2, Consider the progrsm given nbove for cuiving the

By .

rexl nunbers 4(1) through A{R). Lot us coasider She stcie cuniiti
C, = {I=1} for all 1. If.we order these in the usual Wiy, 1..e.,
wherever 1> j, then the condi tion '3’ A hewe Laosn-

<

tisfled. Speeific:lly, for =y (5, P € J , of F' R R Rt

e o
then P(3, T1) € T.. As nenticned zhove, each I, fincses oo oarder

his i
on P, The collection of all the C. as above “ocas vot . hove Joenily
i

bounded chains, hecause 1 cen beeone indef! itely Tnrse, We oy,
’

9.
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ho':.r(.:ver, construet a normal progress ctruct e In the Totloving i,
let CY be the state condltion on the -rocra: corntor X Thot regirietce

.

t to indicaté tho strtement I€&I+l or sny wicerdis- ~trtene 4, Tot

3

the corplerent of C! in K P o 0" Lot C! = C_ @ 2F 7 2ok oF =

C. N C", We order the C

Poond th OV Uy aneelfriag, Tiret
i 1 : o
C' 4 Ci +1 for each,l,y so that 1f (68, Fz)€:C8 Shevre T, i~ tlhc sinbe.~ %

I@IJ.- tien P, F,) € C":’u> Cl; =nd, second, that CU &€ L} fox coeh

-7
i€, so that if (' ) 4 Ct’L here 'E."i ig the 12 stonenent then

Fi) € CJ{ > C'_J{. In .:x_ll other cases (5, F,) € K inplics P(, I.)

.’ 2
- A
105:rc hos loeel I B el

€ K, wiere K 1s -ny C! or any C%. This str

o

ains, because for any 1  n the chains go 001 C
ese -’ '-ﬂ} Cn-!—l’ and there they stop; whereas if i & n the onlr

wnd enen OV Immaces ~n o order

i i Cf chn f Jangth 2, Faeh C! n : ¢
chain is Ci—) 1.1 of lencth 2. Feen C! T imnoces
on Py and the C; and the C'i' Cheralore constitube a norinal progress

structure,
It may seem that we have done more work tian we s~mehow should
haves and this, in fzet, is true. The giveir looap hns the ronirollied

variable I, and we will shortly be proving soue theorems which

gusrantee the exlistence of a noraal »rogress struchtare hoarvor e

have = controlled expression (which reneralizes the ilea of cow’““ oSRBNVEE
varlatle) sotisfying certain very cnaeral conditions,. ol DO ITeNs
structures are lmportsnt because, as we shnll show, the nors-l

progress condition iz necessary snd sufficients vhen there cre no

ctr
bl
"J
..)
9.4

clearly vicible controlled exprcszi ons, it may be necerssarg

v

hack on the general normal progress concept, uvhich is, in =n; ~vent,

ec.sier to worl: =sith then forward nrorress. We rec.;zd.. et in osetiting
up the ahove loop, we did not initinlize I, Wheat e hsve 2 oetivalr

rroved, then, is that, dven 1f we don't initialize I, the ven
prozran will ,alw'ays terminate, even though the ~pswers “w- e wrong,

This condition may be inmportant, as whei a prograimier sicheg, withoud
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E)

peving sebup anylyreconditions Lo bie o roi, to moke'd debug-

ging run with the secire knowledge that it will =% loen »nllesely,
DAPIE 3. Iet us change the preceding ayooaple by ~aing 2

new statement at tha veginning which initializes I To I, In this

case, the CJ!_ and the C‘I of the nreceding examvle de aot coatitile

5 normal pz*ogréss structure, ..JPQlel.‘..lLy, let (5, 7 7y Y& C 19 “There
FJ is the new first statement, Then P(5, F JE C C,, bec I s
been set %o 1; »nd we may not hove C ”12 C,y specifical s ~hon i > 1.
To remedy this, let D be the ition that the DrOELEN 20 NTOT .

indicates the new Tirst statement, wnd let D} = -~ Dy,

g1t
i
We write D& DJY; then the D} and the DY, orderocd i

7.
Dyi vhe i i

thnt the C! nnd the C" wera, together with D & D:'L, Torns o a0l

nrogress structure,

n the eame way

We now state tie Norme'l Progress Loing .

LML, Any proisran having a forward »rogrees struet e hes

~T .

o normal progress stricture and conversely., iny element of any set

zm alament »f some

belonging to either struct.re mey he taken a

O]

~

set belonging to the other,
PIIOOF, As we sov in Bxample 1 ahove, any Torward nmograss

struetre 1 nrmal ses stroetore, Converselwr, 1ot 7

N .b“ ..C 1re S a nnrmaJd. ﬂI‘OnguS S oI I1Cy ].I‘C. OV I'SG...U 9 .U i

a normal progress structiwes; for each 3{ 2117 eac’y I‘ & P "afine

313 =3, AN-T J} e order the T, ;o speedfying Sl 3,,3 3..

[X

it 38.)’30 An the glven formal progress struetire, or if § = 3;

.

and F p Fd in the order which is imposed by‘si on tle zraph of
Lat

the prog ram. Then the J., involve exactly the sune elanentis T 8

1]

8 X P os do the 3 » The gtrueture 313 has locadly T ad ehviiang

1o Thet, Af b ois the hoimd nssocinted with = sarticalor ¥, in Lhne

P

normal Drogress structiure zand g is the nurier of stotorerits in
the progrem, then ba is tre hound az-ocinted with rny of the 3.,'7

for this volue nf 1, IF 8, 7$¢.J whero TA = (P, [18), ond
‘ a 13°? A 3§ a
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Né(s) 15 defined, then P(S, Fg) = (61, F2)& §, , where 3, C 'S |
and g C'x'.; here «ither 'Sm> ’Si’ in which case 3 >’3 j’ or else
er 31, in which case there is a directed path {of _..or.,:,t“ 1) from

F-t

o;der imposed by 3 on P, and thus again 3mn> 3'.3.. This connietes

to F in the graoh of the program which indicates Fn} F. in the

[

the pro of.

COROLIALY. Let P be a program on P € .xx P,.let P! be the
conputation of P with respeet to Fl = (Pl, N.) & Py, and let j' [ =4
Tn i}\#Fl . Then P'(§!) is defined 1T and l‘llj it (e, FT), for
esch 5 € §', is contained in sne of the state coniitions of a
-normal progress struet?zre far P, '

We shall turn part of this derocllary inte a definition, a

statement Fi of @ progran P on 3’ will be ealled an entry point

i

for .a normal progress “tvucture for P if (', F ), for every

St 531 (vhere 8 is the precondition awocn_utcd with Fi by z'),

1g contained in one of the state conditions of that normal prorsress
structnre, A normal progress structure for which everz statement of
the program is an pntry point will be call ed universal, A nrosrenm on 3‘
has a universal no‘rma’f rrogress structure if and only if it aJ.wu,ys
terminates when started -iﬂ?; a PTCsiral on":f:ﬂx P hes a universal
nowaal progress structure if and only if its computation is a totel
function., As we have seen above, any program whose graph is .ordered
8atisfieg this condition,: -
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Any finite or infinite disjoint wnion of normnl procress
structures 1s itself 2 normal progress structire, It is therofore
possible to set up different normal progress structires for Aif-
ferent subsets of xi. One can also parametrize a2 norral progresc
structire, so that its slze or its structure depeond on the valucs

of varisbles which make up the condition 3’.

nrogran P onx

«

A universal normal progress structure for a
is a normal progress strueture which inclndes (S, Pl) for ever
S é 2. A program hes a universal normal progress structure 17 and

only if its computation is a total funetion -- i, e,, it alwsys

terminates, As wo have seen ahove, any nrogram whose

S

‘dercd has a universal normal progress structure, ithich is, in foct,

-

a finite forwvard progress structure,

Py

A forward (or normal) progress seguence is a forword (or

nornal) progress structure which is lincarly ordered, i, @., for
every 31 and 'Jj either 31 >ixj, ’Ii = 'xj’ or '.Ii { ’xj' Any
finite or countable forward (or normal) progress structire may be
re-ordered gso that it hecomes a forward (or normal) progress
sequences in the finite case this follows from Sz»ilrajn's throren

on partially ordered sets, while in the countahle

case it follows from a relatively easy genera].iza.tioﬁ: any greph
with locally bounded chains may »e mapped 1n a one-to~one, order=rre-
serving meEnngé? onts the natural rombers:in descending order. -This ..

map max be constructed inductively on the local bound for chving,
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The Verification Theorem

T nl T kel S ’ ﬁ | | S 4.9

THEQOREM, Let P be a program on 3 CAR P, let P! be the
L= (P, 1) 6By ane lot fe g,
3” ‘8 Then P({!) € &" (4. c., for each 5 € 8/, P(8) i~ defined
and 1s in &') if and only if there exists a :ormal nrogross ntruac-
ture {3‘% for P witr each 3 ¢ Y, such thet (Y, P, ) is con-
tained in the union of the S , and in addition we nave,x Cx.,,

L

computation of P with respect to F

vhere % is the precondition indueced by the consistent vniversal

cendition 3’ at Fl, and S"eﬁ“ for each 8" such that (B", J’j) é
%' for scme F_ for ¥

J

PROQOI", This now follows i:mediately Tron 'Floyd's Theot e

which the corresncading “I (B") 1s pot Aefd

tizge<- and the Hormal Progress Lemma given nbove, We note that in
both of the subdivisions of the correctness problea for alcorithns,
the given technigues -- consisterncy in the one ease, sné normal
!

progreszs in the other -~ are not only sufficient, bat nccegsary
as well,

In 2pplying the Verification Thf:-orer.-;, we need one further
const:riction which we have nct discussed es yeh: the ider of fre-

‘toriirg o nrogram into sections.
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Factor Graphg, Factor Prograias, and sSecticas

Let G be any granh and let 8 be a decunnosition of G, There
is then an induced graph structure on a g i which, iIf 2. & 3, D6
&, then Dl-) D2 if and only if there exist Gl‘ Dl nnd C-_ & D, with
Gl.’ Gz. We call this graph the factor praph of G with respect 7:0&

Let P be a progran on S €AW P, znd lot ¥ be a Jecommnonition
of P, Let D & a; then ve mz:,r make D Into 2 nrogr=m on 1 €Y a: fol-
ll.ows. The eisnents F,/ € D are associated with mirs (P, ), hore
Pi is as before while Qi(s) = Nj
Qi(S) to be 1mdefine(d vhenever EIi(S) ¢ D, Such a nrogran is called

(3) whenever Nﬁ (3) &€Dj; we toke

a section of P, If Fié D, then F, is an entry (or »n entry noint)

of D if and only if there exists F, @ Py F ¢ D, with ¥ _~»F_in P,

Now suppose that 3 1s zuch that each sectlon D€ a‘zw ot .:,;\-,t ane
| entry, ILet Dléﬁhave no entries and let F_, [ 3 Dl’ For each D éa
'»let PD be the computation of the section D—’with respect to its entry,
if it hes ones otherwise b, is the pa rtial function defined nowhere,
ﬁnless D = Dys in which case we take Py to be the computation of Dl
with respeet to Fl Let g be the rrecondition associated with F.
by F.Ir S 5,8 and F is the entry point of D, we define Iyt 3"3

eeeg L _of P
i)

by ‘uD (5) = D!, where the computation seguence T 3

ioke
starting wi‘ch T = (S, FD) ends with (St, F') for some F' € D!

