Copyright © 1971, by the author(s). All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

RECENT RESULTS CONCERNING THE INPUT - OUTPUT PROPERTIES OF LINEAR TIME - INVARIANT SYSTEMS

by

C. A. Desoer and F. L. Lam

Memorandum No. ERL-M295

21 January 1971

ELECTRONICS RESEARCH LABORATORY

College of Engineering University of California, Berkeley 94720

Research sponsored by the National Science Foundation, Grant GK-10656X and the National Aeronautics and Space Administration, Grant NGL-05-003-016.

ł

Introduction.

The purpose of this report is to collect in a single document a number of recent results concerning input-output stabilitity theory. Sufficient conditions for the L^P-stability of multiple-input, multipleoutput linear time-invariant systems were given in [1] for the continuoustime case. Better sufficient conditions were given for the discretetime case in [2] and [3]. For the single-input single-output continuoustime case, Baker and Vakharia showed how to take care of multiple poles in the closed right half plane, [4]. Theorems 1, 2 and 3 and Corollarys 2.1 and 3.1 improve upon the results in [1], [2], [3] and [4]. Some of the techniques used were stimulated by Vidyasagar's recent work [5]. For completeness, we include two theorems from [6]: these theorems, numbered 4 and 5, show for the multiple-input multiple-output case that the sufficient conditions of Desoer and Wu in [1] and [3] are indeed necessary in a much more general setting. Theorem 4 is followed by comments which give an intuitive understanding of the mechanism whereby these conditions are necessary.

Notations.

In the following, $\mathbb{R}(\mathbb{C})$ denotes the field of real (complex) numbers. \mathbb{R}_+ denotes the nonnegative real numbers. \mathbb{R}^n ($\mathbb{R}^{n\times n}$) denotes the set of all n-vectors (nxn matrices) with elements in \mathbb{R} . \mathbb{C}^n and $\mathbb{C}^{n\times n}$ are similarly defined. For any $\sigma \in \mathbb{R}$, $\mathcal{A}(\sigma)$ denotes the Banach algebra, [1], (where "+" is the pointwise addition and product is the convolution) of generalized functions of the form:

$$f(t) = \begin{cases} f_a(t) + \sum_{i=0}^{\infty} f_i \delta(t-t_i) & \text{for } t \ge 0\\ 0 & \text{for } t < 0 \end{cases}$$
(1)

where $t \mapsto f_a(t)e^{-\sigma t}$ is in L^1 ; with $0 = t_0 < t_1 < \cdots, f_i \in \mathbb{R}$, Ψ_i , and $\sum_{i=0}^{\infty} |f_i|e^{-\sigma t_i} < \infty. \quad \mathcal{A}^n(\sigma) \quad (\mathcal{A}^{nxn}(\sigma)) \text{ denotes the set of all n-vectors}$ (nxn matrices) with components in $\mathcal{A}(\sigma)$. If $\sigma = 0$, we write \mathcal{A} instead of $\mathcal{A}(0)$.

The superscript $\hat{()}$ denotes Laplace transforms: $\hat{f} = \mathcal{G}[f]$. (z-transforms: $\tilde{f} = \mathcal{G}[f]$). For a treatment of analytic functions taking values in $\mathbf{C}^{n\mathbf{X}\mathbf{n}}$ see [7].

Results.

We consider below an n-input, n-output, linear, time-invariant feedback system: it has unity feedback and its open-loop gain is the nxn matrix transfer function $\hat{G}(s)$ in the continuous-time case and $\tilde{G}(z)$ in the discrete-time case.

It is important to note that for the case where $\hat{G}(s)$ is a <u>proper</u> <u>rational-function</u> matrix, the necessary and sufficient conditions for stability are known (Theor. 9-10 of [8]).

