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ABSTRACT

For a harmonic oscillator with time varying coefficients a relation

is obtained between the action integral and the first order adiabatic

invariant. It is shown that a small resonant perturbation can modify the

invariant, A canonical transformation generates a new action variable

constant to first order in the perturbation with the old action-angle

variables playing the role of oscillatory momentum and extension. There

are two separate ways in which the new adiabatic constant can break down,

leading either to a modified invariant or to a situation in which no

invariant exists. A simple criterion for the destruction of adiabatic

invariance is derived. A general theory is developed to use the procedure

for multidimensional systems. It is shown that two distinct types of

resonances are possible that lead to qualitatively different results. The

general theory is applied to a coupled oscillator system in forms demon

strating both types of resonances. A detailed example of the more impor

tant resonance is made for single particle motion in a magnetic mirror

with a perturbing r.f. field. Averages are performed first, over a time

comparable to the r.f. period and second, over a time comparable to the

longitudinal bounce period. Numerical integrations of both the averaged

and exact Hamiltonian equations show the maximum value of the perturba

tion for which the averaging process is valid. The particle's energy is

found to oscillate but, as long as the averaging process is valid, this

oscillation is adiabatically separated from the longitudinal bounce by

the existence of an adiabatic invariant. When averaging is not valid, a

resonant coupling occurs between the bounce and energy oscillations. The



canonical transformation as described in the general theory is made near

a particular resonance to obtain the oscillation in the adiabatic invariant.

For oscillations about neighboring resonances which do not interact strongly

then a new approximate invariant exists. For strong interaction the break

up of the invariant curves is demonstrated and the strength of the pertur

bation necessary for breakup is compared with the simple criterion.
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I. INTRODUCTION

For a one dimensional oscillator in which the Hamiltonian is a slowly

varying function of time, the action integral, J=^p dq is an approxi
mate constant or "adiabatic invariant" of the motion. Here p and q are

canonical co-ordinates for the momentum and position and the integration

is carried over a complete period of the oscillation. If the Hamiltonian

is initially constant, then slowly varying with time, and finally con

stant again, the action integral is constant to all orders in an expansion

parameter, These results do not mean that J is an exact invari

ant but only that the total time derivative of J approaches zero faster

than any power of e. An iterative technique has been used to calculate

[41
the change in the magnetic moment of a particle in a magnetic field.

Vandervoort'"^^ uses a similar iterative method to calculate the change in
the action integral for the harmonic oscillator. An exponentially small

change in the action is obtained which is not inconsistent with the

asymptotic result. Changes in the action can also be calculated using

the asymptotic method if discontinuities are assumed in higher order

[61
derivatives of the time varying parameter. These discontinuities

approximate changes in the derivatives which result from the finite rate

at which the Hamiltonian varies. The unperturbed action is the first

term of the asymptotic series which gives the total adiabatic invariant

for the time varying problem. As we shall see in Section II, if the next

term in the series is included, its time rate of change exactly cancels

the change in the first term as calculated by Vandervoort. This
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cancellation occurs to each successive order in the series, and it is not

until a term including a "discontinuous" derivative is reached that the •

asymptotic series breaks down. If the slow time dependence of the

Hamiltonian is periodic, a rapidly varying derivative is equivalent to a

resonance between a harmonic of the slow time dependence and the oscillator

frequency, which destroys the adiabatic invariance of the action integral

in that order. In practical cases only the lowest order resonances are

strong enough to have significant effect.

For harmonic oscillators exact invariants also exist.For non

linear oscillators a similar invariant can be obtained by expansion in

rsithe nonlinearity, but in the case of periodic coefficients the expan

sion may not converge. By properly choosing the constants of integration

the exact invariant can be chosen equal to the adiabatic invariant at any

initial time. Then, by comparing the two invariants at a later time, an

estimate is made of the change in the adiabatic invariant. If the adia

batic invariant is destroyed due to resonances then we expect the "exact"

invariant to be destroyed also.

For multidimensional problems such as nonlinearly coupled oscillators,

the motion of charged particles in electric and magnetic fields, and the

restricted three body problem, if the oscillation in one degree of free

dom is very much faster than the motion in the remaining degrees of

freedom, then the rapid oscillation can be isolated from the remaining

motion by treating it as a one dimensional oscillator with slowly varying

parameters. Bogoliubov and co-workers^developed a "method of

averaging," for the rapidly rotating phase associated with the fast
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oscillation, which gives the motion of the slow drift alone, dependent

only on the adiabatic invariants of the fast motion. Kruskal^^^^ developed

a method similar to that of Bogoliubov demonstrating that the adiabatic

invariant is constant to all orders in the expansion parameter. McNamara

ri21 ri31
and Whiteman use a simpler procedure to calculate higher order

adiabatic invariants for multidimensional problems and they show their

[14]
results are equivalent to those of Kruskal. Contopoulos has pointed

out that, for Hamiltonians which are periodic in time, two distinct forms

of invariants can be constructed. The second form is known as a third

integral because of its use in dynamical problems having two known

integrals. Although both adiabatic invariants and third integrals are

expansions in a small parameter, the small parameter in the third integral

case refers to the small term in the Hamiltonian while in the adiabatic

invariant case, it refers to a slow dependence of the Hamiltonian on a

particular variable. For a one dimensional problem in which both expan

sions can be calculated, Contopoulos has shown the adiabatic invariant to

be better conserved than the third integral when the Hamiltonian varies

slowly with time. When the time variation is not slow but the pertur

bation term is small the third integral is better conserved. He also

notes that if a resonance exists between the perturbation and the fre

quency of oscillation, both expansions fail due to secularities. It is

the effect of resonances between harmonics of the slow oscillations and

the fast oscillation in modifying and destroying adiabatic invariants

that is the main subject of this paper.

In multidimensional systems, an invariant may be an "isolating
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integral" in that it separates two degrees of freedom. It is well known

that, in multidimensional problems, there are transitions between regions

in which isolating integrals exist and regions in which they do not^^^^

The technique for observing these transitions is to look at the crossings

of the trajectory in a surface of section corresponding to a particular

phase of the most rapid oscillation. If the crossings lie on a smooth

curve, the motion in that plane is isolated from the rest of the motion,

and the isolating integral exists. If the crossings are random the inte

gral does not exist. The computations indicate that transitions between

smooth and ergodic trajectories often are accompanied by the breaking of

a single curve into a number of discrete curves or islands. From the

island structure we can identify the order of the resonance. The numeri

cal results and their relationship to the destruction of invariants have

[17]
been summarized by Lichtenberg.

[181
Chirikov considers resonances between the Larmor rotation and

the longitudinal bounce of a particle in a magnetic mirror and calculates

the rate of change of the magnetic moment y due to the resonance. Because

of nonlinearities the system does not remain in resonance, and y oscil

lates about its resonant value. A criterian for destruction of the

invariant proposed by Chirikov is that the values of the action from the

two adjacent resonances overlap. Similar overlap criteria have been used

for the problem of the destruction of magnetic surfaces,^ ^]»[ 1 for
[21]

a study of the stability of the Korteweg-deVries equation. None of

the above results of resonant destruction of invariants has been verified

by numerical computations of the exact equations of motion. However,
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exact orbit calculations for electron-cyclotron heating in a magnetic

mirror have demonstrated that the destruction of the invariants occurs

[22]
near a resonance between two degrees of freedom of the system. This

[23]
problem will be reexamined in Section IV. Walker and Ford have also

predicted the onset of invariant destruction for some simple two dimen

sional oscillator systems. They calculate the value of the perturbation

at which the separatrices of neighboring resonant oscillations overlap

and obtain good agreement with numerical solutions. Their oscillator

systems only contain the resonant terms, however, and therefore the effect

of other harmonics of the nonlinear oscillators is not revealed by their

calculation. In addition to the fact that the resonance width can only

be calculated approximately, the concept of overlap is itself approximate.

It is not obvious how close together resonances must be for breakdown to

occur. In fact, we shall show with numerical examples that the interaction

of the resonant terms with the nonresonant terms can lead to destruction

of the invariant even if the resonances are well separated. Nevertheless,

the overlap criterian is correct within an order of magnitude, and for

simplicity we shall use the term "resonance overlap" to indicate invariant

destruction, with the implicit notion that "overlap" means a strong inter

action between neighboring resonances. Another complication, is that the

primary resonance in the system is not always the cause for the breakdown

of the invariant. Instead, the primary resonance may generate islands

that have harmonic frequencies creating secondary resonances, and these

secondary resonances may cause the breakdown. In fact, there is a
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hierarchy of resonances generated in the multiply periodic system and

invariant destruction can, in principle, occur at any level of the

hierarchy. The removal of a degeneracy in two degrees of freedom, with

a low order resonance, does not generally lead to overlapping resonances,

except near the separatrix of the oscillations. The destruction of the

invariant in these cases is usually caused by secondary resonances. This

has led to some confusion in the work on the breakup of magnetic surfaces

in toruses. For the adiabatic problem, on the other hand, the resonance

destruction is most likely caused by "overlap" of the resonances caused

by two adjacent harmonics of the slow oscillation.