(clearly, of cowrse, then F? :F‘D,),, Then the factor program of P
ona with entry F F is defined to be the program whose statoments nro
the mirs (p o IID) for all D € . The graph of this factor pro ran
1s the factor graph of P with respect toy.

Sectioné of & program are somevwhat analogous to cosets of 2

grouv wi h respect %o a subgroip, excent that they do not 211 have "

to be the same size, Fowever, just as a factor group is 2 set of
cosets under an induced group struct.ire, so o Tachtor program is n

set of seetions under an induced prosran structire,



1o

- T3 -

THLOREM. Let Q he the factor nrogram of P on $ it

Then the eomnutation of & with resnect to i

H which containe T

EN

1s the sane as tho cormutation

P00, Let the twe corputations mentioned in iie

denoted by Q' and P! respeetively, ~nd let ’0, cooy Tn
putation sequence Tor {, vwith T, = (Si, DJ!_), in which D
Fq3 b definition, F, is the entz'}; Zor Di. We hove Q(i‘i
D£+l), 0£1£n, and @' (8,) = PI(5,), where D! = (Pf, wl

s o Y

shoer PG ) = Pri(sﬁ)’ Here P! iz the compubatiov: of tle

70
with respeet to its entry F:!L, and this means

t
putation sequence T Tor this wvalve of 1, 04j4rm,, o

ij

We have T.

= (8 e )
?, 1m_,

i
not « f‘inod in t‘ne section D!,

= (8", ") lor some ™ ¢ D;,
where T o= (P, IM)s
cither M (E") is not ielined in the program P, or alse

in P for some F* ¢ D! and hence T! ¢ ! (5 ) == DY,

i $41
case, we have P'(5") Pi(si)
implies that Tt is the entry of D!

= . Hénecé ‘the sequence Thotr *+os Tp

1+1? i+1

easy T.gy cces T,L;. ig the computatlion segience ol P zhe
n
Tag = (Bgs FL ) Gy P, Yo If M (") 2 chove i not cefs

E S SO . " 11 o 1 — o
‘u}xe.m,'. i = n SNo. P (S ) = Pn\sl,l),

zince Tm Is tie end o
computation sequeme of P, we also have P =
Pt

Conversely, let T!, ..., T

so)

he any. comnutaition re

0

tart

LAl

(."Q

= T, T t = (S, 1Y 4 e » s heom vaniriharad

T IfTY = r with I y ag be-m ronwiborod

O. N }(ui, i 5 7 1 é 3 . has be™ TRIpCTren
reauwner T = (5F with ™! 1 as T

i+1 ( isa? 1’+'!)’ ‘ 1+1 ¢ ):gr’ I LSS

or oS Tj " O’ setting m, = 1k, if u‘x #D_. IT T! I ‘s")eo

hance T a2 (T

with Th = (81, F;)3 we renuwsber *he TF -~ 071

ch entry

b e
~ OJ..\\,':\:'.U

theorem te
De: 1N COoNe
' eomtalne
1

peting {.
) (R _1’

x.e po 4
) we must

cection DY

:n- (un) Al §

this T bier

ol (: ") )

? T':()’ oo 3
‘./.ﬂo A

: R
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. . . m m ' .‘.,,'n
nmbprpﬂ as TOO, oao, TOIAIO, TlO? 0‘0, *,0007 4';10, oao’ lr}:‘n’ ’ ..9

setting each Tij = (S .c*ij), all F,. for eceh fixed 1, 0£j4m

i3

belong to the seme member DI of the decorposition, Setting Fy. =
et

(p*, W), we bave I (Simi) ¢ D;_ in P, for 1 # n, and hence N (eimi)

is undefined in D!j if i = m, then W' (S__ ) is undefined in P and

i
hence also in Df. Thus in either case Tio’ eavy Ls. 12 the compu-

.’-mi -
g \ o ) ] R t (g = 1a., =9 .
tation sequence of 8,4 in D, and Pi('gio)- P (olmi) 5441,0 for
i # n, where P{ is tho computation of DI, while if 1 = n, PI( )

= PG, ) = P’(oo) If T" = (“" 1") 1¢ the compubation zejuence

of SO in Q, wé now show inductively that T "‘" = T,43 this ig clewr

for 1 = 0, If T"; = T, 509 then, writing 1*3 = (P';, M) and using the
[3] 9] :

definition of & factor program, we have P" b_io) = Sj-z-l,O’ 85 LDLVE,

while‘ N‘JI (»‘f’jo) = Il’ completing the L-JJJC».:.OH, In particular, ’l"” =

TnO z?.nd. Q'(SO) = 'Pi'l(ﬁllo/) = P? (go)., This e ompl@tes' the “oreof,

TILOREM., Let P be a program on JtcC A x Py, and 1ot Q be tle

factor- program ¢f P oncﬁ with the entz‘y Fl ¢ ‘Dl’ D_E «@, Supnoge

b
e

-

“%hat D. ig an entry Tor a normal progress struetire on Qe it 1ite~

1

‘wise, for euch cection D, € oﬁ, its entry Fi is cn antyy Tor o normal

progress structire on D i°~ Then F_. is an entry for a normnl neniroess
atruet: ire on P
D’O I's Let T (o, i .) € T'. We s to prove that the com~

putation seQu‘ence oer-vm):m" Vluh T, must terminctes unier these

0
1" wvill be an entry for a mor’u:l progress strue

conditions, F

’3

tyurg on

1

P, Since‘}?l is the entry of Dl’ there is. 2 co:putation se,usnce

TO = TOO’ T,Qly.’o“, Ttﬁ)mo in Dl; if TOmO ig not the ¢nd of the ori-

ginal computation soguence, the next element of this soguned i

1 (o 10? 110) wherea F_m is the entry »f & o sechion nf “he

programn, Sinee this is ah entry for a normal pz*o;res: elructh re :f‘or

~

]

thot sectiony there is a computation seqguencs J.-O, Tﬂ, cooy T

that sectilon, The original computation sequence may thug he
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¢
Tt xa

written To = TOO"°'°’ Tomo, Tlo’ seoy oeoy AN Hls corrosponls,

ac in the proof of the preceding theorem, to o computaliion sduuece
00 = , D,). since

e

TOO’ TlO’ vsey iﬁ the Tactor program y vhere T
Dl is en entry for a normal progress structire on Q, this seguence
nust teraminate, and this means, again as in the pfocaﬁing wroof,
that the original seqguence must terminate, This cornlstes the p?oof.
This theorem may he uged In analyzing vrograzms nhoving sections
or factor programs which have ordersd grovhs, As we hrve zeen, ony
prograr with an orderad graph automaticelly has a wriwversal nernnl
progress‘éfructure;-ln a typical casge, & progran might heve three
sectinons, such that the first and third ars ordered but the second
is not, while the factor program is.likewise ordered, Thus normal
progress of ne entiro Program is equlvalent to narmal vwrogress of

~

the gecond section alone,
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Contronlled Ixpresgiois

are Thin nat «:z.’ cenproli-

Controlled expressions in programs

&

izations of controlled variables in I'ORTHAN and ALGOL -- i, c.,
variables which appear in DO statements and for ctotenonts, The
generalization is necessary because in sowe proiT -3 ch ol is
exercised not by a single veriable hut by seversl, which- combine
in soms woy to form ~ cingle controlled expres~ion,

DuFINITION., Let Y be any set with ¢ sdaition (and therefore
also with multiplication by poscitive intn.mrs), ordercd I cuch
2 vay flw.t if dy by ¢ € Y with ¢ P O thers exists a vositive lu~
teger k such thst at+ke » b, Let P b~ » progranm on '3" C'.a R P, nnd
let e: x -> Y. "Suppose that for any statement F (P E I.Ti of P,
it (s, F, )€ T - §oxitk, then e(Pi(S)) 2 e(S). Suppose also that
there exists ¢ € ¥, ¢ » 9, such that an acyelic graph ic ohtained
by removing from the graph of the program all links Fi~>I“ =uch

. _ J
that (s, F,) &% and N,(8) = F, implies e(P,(5)) & e(s) + c, Then

e 1s a contgo;lgg expression fog P, If x & M and the erprescion e
defined by e(8) = S(x) for all 3 €.8 is a controlles cxpression
for P, then x is a controlled variable for D,

The axiom giveﬁ for the set Y is such that the integers, the
reals, or the ra*ionals will satisfy it. Anof}or rossible set Y is
the set of all floating point numbers on a glven computer in which
the fraction part of the number is strictly bounded (i. e., fits into
a given maximum numbgrvaf‘bits) bt the exponent part is unlimited
in size, under the usual rules of floating point zddition. As we
have'mentionod before, size limitations on nurmbers in actual com-
puters may be handled by specifying, as 2 preconcition Ter overy

statement iIn a program, that every wariable invelved In that statc=
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ment lies within the limits specified by the siven comvuicr,

The two axioms for controlled expressions arec zeera zat Ko yels

Note that it 1s not necessary for us to develop a duval theory of

nonotonical 1y decreasing expressions, becruce 1f e ig a decreacing

expression then ~e (i, e., the expression £: ¥ defined by £(3)

= ~(S) for 21l 3 6‘8) 1s an increasing expression, Aiﬁhoﬁgh the
rmonotonic condition is the usual one, 1t is by ne neans necessary
ve may have, for exomple, a contiolled axpression which vroceeds

erratic=lly, or "two steps Torward, one sten buek"™ toward its
such an expression is not covered‘by thils Jdefirition, The second

axlom says roughly that the values of e do not converge; clearly,

e

f the successive values of e were Y19 Yo eeey wherz the y; coa=
titute a monotonic sequonce converging td y € 7, on? the only tect
condition in the nrogram on e asked whether its velic was grester

than y, for examule, then e would not satisly thie axion, »xnd, in

fact, our progrem could enter an endless loop, Hote thwt if T 1z the

integers then we may alva ’s agsume ¢ = 1, repliacing the curdition
e(P;(8)) & o(S) + ¢ by e(P,(3)) » eS).