I. Sufficient Conditions.

Theorem 1. (Continuous-time) Suppose that

$$\hat{G}(s) = \hat{G}_{a}(s) + \sum_{i=0}^{\infty} G_{i} e^{-st_{i}} + \sum_{\alpha=1}^{k} \sum_{\beta=1}^{m_{\alpha}} \frac{R_{\alpha\beta}}{(s-p_{\alpha})^{\beta}}$$
(2)

-2-

$$\stackrel{\Delta}{=} \hat{G}_{\ell}(s) + \sum_{\alpha=1}^{k} \sum_{\beta=1}^{m_{\alpha}} \frac{R_{\alpha\beta}}{(s-p_{\alpha})^{\beta}}$$
(3)

where

(a) $\hat{G}_{\ell}(\cdot) \in \hat{\mathcal{A}}^{n \times n}(\sigma)$ for some $\sigma \in \mathbb{R}$; (b) $R_{\alpha\beta} \in \mathbb{C}^{n \times n}$ for $\beta = 1, 2, \dots, m_{\alpha}, \alpha = 1, 2, \dots, k$ (c) for $\alpha = 1, 2, \dots, k$, $Re[p_{\alpha}] \geq \sigma$; and $p_{\alpha} \neq p_{\alpha'}$ for $\alpha \neq \alpha'$.

Under these conditions, if

(i) det
$$R_{\alpha \alpha} \neq 0$$
 for $\alpha = 1, 2, \dots, k$ (4)

and if

(ii) inf
$$|\det[I + \hat{G}(s)]| > 0$$
, (5)
Re $s \ge \sigma$

then the closed-loop impulse response, $H(\cdot)$, is in $\mathcal{A}^{nxn}(\sigma)$.

Comments.

- (a) For $\sigma = 0$, the conclusion implies that, for any $p \in [1,\infty]$, any input $u \in L_n^p$ produces an output $y \in L_n^p$ and $\|y\|_p \leq \|H\|_a \cdot \|u\|_p$, where $\|\cdot\|_a$ is the norm of H as an element of \mathcal{A}^{nxn} , [1]. It is straightforward to show that similar results hold for $\sigma \neq 0$.
- (b) For σ = 0, suppose that there is only <u>one simple</u> pole in the closed right half plane Re s ≥ 0 and that this pole is at s = 0. Then by the methods of [1], if, as t → ∞, u(t) → u_∞ (any constant vector), then y(t) → u_∞. (Again, similar results hold for σ ≠ 0 and the simple pole located at s = σ.) It is easy to show that if det R₁ = 0, then inputs tending to some constant vectors give rise to nonzero steady-state error. (For the method of proof see [2]).

- (c) Assumption (4) is more general than that in [1] and in [4] in that the matrix is only required to have its eigenvalues different from zero and that multiple-input multiple-output systems are considered.
- (d) Completely analogous results hold for the discrete-time case and are available in [2].
- (e) This theorem can also be derived by the technique of Vidyasagar [5].

Proof. Let
$$\hat{\phi}$$
: $\mathbb{C} \mapsto \mathbb{C}$ with $\hat{\phi}(s) \stackrel{\Delta}{=} \frac{k}{\prod_{\alpha=1}^{k}} \left[\frac{s - p_{\alpha}}{s - \sigma + 1} \right]^{m_{\alpha}}$ (6)

and note that $\hat{\phi} \in \hat{\mathcal{A}}(\sigma)$. Observe that the closed-loop transfer function is

$$\hat{H}(s) = \hat{G}(s)[I + \hat{G}(s)]^{-1} = \hat{\phi}(s) \hat{G}(s)[(I + \hat{G}(s))\hat{\phi}(s)]^{-1}$$
(7)

Let $U = \{s \in C \mid \text{Re } s \ge \sigma, |s - p_{\alpha}| \ge \varepsilon, (\alpha = 1, 2, \dots, k), \text{ for some} \\ \varepsilon > 0 \text{ sufficiently small} \}.$

Then (5) implies that

$$\inf_{s \in U} |\det[(I + \hat{G}(s))\hat{\phi}(s)]| > 0$$
(8)