The destruction of adiabatic invariants due to resonances is related

to the problem of small denominators in classical perturbation theory.
[24]

This problem has occupied mathematicians since the time of Poincare ,

and there have been many methods devised to correct the perturbation tech

nique so that terms with small denominators do not occur to destroy the

convergence of the series. One such method which we use in subsequent

sections is degenerate perturbation theory or the method of secular pertur

bations. The resonant or degenerate variables are eliminated from

the unperturbed Hamiltonian by a canonical transformation to a frame of

reference that rotates with the resonant frequency. The new coordinates

then measure the slow oscillation of the variables about their values at

resonance. The procedure is similar to that used by Chirikov except that

here canonical variables are preserved throughout the transformations.

The adiabatic expansion procedures can be used to average over the rapidly

rotating phase after the resonance has been removed. However, if e is not
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small enough, higher order accidental degeneracies may occur to destroy

the new adiabatic invariant. These higher order resonances can also be

removed by transforming to new coordinates that rotate with the resonant

frequency. Under certain conditions, the system may remain close enough

to the higher order resonance that averaging can be performed a second

time. In this case, modified adiabatic invariants are found which

govern the oscillation in the previous adiabatic invariant about its value

at resonance.

The existence of resonances is closely linked to the convergence of

the asymptotic series in multidimensional systems. For almost periodic

solutions represented as motion on an n-dimensional torus and for non

linear coupling that is sufficiently small with frequencies that are

sufficiently incommensurable, the effect of the perturbation is only to

slightly deform the toroidal surfaces. But for frequencies that are

commensurable, the perturbed tori are deformed greatly and the particle

orbits do not remain close to the unperturbed torus.One appli

cation of this theorem is the proof of the eternal invariance of the

action for the one dimensional oscillator with slow periodic variation

of the Hamiltonian. However quantitative measures of sufficient incomen-

surability and sufficient slowness are difficult to obtain from these

theorems. The radius of convergence of the series is related to the

presence of the interacting resonant terms, and can at present only be

estimated from numerical studies.

The procedure for determining the invariants of a multidimensional

system is rather involved, and we here outline the general steps as they
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will be used in the following sections. 1. The Hamiltonian is divided

into two parts, a zero order part which can be transformed to action

angle variables and a first order part (in some small parameter, e) which

cannot be transformed. 2. (a) If one frequency of the unperturbed system

is much faster than the others, the method of averaging is employed to

obtain the first order invariant of the fast oscillation, including the

perturbation, (b) If two frequencies have a low order commensurability

a canonical transformation is made to a rotating frame in which there is

only a single frequency for the unperturbed motion (intrinsic degeneracy)

or two widely spaced frequencies (accidental degeneracy). The averaging can

then be performed as in (a). 3. If after the transformation a resonance per

sists between a fairly low harmonic of the slow variable and the fast

variable, the averaging process is not valid, and the additional resonance

must be removed, leading to an "island oscillation". However, the trans

formed variables in the rotating frame are no longer in action-angle form.

The Hamilton-Jacobi equation must be solved to reintroduce action variables.

This is generally done by a four step process, (i) The Hamiltonian is aver

aged over the fast variable, (ii) The averaged Hamiltonian is expanded

about an elliptic singular point and action angle variables are obtained

to lowest order in the expansion, (iii) Perturbation theory is used to

obtain the action—angle variables to higher order for the averaged Hamil

tonian. (iv) The angle dependent terms are then reintroduced to obtain a

Hamiltonian as in 1. 4. The process in 2.(b) is then repeated for the

island oscillation to obtain the new invariant of the motion.
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II. THE ONE DIMENSIONAL OSCILLATOR WITH TIME VARYING FREQUENCY

We consider here a one dimensional example to illustrate the physical

effect of resonances on the adiabatic invariance of the action integral.

A resonance can be observed in one dimension by allowing a slow periodic

time dependence in the Hamiltonian. Commensurability between harmonics

of the slowly varying parameter and the frequency of the one dimensional

oscillation generates resonances similar to those in multidimensional

systems. The problem is somewhat simpler in that the slowly varying

frequencies are constants, not dependent on the value of an action.

To limit the amount of algebra in this section, we introduce certain

canonical transformations intuitively rather than deriving them from gene

rating functions. These transformations will be derived more rigorously

in later sections but here we concentrate more on the physical meaning of

the variables.

Consider the Hamiltonian

H = + (2.1)

where p, q, and m denote momentum, position, and mass, respectively, for an

oscillating particle. The frequency of the oscillation, O), is assumed to

be a slowly varying function of time;

(0 = a)(et) . (2.2)

We define new variables, P and w, which are action-angle variables for

the unperturbed case (e =0). Physically, these variables represent a
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polar co-ordinate system in the q-p plane where w is an angle and /2P/mw is

a radial co-ordinate:

q = \sin w
^ \ moj

(2.3)

p = JlPmixi cos w

With a simple canonical transformationthe Hamiltonian can be written

in terms of P and w as

H* = aiP + E P sin 2w (2.4)
2(0

where the prime denotes differentiation with respect to the variable x = et
A

Hamilton*s equations for H are

* Iw^ll" = ^w (2.5)

P = = - e — p cos 2w . (2.6)
8w (0

Equation (2.6) gives Vandervoort*s result for the lowest order change in

the action integral due to the slow time variation of the Hamiltonian.

According to Whiteman and McNamara'-^^^ and Kruskal^^^^ the first

order adiabatic invariant for this problem is

I = P + e P sin 2w . (2.7)
2(0^^

To verify the approximate constancy of I, we take a time derivative of

(2.7). Substituting for P and w from (2.5) and (2.6) and keeping terms
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up to first order In e we obtain

i =f + e P sin 2w + e (—) P cos 2w + O(e^). (2.8)
W) ^

The first and third terms on the right cancel by virtue of Vandervoort*s

result (2.6) leaving to lowest order

i = e ^

* 2—T-J = 0(e) then I is of order e and hence
2(o7

I is a first.order invariant. This assumption is standard in asymptotic

theories. It is equivalent to assuming a slow time dependence not only

for the frequency o) but also for the first derivative of the frequency (o*

so that 0)* = a3*(Et). A second order asymptotic calculation would simi

larly require that = a)"(et) and so on. From the above development we

see that the asymptotic result that I is a first order adiabatic invariant

is in no way inconsistent with Vandervoort*s first order iterative calcu

lation of the change in the unperturbed action integral, P. Rather, the

two results are mutually dependent.

We now consider the possibility of secular changes in the adiabatic

invariant X due to resonances between the oscillation and the time rate

of change of the frequency o). According to asymptotic theory, I in (2.9)

is not identically zero but is second order. A secularity is said to

occur if, after a long time. At = , the accumulated second order changes

add up to destroy the first order invariance of I. To insure that this does

not happen, we must show that the time average of i is of order e in which
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1 2 .
case, the acciimulated change AI in a time is of order e . It will gen-

erally be the case for equation (2.9) that the time average of 1 will be

nearly zero due to the rapid variation of the sin 2w term. Hence the con-
— 3

dition that i = 0(e ) is easily satisfied and there will be no secular-

ities. However, this is not the case if O) has a periodic time dependence

and if one harmonic of that time dependence resonates with the frequency

of oscillation of the term sin 2w. To see this we assume a slow period

icity in (A) with a frequency 0)^ such that

0)

— =0(e). (2.10)
0)

We further assume that O) consists of one large constant term, aQ, with a

small ripple superimposed on it. In this case, we can write o) as

inco, t

n9^0

Using (2.11), i becomes to lowest order

/ 9 r ^ t+2w) i (nw- t-2w)l
' • a •E -.L- ' - ' J (2.12)

where we have substituted 1 for P to first order in e. A time average of

(2.12) gives zero unless there is a commensurability between the oscil

lations in t and w of the form

-14-



^ = f (2.13)
"l ^

where s is an integer of order . For the length of time that the system

remains close to the resonance, there will be slowly varying terms in the

sum of (2.12) which do not average to zero. These will be the n = ±s terms.

Assuming for simplicity that ^ jj ~ that w is an even function of time,

the average of (2.12) can be written as

a sin* (2.14)I 2\a^ ) 8

where (() is the slowly varying phase:

(j) = sco^t - 2w . (2.15)

Equation (2,14) gives a time rate of change in I of the order of e a since
s

from (2,11) and (2.13), sw^ - 2(0 - 2aQ, Furthermore, for a low order reso

nance, a can be of order unity so that 1 is of order e. In that case, if

the system remains in resonance for a time At = ~ , a secular change Al =

0(1) is possible and the lowest order adiabatic invariant is destroyed.