The foliowing threé theorens state trat o vroepram with ~ cun=-
troll=d evpression alvzrs terminates provides that this expraacion
sutizsfics some additional condition, It should be aoted that o enne

trolled expression ior a program P is owk winich satisfies the eonci~
tions fiven in thie dafinition over the ‘entire range of ~intements of
Po May programs will have DO loops, for Jeops, or fhe oo dvelont,

and eact of these will have

2+

controlled cxpression, bui tlese will
not be controlled expressions for the zntire »vrgramg nnch ene will

only D a controlled rxpressior for ts own

T ek B Y “oe
L0, At o naoononr:

in sveh a cage to fmuetor the glven progim 3.4 ~ ehisas, 45 which
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the loops are (some of) the sectionsj each loop can now be proved
terminating, and thus the entire program ternminztes, A

THEOREM. Let P be a program on Feldur, let e: A= v te

'a controlled expression for P, and for each F é P let,z be the

precondition associated with F by ¥, Let e's R#Y be euch that
eachg is contained in {e«(e'g and such that A(e?, B )n?(Pi,x )
= @ for each x Then P terminates when started in J',

This condition generalizes the most naturel condition for a
controlled variable: that it be bounded above, preferably by s con-
stant, For any actual computer, where Y iz the set of possible con-
tents of a computer word, such z constant alwveys exists, nrmely the
largest element of Y, If the upper bound is not constrnt, we hyno-
thes'ize nere that it be "effectively corstant"” in the sense that it
can never.change during the course of a progrium, It is clearly pos-
sible for a loop from I = 1 tarough N to be an endles:r..loop if
ingside it we keep jacking up the value of N, X

PROOF, Let 1 & O be an integer, let b @ Y, and consider the set
3, = {6, F)@ F¥: 0'(S) =beand bieL e(S) L b-(1-1)c}k, vhere
e is the constant aprearing in the definition of the controlled
expression e, We order the ?ib by writing Tib > 3 if 1 § (note
the reversal of order) and b = d, Under this ordering we shell now
shbw that the 3ib constitute a universal normal progress structure
for P, The structure is certainly universal, because if e(S8) = a and
e'(s) = b; for any (3, F’. ) €Y, then by hypothesis a € b, but tlere
exlsts a positive inteber k with atke P bj we then have (S, F ) €
3ib where 1 is equal to the least integer k having this p» onori‘

The structure also clearly has locally bomded cha fns, because Irom
any 'sib tte only chain goes from Tib@dgi-l,b»“"@ng"?lb, .
hence 1 is tie cssocisted local boud. et (3, T j) é sib, S, 1e
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P(s, Fj) = (s?, Fé); it is sufficient to show (Cf, F;'j) € 3"'11‘) for

m4 i, Setting F, = (¥, Nj), we have St = P,(8), and if § iz the.
Jd

3 J J

precondition associated with Fj by §', we have 3 € Xj. Thus Ale’, 81)

n r(Pj,Xj) = ¢ Inplies e'(3) = e'(Pj(S)) = e?(8!) = b3 also, by the

definition of a controlled expression, e(P,(3)) 2 e(3), unéd thus, by

o

the definition of the 3mb’ we have m £ 1, This completes the nroof,
THECREM. Let P be a program on 31 C 8Xx P, let c: A= ¥ be

a controlled.expression for P, and for each F_ € P let 3, be the

.
3 <
°
[ 3

precondition assoclatced with Fi by I, Let ef 3 27T be sueh that

Net, .Zi) N f(Pi, Xi) = ¢ for each gi’ and supvosc that an acyelic

graph is obtained by removing from the graph of P 211 lirls invol-

ving ncdes F, = (P,, ;) € P such that (S, F) €T and o8 > o' ()

i
implies that Ni(S) is not defined. Then P terminates when staricld
in'lx'o . N

This condition 1s sometimes easier to spot than the rrevious

one, The definition of a controlled expression implies that in any

controlled loop it should be im-ossible to escape incrementation of

the controlled expression by some minimudm increment, The present
theorem says that if in addition it is imrossible to escape coupa-
rison between the Gountrolled expreassion and some unser bound, and
transfer out of the lonp if it is gfeater than that upper bound,
then the loop must terninate,

PLOGF, Let §'31bZ he the universal normal rrogress struact we
of the preceding theorem, Jet Q bhe the set of all linke im P wiich
arc removed from the graoh of P by the hyprotlesized c.nastruction,
and corresponding to each Fk¢ Q wve consider T} = Gy T )E T
e(S) > et (S)}. We write ’31; >3, for a1l 3! »nd 2IL T, hile 3
>3n'1 if ané only if F., > Fm in the order imrosad on the grovh of
P = 3 by the fact that 1t is acyelie, Fiually, let T% = 3(5, 7))

_ s
€3 e(3) > e'(5)}and F € Q%, and vrite 3 >"31'F rer erel Y,
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We shall show that the expanded ordered structure cc wmrising the
‘Zi, y the 3;, and .’5’ constitutes a uvniversal nrrel ororrese rhruce
D z

ture Tor P, The structure is certainly wuniversal, since

D
N
o

i

t :‘j

o’

€T and e(S) < et (C) then (S, F, ) ig in some ':( g whiln if (L) >

e?(s) then (o, l" ) is in ‘3' if F, € Q and is ot: ;crwi in some J1.

k
~The structure has locslly brmnded chains hecance any ehain zton “iag
with ?ib can have no more than 1 alements hefore it rets into the
3{( or '3(’), and any chain in the 37' can have no more elevents in it
than there are statements in the given program, If <, )e ’K*b’

then either P(5,

I‘j) € 3’ >jib as before, or else P(3, ?j) €

VZ’ >7 1 OF T >’:{1b. If (s, F ) € fI'? then, setting I‘J (Pj’ N
ve have e(Pj(._,)) > e(s) 2 e'(p), and so P(S, I‘j) cannot be in T

j)’

1}
therefore, either it is in 3’6 P 3:'}, or else it is in 3’}‘:,‘ wvhers there
1s a directed path {(of length 1) from Fj to Fl_ in the zraph P - Q
and. thersfore '1(1': >'33. Finally, if (S, F ) ¢ 3-: where ¥ = (Pj, z-r_g),

then Nj (8) is undefined. This completesg the proof,

CUROLIATY. Let P be a program on §t & Ax Py 1et o ) £ B¢

be a controlled expression for P, 2nd Tor ench Fie P les 3 he tle

e

precondition aszociated with F, by . Iet e': AP T e cueh oot
alet, 8 ) n f(P., ﬂ ) —'@ for each g s and suppose Llnt cn -aselic

graph is obtained b:f removing from the gr“‘ noof P ol Tiive invole

ving nodes Fi& P such that the corresnoncing 35. I8 conbsded

§e€e'}. Then P torninates when startéd in 2.

POOF. The condition that &. is eontained in {e(n'} clenrlyr
implies, vacuously, that N., (s) is~not defined for eacl: 3 for widch
Gy F )& r and e () 2 et (S), because there nrc no such 1, The
corolliary thus reduces %o the theorem,

We may.use the corollary, ratier than i proesTing Ctheoran,

when the test or tests within a 700p are of tyne "ewl! op "un-



w

equal,y" rather then "grester thean" or "less than," or when they
involve auxilinr: camntities not “irecty raizted oo e contrelled
variavle, It 1s more closely rclatad in snirit oo the first f “le
~bove Eheorems thr To the second, and in fact is uueh ousier o
uge than this first theorem bhecruse tlie ¢ v iitin e el on’r niels
to e verified on 2 zufficient substruet re, Tils e~y "o done o3

. 2. A R EA S R - Y e -’ . s K ey
the szme tilre, and ucing the sme aehiueny, =s when ~onasisterey Io

)

checke

o)
[ )

A8 an exanmnle, coasider the followiag 2igor tim for sumiin:
the rezl numbers A(1l), co09 A(): T€ 0§ ST i€=0;5 A: T € Iil;
SUM ée SUM+A(I)5 LIL T/n then go to As 3TOP, We can then ~s-oclite

ith the lcbel A the precondition T n «nd nrove this consistent

i
since 2n acyelic gzraph is obtnined by renoviag the shotonent I€0I+1

cr
:‘.a
D
e
Q
3
O

iary may be ~oplied directly,

CHSO0REM, iel P be 2 nrogran on W' e x X P, let e: }-)Y sls}
a controlled expression for P, =nd for ezch Fi P lat 2“7 ve the
precondition asrociated with 7y by ', Lot efs $=P ¥ he ruch thot

each Xi is contained in %e(e'} and cuch that ﬁé'(P,(S))é et (s)
: i
for each P.. Then P terminates when started in J°t,

This theorem 1is oceasionally necessary vhern vorking with tiwre

40
indices which are moving toward each other -~ onc zlwore inereasing
and the other alu w8 decreasing, MNote that 1t is neceasirr Tor o’y

one of the two to be ~ cont trollsa exnression,

PROOF, This follows i:-wmod:;f_s.tel-v frnn tre first tleorei ~hove
by realizing that, unler the r;-.~ren conditiong, n~e! is n controlle
expression which is hounded by the constant zero, e co:id, of
covrse, have formnlated the sceond theorem sbove in Lhis war as well,

YWle notey on the renaral subject of coutrollad cxnpnan~i-ng
that the condition ef(P _(3)) 2 e(S) for n - ntrolied cx woscicon e
Is i »er'? te for ~uny Pi for which P(ii, ,ﬁ ) N Ae) = <t> 0 f.r"..eré.ygi iz
the preconditi ' .