So it remains to check the behavior of the determinant in the neighborhood of the poles p_{α} 's. Now by (6), as $s \neq p_{\alpha}$, $\hat{\phi}(s) \neq \hat{\phi}(p_{\alpha}) = 0$, and by (3) and (6), as $s \neq p_{\alpha}$, $\alpha = 1, 2, \dots, k$,

$$[\mathbf{I} + \hat{\mathbf{G}}(\mathbf{s})]\hat{\boldsymbol{\phi}}(\mathbf{s}) \rightarrow \frac{\overset{\mathbf{R}_{\alpha\mathbf{m}_{\alpha}}}{(\mathbf{p}_{\alpha} - \sigma + 1)} \prod_{\alpha} \left(\frac{\mathbf{p}_{\alpha} - \mathbf{p}_{\gamma}}{\mathbf{p}_{\alpha} - \sigma + 1} \right)^{\mathbf{m}_{\gamma}} \cdot$$
(9)

By assumption (4), the determinant of $\mathbb{R}_{\operatorname{Com}_{\alpha}}$ is nonzero, hence the infimum in (8) can be taken over Re $s \geq \sigma$. Therefore by a standard reasoning, [1], the two factors in the right hand side of (7) are both in $\hat{\mathcal{A}}^{n \times n}(\sigma)$; hence

so is Ĥ.

In the next theorem and corollary, we consider the case of <u>simple</u> poles with <u>singular</u> residue matrices. This case is obviously important in practice.

<u>Theorem 2</u>. (Continuous-time) Suppose that $\hat{G}(s)$ is given by (3) and that k = 1 and $m_1 = 1$ (i.e. \hat{G} has only a simple pole, p_1 , in the closed half plane Re $s \geq \sigma$). Suppose also that the residue matrix R_{11} is <u>singular</u>. Under these conditions, if[†]

(1)
$$det[\hat{M}_{22}(p_1)] \neq 0,$$
 (10)

and if

(ii) inf
$$|\det[I + \hat{G}(s)]| > 0$$
 (11)
Re $s > \sigma$

then the closed-loop impulse response H() is in ($\mathcal{A}^{n \times n}(\sigma)$.

Proof. What we have to establish is equivalent to proving that

$$[\mathbf{I} + \hat{\mathbf{G}}(\cdot)]^{-1} \in \hat{\mathcal{A}}^{n \times n}(\sigma).$$
 (12)

If P_1 and Q_1 are nxn <u>nonsingular</u> constant matrices (with complex elements), then (12) is equivalent to

$$[Q_1(I + \hat{G}(\cdot))P_1]^{-1} \in \hat{\mathcal{A}}^{n \times n}(\sigma)$$
(13)

Let rank $R_{11} = r$, so r < n; then select Q_1 and P_1 so that

$$Q_{1}R_{11}P_{1} = \begin{bmatrix} I_{1} & 0 \\ - & - & - \\ 0 & 0 \end{bmatrix}$$
(14)

where I_r is the rxr unit matrix [11]. The constant matrices Q_1 and P_1 are

 $\hat{M}_{22}(s)$ is defined in the proof; see equation (15) below.

easily determined in terms of elementary row and column operations. Thus

$$Q_{1}(\mathbf{I} + \hat{\mathbf{G}}(\mathbf{s}))P_{1} = \begin{bmatrix} \mathbf{I}_{r} & 0 \\ - & - & - \\ 0 & 0 \end{bmatrix} \frac{1}{\mathbf{s} - P_{1}} + \begin{bmatrix} \hat{\mathbf{M}}_{11}(\mathbf{s}) & \hat{\mathbf{M}}_{12}(\mathbf{s}) \\ - & - & - & - \\ \hat{\mathbf{M}}_{21}(\mathbf{s}) & \hat{\mathbf{M}}_{22}(\mathbf{s}) \end{bmatrix}$$
(15)

where all the elements of the second matrix are in $\hat{\mathcal{A}}(\sigma)$. Let $\hat{\phi}_1$: $\mathbf{C} \rightarrow \mathbf{C}$ with

$$\hat{\phi}_{1}(s) \stackrel{\Delta}{=} \frac{s - p_{1}}{s - \sigma + 1}$$
(16)

and

$$\hat{D}_{1}(s) \stackrel{\Delta}{=} diag\{\hat{\phi}_{1}(s), \hat{\phi}_{1}(s), \dots, \hat{\phi}_{1}(s), 1, 1, \dots, 1\}$$
 (17)

where $\hat{D}_1(s)$ contains exactly n-r diagonal elements equal to 1. Note that $\hat{D}_1(\cdot) \in \hat{\mathcal{A}}^{n \times n}(\sigma)$. Observe that

$$[Q_{1}(I + \hat{G}(s))P_{1}]^{-1} = \hat{D}_{1}(s)[Q_{1}(I + \hat{G}(s))P_{1}\hat{D}_{1}(s)]^{-1}.$$
 (18)