The particular choice (2.11) for the time dependence of (O allows (O to change

at most by order e in a time so that the resonance condition (2.13) is

still approximately satisfied. For the more general case in which O) =
incj^t

X ^ > this is not necessarily true. The choice (2.11) for the time
n

dependence of (aj, however, is not overly restrictive since we will see in

later chapters that multidimensional oscillations very often remain near

resonance for long times. The a^ generally decrease with increasing n.
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1 ™ msuch that a^, itself may be of order (—) = e where mdepends on the

smoothness of o). In this case the asjnnptotic series would not be expected

to fail until the (m+l)st order (see [6]). Since (J) is slowly varying in

the time , (2.14) represents a slow oscillation in I about its value at

exact resonance. To find a new approximate invariant we employ the tech

niques of secular perturbation theory. To do this, we first transform from

the action-angle variables for the unperturbed case (e = 0), P, w, to new

variables J and 0 which are action-angle variables for the perturbed

case (e 0). The new variable J is just the adiabatic invariant I defined

in (2.7). The corresponding angle variable is

0 = w + cos 2w (2.16)
W/

with Hamiltonian

H = wJ + e ^ (2.17)

We now assume a resonance condition of the form (2.13) and transform

to new canonical variables J and 0 which put the observer in a frame of

reference rotating with the resonance. 0 is the slowly varying difference

phase -(|> of (2.15), and J is +^ J. In terms of J and 0 (2.17) becomes

H= (2(1) - sci)^)J + e ^ ®"l (2.18)

If the system remains close to resonance, 0 will be slowly varying com

pared to (i)^t and we expect that a time average of (2.18) would not appre-
2 2

ciably effect the slow oscillation. Substituting - 2s (D^a^ cos sco^t for
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from (2.11), the average yields;

H = (2a_ - sa)-)J - I ) a J cos 00 1 2\aJ s (2.19)

which is independent of time and hence a constant of the motion. The

A Ak

equation defines J (or J) as an explicit function of 6. In the presence

of the resonance, the simple adiabatic invariant J is no longer a con

stant to first order in e; instead there is a new approximate invariant

defined by equation (2.19). For exact average resonance, such that the

first term of (2.19) vanishes, there are infinities in J due to the inde

pendence of the average frequency from the action J. In actual systems

nonlinearities limit the change in J. To see this, we assume that the

average frequency a^ depends nonlinearly on J in the following way:

a^ = a - 3J

da

where 3 =
0

9J
, the first term in the Taylor expansion about J = 0.

Substituting (2.20) into (2.19) we obtain, after some rearranging of

terms.

-1 + 2«_ . jIj . ,
S(i)^ SOJ^

(2.20)

H = so)^ ^ f 22_ _ 5\
Vsco, SO), / \a a /
^ 1 1 ' ^ s s '

cos 0 ? = Constant

(2.21)

We plot J as a function of 0 from (2.21)

a

— = 1.1, ^ = .091, — = .91, and e = .1.
SO)- 'a a

For J = 1/2, this corresponds to the case of average resonance in which

a A

0 o( o Ajr Q
— = = -=- so that the first term in (2.21) vanishes. The results0)^ 2
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(solid lines in Fig, 1) show closed phase loops centered about 0 = + ir.

The areas within the closed phase loops are the adiabatic invariants of

the transformed system, which replace the previous invariants that no

longer exist in consequence of the resonant interaction.

The results embodied in (2.21) can be made clearer by writing (2.21)

in the functional form

H=o)qJ - yJ^ - e6(J) cos 6=const. (2.22)

We note there is an elliptic singular point at J = 1/2, 8 = + ii"* This

can be determined analytically by setting

M = M = 0
3J 90

If we further expand J about the singularity, as

J = J + AJ

and assuming << 1, (2.22) yields

y(AJ)^ + e6(J) cos 0 = const. (2.23)

The separatrix for the oscillation is found from the Hamiltonian corre-

spending to the initial conditions AJ = 0 at 0 = 0, and the maximum value

of AJ is then found at 0 = ir to be

^/2e5(J)Y^^
'max V Y /(AJ) = (2.24)

We see that the maximum excursion of J due to the resonance is proportional
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1/2
to e or, more completely, proportional to the square root of the ratio

of the coefficient of the perturbation term divided by the coefficient

of the first order nonlinearity in J. This result, found by Rosenbluth

[191et al. for the perturbation of magnetic surfaces, is a general pro

perty of a system in which the nonlinearity occurs independently of the

perturbation. If the nonlinearity occurs only in the perturbation then

the island amplitude is governed by a diffent law, which we describe in

the next section. We plot the curve of constant Hamiltonian at the

separatrix, from the approximate expression given in (2.23), to

obtain the dashed line in Fig. 1, which although differing in detail,

gives a value of AJ in good agreement with the results from (2.21).

The frequency of the island oscillation can also be found near the

elliptic singularity by linearizing (2.23) to obtain

with the frequency given by

V= (2Ye6) '̂'̂ (2.26)

1/2
which is also proportional to e

The new invariant generated by removing resonances can break down in

two ways. 1. The frequency can drift away from the resonance adiabati-

cally. 2. Neighboring resonances can interact sufficiently strongly

that a single resonance does not describe the motion. In the first

case an adiabatic invariant usually exists, but the phase curves are

distorted by the passage of frequencies near successive resonances.
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In the case of strongly interacting resonances, values of e can

be chosen appropriately to give both successive island resonances

and ergodic regions between them. For larger perturbations the islands

can interact sufficiently strongly for the entire island structure to

be absorbed by the ergodic region. The width of a resonance relative

to the distance between resonances is the important parameter in deter

mining breakdown of invariants. We have obtained an approximate formula

for the width of the s-resonance in terms of the variation of the action.

We obtain the variation of the frequency from

Aw = — 2AJ
rn,

dJ

and compare it with the separation between the s and s + 1 resonance which

is approximately w/s, to obtain a criterian for resonance overlap

^^2iJ = 0(l) (2.27)
dJ

and since dw/dJ ="I" Y» we have, using (2.24) and (2.26), that for overlap

^=0(1). (2.28)
(0

We explore the validity of this simple criterian in the detailed numerical

example of section V.

111. GENERAL THEORY

A. Removal of Degeneracies

We assume the Hamiltonian consists of two parts in the form

-20-



H= Hq + where is solvable in action angle variables such that

H= + eHj^(Pj^,P2,Wj^,W2) (3.1)

with e a small number. If a resonance exists between the unperturbed

frequencies

-pr = — (r,s integers) (3.2)

then an attempt to solve the motion in action-angle variables by pertur-

[25]
bation theory leads to a secularity in the solution. We will take

equation (3.2) to represent either a primary resonance in the system or

a secondary resonance created by harmonic frequencies of islands generated

by the primary resonance. In either case, the secularity can be removed

by applying a transformation which eliminates one of the original actions,

or P^, from the unperturbed Hamiltonian H^. We choose the generating

function

F2 = (rw^ - sw^)?^ + W2P2 (3.3)

^ A ^ ^

which defines a canonical transformation from P^,P2,w^,W2 to P^,P2,Wj^,W2

such that

9F2 aF2
"1 ° ° ''"1 " ^1 = 3^ °

3P ^

^2 " " "2 ^2 " " ^2 " ®^1*
or2 ^

(3.4)
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These coordinates put the observer in a rotating frame in which the rate

of change of the new variable w^ = rw^ - SW2 measures the slow devia

tion from resonance. There are two cases of importance: (1) If the

resonance condition is met for the unperturbed frequencies for all

and P2, then the Hamiltonian is intrinsically degenerate. (2) If the

resonance is satisfied only for a particular value of P^^ and P2, then

the Hamiltonian is accidentally degenerate. A primary resonance can be

either accidental or intrinsic, but a secondary resonance is almost always

accidental due to the complicated way in which the island frequency depends

on the actions. Applying the transformation (3.4) to the Hamiltonian for

the intrinsically degenerate case, we obtain a new Hamiltonian of the form

H = i|;(P2) + eA(P^,P2,w^,W2). (3.5)

For the accidentally degenerate case, we obtain

H = i|;(P ,P ) + eA(Pj^,P2,w^,W2). (3.6)

We note that if r >> s, then ~ = 0(l/e), and the Hamiltonian

(3.1) is already in the form of (3.5).

In the case of intrinsic degeneracy, (Eq. (3.5)), Hamiltonian's equa

tions are

9H 9A ^
w = = e -:r- = 0(e) (3.7)

9P^ 9P^

", = •^+ e 0(1)- (3-8)
3^2 ^^2
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We see that is slowly varying compared to and hence we can average

(3.5) over W2 to give

where

H= + eA(P^,P2,w^) (3.9)

2Tr

A= ^ A(P^,P2,w^,W2)dw2. (3.10)

Since H is independent of W2, we have the approximate result that

P2 - constant. (3.11)

This is the first term of the series for the adiabatic invariant of

Hamiltonian (3.5).

A

We see from (3.4) that P2 represents a combined invariant for the
sdegenerate system, namely ^2 ~ ^2 F ^1* effect of the rotating

coordinates is to explicitly exhibit the single invariant of the resonant

system. Notice, however, that for a high order resonance in which r » s,
A

the invariant for the resonant system, P2, reduces to that of the nonre-

sonant system, P2» Hence, the only resonances of importance are those

with low harmonic numbers.

A A

If an elliptic singularity exists in the P^ - w^ phase plane at

3H
A

aPi
= 0

-23-
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and Hamiltonian (3.9) can be expanded about the singularity as

— ~ ~ V (AP)^ , £ (Aw)^ ,

where

and

AP = - P^

Aw = - w^

g = e

f = e

a^A
"23P^

A
3w^

P^.wi

Pl.Wi

= 0(e)

= 0(e).