o N
e(P.(5)) =e(s) for -123€ 8.
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The skeleton of a Program

DEFINITION, Let P be an arbitrary wrogran, and iet F. he a

statement of P such that there does not exist rur stuterent T é€ r

(—l-
)]
3
D
]
ct
o
L)
3
°

with F,«p» F,. in the zraph of P, Then F, is an ialtial stot
i J J .
Any initial stotement Fj of 2 program P mey be renoved to forn

=nC M. are the sane s

i 1

before, In particuler, we cannot have Ni(S, Fk) = F]. for ony (3, Fk),

for that would imply Fk-’ F 3 in the graph of the progream, Thus each

a nev program Q in which the funetions P

Ni may be defined in Q exactly =2s it was in P,

DEFINITION, The gkeleton of a nrogrem P with np initial state-

ments is defined to be Py the skeleton of a program P containing
the initial statement Fy 1s defined, recursively, to be the steleton
of the program ¢ obtainedxby rernoving Fj from P as ah~ve,

The proceszs of finding the skeleton nf 2~ program consists,
therefore, 1ln successively removing initilal statements fro the
progrém until there are none left, The renoved statements, houever
need not all be initial statements of the original prosrom, In partié
cular, the skeleton of a program whose graph is ordered is the null

set, because the smallest element of such a nrogram will nlunys be

~an initial stalement, ~nd wvhen this is removed the resu’t, if non-nnll,

will still be ordered .and will thus have « smal’est shoteoment of
its own,

LIEOREM, Any progran always terminstes if and only if its

skeleton always teraminates; ‘ne-,

This theorenm 1s used mainly in econ @etion with ernirellcd
evnressions, Any contrnlled eyprascion must ba oot n1:';c;. It is
therefore unlikely that any eympression will aver bé ooeontrolled
exvression for a program in vhich it is iaitislized, because its

valie before initialization 1s presiunbly umaown, and ndcht e
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larger than its value after initialization, By restricting our
attention to the ske_lé'ton‘ of the program, we avoid this problem
because the initializations in a progranm ar e normally nob part of
itg skeleton, |

PROOF, Let ‘TO’ Tl, sesy DA an arbitrary computation sequence
of the program P whose skeleton Q always terminatesj we show that
g = 650 FY)
for Fi‘ Q, then the sequence beginning with Ti terminates, so we

the given co'pntation sequence terminates, If any T

. may assume this is not the case, If'Ti does not terminate, the
program statements appearing in this sequence repeat themselves;
thus there #s-soime smaildst- 1,), 1{ j, such that T, = (Sk’ FI'{) for

1k &) end F! = Pl. Let F! be the first of the Fl, 1 &k £ J,

that is removed from P in the.course of forming the skeleton; if

k i

k¢ 1. But now we obtain a contradiction: Flt: should not have been

removed, because Ff{-—l is in all cases defined and F1:: l--)FI:_ in the

graph of P, This completes the proof,

F! = F!, we may take Fl'c = F‘;, and so in all cases we may assume
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FOLIRAY Iheratdon

Ve shall now opply dur general Theorens on cuntyalliad oX-
vressions to the spneifie case of DO steiemente,

rySae

Do INTTI0H, Let P be an ordared progran won. d = AT vy with

statements ,F.,, eooy » Let I denote the set of intzgers

n
-p and gq, inclusive, ar? if i €I, e cefine 1i® 3 to he Lhat
’ ’ ’ ’

-~

nenber of I whiech 1s congruent to 1+] modlo pig, iet % & I be such

trat V. = I, and let n.: A1, n

-r

e . 1
TOETE LD lters ion $D0 ﬁlx = *132 (or §z0 ﬁx RSP 3 hiea-

11, n,: £ =9I, Mo e

Dy

ever n, is the constant fmzct.m:: 1'13<L3) = 1) 1s “le oricred vooyos
J -

;ith staten-nts FO’ eroy P There P 3 eosy F “ra T elolew R

D h .~ R -,'-"y Ve -~ AINELER D N = e A‘_‘,,_‘ B R R
nf P, vhernes F'O In "he F.‘,.J.{_,L..-;te.»t §x€—n:§ 9 ;~:-' s T entgomeny

—

ontitlonnl JAL xfn then o to Fx.

- ; Uy, T Y
§Jg€-xec13}, and F:H_Q in the ¢

Hore explicitly, P (8) = Ut vhere SP(x) = n (3) ~»” 3t{z} -
(" pA 'POT Z * X W j :T O ) " =
( ) ?! ’ 1 0 ”) l I Ll‘l‘l -
tion whenever N (5) was undafincd in Py P _(3) = 5F wheore 50(x) =
55(}:)9113(3) and 5%(z) = 8(z) for z # x, with Nn-%l(g') = Fn+25 and
Phep 1s the ldentity, while N ,(S) = P whenever S(x)<n,(5) and

n+? (5) 1s otherwise undefined.

The Lollowing thcorem on ternination of FCTTTAH iterations
is snffieient, but is far from beluy necesr 2y it ew’ i lica, lLogoivar
most of the usuzl restrictions on FO TRAN iterations mode I —etocl

SA eyetens,

IILOGEH, The TOUTRAN Jterction §DO

o
™
it
\’

f
v, o>
i

- - Yoey ES - hi A KN o -~ 2. - v : -
aluays terninate, r~rovided thet tle Tollorins oo ;tv:,A v L
1 Falts
catisflieds
’
3 1Y, < - o : 3 2
1) The originsl wisred vrogren Poolirre har foofiqg,

-~ ~~
)
S

m-. ¥ o B R . Lo Rl o~ P B I e :
The T :2lion *13 oot ie T en -;1(1;) S 0 e LT,
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(3) For gny 8, we have nl(S) + n3(8)< Qe

(%) For any S, we have nQ(S) + 1\3(8) < q.

(5) For any 1, 1%i%&n, if Pi(S) = 5t, then 8! (x) = S(x),

(6) For any 1, 1414£n, we have n2(P1(S)) = n,(5),

Roughly, a FORTRAN iteration terminates if it contains no
non~terminating inner loop; if the increment is always positive
(a well-known special FORTRAN condition); if there can be no arith-
metic overflow when the controlled varilable 1s incrementedy and if
neither the controlled variable nor its maxinum value is ever changed
in any of the statements of the loop., It is not neceszary for the
initlal value of the controlled variable to be less than or egual
to its "meximum" valuej and it is not even necessary for *tie in-
crement to be a cons‘tan't; @8 Jou; as it remains strictly positive,

.00 Consider the decomposition of the given FOITTAIN itera-
tion into fFO%’ {Fl, seey Fn%’ anJ.-l}’ ,:a.nd an.{_?}. Since none of
FO’ F el Fn+2 ever branch to themselves, and since, by rrpothesis,
the original ordered program =lvays terminctes, it enffices €0 con-

sider the factor program, The graph of this facter procram is

Fo 1‘

R

We may place the preonndn tion §x<¢ q-n3‘§ at the statement P in thie
program. The consistency of this preconfht on follows from the foct
that F, sets x to n;, and nl(q--n3 by econdition (3) eluves; ihereas,
1f we go frow F ., to P, we have x & n,, end n2(q—n3 by coacition
(4+) 2bove, We have e  (P1(s)) = e, (5) for all 5 by eordition (5)
above, where P! is the computation of the original oriered vrogram,
and thus %x( q-z;3} is likewise o precondition for Lhe ~tatorment T
vhich sets x to x @ n,. Since n3> N, we have ~p &x (::ms <y, and
thus xQnB;x+n,3,

n+l.?
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For termipation, it s:uffices t« consider the shinioton of

the given program, so we mey elininste ' fro: consicderation, We

o

shall show that a controlled expression for the remali-ing section
is ey }-}Y, wnere ¥ is the set of all integers cnd ex(s) = 5(x)3
then we may apply the first of the ammwe theorems, ci- e e huve

shown that x € q everywhere within the loop. The set ¥ of o1° in-

tegers certsinly -satisfies the conditions on ™ set ¥ si-ei in the

definition of a controlled cxpression, Of the conditions or e_, we
may verify the first for the three remaining stetements; in fret,

we have shown above that e (P'(3)) = ex(S) for a1l 5, nd e (P_ (3]
> ex(S) Since the @ addltion is equivelent in this cnna o tle -+
edditiony and e, (P ,(3)) = e (8) follows fron the frct thut P .

3

1s The ldentity, The minimuin Increment € may be token %o be 1, -ad
1f we eliminate Pn-.hl fror the graph of the PIOETran, it Decoras

ac;clles here Pm_1 nny be eliminated because the two 7.rnmc of rddi-
tion are the sawe here snd because of eondition (6) r~h~ve. Tris com~

pletes the proof,

Ther= are sa number'of ‘gensralizations which may be madé. Coa~-
dition (3) 1s actually superfluous, although if we elimincte it we
2dd a rather uninteresting case: the ‘iniltial value 1s extrerely
large (¢, for instance), and the first time through the locp this
becames nezative by overflow; ~but sventunlly the loop tervi-rsosg
anyway, as this negative number is repeceatedly iacrearcd, Cb;.:.c.:,ti:;uz
(6) coulsl be replaced by n, (Pi(S)) £ r12(S), and the proof coes
through guch as befome, except that the third of the abrve &'icorers
1s used rather than the first. Condition (5) could also be replaced
by S‘(x)as(x), but this would complicate. the discus-~ion of intoer
overflow, and condition (&) would have to be changed tn mul» un for

this,



Storage Alloeation

The =ssignment of elements of a particular set ! inderlving

’

a p=set Ai ;Ea'vx to variables in a program is knowy s gtorapge
allocation., Computers generally impose size and accessihilitry 1iii-
tations on M;j storage allocation provides corpatihility in this
regard between & prograém and the couputer it runs on. Wynlceliv we

have a particular subset MY & M of "alloeatabls memory," where M?