The theorem will be proved (or equivalently, (13) will be established) if we prove that

$$[Q_1(I + \hat{G}(\cdot))P_1\hat{D}_1(\cdot)]^{-1} \in \hat{\mathcal{A}}^{nxn}(\sigma).$$
(19)

Now assumption (11) implies that

 $\inf_{\text{Re } s \geq \sigma} |\det[Q_1(I + \hat{G}(s))P_1]| > 0.$

Consequently,
$$\inf_{s \in N_1} |\det[Q_1(I + \hat{G}(s))P_1\hat{D}_1(s)]| > 0$$
 (20)

where N₁ is the closed half plane Re s $\geq \sigma$ with a small neighborhood of p_1 deleted. So we study the behavior around p_1 . As s $\neq p_1$, since $\hat{\phi}(p_1) = 0$,

(15) gives

$$Q_{1}[I + \hat{G}(s)]P_{1}\hat{D}_{1}(s) \rightarrow \begin{bmatrix} I_{r} & 0 \\ 0 & 0 \end{bmatrix} \frac{1}{P_{1} - \sigma + 1} + \begin{bmatrix} 0 & \hat{M}_{12}(P_{1}) \\ 0 & 0 \end{bmatrix}$$
(21)

Hence

$$det[Q_1(I + \hat{G}(s))P_1\hat{D}_1(s)] \rightarrow \left(\frac{1}{p_1 - \sigma + 1}\right)^r det \hat{M}_{22}(p_1)$$

$$as \ s \rightarrow p_1$$
(22)

By assumption (10), this limit is different from zero. Therefore, the continuity of the $\hat{M}_{ij}(s)$ in Re $s \ge \sigma$ and (20) imply, by a standard reasoning, [1], that (19) holds. This establishes the theorem. <u>Remark</u>. The proof of Theorem 2 shows that for all s in the closed half plane Re $s \ge \sigma$,

$$[I + \hat{G}(s)]^{-1} = P_1 \hat{D}_1(s) [Q_1(I + \hat{G}(s))P_1 \hat{D}_1(s)]^{-1} Q_1$$
(23)

where the right hand side expression is an analytic function mapping $\{s | \text{Re } s > \sigma\}$ into $\mathfrak{C}^{n \times n}$ and is in $\hat{\mathcal{A}}^{n \times n}(\sigma)$.

<u>Corollary 2.1</u>. Suppose that $\hat{G}(s)$ is given by (3) but that k > 1 and $m_{\alpha} = 1$ for $\alpha = 1, 2, \dots, k$ (i.e. $\hat{G}(s)$ has only <u>simple</u> poles in Re $s \ge \sigma$). Suppose also that

(1) either det
$$R_{\alpha 1} \neq 0$$
 (24)

or, whenever det $R_{\alpha 1} = 0$ we have

$$det[\hat{M}_{22}(p_{\alpha})] \neq 0, \qquad (25)$$

-7-

and

(11)
$$\inf |\det[I + \hat{G}(s)]| > 0$$
 (26)
Re $s \ge \sigma$

Then the closed-loop impulse response H is in $\mathcal{A}^{nxn}(\sigma)$.

<u>Proof</u>. Consider a covering of the closed half plane Re s $\geq \sigma$ with k open subsets S_{α} such that for $\alpha = 1, 2, ..., k$, S_{α} includes one and only one pole of $\hat{G}(s)$, namely p_{α} . Since each S_{α} is open, it includes an open neighborhood about p_{α} . By Theorems 1 and 2, in view of assumptions (24), (25) and (26), on each S_{α} , $[I + \hat{G}]^{-1}$ is equal to an analytic function which is in $\hat{\mathcal{A}}^{nxn}(\sigma)$. Hence $[I + \hat{G}]^{-1}$ is in $\hat{\mathcal{A}}^{nxn}(\sigma)$ and hence $\hat{H}(\cdot) \in \hat{\mathcal{A}}^{nxn}(\sigma)$.

