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ABSTRACT

It is shown in this paper that a theoretical method of centers,

introduced by Huard, converges linearly. It is also shown, by counter

example, that a modified method of centers due to Huard and a method of

feasible directions due to Topkis and Veinott cannot converge linearly

even under convexity assumptions because of this, two new modified methods

of centers are introduced, one theoretical and one implementable, both

using a quadratic programming direction finding subroutine, and both of

which are shown to converge linearly.
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INTRODUCTION

The family of optimization algorithms known as methods of centers

were introduced by Hoard [4]. They differ from one another only in the

distance function used to establish a center; an operation which must be

repeated at each iteration. In their original form, these algorithms are

not implementable, and because of this, various approximations, or modi

fied methods of centers, have been proposed. The best known of these

modified methods of centers is also due to Huard [5]. (These algorithms

are also discussed in [8]). In this paper we shall show that a theo

retical method of centers, presented in [4], and a new modified method

of centers converge linearly on a class of problems. Our analysis

will be based on a systematic utilization of duality theory.

The modified method of centers to be discussed in this paper is a

variation of the algorithm described in [5]. Although we shall not es

tablish the rate of convergence of the algorithm in [5] in this paper,

we wish to mention that we were able to show that the algorithm in [5]

converges at least as fast as ^ under the same assiimptions under which
our algorithm converges linearly. Furthermore, the example in the appendix

indicates that the algorithm in [5] cannot converge linearly under the

assumptions used in this paper. Thus, although the modified method of

centers to be presented in this paper is more complex than the one in [5],

it does have a better rate of convergence.

As we shall see, our analysis depends on an extention due to

Geoffrion [3] of Wolfe's strong duality theorem [12],[17]. Therefore,

in section 1, we shall begin by stating this theorem as well as a few

other results we shall use repeatedly. Then, in section 2, we shall
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obtain the rate of convergence of a theoretical method of centers* finally,

in section 3, we shall describe a new modified method of centers and we

shall establish a bound on its rate of convergence. Since we shall be

exclusively interested in rate of convergence, we shall assume that the

reader is familiar with methods of centers and their convergence proper

ties. In any event, the reader will find these described in considerable

detail in [8].

Finally, we wish to note that the two algorithms discussed in this

paper are not the only ones for which a rate of convergence can be ob

tained by a systematic use of duality theory. Similar results can also

be obtained for a class of methods of feasible directions. However,

because of space considerations, these will be presented separately.
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SECTION I. PRELIMINARIES

Algorithms for solving problems of the form min{f^(2)|f^(z) < 0, j =

1, •••, m} usually generate sequences of points izA such that the correspond

ing cost sequences {f^(z^)} are monotonically decreasing. The convergence
of such algorithms can usually be established from the properties of the

difference ~ (see Polak [8]). We shall show that in some

case, a study of the difference f^(z^^^) - f^(z^) can also lead to a
bound on the rate of convergence of the sequence {z^}.

00 ffm.

We recall that a sequence of points {z.} in a Banach space B is
^ i=0

said to converge at least linearly if there exist azSB,iQ >0, kG (0,1),

K > 0 such that

1-1 Hz. - zll < K»k^ for all i > i^ .
1 — — 0

The sequence {z.} is said to converge superlinearly to z if for any
^ i=0

K > 0 and any k G (0,1) there exists Iq such that 1-1 is satisfied. Our

method for showing that 1-1 holds for the sequences under consideration,

will be based on the observation that under suitable assumptions (see

0 ^Lemma 1-20), if the sequence of costs {f (z.)} satisfies, for some ifv ^ 0
^ i=0

and k G (0,1),

1-2 lk[f°(2^) - £°(z)] for all i i i,,,

then there exists a > 0 such that 1-1 is satisfied. Note that 1-2 is

equivalent to

1-3 for all 1 > ig

which, for us, will prove to be a more convenient form to work with. To
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establish 1-2, we shall make use of the fact that the methods of centers,

to be studied in this paper, construct an upper bound 6(z^) ^ ~

f^(z^)], in the process of computing bound 6(z^) is
computed as the optimal value of a minimization subproblem. In turn, to

obtain an upper bound on 6(z^), we shall make use of optimality conditions

in saddle point form (Kuhn-Tucker [6]). Since this will also require con

ditions for existence of a saddle point, we shall make use of the strong

duality theorem, stated below, which incorporates all the required results.