(3.13)

(3.1A)

Terms linear in AP and Aw are absent by virtue of (3.12). The coefficient

of the APAw cross term has been assumed to vanish in the average since

this is the observed behavior in our numerical examples. Hamiltonian (3.13)

can be used to plot elliptic phase orbits in the AP-Aw phsse plane. The

frequency of oscillation around a phase loop in general depends on the

area enclosed by the loop; however, for loops close to the singularity, this

frequency approaches a constant value of

0 a/2(D = (fg) « e,

A ^

i.e. the frequency of the P^ - w^ oscillation is a factor of e slower than

the frequency of the §2 - ^2 oscillation. The ratio of the lengths of
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the semiaxes of the ellipse can be calculated approximately as
[17]

(AP)
max

(Aw)
max

=(f)
1/2

such that if the maximum excursion in Aw is of order unity, then the

maximum excursion in AP/P is also of order unity. To complete the solu

tion, formally, we transform to action angle variables for the slow

oscillation of AP and Aw. We postpone this calculation until we have

considered the more general case of accidental degeneracy. The trans

formation to action angle variables is generally unnecessary unless an

island resonance must also be removed.

In the case of accidental degeneracy, we consider the Hamiltonian
/S A

of equation (3.6). If there is an elliptic singularity in the P^ - w^

phase plane, then an average can be performed similar to that for the
A A

intrinsic case. To see this, we assume an elliptic singularity at

The Hamiltonian (3.6) is expanded as

where

0 2
— /^ /V /V ^APr fAw")H= tKPj^,P2) + eACPj^.Pj.Wj^.w^) + G — + L APAw + F —^— +

G=-^
3Pl

L = e

Pl.Wl

3^A

+ e
3^A
3P? P^.Wi

= 0(e)
3^3Wi Pl,wi

F = G
A
3w?

0(e).

Pl,wi
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For the linear part of Hamiltonlan (3.15) the cross product can be

eliminated by a standard diagonalization procedure to obtain the eigen

values

Xl =|(F +G) +Y n/(F +G)^ - 4(FG - L^)
(3.17)

^2 " " i >/(F +G)^ - A(FG - L^) ,

so that Hamiltonian (3.15) becomes

— — (') ^ (Aw') ^
H= i|;(P^,P2) + eA(P^,P2,w^,W2) + ^^2 —2~—*** *

(3.18)

The linear frequency of the AP* - Aw* motion is then

n' = = (FG - = 0(e^^^) (3.19)

which justifies averaging the Hamiltonian (3.6) over W2. The average

gives

H= ip(Pj^,P2) + eA(P3^,P2,w^) (3.20)

At

with P2 an approximate constant of the motion. Equation (3.20) is
At At

analogous to (3.5) and hence can be used to isolate the P^ - w^ phase

trajectories.

An accidental degeneracy in a multidimensional system is equivalent

to a resonance of the one dimensional anharmonic oscillator with periodi

cally varying frequency, which we treated in section II, In both cases

the frequency is a function of the momentum in the absence of the resonant
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coupling.

B. Higher Order Resonances

If E is not sufficiently small, higher order resonances are present

in Hamiltonians (3.5) and (3.6) which contribute secular terms that
/V

modify the invariant P2. These higher order resonances can be removed

in a manner closely analogous to that used in section A. However, the

results have some additional features which will be seen by carrying

through some of the steps explicitly. In order to apply the theory of

section A, the part of the Hamiltonian not containing the resonances

must be in action-angle form. We transform to action-angle variables

0^ by solving the Hamilton—Jacobi equation.

A A

= K(P2,Jj^), (3.21)

where for H, we substitute equation (3.5) for an intrinsic degeneracy or

equation (3.20) for an accidental degeneracy. Here, we outline the steps

involved in the solution for an accidental degeneracy. Substituting

equation (3.20) for H, (3.21) becomes

iKP^.Pj) + elCP^.Pj'Wi) = K(P2,J2). (3.22)

To obtain a solution near the elliptic singularity we expand H, and the

generating function for the transformation, as power series in J^. For

H we obtain

H= ip(P^,P2) + eI(P^,P2,w^) + G + F + ••• (3.23)
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where we have assumed L averages to zero. The transformation to action-

angle variables J^, 9^ for the harmonic oscillator is well known^^^
yielding

KqCP^.e ' jp = i|i(Pj^,P2) + eA(P^,P2,wp + SJ (3.24)

0 1/2
where Q = (F G) and the dependence on e is shown explicitly in

since 8Kq/8jJ = =0(e^^^). The old and the new variables are related
1/F\/ 2 0by the generating function ~y (rirj cot 0 which yields the

transformation to polar coordinates

AP = (2J° cos ej
n , (3.25)

(^W 0

1/2 1/2
where R = (F/G) = 0(e ). The nonlinearity is reintroduced by includ

ing higher order terms in the expansion of H and transforming to new

action-angle variables J^, 0^ using perturbation theory. Substituting

(3.25) into (3.23) and keeping terms up to fourth order in AP and Aw,

where

and

A A A A A

H = i|;(P^,P2) + ef2(P^,P2,w^) + + H2

Hq =

^1 ^2 2:^=o(x), :r^=o(x^)
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where

1 12Recalling that = 2 ^ '̂̂ "^max' accidental case,

•^1 max ° ^„ax ° 0<^ '̂'̂ )- Therefore [h^I l^il « [HqI
and we can write H as

H= iKPj^,P2) + efi(P^,P2,w^) + \ + -"^2 (3.26)

where 6 is an artificial constant measure of smallness which is set

equal to unity at the end of the calculation. It is interesting to note,

however, that for the intrinsic case, = 0(1) so that

and X therefore is not necessarily small. Hence the expansion (3.26) will

have a much greater range of validity in the accidental case than in the

intrinsic case. To apply perturbation theory, we make the following

expansions for the new Hamiltonian and the generating function

K=Kq + 6K^ +6^ K2

S=Sq + 6S^ +6^ S2

where Sq is the identity transformation, then solve for Kand S

to each order in 6 (See [25]). The results are, to first order

and

9 S

"l^^l^ ;4 =- - t (J )] (3.27)30^
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and to second order

as an as _ ^
K„ = (j.) —K + — -^+ H.CJ^.e.) (3.28)

where is the average of over 0^. Since has only odd powers of
the sinusoids in 0^, we have =0. Thus there is no frequency shift to
first order, and we must evaluate K2 to obtain the lowest order effect of

the nonlinearity on the frequency shift. This is accomplished by averag

ing K2 over 0^ giving

aH- as. -

K. =-^-^+ H.(J,). (3.29)
aj^ a0^

If no first order terms appear in the Hamiltonian, = 0, and K2 can be

obtained from the simple average H2.

Substituting for AP and Aw in terms of and 0^ yields for the

average part of the Hamiltonian

^ 1 / 9 ~ ^ ~ A. ~ 0 2. ^
K(P2,e ' J^) = |̂̂ (Pi,P2) + eA(P^,P2,w^) + J^(l + X(P2,Ji)m(P2) + ... )

(3.30)

where m is in general a complicated function of P2. Eq. (3.30) is the
ys

formal solution in the case that the average over W2 is valid. It is

independent of angles so that §2 *^1 constants of the

motion.

To take into account the effect of the island resonance in modifying

this solution we reintroduce the terms ignored in the simple average
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over We denote these terms as eA(P^,P2,w^,W2) where for simplicity

of notation we omit the hats from all variables. This is reasonable to

do here, as we will perform a second transformation to new hat variables

to remove the second order resonance. We have

^^^1'̂ 2*^1'̂ 2^ = A(P^,P2,w^,W2) - A(P^,P2,w^). (3.31)

For multiply periodic systems, A can be Fourier expanded in w^ and W2

giving for A:

\ i(i^w + raw-)

£,m
m^O

Expanding about the elliptic singularity gives

_ i(Ji[w- + Aw] + raw-)

£.,m
m'j^O

In the case of accidental degeneracy,

= R= 0(e^^^) (3.34)
max

so that to lowest order, we can ignore the variation in P^. Transforming

to action angle variables by (3.25)

/2Ji\l/2
_ i(Aw., + raw-) 5—I sin 0-

' e W (3.35)
£,m

m^O
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and, expanding the second exponential

Z_ / \ i(ilw +mw« +nS-)
».36)

Jt,m,n \ * /

where J is the Bessel function of order n. From (3.36), it is evident
n

that there can be higher order resonances between W2 and 0^ such that

the average of (3.36) over W2 is not zero. Considering the resonance

^ = q (P> q integers) (3.37)

where

V2 = = 0(1)

o - 3K _ 1/2.

then the terms m=+q, n=+p and their harmonics will remain after the
/ l^\

average. The magnitude of the lowest harmonic depends on 1where

-1/2 1/2 1/2
p is a large integer of order £ . Since = 0(e ) and R - 0(e ),

1/2the maximum value of the argument (2J^/R) is of order unity which allows

the Bessel function to be approximated by the first term in the expansion

for small argument

'j^\ P/2
= 0| 1177—1 (3-38)

-32-

»^(qe )!