In the discrete-time case, the impulse response is specified as a sequence of matrices in $\mathfrak{C}^{n \times n}$ (or $\mathbb{R}^{n \times n}$) say, (G_0, G_1, G_2, \cdots) . We say that a sequence belongs to $\mathfrak{k}_{n \times n}^1(\rho)$ for some positive real number ρ iff $\sum_{k=0}^{\infty} \|G_k\| \rho^{-k} < \infty, \text{ and we say that its corresponding z-transform } \tilde{G}(z) = \sum_{0}^{\infty} G_k z^{-k}$ is in $\tilde{\ell}_{n \times n}^1(\rho)$. The analogous results of Theorem 1 for the discrete-time case can be found in [2]. We state below in Theorem 3 and Corollary 3.1 the discrete-time analogs to Theorem 2 and Corollary 2.1.

Theorem 3. (Discrete-time) Suppose that G(z) is given by

$$\tilde{G}(z) = \sum_{0}^{\infty} G_{1} z^{-1} + \frac{R_{11}}{(z-p_{1})}$$
 (27)

$$\stackrel{\Delta}{=} \tilde{G}_{\ell}(z) + z^{-1} (1 - p_{1} z^{-1})^{-1} R_{11}$$
(28)

where

(a)
$$\tilde{G}_{\ell}(\cdot) \in \tilde{\ell}_{nxn}^{1}(\rho)$$
 for some positive real ρ ,

(b)
$$p_1 \in \mathbb{C}$$
 and $|p_1| \ge \rho$
(c) $R_{11} \in \mathbb{C}^{n \times n}$ is singular.
Under these conditions, if^{††}

(i)
$$det[M_{22}(p_1)] \neq 0.$$
 (29)

and if

(ii)
$$\inf |\det[I + \tilde{G}(z)]| > 0$$
 (30)
 $|z| \ge \rho$

Then the closed-loop impulse response $H \in \ell_{nxn}^{1}(\rho)$.

<u>Corollary 3.1</u>. Suppose that $\hat{G}(z)$ is given by

$$\tilde{G}(z) = \sum_{0}^{\infty} G_{i} z^{-i} + \sum_{\alpha=1}^{k} \frac{R_{\alpha 1}}{(z - p_{\alpha})}$$
(31)

$$\stackrel{\Delta}{=} \tilde{G}_{\ell}(z) + \sum_{\alpha=1}^{k} z^{-1} (1 - p_{\alpha} z^{-1})^{-1} R_{\alpha 1}$$
(32)

where

(a)
$$\tilde{G}_{\ell}(\cdot) \in \ell_{n\times n}^{1}(\rho)$$
 for some positive real ρ ,
(b) for $\alpha = 1, 2, \dots, k, p_{\alpha} \in \mathfrak{C}, |p_{\alpha}| \geq \rho$, and for $\alpha \neq \alpha', p_{\alpha} \neq p_{\alpha'}$.
Under these conditions, if

(i) either det $R_{\alpha 1} \neq 0$ (33)

or, whenever det $R_{\alpha 1} = 0$, we have

$$det[\tilde{M}_{22}(p_{\alpha})] \neq 0, \qquad (34)$$

 $\frac{1}{M_{22}}(z)$ is defined similarly as in Theorem 2. See equation (15).

(ii)
$$\inf |\det[I + \tilde{G}(z)]| > 0$$
 (35)
 $|z| \ge \rho$

Then the closed-loop impulse response H is in $\ell_{nxn}^1(\rho)$.