The bound on 6(z^) will be obtained in the form ^ K(z^)[f^(z) - f (z^)],
where k(*) will be shown to be ^n upper semicontinuous function. Since,

under the assumptions to be introduced, the sequence {z^} converges to z,

the solution of 1-1, given any a ^ (0,1), there exists an IqM ^ 0 such

that k(z^) (i-a)K(z) for all i ^ obtain

the bound ~ (i-ct)'̂ (z) [f^(^)-f^(z^) ] for all i ^ i^Coi) , which,
in turn, enables us to establish linear convergence of {z^}.

In this section we shall develop the tools needed to carry out the

plan of attack outlined above. Thus, consider the problem, denoted by (P),

(P) min{g^(z)|z ^

with = {z e R |̂g^(z) < 0 j = 1, ..., p; z e c}, where
g^: a:-»-R, j=0, 1, ***,p are convex and continuously differentiable

functions, and (E is a convex subset of R.'̂ . The following problem, denoted

by (D), is called the dual of (P):

P

(D) max{inf{g^(z) +^ ^u^g^(z)}} (u = (u^,u^,•••,u^) GrP)
u^O ze®
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Let <j): RU {-<»}, be defined by,

P

1-4 (j)(u) = inf{g^(z) + ^ ^u^g^(z)}
zee

Definition:

Any z ^ satisfying g^(z) = min{g^(z)|z ^ will be called a so

lution of (P). Any u ^ 0, satisfying, (j)(u) = max <J)(u), will be called a
- u^O

solution of (D). IZZI

1-5 Strong duality theorem.

Let Sp be the set of all solutions of (P), i.e.,

1-6 S ={z*Gf2|g^(z')= min g^(z)}
P zefi

Suppose that S^ is not empty and that

1-7 = {z|g^(z) < 0, j = I,***, p}

is not empty^. Then

a) i) Problem (D) has at least one solution.

1-8 ii) max{inf{g^(z) + ^ ^u^g^ (z)}} =min{g^(z) |g^ (z) £0 j = l,*'*,p};
u^O z^iE zG®

iii) for any u, solution of (D), and for any z solution of (P),

1-9 (̂z) =min{g^(z) +̂ ^?g^ (z)} ;
j=l

b) a vector u ^ 0 in R^ is a solution of (D) if and only if there exists a



z in ^2 such that

f f

1-10 i) g^(z) + ^ (z) =inin{g^(z) +^ ^u^g^ (z)} ,
4 1 -1j=l J=1

11) i?g^(z) = 0 j = l,*",p .

This theorem Is a particular case of the strong duality theorem stated In

Geoffrlon [3]. Related theorems can be found In Rockafellar [10], Mangasarlan

* ^
[7]. Note that If there exists a solution z to mln{g (z) + \ ^ u"^g^(z)}, In

z^(E

the Interior of the set (C then for any z ^ S . ^
P

1-11 g^(z) =max{g^(z) +^ ^ (z) Vg^(z) +^ ^u^Vg^(z) =0}
j=i j=i

z^(C

* §This Important observation Is a consequence of the fact, that If z ^ ®,
p

and u > 0 satisfy Vg (z ) + \ ^ u^Vg^(z ) = 0, then z Is a solution of

P

mln{g^(z) + u^g^(z)}. Finally, note that when (C Is open In R^, the
J=1 p

solutions of mln{g^(z) +y ^u^g^(z)} always lie In the Interior of (E«
zS(E .

3=1

Therefore equations 1-11 always holds for (C open, z In S^. Q
Before stating the lemma which relates 1-1 and 1-2, we shall prove,

under a simple assumption, that an optimal multiplier for the minimization

problem 1-13, stated below, cannot have zero as Its first component.

1-12 Lemma

Consider the problem
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1-13 min{f^(2)I(z) ^0 j = I,*'*, m},

where "*• R, j =0, 1, ...» m, are convex and continuously differentiable

functions. Suppose that 1-13 has at least one solution and that

1-14 (£* = {z|f^(z) < 0 j = I,-**, m}

is not empty. Then, for any solution z of 1-13, the set A(2) consisting of

optimal multipliers X= (X^,X^,... ,x"^) ^ R™^^, and defined by

mm m

1-15 A(S) ={1 e r"^ |̂ ^ x^£^(g) =0; ^ xW(2) =0; ^ X^ =1; X>0}
j=l j=0 j=0

is such that

1-16 ^ = min{ ( X,e >|X £ A(z)} > 0,

nrH
where e= (1, 0, 0)^R

Proof: From 1-15 and the fact that z is a solution of 1-13, A(z) is a non

empty [9] compact subset of R^*^^ and therefore there exists a X^ A(z) such that

X^ = (X,e >. Since the functions f^, j = 0, 1 are convex and con

tinuously differentiable, we must have

1-17 f^(z) ^ f^(z) +<Vf^(z),z-z >, j =0, I,-", m, for all ze r".