Higher harmonics such as m = - 2q, n = 2p decrease rapidly and can be



neglected. From (3.38) we see that the amplitude of the interaction

term is also proportional to such that the island oscillations

decrease in size rapidly with decreasing J^. To obtain the new invari

ant, we write the total Hamiltonian as

1/2H= K(P2,e ' jp + eA(J^,P2,03^,W2). (3.39)

This has a form similar to (3.1). Therefore, we can use the method of

section A to remove the degeneracy given by (3.37). This involves a

/N /V /V /V

transformation to new variables which we denote as P^, P2, w^, W2 where

one of the new angles w^ is the slow variable p0^ - qw2. An average
At

over the fast W2 is then equivalent to keeping only m=q, n=-p,

and m = - q, n = p, together with harmonics in A. Letting q = 0(1) the

result will be of the form

H=KCPj^.Pp +[ -1/2 1A'(Pj^,P2,Wj^) (3.40)

where we have factored the e dependence from A, using (3.38), a procedure

which can only be carried out after averaging. The double bar distinguish

es this average from the simple average of section A which ignores all

of the terms in A. Since is cyclic in W2, we have also

At At

P2 = P2 + - constant. (3.41)

such that the P^ - w^ phase orbits are isolated. Comparing equations

(3.40) and (3.20), we see that the amplitude and frequency of the oscil-

Ak 1 / 0 T / 0

lation in P^ will be a factor of 0(1/e !) smaller than the amplitude
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and frequency of the oscillation in P^. We call the new oscillation

an island oscillation because it appears as a chain of islands in the

P^ - phase plane.

Although the procedure for exhibiting the invariant curves of the

island oscillation, arising from the second order resonance, is the same

as that used for obtaining the invariant curves of the primary resonance,

the results have a somewhat different character. The strength of the

island resonance is related explicitly to a particular form of phase

nonlinearity, depending strongly on £. The strength of the primary

1/2
resonance is related weakly to e, as e . Thus, for relatively small e,

island oscillations rapidly become of negligible importance. For rela

tively large e, on the other hand, the island oscillations may be more

important than the primary resonance in determining the limits of adia-

batic invariance. In principle the above procedure may be extended to

third order resonances, but because of the factorial dependence on e we

find that the island oscillations either interact sufficiently strongly

to terminate the series or the third order resonances have vanishingly

small effect.

For intrinsic degeneracies the second order resonances do not have

the same explicit form of e dependence. However, the conclusion above,

that the importance of the island oscillations is strongly dependent on

the magnitude of e, is still valid.

IV. NONLINEAR COUPLED OSCILLATOR

In this section, we present numerical results from an example which
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has an intrinsically degenerate fundamental resonance. By introducing

a term to make the degeneracy accidental, we can compare the two problems

and observe numerically the differences which we predicted analytically

in the last section.

We consider a two dimensional oscillator in x and y with the

Hamiltonian

H= HQ(p^,Py,x,y) + eH^(x,y) (4.1)

where

and

„243 //o\= Xy - y y . (4.3)

e is an artificial small parameter to be set equal to unity at the end of

the calculation. The significance of e is to remind us that for small

amplitude oscillations in x and y, the terms in the perturbation, H^,

are smaller than the terms in by a factor of the square root of the

unperturbed energy. The potential, U(x,y), is

TT/ \ 1/ 2 . , 2 ^ « 2 8 3.U(x,y) = •^(x + 4y + 2x y - j y ) .

As U increases, the curves of equipotential (U = constant) become increasingly

nonlinear until a triangular separatrix at U = .6666 is reached, which

separates bound from unbound trajectories.

We transform (4.1) to the appropriate form to apply our general

theory by introducing in two dimensions, the action-angle variables for
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the harmonic oscillator as given in (3.25)

X=^2^ sin y =y/^ sin W2

Pjj = COS Py =^2 "2

which gives

H= Hq(P^,P2) + gH^(P3^,P2»W3^»V

where

(A.4)

Hq = P^ + 2P2 (4.6)

and

=2P^(P2)^^^ sin^ w^ sin W2 - sin^ W2. (4.7)

The unperturbed frequencies in the two degrees of freedom are then

0 '«o , 0
"x 3Pj^ " • "y aPj

so that the resonance condition becomes

0
)

X
0

0)

-2. = 2. (4.8)
0)

X

0,0
Note that this is intrinsic rather than accidental because w and w are

X y

independent of P^ and P2.
A

This problem bears close resemblence to the problem treated by Henon

and Heiles^^^^ and McNamara and Whiteman.The only difference is
0

that we have assumed a one to two resonance between the frequencies

and while the above authors treat the one to one resonance. The advan-
y

tage of the one to two case is that it provides a lowest order invariant

which is zero order rather than first order in e, and hence it is easier

-36-



to calculate. ^

To remove the intrinsic degeneracy, we employ the generating func

tion as in (3.3)

^2 " ^^"l ~"2^^1 "2^2'

giving a transformation to new variables P^,P2»w^,W2 such that the unper

turbed part of the Hamiltonian is a function of P2 alone:

Hq = 2P2. (^.10)

The total Hamiltonian, in terms of the hat variables, is

H=2P2 +AP^(P2 - P^)^^^sin^ sin ^ (^2 " Pi)^^^sin^ W2,
(4.11)

A

and can be averaged over W2 to give

H=2P2 + ~^1^^^^®^^ ^1 C4.12)

where we have set e = 1. The lowest order adiabatic invariant is there

fore,

p2 = P2 + Y - constant (4.13)

_ A A

which, together with H = constant, isolates the P^ - w^ phase motion.

In removing a degeneracy by use of a generating function*as in (4.9), there is

an arbitrary choice of which of the original phase variables to keep. We have

chosen here to keep W2 = W2f such that the average in (4.11) is taken over the

faster variable, W2. Although this choice is convenient here, if 2^*^ order
island resonances are to be removed it is possible to lose the lowest order

interaction unless the original transformation leads to an average over the

slower of the original phase variables. We average over the slower oscillation
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In the example of the next section in which the second order resonances are

removed.

Ak A

The light lines in Figure 2 show the - w^ phase loops plotted from
A

equation (4.12) for P2 = .04166 and a total energy E = .08333. As a

check on the averaging procedure, we have also shown in Figure 2 (heavy

lines) the trajectories obtained by numerically integrating Hamilton's
A

equations before the average over W2. We differentiate equation (4.11)
A A A A

with respect to P^, P2, w^^, W2 and solve the resulting four simultaneous

differential equations by a standard subroutine on a CDC 6400 computer.

The results are plotted in Figure 2 for a plane of section

sin W2 = 1.0. (4.14)

This particular plane has no special significance and similar results

are obtained using any other plane. Comparing the analytic and numerical

solutions in Fig. 2, we see that there is slightly more asymmetry in the

numerical result. Presumably, if we carry the averaging procedure to

higher orders in e, the agreement will improve.

Also, from Fig. 2, we notice that for the outer-most phase loops,

A

the fractional change in w^ is of order unity, and the fractional change
A

in P^ is likewise of order unity. This result is a direct consequence

of the intrinsic nature of the resonance as we showed in the last section.

[12] [13]
Alternately, we can follow McNamara and Whiteman by writing

the first order adiabatic invariant I in terms ofx,y,p,p, eliminating
X y

p^ between I = constant and H = E, a constant, and evaluating the result

in the x = 0 plane of section. We obtain,

E , 1 , 8 3 2,2;^ ^ ,/"2 + -g y(2E + "37 ~Py~^y) = Constant (4.15)

which gives the isolated motion in the y - p^ phase plane shown by the
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r 121 ^light lines in Fig. 3. Both McNamara and Whiteman and Henon and

Heiles'"^^^ show results in this plane rather than in the plane
of Fig. 2. The two methods of plotting are equivalent, however. The

dark lines in Fig. 3 show numerical results obtained by differentiating

the original Hamiltonian (4.1) with respect to x, p^, y, p^ and integrat

ing the four resulting equations with the aid of a computer. These

results are plotted in the plane of section x = 0. Again there is more

ri21
asymmetry in the numerical result, but as McNamara and Whiteman have

shown, if the adiabatic invariant is calculated to higher order, the

agreement can be quite good. For the oscillator with 0)^ =0)^ =1, they
have obtained reasonable agreement in fourth order for this same energy.

For the low value of energy considered up to this point, we can in

principle obtain arbitrarily good agreement between theoretical and

numerical solutions by calculating the invariant to higher orders in e.

This is not the case, however, for higher values of the energy because

the invariant used in the theoretical calculations breaks down due to

higher order resonances. This is shown by the island formation in Fig. 4

which was calculated numerically for an energy of E = .33333. The non-

connected points correspond to a single particle orbit as do the five-

island trajectories. A corresponding first order theoretical curve

plotted from equation (4.12) would show niether the ergodic region nor

the chain of islands. This is to be expected since the islands occur as

a result of resonances which are ignored in the averaging leading to the

simple invariants.