<u>Remark.</u> The proofs of Theorem 3 and Corollary 3.1 are exact duplicates of those of Theorem 2 and Corollary 2.1 except that we define $\tilde{\phi}(z) \stackrel{\Delta}{=} (1 - p_1 z^{-1})$ in this case. (See (16)), and we replace $\{s \in \mathfrak{C} | \text{Re } s \geq \sigma\}$ by $\{z \in \mathfrak{C} | |z| \geq \rho\}$

II. Necessary Conditions.

<u>Theorem 4.</u> (Continuous-time) Let $G(\cdot)$ be an nxn matrix whose elements are distributions on \mathbb{R}_+ , [9]. Assume that these n^2 distributions are Laplace transformable and let $\hat{G} = \mathcal{G}[G]$. If, for some $\sigma \in \mathbb{R}$,

$$\hat{\mathsf{G}}(\cdot)[\mathsf{I} + \hat{\mathsf{G}}(\cdot)]^{-1} \in \hat{\mathcal{A}}^{\mathsf{nxn}}(\sigma)$$
(36)

then

$$\inf \left| \det \left[I + \hat{G}(s) \right] \right| > 0 . \tag{37}$$

Re $s \ge \sigma$

<u>Proof</u>. Assumption (36) and the fact that $I \in \mathcal{A}^{nxn}(\sigma)$ imply that

$$I - \hat{G}[I + \hat{G}]^{-1} = [I + \hat{G}]^{-1} \in \hat{\mathcal{A}}^{nxn}(\sigma).$$
 (38)

Hence the function $s \mapsto \det \{[I + \hat{G}(s)]^{-1}\}$ is in $\hat{\mathcal{A}}$ and, consequently, is bounded in the closed half plane Re $s \ge \sigma$. If (37) does not hold, then there is a sequence $\{s_k\}_1^{\infty}$ in Re $s \ge \sigma$ such that $\det[I + \hat{G}(s_k)] \Rightarrow 0$. Hence

$$det\{[I + \hat{G}(s_k)]^{-1}\} = \frac{1}{det[I + \hat{G}(s_k)]} \rightarrow \infty$$
(39)
as $k \rightarrow \infty$,

which contradicts the previous fact. Hence $|\det[I + \hat{G}(s)]|$ is bounded away from zero in the closed half plane Re $s \ge \sigma$. <u>Comments</u>. Perhaps a more illuminating way of understanding Theorem 4 is the following:

- (1) From assumption (36), it follows that $[I + \hat{G}(\cdot)]^{-1}$ is bounded in Re s $\geq \sigma$ and is analytic in Re s > σ . Hence the function $\omega \mapsto \frac{1}{1 + \sigma_1 + j\omega}$ $\left[1 + \hat{G}(\sigma_1 + j\omega)\right]^{-1}$, for any $\sigma_1 \geq \sigma$, is in L^2 and converges to zero (uniformly in σ_1 , with $\sigma_1 \geq \sigma$) as $|\omega| \rightarrow \infty$. Now suppose (37) is <u>false</u>, i.e. suppose that $\inf |\det[I + \hat{G}(s)]| = 0$. One possibility is that Re s > σ the determinant function has some finite zeros in Re s > σ . Let z_1 be one of those which is farthest to the right. Then the standard techniques of L² Laplace transform theory ([10]) and of contour integration are available to show the existence of an exponential term Pe^{z_1^{c}} in the inverse transform of $\frac{1}{1+s}$ [I + $\hat{G}(s)$]⁻¹. It follows immediately that the inverse transform of $[I + \hat{G}(s)]^{-1}$ also has a term Qe , for multiplication of the transform by (1+s) does not destroy the exponential term. (This assumes $z_1 \neq -1$; if z_1 were -1, we would then use $\frac{1}{2+s}$ instead of $\frac{1}{1+s}$ as a convergence factor). Then, from (38), it follows that $\hat{G}(\cdot)[I + \hat{G}(\cdot)]^{-1}$ has a term $-Qe^{2}$ and hence $\hat{H}(\cdot) \notin \hat{\mathcal{A}}^{n\times n}(\sigma)$, which is a contradiction.
- (2) The second possibility would be that det[I + $\hat{G}(s)$] approaches zero along a sequence $\{s_k\}_1^{\infty}$ in Re $s \ge \sigma$ such that $|s_k| \Rightarrow \infty$ as $k \Rightarrow \infty$. To discuss this case let us assume that $\hat{G}(\cdot)$ is given by (3) and that Re $s_k \ge \varepsilon > 0$ for large k. Under these conditions $\hat{G}(s_k) \Rightarrow G_0$ as $k \Rightarrow \infty$: indeed $\hat{G}_a(s_k) \Rightarrow 0$ by the Riemann-Lebesgue lemma, and

