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Introduction.

The purpose of this report is to collect in a single document a

number of recent results concerning input-output stabilitity theory.

Sufficient conditions for the L^-stability of multiple-input, multiple-

output linear time-invariant systems were given in [1] for the continuous-

time case. Better sufficient conditions were given for the discrete-

time case in [2] and [3]. For the single-input single-output continuous-

time case. Baker and Vakharia showed how to take care of multiple poles

in the closed right half plane, [4]. Theorems 1, 2 and 3 and Corollarys

2.1 and 3.1 improve upon the results in [1], [2], [3] and [4]. Some of

the techniques used were stimulated by Vidyasagar's recent work [5].

For completeness, we include two theorems from [6]: these theorems,

numbered 4 and 5, show for the multiple-input multiple-output case that

the sufficient conditions of Desoer and Wu in [1] and [3] are indeed

necessary in a much more general setting. Theorem 4 is followed by com

ments which give an intuitive understanding of the mechanism whereby

these conditions are necessary.

Notations.

In the following, !R((C) denotes the field of real (complex) numbers,

denotes the nonnegative real numbers, denotes the set of

all n-vectors (nxn matrices) with elements in R . and are simi

larly defined. For any a € R> (j4;(<J) denotes the Banach algebra, [1],

(where "+" is the pointwise addition and product is the convolution) of

generalized functions of the form:



f(t) =^f^(t) +̂ 6(t-t^) for t >0
i=0

for t < 0

where t h>- f^(t)e'̂ ^ is in L^; with 0= < >
00

• —II ^

y |fjl |̂e <®®. (jA'̂ (a) ij^™'(0)) denotes the set of all n-vectors
i=0

(nxn matrices) with components inr^Ca). If a = 0, we write instead

of 'Jl(O).

The superscript ("") denotes Laplace transforms: f = (z-

transforms: f =^^[f])» For a treatment of analytic functions taking

values in see [7].

Results.

We consider below an n-input, n-output, linear, time-invariant feed

back system: it has unity feedback and its open-loop gain is the nxn

matrix transfer function G(s) in the continuous-time case and G(z) in the

discrete-time case.

It is important to note that for the case where G(s) is a proper

rational-function matrix, the necessary and sufficient conditions for

stability are known (Theor. 9-10 of [8]).

I. Sufficient Conditions.

Theorem 1. (Continuous-time) Suppose that

00 k ™

6(s) - e,(8) +2
i=0 a=l 3=1
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k m

" R

where
/s

(a) Gp(') for some R;
t

~ U. P - X, , m^,

(c) for a = 1, 2, •••, k, Re[p ] ^ a; and ¥ p i for a ^ a*.
01 01 01

Under these conditions, if

(i) det R 9^ 0 for a = 1, 2, •••, k (4)
a

and if

(ii) inf |det[I + G(s)]| > 0, (5)
Re s > a

then the closed-loop impulse response, H(*)> is in .

Comments.

(a) For a = 0, the conclusion implies that, for any p €[1,®°], any input

u E produces an output y G and fl yll < BhD • BuB , where B*0
n n'p— ap' a

is the norm of Has an element ofr^^*^, [1], It is straightforward

to show that similar results hold for O i' 0,

(b) For (7=0, suppose that there is only one simple pole in the closed

right half plane Re s ^ 0 and that this pole is at s = 0. Then by the

methods of [1], if, as t ->• <», u(t) u^ (any constant vector), then

y(t) VL^. (Again, similar results hold for a 0 and the simple

pole located at s = a.) It is easy to show that if det R^ = 0, then

inputs tending to some constant vectors give rise to nonzero

steady-state error, (For the method of proof see [2]).

(b) R. for 3 = 1, 2, •••, m^, a = 1, 2,---, k
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(c) Assumption (4) is more general than that in [1] and in [4] in that

the matrix is only required to have its eigenvalues different from

zero and that multiple-input multiple-output systems are considered.