Multiplying 1-17 by X^, for j = 0, I,"', m, and adding the results, we

obtain

mm m

1-18 y^X^f^(z) >^^X^f^(z) +< X^Vf^(z), z-z >
j=0 j=0 j=0
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Thus, it follows from 1-16, 1-15 that

m

1-19 ^X^f^(z) >X^f^(z). for all ze r'̂ .
j=0

—0
Hence, if X =0, 1-19 contradicts assumption 1-14. Consequently the lemma

must be true. ^

Let us now state the result which relates 1-1 and 1-2.

1-20 Lemma

Consider problem 1-13, where the functions f^, j = 0, l,***, m, are

now assumed to be convex and twice continuously differentiable. Suppose

f i<»
that an algorithm, in solving 1-13, constructs an infinite sequence \z,j

i=0

which converges to a solution z of 1—13, and, in addition, suppose that

there exist i^ > 0 and k ^ (0,1) such that

1-21 f°(Zi+P "

1-22 f^(z.) £0 j = I,-", m,

for all i ^Iq. If there exists an optimal multiplier X̂ A(z) (see 1-15)
and constants X > 0, e > 0, such that

2 j
1-23 <y, (z) y > > Allyll^ for all y S r" and for all z

j=0

in B(z,e),

where B(z,e) = {z|llz-zll e}, then there exists an integer i^ > 0 such

that
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<S1

l-2'i II - 211^ < ^

Proo^: Since {z^} converges to z, there exists an i^ such that z^ ^ B(z,e)

for all i ^ i^. Let i^ = max(iQ, ^2^* Without loss of generality, we may

assume that i^^ = 0. According to the Taylor expansion formula, for any

€ {z^} and any XGA(z), there exists a ^ (0,1) such that

m m

1-25 ^ [f^ (z^) - (2)] =<z^-2, A^Vf^ (z) >+I <Zj-2,
j=0 J=0

"• ,2J

-9-

rf (5)(Zi-2)>
J=0

with C= ®x^^i^^i U-Ox^^i^^^*

Making use of the fact that X G A(z), 1-25 becomes

m m 2 j
1-26 2 X^£^(z^) +X°If°(z^) - f°(2)] =i <Zj-2, ^ X^ (5)(zj^-z)> •

j=l j=0

Therefore, it follows from 1-22 and 1-23 that for any X G A (z) for which 1-23 holds,

1-27 X°[£°(Zj^) - f°(z)] >1 Bz^-zll^.

Thus, by induction, 1-21 and 1-27 imply that

0Z^-SJ ^ (£° (zq) - f° (2) ),

which completes our proof.

Note that hypothesis 1-23 can be replaced by the requirement that hypothesis

1-14 is satisfied and that there exists m^ > 0 and e > 0 such that

2 0

1-28 <y, ^ f (z)y > ^m^llyll^ for all y in and all z in B(z,e)



Indeed, 1-28 implies that

m 2

1-29 <y, ^ (z)y >^m°X°llyll^ for all y in r'̂ , for all z in B(z,e)
TT' 9z
J=1

and for all X G A(z).

Thus 1-23 is satisfied with ^ where ^ is defined by 1-16 and must

satisfy ^ > 0 because of 1-12.

Because lemma 1-20 requires 1-23 or 1-28 to be satisfied, it is con

venient to introduce the following definition*

1-30 Definition; (linear convergence in cost)

Given a cost function f^: R, we say that the sequence "Cz.}
^ i=0

verges to z at least linearly in cost, if there exist k ^ (0,1), l<) > 0 and

Iq ^ 0such that |f^(z^) - f^(z)| k^K for all i ^ i^.
We, now, conclude this section by giving the following result which

characterizes the optimal points of problem 1-13.