Note that the frequency of the phase oscillation In Fig. 4 is
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approximately twice that in Fig. 2. This is shown by the numbering of

the points. In Fig. 2 there are about 10 oscillations in W2 for each one

in w^ while there are only 5 in Fig. 4. Since the energy in Fig. 4 is
A A

4 times that in Fig. 2, we see that the frequency of the - w^ phase

oscillation varies linearly with e - v^. As pointed out in the previous

section, this is a general result for all phase oscillations that result

from the removal of intrinsic degeneracies and it accounts for the

relatively high value of energy (E = .3333) necessary to observe break

down in Fig. 4.

In order to contrast this behavior with that resulting from the

removal of an accidental degeneracy, we introduce another term in the

0
unperturbed Hamiltonian (4.6) so that the unperturbed frequencies and

(1)2 depend on and P2. We take

Hq =Pi +2P2 - pl/2 (4.16)
giving

0 !!o ,"y-3P2- -2^pJ

SO that the resonance condition, = 2, is satisfied only accidentally.

Although the additional term in Hq has been introduced somewhat artificially

here, such terms do occur naturally in many problems, and we will treat

such a case in the next section. With the nonlinear term present in the

unperturbed Hamiltonian, the transformation (4.9) does not eliminate the
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dependence from Hq. But as we saw in Section 3, an average over W2
A A

may still be justified when there is an elliptic singularity in the - w^

phase plane. Assuming that this is the case, and performing the average

we obtain

H=2?^ - (2Pj^)^^^(P2 - - Pi)^^^sin Wj^
(4.18)

A

with a lowest order invariant P2 as defined in (4.13). In Fig. 5a, we
A A ^

show the P^ - w^ phase curves plotted from (4.18) for P2 = .006443

and a total energy of E = .008333. The corresponding numerical plot,

shown in Fig. 5b, was plotted by integrating Hamilton's equations directly

A

before the average over W2. There is an elliptic singularity evident in

Fig. 5b so that we expect the averaging which led to Fig. 5a to be valid.

Near the separatrix of the oscillation, however, the averaging breaks

down as indicated by the island formation and ergodic region. Because

A A

the frequency of the P^ - w^^ phase oscillation in the accidental case
1/2 1/4 1/2

varies as e = E whereas it varies as e E in the intrinsic

case, a much smaller value of the energy is required for accidental degen

eracy to obtain the same resonant harmonic interaction. The ratio of

the frequency of the island oscillation to the frequency of main invariant

curves is observed to be 1/7 which is in reasonable agreement with the

1/2
predicted value of (1/p!) = 1/10 as predicted from Eq. (3.40). In

both Figures 4 and 5 breakdown occurs at the fifth order resonance as

indicated by the chain of five islands surrounding the adiabatic phase

space curves.
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The amplitude of the oscillation in given in Fig. 5a is no longer

A,

of the same order of magnitude as the amplitude of the oscillation.

_ AThe outer most phase loop shows a maximum fractional change in w^ of
A

order unity while the maximum fractional change in is 0.3 which is of

the order of the fourth root of the energy, consistent with the general

results given in Section III for accidental degeneracies.

In Fig. 5c, we have lowered the energy from .0083 to .0068 (we have

doubled the vertical scale for clarity). We note that this causes the

five-island trajectory to move slightly inward toward the elliptic singu-

A A

larity in the P^ - w^^ plane. This is to be expected since the frequency
X/2of the P^ - w^ phase loops varies as e .A smaller e, therefore, results

in a smaller frequency, and to obtain the same resonant interaction it is

necessary to reduce the nonlinear frequency shift by reducing the size of

the phase loops. In Fig. 5c, break-up no longer occurs outside of the

five-island orbit. Rather, there are smooth phase loops outside of the

islands and the trajectories break up due to interaction between the chain

of six islands and nonresonant terms. A stabilization of the five island

trajectory as it moves inward is to be expected from the results of sec

tion III where we saw that the nonresonant terms have amplitudes depending

on Bessel functions with arguments proportional to the area enclosed by

A A

Pj^ ~ w^ phase loops. Hence as the five islands move in, the area enclosed

decreases and the secular terms become less important. The index of

the Bessel function, on the other hand, depends on the resonance number

so that the size of the islands decreases as the number of islands goes

up. Thus, we might expect the chain of six islands to be smaller than
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the chain of five islands, but the competing effect of a larger area

enclosed by the chain makes the size of the six islands in Fig. 5c com

parable if not larger than the five islands. The higher harmonic island

chains are also closer together, increasing the interaction of neighboring

island chains. We note that an 11 island chain also appears, corre

sponding to the 11/2 resonance, such that the trajectory returns to a

given island after two oscillations of the main invariant curve. The

islands are of much smaller amplitude as the interaction strength depends

on the amplitude of a Bessel function of 11th order, rather than the 5th

and 6th order Bessel functions corresponding to the 5 and 6 island tra

jectories. Narrow bands of stochasticity may exist near the separatrices

of the 5 and 11 island chain resonances, but these trajectories are

enclosed by adiabatic trajectories which confine them to limited regions

of the phase plane.

In the next section, we consider electron cyclotron resonance of

magnetically confined particles as an example of a two dimensional coupled

oscillator. The nonlinear term in the unperturbed part of the Hamiltonian

occurrs naturally in this problem and the fundamental degeneracy is

accidental, resulting in phase curves resembling those in Fig. 5 rather

than those in Figures 3 and 4.

V. CYCLOTRON RESONANCE IN A MAGNETIC MIRROR FIELD

As an example of the effect of generation of invariants by removal

of an accidental degeneracy, the modification of those invariants due to

secondary resonances giving rise to island oscillations, and the destruction
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of the invariants for sufficiently large perturbation, we treat the problem of

cyclotron resonance between a particle gyrating in a magnetic mirror field

and an electromagnetic wave. The system is shown schematically in Fig. 6.

All lengths are normalized to the length L where 2L is the distance between

mirror points. The magnetic field Bis approximated by = 1 + ar|̂ >a »
B ®0

max - ,
- 1 where is the field strength at the midplane (n^O) and B is

**0 ^ max

the field strength at n ~^ 1* The Hamiltonian for this problem was ex

pressed in action-angle variables by Seidl^^^^. Following Seidl, we desig

nate actions for the Larmor, azimuthal, and longitudinal motions, P^, P2

and P^ respectively. The corresponding angle variables are w^^, w^ and w^.

P^ is equivalent to the longitudinal action integral

^3 =k/Pn
and w^ Is the phase of the longitudinal oscillation so that n = t| sin w^

m j

where is the maximum longitudinal penetration which can be shown to be

2 1/2 1/2iljjj = (2/a) ^3^^i * Similarly, is the phase angle for the azimuthal

drift of the guiding center and P2 is proportional to the flux through the

drift orbit, w^ is related to the Larmor angle by the relation

1 ^3Ql = Wi - — sin 2W3

such that the longitudinal variation of the Larmor motion has been sub

tracted out to make = w^ the average value of the Larmor frequency

over a longitudinal bounce, rather than the instantaneous value. In the

E,midplane where w^ = 0, P^ is proportional to the magnetic moment y = -g— .

Hence P^ is proportional to the perpendicular energy in the midplane.
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In terms of P^, P^, P^, w^, an expansion in powers of P^ yields

"o = <"o ^

where is the Larjqor frequency at thie midplane and

(P^) =« 1 - a P^ - i aV
0^2 2 2 2

Y^CP^) = (1 +a P^ - 3a^ P^ + •••)

Y2(P2) " 10 ^2^^ - 4a P^ +I P2 + •••) .

(5.2)

We note that (5.2) is independent of w^, W2, w^, and time t,. so that P^,

P^, P^* and Hare constants of the motion.

If we add to the system a radio frequency electric field propagating

parallel to the magnetic field; this R. F. field can be treated as a per

turbation on the original Hamiltonian so that

H= HqCPj^.Pj.Pj) - e Uq (w^.Wj.Pj^.Pj ojt) (5.3)

where

e = /T Q

/— , p,
VP, cos (w- - -7- — sin 2w«) cos (kLri sin 2wo) sin1 14 P^ J m ^

cot (5.4)

(5.5)

and w, Eq and k are the frequency, amplitude, and wave number of the
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electric field, respectively. For e 0, P^, and H are no longer

constants of the motion. The problem is to determine if new constants

exist in the presence of the perturbation. Seidl removed the primary

resonance by transforming to a rotating frame as in (3.3) in which the

new phase variable ~ - wt, is slowly varying near cyclotron resonance,

and employed the method of secular perturbations to average over w^ and

ojt which are both assumed to be rapidly varying with respect to wj|̂ . Expand

ing the perturbation in a Fourier series, keeping only the slowly vary

ing term.

where

\ / -iw' iw'

-i(w' + 2u)t) i(w' + 2a)t)il i2nWo (5.6)
+ e ^ - (-1)" e 1 h 3

1 ^3 . B = kLr,„

and averaging over w^ and cat, the total averaged Hamiltonian is

where

=<^0 Pi +Yin/?;^P3 +V2P3]