(d) Completely analogous results hold for the discrete-time case and are

available in [2].

(e) This theorem can also be derived by the technique of Vidyasagar [5].

k

Proof. Let 4>: (C h- (C with <j>(s) = ~[j~
a=l

s - p

s-a + 1

m
a

(6)

y\

and note that (j) Observe that the closed-loop transfer function is

H(s) = G(s)[I + G(s)]"^ = iCs) G(s)I(I + g(s)W(s)]"^ (7)

Let U={sGC I Res>a,|s-p|^e, (a=l, 2, for some

e > 0 sufficiently small}.

Then (5) implies that

inf I det[(I + G(s))<j)(s)31 > 0 (8)
s G U

So it remains to check the behavior of the determinant in the neighborhood
/s ^

of the poles p 's. Now by (6), as s -*• p , 4>(s) ~ ^7 (3)
ot oc ot

and (6), ass-*-p,a=l,2,"*,k,
0(

_ m
R / \ Y

Pn. - P,^ can .

[I + G(s)]$(8) - X
(p^ - a + 1) " y^oL

g "y

p^ - a + 1 (9)

By assumption (4), the determinant of R^ is nonzero, hence the infimum
g

in (8) can be taken over Re s ^ a. Therefore by a standard reasoning, [1],
/S

the two factors in the right hand side of (7) are both inL;4*"™(a); hence
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so is H.

In the next theorem and corollary, we consider the case of simple

poles with singular residue matrices. This case is obviously important

in practice.

Theorem 2. (Continuous-time) Suppose that G(s) is given by (3) and that

y\

k = 1 and m^ = 1 (i.e. Ghas only a simple pole, p^, in the closed half

plane Re s ^ a). Suppose also that the residue matrix is singular.

t
Under these conditions, if

(i) det[M22(Pj^)] i 0, (10)

and If

(ii) inf 1det[I + G(s)]| > 0 (11)
Re s >_ a

then the closed-loop impulse response H(') is in^^^^^(a).

Proof. What we have to establish is equivalent to proving that

[I +G(-)]"^ ^c^^(a). (12)
If and are nxn nonsingular constant matrices (with complex elements),

then (12) is equivalent to

[Q^d +G(-»Pj^]"^ (13)

Let rank R^^^ = r, so r < n; then select and P^ so that

Wi •[/to] (14)

where is the rxr unit matrix [11]. The constant matrices and P^ are

M22CS) is defined in the proof; see equation (15) below.
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easily determined in terms of elementary row and column operations. Thus

'I

Q^(I + G(s))P^ =
0

o""

h

•&,l(s) Mi2(8)"

0_
s -

%l(s) M22(s)_

where all the elements of the second matrix are in'^(a). Let (j)^:
(C ^ (E with

and

A ® ' ^1
= s - a + 1

Dj^(s) = diag{$j^(8), <)ij^(s), •••, <|)j^(s), 1, 1, •••, 1}

(15)

(16)

(17)

where D^(s) contains exactly n-r diagonal elements equal to 1. Note that

^ (a). Observe that

,-l -1[Q^(I + G(s))P^] " = D^(s)[Q^(I + G(s))P^D^(s)] . (18)

The theorem will be proved (or equivalently, (13) will be established)

if we prove that

[Q^d +G(-))PiDj^(-)r^

Now assumption (11) implies that

inf |det[Q-(I + G(s))P-]| > 0.
Re s > a

Consequently, inf |det[Q^(l + G(s))Pj^D^(s)] | > 0
s e N-

(19)

(20)

where N^ is the closed half plane Re s ^ Owith a small neighborhood of

p^ deleted. So we study the behavior around p^. As s p^, since <t>(p]L^ ~
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(15) gives

Q^[I + G(s)]P^D^(s)

Hence

ri 1 ^ 0 1
1 1 ,

1

)

1 - a + 1 1

_0 I Q. X

0 ^22^^1^

detlQ^d +G(s))P^S^(8)] - det M22(Pi)
as s ->• p-

(21)

(22)

By assumption (10), this limit is different from zero. Therefore, the

continuity of the M^j(s) in Re s ^ a and (20) iiiq)ly, by a standard reason

ing, fl], that (19) holds. This establishes the theorem. |_

Remark. The proof of Theorem 2 shows that for all s in the closed half

plane Re s > a.