= {cl, coey C l, and each Cy ds & cell with address or index 1,
1€ 314 m, Storage allocation then conslets in the assig.uent of r,
cells to each variable v in the vrogram, where T, 1s the gtoraze
reguirement of v, «nd is 1 for integers and renl numbers, 2 Tor

complex and double vrecision muibers, n for single real or -intéger
arrays. of dimension n, and so on, The address of the first oi %lhese
cells (almost always the first, by convention) then comes %the
value of the addréss.function associated with that varizble, The
address fuuction in turn is the findamental fiunction asroeintad with
~any veriable, and is used to produce exiressions snd assignrments in-
volving that variable,

Thréé types of storage allocation have been identifiecé (in

PL~I, for evample): static, automatic, and controllcd. The =7 iress
) =x 9 & aa bl

function associated with any variable under stntié nllocation ig a
congtant function, Alloca?ion of such variables mry proceed by as-
sizning to each variable v of this type the cells with ndirenses

Z through x+ry,~l, vhere X is the value of a counter k which iz in’-
tialized to zero, and then adding T, to the value of k so thnt 1t
¢ontinbiously contains the address of the first svails™lc cell. If

& program uses static allocation a2 also non~shatic ~rlleention,
then the staticelly 2llocated cells may, if desire’, b~ renoved from

whaet we specify to be our zllocatable memory.
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Controlled allocation involves the use of‘expliqit executable
statements which perform allocation, With each variable of this

type there is associsted an address cell which, at all tiwes, con-

tains the address of the variable -~ that is, the address of the
first of the T, cells allocsted to the variadble v, If the adrese
cell of v is a,y and r . = 1, the address function for v. is then
a(s) = S(av). For a =single real'or“inxeger’arrgjvof dimension 1,
where rv = n, a subserigted variable use involves v end an integer
p~functicn e, and the gssociated address expressiongis £(3) = 8(x)
+ e(5S). The address cell is itself subject to static zllocation,
at least if the name cof the variable is constant, ns it is in alge-
brale languages (but noty for evample, in SHOBOL, wherc new variable
nanes may he invented dynamically by programs), The cecntents of the
address cell are changed by allocatlon statemeonts, which are exe-
cutable. There are also de-allocation statements, which do not ‘
change the contents of the address cells directly, but kecep ftrack
of the available space for future allocation,

Autopatic allocation is a conceﬁt that was used in ALGCL
and has been carrizd over to PL-I and various other longusges., I
Involves the interpretation of decl#rations in a block of tle given
progiam as executable allocation statements, snd the process of
exit from that block as an exscutable de-allocation statement. It
allows some of the r, to be variéble,‘gnd with each v such that r
1s variable €in a given block, other than the first such) there is
associated an address cell; but if T, is constant,'or if v is the
firgt variable in its bloek such that Ty is variable, no address
cell neod be agsigned and access to variables is ther-fore frster
than it is using controlled allocztion. Instead of an aciress cell

for each variable, we have an nddress cell Tor ench block lovel,
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- We shall denote the cell for block 1evel 1 by By 1205 in additliony
we have another special eell L which glves the current block level
- plus one, The Bi thus form a stacks this strmelr g "nofontially
ihfinitp," although usually in verifying an algor;thm in a2 porti-
cular language we Tind that either an arbitrary maximwm number of
‘Bi has been given, or else that the B; are t’ “enzelves allocated,
using linked allocatlon.

Initially, when the program is started, L and B, are set to
-zero, Every time we enter a block, L 1s increased by one, to the
new'valug i, and Bi is set to Bi_lvpius the sum of all the r_ for
variables v declared in this block, Every time we leave a blocl,
L is decreased by one, Thus the "tOpﬁost" B, (wvherc i is the cur-
rent value of L) always gives us the address of the first available
cell, The address frnction associnted with a variable v such that .
r, 1s constant, vhere v is defined in a block at Jevel 1 (i, e.,
with L having the value 1), is then £(8) = SCBi) + Rv, where the
constants kv are chosen for the variables v in nuch the serme way
as in static allocation, This is true whether v is heing referenced
in the given block at level i or in a subblock (or sub-zibblock,
etc.) at ~ Jevel j3i. The varianble name v mey be associated with
the blocl, nllowing different varisbles in the same nrograir o 5ave
' the same n-ne provided thet ench of them 1o delined iﬁ a AP "event
block,

A'variable rvmusf depmnd on the valucs olvvu*iwalos defined
in blocks jJ for j€i. The address cell:for the corresponding v ¢s
set in the following way. Initially, when the block is entered nt
level 1, Bi is: set to Bifl‘plustme sum s of all constant rv for vo-

riables v declared in this block, We now proeeed to treat thoee 7

for which rv is variable, The first such v heas an agssoeinted index
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If there are any more remaining v with corresponding variable T N

-9 -

fk%,éﬁsuﬁhiéhxié;constant;’éndvtharefore’it does not require an

address céll, Having treéted this v, we now increase Bi by Toe -
o _ , v
wé treat each of these in turn by setting the corresponding'adiress

eell to the current value of B, and then increasing By by the cor-
résponding‘rve.When this process is finished, Bi will contain}the'

 address of the first available cell,
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standard gubroutines

The line betwecn a section of a prosram ~nd ~n1 laleranl

7

sunrontine of that projram is not sharply ‘el :ed, Cften = nro-

(2
L2y
5
i
1451
[}
s
i)
431
12
vt

gram wi1l3 hove "subrovtines" whilch look nore like s

9]

c
subroutines, We now cefine a type of subroutise vhich is enxtered,
and which exdits, only in the "nornel" way,

Let P be a »nrogram on ' ¢ Ax P, vhere § = - Voy et let
x€.:

X & M be such that V_ = P, 4 statement 7, = (Pi, ) of P osneh tinth

- 4

1
H,(8) = 5(x) is ar lndirect transfer Lo X, =«nd z i

. ST o~
L L iTecy
SRS R OCAN

[ il

tronsfer variable, In this case, if P is token as a prozran on 15
thore will be 'ﬁ 1init Fiﬂﬁ T 3 for eve Fj € r, '7orzzqui_?,3;, A OrosTam
with an indirect trarncfer to x will be equinned vwith o =~lcbel con-
Aition restricting the volues of g to o cca:#f:s‘.:?_ﬂ subse of Py namely

the set. ¥ of all possible ret rn addresses, The sronh of Poas a

Let abe a decompnsition of P, let Die g and let x, € il.

we have Ii, . (3) # D

Suppose that for each Fe, = (P

H
o
~
]
s
®
=
o
]
(w)
)
2}

inplies My 3 &)

vel O and Xy is the return addresg variable of D,e If D, ir com-

able., If D 1 le not complete, it may have vorious "eonditionsl in-

7 & - " 2 demria e » -z -
direct transfers." An inastruction Fk (P1_, “7-) é Di calls O, 2t

F, @ D, ilth febupn to Fﬁg,_ﬁi f Nj(S)EF /8nd P (5) = 51 vhere

St(x,) 8 F. More ‘generally, Dy 1s-a standarc subroitine of P at

level k if for eczch Fij = (Pij, Nij) 6 D,y ve have :-zij S)é b, im-

cells a standard ~ithrotine D
t

141 ith M, 2(B) =3 r T
plies either 13(») o(xi)o Pij

.?f
€ a at level k'€ k at its entry with return to sone other state-

ment of Dy3 and, ag:?..in,‘xi ls the retira adiress veriable of D,.
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Standerd subroutines in this sense are non-recursive ~nd

cannot have error exits., If o cubroutine which deces e crror

exits 1s used in a program, 1t can be treatoecd as a s:i‘:.uu’-.:;fv‘. ~ithb=
routine by Imposing a consigtent universal corddition viiie
tees that the er:or exits will never he telren; the 1i:lie to the
nay then be eliminatzd from the graph of the given vropram, If

F, = 3

' T, Is therel
(Pyy W,) calls D, at F and p(P.) = §x3} then F_ is tiecreby
comnletely detsrmined, and we write I‘ = iCnL.T_. = j%" Suech a ezll

stateuenty of course, Jdoes not pesgs any rarametors,

The simplest way of haudling rorameters So o subrovti-e is

O

by agsigning them valirg vhen the subroitine is enlled, Taing thin
~ b . w2 = .

]

method, vwe assoeciste ceriain vari blcs .oy or0y X, & IWITLH D,

c
léjﬁmi, followed by {CJLLL Fi} is delfined avove, Thic netiod of

alue, 2z is the case, for exahipley ir SHOBCL % (:1:h ugh

v
ve heve not, as mentioned earlier, tolen recrrsion int. ~ces i),

v 0

Calling by velue ddcan not allow us to return vel ws of Srremetore,

but we can ezsily rnodify our scheme t~ 2llow this by introTieiag

i -):‘V 4\1 2P GO o e \*..(:O ...."'. "5" . \';'v_. ;:z;.g :ﬁ Ce «®

Lerurnes ~~”r”1@'tcr§ V.o o3 ¥, 2czocicted with T oa, s
11 iai I 235

}9} for 3.‘j‘n and aij("’) =z ir.:plics v, - V" Zor ~11 3 1.8

2all 3, 1& j&n_, tren the assignin ~retgrmz-(‘ enll stetoment

i’

- fciLL Fi(eily osey elm 5 2499 sepy By in, } consists of £+ ¢oinosi-

tion of {C)LLL T (9

& 13(—3?13} in ord

NI AL ) Trry ot e e aende
il eooy elm )}’ as ah: \Vf‘ it e oo JTCTEE
er, Tor 1 & j_(g n, is guite »er:’acible for

~the same variable to cecewr barth re }c.y;, =T oo Vino 3.£a£r1ﬁ. A
L 1 2
so that a variable may be either used or ret wmed ar Toih, Uhie
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It is always irmmediately allowable for a pareziieter of o
arcint x @
Ath Vo= P, If 3 (z) = ;16 P is the entry of a subroutine D_,

-
1,

=abrovtine to be a label peromebor -- 1. €., &n oL

t=2

I

-

sn¢ if re have wnisuely assocliated a (pogslol;ffnull) set of

subro.atiness if they ~re res to inllerting subrotince,

they canl then De used in thls vay, <o thaty Tor oxanple, we can

[ B B 1 P

hewe s enll gtateitent vhich ealls 5(x), A& noroucter of thie tvpe

ey he called 2 fonetional porometer. In some lanjuages, sucl s

(‘ ~-/~'v'3 ST

05CL, 1t is »erfectly permireible for more thnn cne finetlon

(:ith its own gset of mermreters) to he ansoeisd

- -

starting instroction Fig Ps in sueh a ease e will Tove o oset X

of 21" »nossible cuhroutinesy vhere a subroitiie conslicts 27 =
|

sl o

starting Joecation togehlher with a =et of Lorncl pors o nhorsy o

functional peranefer in such a system is an clenwnt x € 11 ulth V_
AN

= Xe It hag long becn Inpwn that any systen capable of hnrdling

funet ional pazane ters is avtonmrtieceo 11* capaple of hnadlig pero-

neters called by none in the ALGOL sense, In Place o7 o »r-ooiter

‘that is to he callel by name, we ainply substitute a T octional

ﬂ )

psraneter which refercnees a suwreontine that conputes It (Uhic is
conetimes known os Jonsen's device), ’Ilms aguic ings-yael rnins enl