+ 6 0)^ — f (Pj^» P3) sin w| (5.7)

^=2 '2m J2m "
m=-°®
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Since H is independent of w^, the lowest order adiabatic invariant is

- constant (5.8)

which is the main conclusion of Seidl*s work. We note that the range of

validity of the averaging is considerably more restricted here than in

the previous section, as the average is not only over the fastest variable

with frequency to but also over the slower longitudinal variable with

bounce frequency w^. As in section IV, we check the accuracy of secular

perturbation theory for averaging over w^, by comparing the slow P^, w^

oscillation from (5.7) with numerical integration before the average over

w^ but after the average over tot, as shown in Figures 3a and b. The

numbers in Fig. 7b represent successive crossings of a plane of section

in w^,

sin 2w2 =1.0. (5.9)

There are approximately six longitudinal bounces for each oscillation in

the perpendicular energy P^, the particle crossing a resonance twice

during each longitudinal period. The slight scatter in the points plotted

is due to inaccuracies in satisfying (5.9) exactly. The relatively smooth

curves traced out in the P^ - wj^ phase plane indicate the existence of an

adiabatic invariant which in this case we know is P^ to lowest order. The

values of P^* averaged over a longitudinal bounce are plotted in Fig. 8

for one of the phase loops of Fig. 7b and we see that P^ is approximately

constant and equal to it's initial value of 4 x 10 . As a further check

on the theory, we have integrated the exact equations of motion numerically
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for parameters corresponding to Fig. 7b (see [31]). The results shown

in Fig. 7c are similar to those in Fig. 7b indicating that the assumptions

are valid.

Figures 9a, b and c are similar to Figures 7a, b and c except that

the value of e has been increased sufficiently for a chain of islands to

appear surrounding the closed phase orbits, indicating a significant

bounce-energy resonance. We include the exact numerical calculation in

9c, for the island chain only, to demonstrate that islands can be observed

in the absence of any approximations. A plot of averaged over the longi

tudinal oscillation for the island trajectory is shown in Fig. 10.

oscillates with the period of the island oscillation as is shown by the

numbering of the points. Points 11 - 16 lie on the inside of the islands

in Fig. 9b and hence enclose a small area inside their phase loop. We see

from Fig. 10 that these same points have relatively low values of P^. On

the other hand, points 21 - 26 lie on the outside of the islands enclosing

a larger area inside their phase orbit, and we see from Fig. 10 that these

points have relatively high values of P^. Although it is possible to obtain

completely stable islands, the islands in Figs. 9b and 9c are not stable. The

resonant terms which generate the island are perturbed by non-resonant terms

that cause the trajectory to slowly drift away from the island.

To explain the behavior exhibited in these figures, it is necessary

to consider the higher order resonance in the system which in this case is

the bounce-energy resonance. To treat the bounce-energy resonance, we

transform to the action-angle variables of the P^ oscillation, i.e. solve

the Hamilton-Jacobi equation

— 8S

^ ^ (5.10)
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where S(w| j^) is the partial generating function to transform to action-

angles J^, 0^. As in Section III we can expand the average Hamiltonian,

H, about the elliptic singular point P^, w| The average part of the

Hamiltonian in action-angle variables is then of the form

H» UoKYqCP^) - + YiCPj) P3 + Y2<V ^3!

+FCPj) - "(p II - A^(J^. P3)M(P3)] (5.11)

, _0 1/2where i2 is the lowest order energy oscillation frequency, A= —jr «= e

and we have written J2 and as P2 and P^ respectively since these variables

are unchanged by the transformation. F, R, and Mare functions of P^ re

sulting from the expansion which we derive in Appendix 1, The varying part

of the Hamiltonian can be Fourier analyzed as

n9^0 (5.12)

where
00

\(h' ^3) =2 --am
m=—

and a and $ are defined as in (5.6) except with P^ replacing P^. is
ththe a order Bessel function. The total Hamiltonian is

H= H(J^,P2,P3) - eWq H^(J^,P2,P3, 0^, W3) (5.13)
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where H and H are given by (5.11) and (5.12) respectively.

If we now define the unperturbed frequencies;

^(J , P , P ) =1^ =longitudinal bounce frequency (5.14)3 1 2 3 3

fi(J,, P«, P^) = = energy oscillation frequency (5.15)
12 3 o J

we see from the exponent in (5.12) that there can be resonances in (5.13)

of the form

P«, P,)
——= = Y~ ®integers) . (5.16)
Q(J^, P2, P3)

These resonances will introduce secularities in the time rate of change

of the simple adiabatic invariant P^. The resonances only occur for cer

tain values of and P^ which in general may vary due to the secularities.

As we see in Fig. 9b, islands form around elliptic singularities in the
^ A ^ ^ ^

*^1' ^1 Hence we can transform to coordinates (e^,W2,W3,J^,P2>P3)
/

/ , ^
in which 0^ is the difference phdse Zsw^ + rS^ which is slowly varying

near the elliptic singularity. The required generating function is

F2 = (2SW3 + rSj^)!^ +^2^2 +^3^3 (5.17)

which defines the transformation to the hat variables in the rotating

frame,

-50-



^ BF, SF,
=— =2SW3 +r0j ° 36^ °

- 3F 3F „"2 =-^="2 ''2 =-5;^=^2 (5.18)
3^2 3^2 - -"3=^="3 ^3 = =̂3 + •

Writing the perturbation (5.12) in terms of the hat variables

yifV* „ /,/^,\ i{2(nr-As)w,-
h—-^P Sn( '̂ ^3 283i) ((-1)^ +(-1)")J,W

Jo,n \ '
n?^0 (5.19)

Ak

and averaging over w^, we get

Ss^(Pl.P3 +2sJ^)((-l)''' + ^
(5.20)

n^^O
nr-irS=0

S VPi
Hi =-^

The double bar average corresponds to keeping just the most slowly varying

3 Vterms of the sum (5.19) which, for the — = resonance, are the Jl = jr

and n = js terms where j runs over all positive integers.

The total average Hamiltonian taking into account the bounce-energy

resonance can now be written as
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ii =">ol(-Vo<P2^ " ^®V ^

+FCPj.J^) - n°(P3,Ji) rJ^ [1-X^ (P3.J1) M(g3,J^)]

' •", ^t'l.'''-'̂ '"-""*<-"'*"i.'V?' "•'
j=l

where all quantities are derived in the appendix. Since H is independent

of w^, the correct adiabatic invariant for the island case is

P = P - ~ J- - constant (5.22)
3 3 r 1

which reduces to the invariant for a very high order resonance, r » s.

Since H in (5.21) is independent of time, we can use H = constant together

with = constant to plot versus 0^ for various values of the constant,

H. Rather than do this directly we see, from (5.22), that if oscillates

then P^, the adiabatic invariant without resonances must also oscillate.
This explains the sychronized oscillation between P^ and observed in

Figs. 9b and 10. We plot the oscillation in P^, 0^ for the five island

resonance as solid lines in Fig. H. The bold curve corresponds to the

initial conditions of the five island trajectory in Fig. 9b. On the

right hand axis we give the ratio The oscillation centers

about an average bounce-energy resonance number of = 2.5 as

does the five island trajectory in the niimerical integration. At the ex

tremes of the oscillation, the ratio never moves very far from 2.5

going to 2.54 at the top of the phase loop and 2.46 at the bottom, thus
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justifying the fundamental assumption for keeping only the most slowly

varying terms, that the system should remain close to a particular bounce-

energy resonance.

In the numerical integrations of Fig, 9b, we also find relatively

smooth phase loops near the elliptic singular point and ergodic trajectories

beyond the islands. By plotting P^, phase diagrams for these other types

of behavior, we can distinguish the physical mechanism that differentiates

among them. The most slowly varying term for the islands = 2.5) had

^=5, n=l in the sum (5.12), plus higher harmonics. Taking r=7 and s=l

leads to the much smaller oscillation about = 3.5 shown at the top of

Fig. 11. Also, r=3, s=l contributes the drifting oscillations shown as

"^3 rdashed lines. (The integral resonances = 1,2,3, •••• lead only to

extremely small oscillations in the adiabatic invariant, P^, and are not

considered). Close to the 2.5 resonance, the nonresonant terms average

nearly to zero over an island oscillation. To see this, we recall that

the nonresonant terms average exactly to zero when the system is right

at the 2.5 resonance due to the orthogonality of the exponentials making

up the Fourier series (5.12). If the system is not exactly at resonance,

the nonresonant terms do contribute, but in the approximation of a sym

metric oscillation about resonance, the contributions above and below

resonance cancel. The assumption of symmetry around the resonance is

valid in the linear region close to the island singularity so that the

total nonresonant contribution averages nearly to zero over the island

oscillation. Thus the double bar average with r = 5 and s = 1 is a reasonable

approximation for the island trajectory in Fig. 9b. For the ergodic trajec-
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tory in this figure, the nonresonant terms do not average to zero since

the system is not close enough to the 2.5 resonance. The random trajec

tory, shown as the bold curve in Fig. 12, lies between the 2.5 and 3.5

resonances, and is not close enough to either resonance to justify keep

ing only one term in the sum. Furthermore, cannot remain constant in

r 3
this case because of the large variations introduced by the - y term.