[I +G(s)]"^ =P^Dj^(s)IQ2(I +G(s))Pj^6j^(8)]~^Q2 (23)

where the right hand side expression is an analytic function mapping

{s|Re s > a} into and is in(^°^(a).

Corollary 2.1. Suppose that G(s) is given by (3) but that k > 1 and m^ = 1

for a = 1, 2, ••*, k (i.e. G(s) has only simple poles in Re s ^ a). Suppose

also that

(i) either det R^^ 0 (24)

or, whenever det R^^ = 0 we have

det[M22 (Pqj) ] ^ 0, (25)
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and

(11) Inf |det[I + G(s)]| > 0 (26)
Re s ^ a

Then the closed-loop Impulse response H Is In (ff).

Proof. Consider a covering of the closed half plane Re s C7 with k open

subsets S such that for a=l, 2, S Includes one and only one
01 GL

/\

pole of G(s), namely p . Since each S Is open. It Includes an open
ot ot

neighborhood about p^. By Theorems 1 and 2, In view of assumptions (24),

(25) and (26), on each S , [I + G] Is equal to an analytic function

which Is ln(^^*'^(a). Hence [I + G] ^ Is Inc '̂̂ ^^(cr) and hence H(*) ^

In the discrete-time case, the Impulse response Is specified as a se

quence of matrices In (l'̂ *^(or say, (G^, G^, G^, ). We say that

a sequence belongs to (p) for some positive real number p Iff
nxn

00

^ ^ <00, and we say that Its corresponding z-ttansform G(z) ^G^z ^
k=0 0

Is In 2^ (d). The analogous results of Theorem 1 for the discrete-time case
nxn^^'

can be found In [2]. We state below In Theorem 3 and Corollary 3.1 the dls—

crete-tlme analogs to Theorem 2 and Corollary 2.1.

Theorem 3. (Dlscrete-tlme) Suppose that G(2) Is given by

where

Gn \ J ^ ^
X- nxn

5(z)

A~ . -1,, -1,"^ „ (28)= Gj^(z) + z (1 - VjZ ) R^^

(a) Gp(*) G (p) for some positive real p»
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(b) S (E and |p |̂ ^ p

^11(c) Rn ^ is singular.
1*1*

Under these conditions, if

(i) det[K^^(v^)] 0. (29)

and if

(ii) inf |det[I + G(z)]| > 0 (30)
|z| > p

Then the closed-loop impulse response H G '

Corollary 3.1. Suppose that G(z) is given by

00 k

a=l

k

(31)

=G^(z) +]£]z"^(l - p^z'h R
al

a=l

(32)

where

(a) G„(*) ^ ^ (P) for some positive real p,
X. nxn^

(b) for a = 1, 2, •••, k, p^G G, |p |̂ ^p, and for a i' a', p^ p^,.

Under these conditions, if

(i) either det ^ 0 (33)

or, whenever det R , = 0, we have
' al

det[M22(pQj)] ^ 0, (34)

1*1*^M22CZ) is defined similarly as in Theorem 2. See equation (15).
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and If

(ii) inf |det[I + G(z)]| > 0 (35)
|z| > p

Then the closed-loop impulse response H is in •

Remark. The proofs of Theorem 3 and Corollary 3.1 are exact duplicates of

those of Theorem 2 and Corollary 2.1 except that we define ^(z) = (1 - p^z
in this case. (See (16)), and we replace {s ^ (i;|Re s ^ a} by {z ^ (E| |z| P^