<
194

1tements mey be extended, to cover 21l of the norral oz of

s
ps
a

calling subro ,Lt i*m par aneters,

Host lan;fungeg, however, use ga.lling sequences, rather than

assigning and réturning., Let Di be z standard subrovtine of P, vith

n arguments B399 eoey By o A calling sequonce for 5, Lo on mi-*:':.'ole
i

-
A

(x cse x ) of ff"c 1@l parcnoters, ond an elonont = 1 cuch
11? ’ ?

that V is tke se I-Ii of all ealling seqgiences for D,

EN

3

sougence indieator Tor D,, The se. ence call shiiencnt §0IT ¥, (ig)8,
S
-

for h‘é H,y I8 the Towction F

4 \ ' j . ] j LT j X .'1
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iFm(—xi}o{hjk(-' 1%, vhere §CIL T, (}31:)} Tetiras Lo F‘_m‘ Dss

X, is the ret i aldress variable of D’i, sna g, is the ~clling
ceguence indiealor for D,

0
LY

The maln adventege of ealling sequsncie cver oacisning nd

ret rning 1s that the cal}.ing; stetericnt tieing 2 col0in e ““ICC
does not involve su rany aseignuents (eiid enn 'tl;:;:efx.‘z"e., rer i,
be vrocessed Dy the cormouter in a shorter tiwe), The JisalvontLze
cf calling sequiences ig thet the forassl nayarcters nre ors co vlex,

2 7 waey T mme o R B
An assigned fornnld valoe marameter, for ex~hie, 1is siunly nu cln-

L]

@ I 7ith the usual zesoecivted progranm function p cuch vt

3) = S(x,j); a ggguence paranmeter, on the other hand, If i1t is o
value nkrzmeter xij’ hos o mrograzn funetion P givern vy p(@) =
hy(j) where hk = 3 (q )o That is, e take the value 5(q,), which ic
'y BN
an mi~tunln ﬂth~fi¢ng % calling sequence; the J~tlh eiaxnt of thir
calling cequence is then the desired value, The elei: nts X ol &
calling mequence hy = (x.l, ooy Xgo
in fact, their form is deteruincd by *he speci’
the subroutine definition as %o whebner its various naraueters e
to be called by veolue, by location, or by wme, FTor a 2211 by value,
xij is simply a merber of the corrugronding tipe set, For ~ call by
location, X44 is an a2ddress function, and the'eiirass Tunetien g of
the corresponding partrneter is riven by a(s) = £ ), vhere £ =" (j)
(vhere, as before, hy, = S(qi))° For & call by mamc, x,. it 2 pro-

ceture, as before,
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Verification of TFOITiAN Programs

We shall now proceed to verify a number of examples 8f F(R-
TRAN programs, We shall actually be verifying gections of FOI'TRAN
prograns; these may then be included in complete FORTFAN nrograms.
Each ex1t statement will be denoted by CONTINUZj if the given
section is included in a larger program, CONTINUE will ordinarily
be replaced by the first statement of the next seetion, or by
ITURN,. STOP, or CALL BXIT. |
Bach of the given sections may be factored into subsections;

these subsectlons nay then be further factored. The subscetions

are defined by comment cards which contain CJx beginning in column

je]

1, where J is an integer denoting the level of subsection and x

‘is an optional identifier, The main-section heing verified is tolen

as level zero, Each section at level n may Dbe broken up into
subsections at level p+l, Bach CJ card defines a section ¢t levcl
A which is made up of the contiguous executable statencn® »anLing
from this card to the next Ck or Ckx card for k { J. Sach Cjx cord
for constant ] and x defihes a section at level 4 which is not noce
up of contiguous exmacutable statoments; but 1s the mion of several
collections of contignous statements each of‘ which ranges from a
particular Cjix card to the next Ck or Ckx cn rd 'for k< 4.

For any section which has a controlled erpression e, this
exnregsion appears after CJ or Clx, sepamtéd fron this ULy a Tlanls,
Wrether or not thero is a controlled expression, & comma may £61lows
after thls commiy thexe:is cither the yord GLOBAL, Sfollowed by a.

global contition or conitions Cor this zection serarstel b oo REST- PO
or the wvord COID, followed Ly preconditions for the Tirsh ex.cul Ble
stotenent of this scetion separated by commns, or hnth, 01 any ruei

card, 1L the last ron=blan™ cliwncter is a comm, a continuatlon
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card 1s to follow, vhlch nay be any comment card and which ig
scanned following its flrst hlank, Preconditions for stoteuments

.

which are not the first statement of a section or a contig upus

piece of a section may Dhe given on a cormment card with ithe word

COND in colunns l1-+,

In the proofs of consistency we make use of a path list. All
paths relevant to junction consistency are cnumerated ii order of
their initial statements, and, within thls, in order of the res.lts
of their branch statenents, succomsively. For each path we give its
starting statementy, the assignments and conditions along the patlly,
and its final statement, Eaéh junction stateme: nty which must be
numbercd, is given by its stateent number in parentheses; for the
initial and terminal statements, which may not be numbercd, we give
expressions of the form (L)+] or (1)-1, which refer to the statement
obtainsd by eounting forward or backward, respectively, J executa“le
statements from the statement numbered 1, As ignments are
they standj for a conditional statement, we give the conditlion which
is satisfied.if~the particular branch aprearing within the path is
taken, This conflition appears in narentheses to identify it as a
condition, After the path list, we give the proof of consisténcy;
in this vroofy; the value which a variable assumes at the beginning
of any path is denotéd;byjan uiderlined lower case renresentation,
Thus the initial value along a path of I is i, of KAPMA is ianpa, etc,

‘The proof of normal progress of an algorithm_consists in
verifying, for each sectlon, either that 1ts graph is ordered or
that the given controlled expression is actunlly a controlled ex-
pregslon according to the definition given earlier,

For the purnoses of the proofs, we define a2 jwmeilon sirisiire

to be the sufficient s hstruct re concis sting of 217 vJJCufﬂ

9,

staotenents of the given programy together with initial rnd terninel

1
statenents, A junetion path is a ematrol path of this slrvct e,
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EXAMPIE 1 ~-- Inner Product. The following routine sebts

aqual to the inner product of the vectors 4 ané 3 of ¢imension n,

In the comments, we use SUM(F(K), K, 4, B) to denote & F(:); thus

we have SUM(F(X), Ky Ay A~1) = O and SUM(F(X), K, 4, B) =~ F(B) +
U{(F(X), K, A, B-1) for BeA,

CO, GLOBAL ¥ ,CT, O, N I, m
REAL A(n), B(m)
c1
I=1
5 =0
C1 I, COWD 5 = 5UM(A(K)*B(K), K, 1, I-1), I ,CT, O, I .Lu,
S + A(I)*B(I)
I=I+1

3 5

~

il

IF (I ,IZ, N) GO TC 3
Cl, COID § = SWi(A(K)*3(K), K, 1, N)
CONTIKUR

 Under the global conditions NPO and Ngm, the sinsle terminal con-
c¢itlon is that S has been properly calculated as the inner product,
There is one junction statement, namely the statemrat 3, and thus

a Jjunction structure has been completely specified; “he semantics
of FORTFAN tell ns that I and N are integer varisbles and that
A(l); euay AGD), B(1), ..ey B(N) are real variables, Ststement 3,
which references A(I) 2nd B(I), is valid only under the concitions
I .CTe Oand I ,IE, m, and these are given b7 the precoaditicns at
this statement and by the global condltions.

Proof of Consistency. There are three junction »aths: (3)-2,
(3)-1, ()5 ), (3)+1, (3)+2, (3); 2nd (3), (3)+1, ()+2, (2)+3.
The path 1list is =235 follows:

1. (3)=25 I = 1; 8 =05 (3).
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2. (3)4 8 =08 +A(I)®B(I), I=1I+1; (I.IB, M);.(3).
3. 3)3 S =8 +A(I)®(I)y I=1I+ 1, (I ,GT. W)y (3)+3, .
For path 1, we have by definition S = SUM(A(X)*B(K), ¥, 1, O)

=03 I ,GT. O because I = 1j and I L&, N beceuse X ,GT, 0, by the
‘global condition, and I = 1 {and the fact that ¥ is an integer),

For path 2, the final condition I ,IE, N follows from the conditionsl
(I, IE, N) after I has been modified, We have I = L+1 > O because
190, and S = g + A(1)*B(1) = SUWM(A(K)*B(K), ¥, 1, I-1) + A(L)*D(L)
= STM(A(K)*B(K), K, 1, 1) = SWM(A(R)*B(K), K, 1, I-1). For nuth 3,
we have I = i+l, i+1p n but j€n, vhich, since 1 is an integer, izﬁ—
plies L = n; and, just as in path 2, we end with S = SUH(A(K)*B(K),.
Ky 1, 1), which is thus SUM(A(X)*B(K), ¥, 1, 1.