This term will also be rapidly varying with respect to the natural bounce-

energy frequency of the system which is approximately 2.72; so that the
r _ 3

net result is a random mixing of the three rapidly varying terms - y »

5 7"2 > and leading to the ergodic behavior observed.

If we plot 0^ phase diagrams for one of the relatively well

behaved phase loops near the elliptic singularity of Fig. 9b, we find that

although there is no single dominant slowly varying term, none of the terms

introduces significant variation in as seen in Fig. 13. This result

is to be expected, as the strength of the near resonant harmonic terms

1/2
is proportional to Bessel functions depending on . The amplitudes

of the harmonics decrease rapidly with decreasing J^.

If we compare the amplitude of the oscillation in P^ as shown by

Fig. 10 to the amplitude of the 2.5 island oscillation given by the bold

curve in Fig. 11, we see that the observed variation in P^ is a factor

of 2 to 3 times larger than the value predicted by removing the higher

order resonance. An underestimation of the variation of P^ is to be

expected since we have overestimated the nonlinearity by expanding the

average Hamiltonian to only fourth order in Ap and Aw. The next term
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would be of opposite sign thus reducing the nonlinearity and making the

amplitude of the predicted island oscillations larger. We note, however,

that even if the phase loops in Fig. 11 were 2 to 3 times larger in

amplitude, the variation in would still be only y to of that neces

sary for marginal overlap between the 2.5 and 3.5 resonances. The actual

overlap of neighboring island oscillations is not necessary for breakdown

to occur. Rather, it is only necessary that the islands be close enough

that a phase orbit between the two resonances is affected significantly

by both terms as is the case in Fig. 12.

VI. CONCLUSIONS

For multidimensional oscillatory systems with widely differing periods,

adiabatic invariants can be found that separate the degrees of freedom.

If a low harmonic number resonance exists between two degrees of freedom

a transformation may be employed to remove the resonance. Two cases must

be distinguished: (1) Intrinsic degeneracy in which the frequencies of

the oscillations are independent of the momenta in the absence of the

terms which couple the two degrees of freedom. In this case the trans

formed degrees of freedom have frequencies that are separated by the strength

of the coupling term e. (2) Accidental degeneracy in which the oscillations

depend on the mementa. In this case the transformed degrees of freedom
1/2

have frequencies whose ratio is proportional to £ .In either case, if

£ is small enough, adiabatic invariants exist in the transformed coordinates

that separate the degrees of freedom. For increasingly large e, harmonics

of the slow oscillation resonate with the fast oscillation to perturb the
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invariants. The harmonic amplitudes are strongly dependent on the har

monic number, and therefore the lower harmonic resonances of an accidental

degeneracy will become important at a lower value of e than for an intrin

sic degeneracy. The perturbation of the invariants leads to islands which

have new invariants associated with them. The island invariant is obtained

by removal of the island resonance. The procedure of removing resonances

can be carried to higher order, by considering resonances between the

island oscillations and the faster periods. The frequencies of the island

-1/2 1/2
oscillations are slower than the next faster frequency by 0(l/e !)

In practical cases the strength of the harmonic amplitudes contribu

ting to the island formation decreases rapidly such that higher order

resonances need not be considered. There is a rapid transition with

increasing e between the value at which significant islands appear and

the somewhat larger value of e at which the terms contributing to neighbor

ing islands interact sufficiently strongly to destroy the invariants of

the motion. Invariant destruction leads to apparent ergodic filling of

the phase plane. From numerical computations the invariants are first

destroyed in parts of the phase plane where the island interaction perturbs

the invariants such that the amplitude of the oscillation in the invariant is

comparable to but not necessarily as large as the amplitude necessary to have

overlapping of harmonic resonances.
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Appendix

In this appendix, we expand the average Hamiltonian (5.7) about it*s

elliptic singularity and use 2nd order perturbation theory to transform

to action-angle variables. Repeating (5.7)

H = 0),

+ e Wq f Sin

we write Hamilton's equations

p - - M.
^1 " 3W- =- I e fCPl.Pj) cos w|

w' =
1 3P

9H _ r, ili_1 +i lilil
3Pi" "o L°' % 2

(A.l)

(A. 2)

(A. 3)

Defining the elliptic singularity P^, wj^ as in (3.12) and using (A.2) and

(A.3), we obtain

3f

3P.

-2

A

• t TT
= 2

0)

^•^0 - + 27?^
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where (A.5) must be solved numerically for P^. We expand the functions

fCP^.P^), and sin w| about . Defining

= Pi - Pi

Aw = w| - wj[

we obtain

H = 0), [(^0 - -p ^3 -p Va'] ^<^3^
. g(P3) - F(P3) ^ +A(P3) ^ +B(P3) + I(P3)(Aw) CAP) AP(Aw)

2,. .2

+D(P3) +E(P3) ^

where

^° "i" ^0 ^

"o ^ >/Pl ( 2 ; 0
^ \ ap^^ e

2
3^f

3P,

A =
^0 '

^^1^3 ^ 3f (Pj^,P^)

2P
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3P.

e P33/2

2
3 3^f

^ 3P^^

(A.6)

(AP)

(A.7)



B =

I «

D =

E =

' V• 'i "

•3^0 ^
^^1^3 ^ 3f (Pi,P3)

2

2Pi2 3 e P

0 2 d f
- 3/2 3 2

ap.

^0 ^

ip llL.
9 1 3P 3

Ap 20_
9 1 4^ 3P,

rzr ^2Yi^3 3f »Po) 2(y - •^)

^ 2P,^ e 8P,^
0.0 e VPi f(Pi,P3)

Since the first two terms on the left of (A.7) do not depend on the vari

ables P^, they can be combined with Hin determining the AP - Aw motion

with ?2 ^3 constant. The Hamilton-Jacobi equation for Hamiltonian

(A.7) becomes

-G(P- F(P3)-^~i^ +A(P,)-^^ + +^<^3^
3' 2 3' 3 3' 3

(AP)
3' 4

2,. .2

+D(P3)-^^^^-|̂ 5»L. + =K(J3,P2,P3).

(A. 8)

.0 .0
We can now transform to action-angle variables J^, 0^ for the linear

problem by applying the transformation (3.25) so that equation (A.8)

becomes
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Hq(J°) +6Hj^(J°,e5) + =KCJj^.P^.Pj)

where

Hq(J°) =- £J°J°

Hi(J°.e°) =Xft°j ° -I^Acos^e" +\ cos e? sin^e°)
13 X

J2°J° •*• \ cos^e® sln^6°
R.

+^ sin^0?)

R= (F/G)^^^, = (FG)^^^, X= 3/2,or.O

(A.9)

and 6 is an artificial constant measure of smallness used because

in the accidental case. Using (3.27), we solve for S^, toX « G
max

obtain

(A. 10)

and to find the additional term in the energy, we use from (A.10) and

(3.29) to obtain

where

Mffj)

=n° J, MCPj)

3 rxj-l GD.^OT.^.2 1_M+3^1_16 16 j^2 ^ 16 j^4 ^ 24 ^ ^2 24 j^4
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- 2
The average Hamiltonian H in action-angle variables valid to X is

="o [(^0 - Y2P^] +F(P3)
- J^(l - X^) (A. 12)

and the frequency of the energy oscillation, 0^^ is

0^ =||-=-n°(P3) 1^1-2 A^(J3,P3)M(P3) j . (A.13)
The nonlinearity in the energy oscillation prevents a secular increase in.

the action.

Finally, substituting (A.11) into (3.28) gives the second order term

in sy^.e®):

®2 ° {f ^ (-cos^e° +|)
+^ (-aln^e° - |)] +I sin 0° coa 0° cos^0°

R

.5 2-0 , 5 , . AB .1 „„„2.0 „-„2„0+ coa 0^ + + —J (3 ®i
R

1 2-0 . l^ . -1 „<„4-0 1 „.„2-0 _ "I (A.14)-cos 01 + 3) +;^ (g sin 01 - 2^ sin 01 - ig) J j
R

from which we obtain the transformation from variables AP, Aw to action-

angle variables J^, 6^ correct to second order in 6. As a check of this

transformation, it can be substituted into equation (A.8) to verify that

this equation is satisfied.
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Pig, 1, Phase space of the oscillation in the adiabatic invariant due to
resonance between the frequency of a one dimensional oscillator
and one harmonic of the time varying frequency. The solid lines
are plotted from (2.21) and the dashed lines from (2.23) with the
constant chosen at the separatrix.
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Fig. 2. Phase trajectories resulting from removal of an intrinsic degeneracy
in a two dimensional coupled oscillator. The dark lines show the
Hamiltonian curves before averaging over the faster of the two
oscillations and the light lines show the Hamiltonian curves after
averaging.
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Fig. 3. Phase trajectories corresponding to those in Fig. 2, but plotted
in the phase plane of the y oscillation.
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Fig. 4. Breakup of the Hamiltonian curves before averaging due to higher
order resonances when the energy is increased.
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due to resonance corresponding to the islands of Fig. 9b.
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