II. Necessary Conditions.

Theorem 4. (Continuous-time) Let G(*) be an nxn matrix whose elements are

2distributions on 8^ , [9]. Assume that these n distributions are Laplace
•P

transformable and let G= ^[G]. If, for some a G IR ,

/N

G(-)[l + (36)

then Inf Idetfl + G(s)]| > 0 . (37)
Re s a

A

Proof. Assumption (36) and the fact that imply that

A

I - G[I + G]"^ = [I + G]"^e Jk^(0). (38)

Hence the function s H- det {[I + G(s)] is in f^and, consequently, is
bounded in the closed half plane Re s ^ <J. If (37) does not hold, then

there is a sequence in Re s (J such that det[I + G(Sj^)] 0. Hence

det{[I + G(s, )]'^} = «> (39)
det [I + G(Sj^)]

as k -»• ®o.
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which contradicts the previous fact. Hence |det[I + 6(s)]| is bounded

away from zero in the closed half plane Re s > a.
- ISf

Comments. Perhaps a more illuminating way of understanding Theorem 4 is

the following:

(1) From assumption (36), it follows that [I + 6(*)] ^ is bounded in
Re s >_ a and is analytic in Re s > a. Hence the function O) ^

/V 1 2 ^•[I + G(a^ + jw)]~ , for any ^ a, is in L and converges to zero

(uniformly in with ^ a) as |a)| ->•«>. Now suppose (37) is false,

i.e. suppose that inf |det[I + G(s)]| = 0. One possibility is that
Re s ^ a

the determinant function has some finite zeros in Re s > 0. Let z^^

be one of those which is farthest to the right. Then the standard

techniques of L Laplace transform theory ([10]) and of contour in

tegration are available to show the existence of an exponential term
z.t 1^-1

Pe in the inverse transform of [I + G(s)] . It follows
/V -1

immediately that the inverse transform of [I + G(s)] also has a
z. t

term Qe , for multiplication of the transform by (1+s) does not

destroy the exponential term. (This assumes z^ 7^ -1; if z^^ were -1,
1 1

we would then use -rr- instead of -rj-- as a convergence factor). Then,
^ -1

from (38), it follows that G(*)[I + G(0] has a term -Qe and^

hence H(-) (j4^^"^(a), which is a contradiction.

C2) The second possibility would be that det[I + G(s)] approaches

zero along a sequence in Re s ^ Osuch that |sj |̂ ->• « as k

To discuss this case let us assume that G(*) is given by (3) and

that Re s^ e > 0 for large k. Under these conditions G(Sj^) -> G^

as k indeed G (s, ) ^ 0 by the Riemann-Lebesgue lemma, and
^ iC _
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-8,t A

e 0 for i = 1, 2, since > 0, Thus we have detll + G(Sj^)]

det[I + Gq] = 0. Now it is well-known that when that last condition is

obtained, the closed-loop system is not a dynamical system. Indeed,

for some well-behaved inputs, it does not have a well-defined response:

e.g. consider an input u(t) = u6(t), where 0 9^ u ^ and u is outside

the range of (I + G^), then the error is not defined; moreover, even

if u is in the range of (I + G^), the 6(t) term in the system error,

e, is not uniquely defined.

Theorem 5. (Discrete-Time) Suppose G(z) has a positive radius of con

vergence P as a function of z If

G(-)[I + €J^(P) (40)

then inf Idot[I + 5(2)]I > 0 (41)
hllP

Comments.

(1) Note that (41) is equivalent to

detll + Gq] ^ 0 (42)

and

det[I + G(z)] ^ 0 for |z) ^ p (43)

(2) The proof of Theorem 5 follows exactly the same line as that of

Theorem 4, except that the closed half plane {a € G|Re S ^cr} is again

replaced by {z € G | |z| ^ p}«
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