-11-

 $e^{-s}k^{t}i \rightarrow 0$ for $i = 1, 2, \dots, since t_{i} > 0$. Thus we have $det[I + \hat{G}(s_{k})] \rightarrow det[I + G_{0}] = 0$. Now it is well-known that when that last condition is obtained, the closed-loop system is not a dynamical system. Indeed, for some well-behaved inputs, it does not have a well-defined response: e.g. consider an input $u(t) = u\delta(t)$, where $0 \neq u \in \mathbf{C}^{n}$ and u is outside the range of $(I + G_{0})$, then the error is not defined; moreover, even if u is in the range of $(I + G_{0})$, the $\delta(t)$ term in the system error, e, is not uniquely defined.

<u>Theorem 5.</u> (Discrete-Time) Suppose $\tilde{G}(z)$ has a positive radius of convergence ρ as a function of z^{-1} . If

$$\tilde{G}(\cdot)[I + \tilde{G}(\cdot)]^{-1} \in \tilde{\ell}_{nxn}^{1}(\rho)$$
(40)

then

$$\inf \left| \det \left[\mathbf{I} + \widetilde{\mathbf{G}}(\mathbf{z}) \right] \right| > 0 \tag{41}$$

Comments.

(1) Note that (41) is equivalent to

$$let[I + G_0] \neq 0 \tag{42}$$

and

$$det[I + \tilde{G}(z)] \neq 0 \quad for \quad |z| \geq \rho \tag{43}$$

(2) The proof of Theorem 5 follows exactly the same line as that of Theorem 4, except that the closed half plane $\{s \in \mathfrak{C} | \text{Re } s \geq \sigma\}$ is again replaced by $\{z \in \mathfrak{C} \mid |z| \geq \rho\}$.

References.

- [1] C. A. Desoer and M. Y. Wu, "Stability of Multiple Loop Feedback Linear Time-Invariant Systems," <u>Jour. Math. Anal. and Appl.</u>, Vol. 23, PP. 121-130, July 1968.
- [2] C. A. Desoer and F. L. Lam, "Stability of Linear Time-Invariant Discrete Systems," Proc. IEEE, 58, 11, 1841-1843, Nov. 1970.
- [3] C. A. Desoer and M. Y. Wu, "Input-Output Properties of Discrete Systems," Parts I and II, <u>Jour. Franklin Inst.</u>, Vol. 290, 1, PP. 11-24, July 1970, and Vol. 290, 2, P. 85-101, Aug. 1970. (Also <u>Proc. 7th Allerton</u> <u>Confer.</u>, PP. 605-609, 610-619, Oct. 1969).
- [4] R. A. Baker and D. J. Vakharia, "Input-Output Stability of Linear Time-Invariant Systems," <u>IEEE Trans. AC-15</u>, 3, PP. 316-319, June 1970.
- [5] M. Vidyasagar, "Input-Output Stability of a Broad Class of Linear Time-Invariant Systems," Personal Communication, Nov. 4, 1970.
- [6] C. A. Desoer and M. Vidyasagar, "General Necessary Conditions for Input-Output Stability," To be published in Proc. IEEE Letters, 1971.
- [7] J. Dieudonné, "Foundations of Modern Analysis," Revised Edit., Academic Press, N. Y., 1969.
- [8] C. T. Chen, "Introduction to Linear System Theory," Holt Rinehart and Winston, 1970.
- [9] L. Schwartz," Théorie des Distribution," 2nd Edit., Hermann & Co., Paris, 1966.
- [10] G. Doetsch, "Handbuch der Laplace Transformation," Birkhäuser, Basel, 1950. (See Vol. I, p. 488).
- [11] F. R. Gantmacher, "The Theory of Matrices," Chelsea Publ. Co., New York, 1969. (Vol I, p. 63).

-13-