The global conditions NI;GT. 0 and N (IE., m involve only U,

\]

- which is not changed by any statement of the computation: they sre
£ G I 9 y

-

therefore truly global, This conpletes the nroof of cornsistency,
Proof of Normal Progress. The CO factor program snd the Tirst

and third Cl sections have ordered grauhs, The second Cl scetion

has the controlled variable I3 we verify that it ig retwmlly a2 con-

trolled variable by nsting that the ~rzi-mviat

4
!
1
+
=
s
16}
8]
Q
3
-
e 3
+

st tenent. of thia rection for which

by reacving this stniiment fron the oranh of She e Dus

section

e

. e ERXC SN : oA - ] 0 s SR N .-
& zrapit with o Olrecied creles, We ALY NN ey D8R G-

troiled ewcronzion thoorem, bociiise Ty Poloving the T ot he went Soon
the [ranh of the wrogram we also obbiin on merelic sreni, TR 2 e
plet g “lie veriflicrition,

Tor Aan extritelr alnnTs vorruin sicli s Tl oo, .8
m *c??-'mﬁ WL rant e nethol of uIfe Tl ‘el s
colled "She evzicritien method," It ~nnalats o sace Tl DT en -
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(7

computation sequence Tz 3W+3, and its elemente rar be

.ﬁ

m
[

.8 I=
1
;32:1{

ot Tet, 8- }g’:lcm m0e)) (1€ 141)

i
8,8 I= i+, 5&@4kﬁ?()) (1L£143)

IN

2
i

e8]
—
in
N

3442 © 03441

3u+3°3";%(““”“‘3“*” I

)
e g e
~....'C’.?'.:." <
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OXAMPIE 2 -~ Buelid's Algorithm. The following routine uses
Euclid's algorithm to find the greatest common divisor (CCD) of

the positive integers if and N,

€O, GLOBAL M ,GT, 0, N ,GT, O
cl S
| I=M
I =N
C1 =(I+J), COID GCD(H, N) = GCD(I, J),

c 0 JIT. I, I oIE, M, O ,IT, J, T JIE. i
1 TP (I-J) 2,43
2 J=J-I
G0 TO 1 |
3 I=I-3J
GO TO 1

Cl, COND I = GCD(M, N)
L CONTIMIE :

Under the global conditions M > O and N > O, the singlc terminal
condition 1s that I has heen proﬂerly calculated as the GCD.

There 1s one junction statement, namely the statement 1 (notice, in
particula:,‘that statenents 2'and 3 are not junction statements),
and thus a junctlon structure has been completely swecified, It is
assumed that I, J, M, and N are integer variables, In tiic proof we
need certain elementory facts about the GCD function,

LEMG, Tet GCD(H, ) be the grestest cormonr divisor of the
positive integers M and N -- 1, ¢,, the grentcst intersr I such
that I divides M 2nd I divides i, Thens

(a) If a » 0, then GCD(a, a) = a,

(b) If a )IO, D > 0y and b=a > 0, then GCD(2,b) = CCO (v ,b~a).

(¢) If a > 0y b > 0y and a=b > 0, “her GCD(a,b) =~ 08D (a=b,b).
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PROQF . (a) a divides a, and nothing larger than a may Givide a,
For (b), we notice that GCD(a, b) divides a and b and therefore di=-
vides b~aj likewise GCD(a, b=~a) divides & and b=a and therefore
Givices (b=a)+a = D, Thus GCD(s, b) € GCD(a, h-a) & GCD(a, »), and
thic means that GCD(a, b) = GCD(a, b-a), The proof of (e¢) is simi-
ler to that of (b), _

Proof of Consictency. There are four Junction naths: (1)=2,
(1)-1, ()3 (1), (2), (2)+1, (1); (1), ), (3)+1, ()5 (1), (+).
The path list ic as follows:

(1)=25 T =13 T = N3 (L)o
2e ()3 (T .I7, 3)5 T =T =~"I3 Q). ).
3. (1) (I .GT, J)3 I=1I=~7J5 (1),
(1); (I=0); (),

5}

The first path may be immediately verified, Tne eondition
0 oITs I and I ,IE, I in path 2 and the conditions 0 IT. J and
J JIE, ¥ in path 3 follow because the respective variables are ot
changed within the giveh pathse, The condition J L. &7 in »nath 2
follows from J = j~1i € 1 (from 0 I = 1) € p = 15 the c-.taﬂr?Atz‘.orL
I L8, M in path 3 follows from I = i1 < 4 (fron 0< J = 3) & n
= M, The condition 0 ,IT. J in path 2 follows from 0 £ j-i (from
I-3ER.07) = J 3 vhe condition O LIT, I in path 3 foilows freoa 0 <
1~j (fron I-J6%,T) = I. The condition GCD (iy ) = CCD (I, J) fol~
lows, in path 2, from GCD(¥M, ¥) = GCD (Y, Jj) = GCD (L, j~1) (by (b)
of the lem) GCD (I, J),y and in path 3 from GCD (L, 1) = CCD(, 1)
= @D (A~j, J) (by (c) of the Jemma) = GCD(I, J). The coriition I =
GCD (M, N) in path 4 follows from GCD (i, N) = GCD(i, i) = D, 1)
(from (I=J3)) = 1 (by (2) of the lemma) = I, The zlohzl conditions
1 «GT'e O and N (T, O involve only if -nd M, which ""e D0l ehrnaged

by any sztateusnt of tlhe computation; theyr are Ltlerefore “ruir

v

global, This completes the nroof of econsisievcy,
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We remnark that the ceonditions I ,La, M and J 1B, iI at step
-1 were not necessary in order to set up a2 consigtent nrecondition

structire, They * will, hovever, be us2d to verily that The ~lco-

rithn terninates,

Proof of Mormal Progress. The CO fachor wrograr nd the Tireh

\

]

and third Cl sections huve ordered gravhn, The zecond 1 secticn
has the controlled expression ~(I+J); we vorif Shet it is reot=Ilz
2 controlled expraession by noting that the aselisvients T I - J
ant J = J =~-I are The only shtatonents of thiz meetion horn offec~
ve ranges have non~enpty intersection with e arffeciz
{I,>J} of the expression =(I+J), and thet, sreh of theae ntntonente
“The val- o of ~(I+J); and that by removias tlese stotencite

from the granh of the progran we obta’n a sranh with o dlrechad

O

cycles, We may now apoly the corollar: to ke srcond co Urolled

ex¥pression thaorom, hucause at stotemen®t nwiber 1 we hrwe =(IT+T)
£0, ~nt veroving this statement leaves = eraph :_tn no Alrectoed

eycies, This comnlntes the verifieation,

The enunmeration nathod of the vreceding exmripls Aa

worik in this exarnle, Indeed tieve is no eimple Tornals Jlvee
for arbiftrary I “ilcHey The nimber of ateps this ol oritirl will S-in,

(Theres ic a recirrence relation, of course, which iwca this nuer, )
-~
- i . \
We note that %there crists a verification of ~uclidle oo osorithn In
van thers is muchi nore comp’ax than e e civen

hore, In this comceetion it m%“c ne romahered it oo 0l oors

may he vrogrammad in Alfferont ways for oitfer-nt commiherg s Tn

cifferent lanzurres, =nd nust he verified senmnt ol tie, e
N

size of the proof ;ivra here is smuclier %io-~ £lv s of oo

~lreritim is mueh slonlerg also, it 95 aobuc 17y 2 chor 3o mnea anmas

as vihen ealewlating the GCU ~7 tuvo adjacent 71ho nee’ comere, I
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"-rould, howeve:r*2 g:rve riﬂe to certain

dif?iCnTt*e

the

.
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&I’L’P 3_ ~~ Merging. The follown.ng; routine merges the

",-f"‘";SOr'bed a:c"nsrys A anG By of leng‘chs )54 'wxd N reqﬂoctwely into a
:‘:-lne"w sorted ar:ay C of length M+lf, ALl arrays are assuned %o be
: sorted in ascend_-r\g ordei, In the comen’bc;, we use ASC (r, Q) for
the’ qta*e COﬂﬁluj on 1,1 «Jh ich the first Q clements of tne ATTLY P} |
arée sorted in amcw'un;_, order; thus ASC (P, 1) is “..w'z:;, TTUe 4

. “».,.\C(P, Q+1) = (ASC(P,;) an ___g PQ+1) 2 P(A)), for @ > 1, and

_BSC(P, Q) implies ASC(P, B) for 1£ R < Q, We wse PURHM(Y, T) to
'-'.d‘en'ote the state conditison thet there is a cne-to-bne corresponience
i, snech that S(x) = S (x) where S belongs to the civen state condi~
_,,{:‘ion and ¥ 7 = f(__), vetvcen ALYy coey A(K); B(L)y sewy B(¥), on -
‘thé one nb.m, and C('?), ssey C(X+Y), on the other (this is the con-
ﬂit,.cm Lna tbe elayents of the srvay C are the elemets of A and B
,.n some new order), We use IIRGE (f, Y) to demote ithe state condition
f-“tha”b'the"firs"ﬁ X elf-.-;'aénts of A znd the first ¥ elements of 3 have

boen mergsd into the first X+¥ elements of Cj thus MG (X, ¥) =

- (PERMCEL, T) and ASC(C, X+Y)),

CO, GLOBAL 45C (4, M)y ASC(Q, W), M LGT. O, I GT. O

L I=1

7 =1

I =0 | _ |
C1 E, COID Pi(I-l, J-1), KeT+7~2, I LE iy T JIn. W,

| CR=0 R (ASC(C) B, C(R) LB BT, C(X) JLde A{D), K .67, O)

= K +.1 : | |
P (A(I) IT, B(I)) ¢C TO 3 o
CLR) = B |
T=J+1

\

g

IF (J LIF. ) G0 70 1

. i
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s eom Wmc:w, ;r-1), K I+J'-2, I .LE M, 3= N' +. 1, R
c'(c‘ 0, CK) .LE A, K lroo R
L :'?'{’5‘2.-"'”- O K o3 4 S |

‘-vc<K> Y
o T+l
;".IF 1’~(I~ IE._?&-}";‘ o2
. eomoy .
3o “~c(x\) = A(T)
. T=I+1
(1 LI, M) GoTOL
CoMp PEBM{I—J., J-l), KeI+J=2y I = Mtly J I8, 7,
S € ASC(C; K)y C(K) WIB. B(T), K 6T, O
R O N
G = B |
F=J+1 ';: - .
CErE. W om0k
"01, \,owm P}:r‘&:c—_;.,Jw,), ¥ T«?. I=i+ly J= 1%-3.,
C ASC(C, K), MRGE(M, 1) o

\J
(@
(@
P!
S
-1
Lol
¥
&
-

. Bnder the global coniitions M .GT, 0, N .GT, O, 43C (i, 1i), 2nd
- BBC(By 1) == 1, €., ascufiing tha® the @ rags A and 2 of rositive
“length sre inftially in ascending order -- there wre scvorsl

”'miﬁal cahﬁitions, among which is thcu(u, N), wuichy Ly oovur defini~

[..h

on of MENGE, implies that tbe arrays A and D Lave Beer wroperly

mer*ed futo the array Co utatements 1, 2, ¢ “‘h-ave 11mmﬁivn

;‘7' .  f statements (and stetement 3 is not)s tLerefore, we have = Jinetlon,
'qtructnre. It is aqqunpd that I, 7, K, M, and N are intezer vqriﬁule.

. and that Ml)» ceey Mu)a B(1)) eaes BUW, C(1)y ovey COIHY) are

- real variables (““is seetmption dépends on the values of i snd I

,f.gandgwhe-prOper3aimeﬁéiohinﬁ 6f A, B, and C).
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~,

Proof of Consistency. The condlitions ¥ .GT. O, ¥ .GT. C,

“C‘C(A, M), and AuC(B, 7) are global hecruse they invelve only II
‘and N and the eloments of the srrays A end By, end none of these
are clanged by any sta ;';em'ent in the progran, There are nine
Junetion vaths: (1)=3, ('1})-?, (1)-2, ()5 (), (1)1, (1)+2,
(1043, W, ()3 (1), L)+, L)z, (143, (1), (); 1),
(1)+1, (3), (3)+1, (3)+2, ()3 (1), (1)+1, (3), (3)+1, (3)+2,
) (2), (2)+1, (2)+2, (2)+3, (2); (2), (2)+1, (2)+ﬁ, (7043,
(2)4, (5)5 (4}, (41, ()42, ()43, (4); =ad (4), (4)=1, (e)s0,
(#)+3, (5)e The path list

1. (1)-35 I =15 J =

Fe
6]

[

ag follovgs

3 £ 035 (1),

e}

2o (1)5 ¥ = P+l (A(I) GF, B(I)); C(I) = B(I); 7 = Jily

(J JIE, M) (1).

3¢ ()5 K = Tal; (ACI) JBe B(I)); O(K) = B(I); T = J+l;
(7 .GT. W3 (2). '
(1); ¥ = K+15 (A(I) JIT, B(I)); C(K) = A(D); T - I+l

(I JIE. :D; (1);
Se (1)5 K= K+l3 (A(I) LT, D(I)); C(1) = 5(T)5 I - I+l
(I .01, M)y (%),
b ()5 K

i
)i

¥+l C(¥)
7. (2);3 ¥ = K+1; ¢(X)
8. M); K = K+l3 G(K)
9. ()5 K = X+l C(K)

£(I)s
A{I); I
B(J)s T
B{J); J

b
i
;..:
“5
~™N
=~
L

i

i

’I
'r_
>
7~
oy
°
E
L

i

= Jtly (T 40T, iD):

The first peth moy be irmediately verificd, rad, In narii-
cular, F=0y s0 that the second courment line Leloure s% G0 went b

1 45 sabis fied. The Tollowing conditions holsl at “le borinni roand

end ¢l the same nuth because the wri- hleg tham fre nob oloored

2

S widhin that ooths I (IE, My paths 2 ond 33 J JIL, Ty prthm Yoopm



- Junetlon pathss (1)-3, (1)-2, (1)-1, ()5 (1), (1)+1, (1)+7,
(1)43, (W)#, ()5 (1), (L)1, (1)+2, (1)+3, (L), (2); (),
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Proof of Consistency. The conditions ¥ .0T. Oy ¥ oGT. Oy

CASC(Ay M), and ACC(B, 1) are globel becruse they involve only I

and N and the eloments of the =rreays A and By 2nd none of these
re changed by any statement in the progran, There are nine

o}

(141, (3), (3)+1, (3)+2, (L)3 (1), (1)+1, (3), (3)+1, (3)+,
()5 (2), (2)+1, (2)+2, (2)+3, ()5 (2), (2)+1, ()42, (7):2,
(2)45, (5)5 (8)y ()41, ()42, ()43, ()5 =nd (4), (+)0, ()2,
(+)+3, (5)e The path list is ~s follovs:

1. (1)-33 =13 ¥ = 03 (1),

2. (1)5 ¥ = 7415 (A(I) G, B(I)); CE) = BI)g 7 = el
(7 JIE, W; 1),

30 (L5 K = By (A(T) @, B(I))5 O(K) = B(I); T = J+ig
(J .,GT. W3 (2), '

Lo (13 K = K+13 (A(I) LT, B(J))5 C(X) :.A(f); T T
(I JE. D3 (1) |

Ze ()5 K= K415 (A(I) L0, B(I)); C(R) = A ()3
(I .CT. )5 (),

6, (2)3 K = I+1; C(¥)

H4
It
i
oy

N\

-
o}
+
=~
e

I
-t
i

i (I)s T+1; (I JE. X)
7. ()5 X = E+1; C(X) = 4{1)5 I = I+ly (I .CT, %)
8. )5 X = K1y C(K) = B(I)3 T = Tilg (T I8, )
9. ()5 K = X#ls C(K) = B(D); J

).
3.
; (.)"!')o

Yo (%),

t
<o ~s

i

H

bt J+l; (J ,C‘T, R

the first peth may be Irmediately verificd, o, 1n nardi-
cular, =0, so that the second conmeut line Lelure a%r fvwsnt 1 ohor
1 is satiesfied, The Tollowing concditions holsl ot “he Desionl roand

end of the same nath because the vri- bles in L1iaM rre nos oloared

a4

wivain that path: T (IB, M, paths 2 =nd 35 J 0. Ty peins 't an? 33
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J = N+l, paths 6 end 73 I = il+l, paths 8 and 9; C(X} .Li. 4(3),
path 23 and C(K) .IZ. D(J), path 4. The con'ition ¥ 6T, O in

s L - -

paths 2 through ¢ follows from the initin® cor?li<ion iT = 0 or
K oGTe O In each case and the Tact that 2~ch o these »nrtha con=
taing the 9ta‘cemen‘-:}3{ = K+1l, The condition J I, 7 iu poths 2 ~nd
8 nnd tre codition I JIE, M ir -aths 4 ard 6 follow frow “he cor-
responding conditions (J i, Nyand I ,IE. 1 anhearine witht
these paths, The comiitlon J = I+l in paths 2 nnd 9 and the con=-
Aition I = M+l in vaths § and 7 follov from ithie corrernond vnv con-
ditions (J .CGT, ¥ nnd I °:GT. M) appeering in these poaths ~nd the
conditions J = j+l, j € Nand I = ;+1, i€ Mrespoetively, The
condition ¥K=I+J=2 followe fron I = jﬁl, J = J, T = k+l = (L+3-2)+1
= (§+1)+]=2 = I+J=2 in paths 4, 5, 6, and 7 ond from I = %, J =
J+l, IT = I+l = (;-:-;]_-2)-&-1 = A+(J+1)=2 = I+J=2 in nnths 2, 3, S, md
9. The proof of A3C(C, K) in &1l paths sepsrates into two 2r-en,
If ¥ = 0, then X = k+1 = 1 and ACC(C, K) is alunys true. (thervise,
we must Aerive ASC(C, k+1) from 43C(Cy k). This follovws from C()
JE. B(]) = C(k+l) (by the statement C(¥) = B(J) in its g ven po-
sition) in paths 2, 2, 8, and 9, ~nd from C(k) IT. a(Ll) = C{+L)
(by the statenent CUU) = A(I) in its given poecition) in notie i, 7,
6y =nd 7, The concition C(¥) JI8, A(I) in paths k nnd 6 Jcilous
+1) = B(]) oIE. B(l+1) (fron the glodh:zl ContiEon

SC(B, ) wi ,ié. 1) = B(J). The condition C(X) LID. B(J) i» pils
2 and 8 follews from C(K) = C(k=1) :+ A(L) L@, ~(L+1) Iz he
slobal eondition 1. C(h, M) with 4 & M) = A(T), The ew ition 000
JIE. A(TI) in path 3 followe from C(XK) = C(+Ll) = 1(]) .Lt. &{3)
(from the condit’on (A(I) T, B(I)) or '(A@) 2 3(1))) = ,-2(1'); the
condition C(K) .IB. B(J) in path 5 follows fror C(X) = C(Qi) « ()

€ B(i) (from the coniition (4(I) LT, B(T)) or (ACL) € 3¢ - 5(d.
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I'l: remains to verii‘y the condition PIJRM(I-]., J‘-».:.). Thls
‘»will be done for p:'th-a 2 3, 8, and 93 a sh 1idar argument holds -
V.v\for pathv l!-, g, 6 ) and '7, with A and B reversed, I"wno J. 'ﬂeversed,?'
‘.‘:’,:an& M and n reversed. we' a:re given PERM(1~1, _1-1), anﬂ, therefore,f“'
a o.ne-to-one correspondence ‘ﬁ vhose domain includes A(l), eoey.
‘V:‘_'A(gml) and B(‘l), EYTT) B(j_-—l) and whose range includes C(l) tnroughf
" .C(}g), We must show PF“PM(;—J., ,;1) and to do Lnis we constract a new
?"_'Afunction ﬁf by sotbing L (x) = ;:(y;) for v in the domain of g, and

}_'i'(B(;j_)) C(k—f'l), Thus ;' iz a one-—to-—one com'eonondevnce whose

é,"tdomain 18 A(L). tm'ourrh A(;-J) and B(l) through B(j_), and whose E
range is C(l) through C(}gﬂ); it satisfies S (_-_) = 8(y) = hore .‘Y.'.
the image of ;_g, because i does 50 and because o(u(_;)) = .;(c (j_:+1))
,_'-,‘;i‘rom.the sba'beme-pt C(K) = B(J) corricd out vhen K = Il and J = JI.-,

Tniv comp’letns the pro of of consistency,

»Prqd Q_f_ Nox m; Pro;areg._g_ . The CO factor program and the fiz’fst
 and third CL sections have ordercd graphs. The second Cl section

has the controlled variable K3 we verify that it is ac"uuz:xlii.y-a con-
‘trolled variable by noting that the various agsignments of the form
K = K+1 are the only statements in this section for which X is in

the ef.f‘ectivelrang‘e, and if Pk 15 any of these ctatements we have
B{X) » 8 (X) wherc 3" = Pr(S);» and that by removinge 211 these stote-

nents from the gronh of the section we o’otai'ﬂ. TooTaon 1«;“7{:1 A fd-

rected cycl_es. vJé mey now’ anp‘ly the corol”"r - "m the soerird .eon-
trolled expression Liw orem, because at esch shit-ient of our junc-
tion struct.ire the given preconditions imply ¥ £ M+, and I+ in-
- volves onlv vari’eibles which are not changed o the progran, This

cn mintes "' e yerifiosgion

—— Y
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