1-31 Lemma

Consider the problem

1-32 min{f^(z) |f^ (z) £0 j = I,*", m}

where f^: R^ -> R, j = 0, 1,..., m, are convex and continuously differ-

entiable functions. Let S be the set of solutions of 1-32, i.e.,

S- {^lf^(z) =min{f^(z) |f^ (z) ^0 j =1,•••, m}; f^ (z) ^0, j =1,... ,m},

and suppose that the sets S and (£' = {z|f^(z) < 0 j = l,...,m}

are not empty. Define k^: R^ •> Rby
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1-33 k°(z) =mltifh" +^ hl |̂( Vf°(z) ,h ><_ h°; f^(z) +<Vf^(z),h >
0>°,h) ^ uO . , ,

£ h j = 1,» • •, m}.

Then

i) Is well defined and is continuous on R^,

ii) k^(z) < 0 for all z in (C, z not in S; and k^(z) = 0 for all z in S.

Proof; Note that from 1-33

1-34 k^(z) = inin{~ OhB ^ + max{ <Vf^(z) ,h >; f^ (z) + <Vf^ (z) ,h >, j = 1,***,m}}
h ^

Let <t>(z ,h) =^ Ilhll ^+max{ <Vf'̂ Cz) ,h >; f^ (z) +<Vf^ (z) ,h >, j =1, •••, m},
then <|) is continuous on x R*^ and convex in h. Furthermore lim (J)(z9th) = -H"

t-H«>

for all (z,h) ^ r'^. Therefore, for any z ^ R^ there exists a vector

h(z) Gr'̂ , such that k^(z) = (|)(z,h(z)). Hence, k^(*) is well defined.
It is straightforward to verify that the conditions of the strong

duality theorem 1-5 are satisfied by problem 1-33. Therefore from 1-5(a)(ii).

m m

1-35 k°(z) =inax{inf{(l - ^ u^)h° +-y Ohll^ + u^f^(z)
u>0 (hO,h)

m

+ u^ <Vf^ (z) ,h >}}•
j=0

Next, from 1-11 and 1-5(a)(i),

m m m

1-36 k^(z) =max{ (1 - u^ )h^ +^ llhll ^ u^ <Vf^ (z) ,h >-|- (z)
o"=° J=o j=0 J=1

(h ,h) 1 m

^ ^u^ =1; ^ ^u^Vf^ (z) +h =0}»
j=0 j=0
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which la equivalent to

m mm

1-37 k^(z) =max{^ û^f^ (z) - ^ ^ ^ Vf^ (z)ll |̂ u'̂ »l},
- j«l j=0 j=0

Thus, from 1-37 and the maximum theorem (Berge [i] pp. 116) (•) is

continuous•

It follows also from 1—37 that is negative In C. Suppose now that

z GC and that k^(z) = 0, then from 1-37 there exists a u > 0 such that
8

m m m

1-38 =0; ^u^Vf^(z) =0; ^ =1; u^0. .
j«l j=0 j=0

From the convexity of the functions f^, j = 0, 1..., m,

1-39 f^ (z) ^ f^ (^) + <Vf^ (z) , z-I > for all z e R^, j = 0, 1,•••, m.

Therefore

m* m m

1-40 ^ ^u^f^ (z) ^ ^ ^u^f^ (z) + ^Vf^ (z) ,z-z > for all z ^
j=0 j=0 j=0

which becomes, because of 1-38,

m

1-41 ^^f^(z) >"il^Cf^Cz) - f^(z)) for all z e R^
j=l

If ^ = 0, it follows from 1-41 that C* =4). Thus u^ > 0 and from 1-41,

and the fact that u ^ 0, we conclude that z is a solution of 1-32. Con

versely, if z is a solution of 1-32, there exists an optimal multiplier

A € such that

-12-



m m m

1-42 =0; ^X^V^(S) - 0; X^ =1; X>0
j=l j«0 j«0

0 r—t
and 1-42 and 1-37 imply that k (2) = 0, which completes our proof. D
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SECTION II. RATE OF CONVERGENCE OF A THEORETICAL METHOD

OF CENTERS.

The method of centers (Huard [4]), to be studied in this section is

not implementable on a computer. However it is of great theoretical in

terest since it leads naturaly to several implementable algorithms, known

as modified methods of centers. One of these method of centers will be

studied in the next section. In this section we shall present two theorems.

The first theorem concludes that this method of centers under examination

converges at least linearly. The second theorem shows that this method

of centers converges at most linearly. We begin by recalling the algorithms

and conditions for its convergence.

Consider the problem

2-1 min{f^(z) |f^ (z) £0, j = 1,***, m}

where f^: R^^R, j = 0, l,*",m, are continuous functions.

2.2 Assumptions

We shall assume that there exists z^ ^ (C ={zJf^Cz) 0j ®
such that

2-3 i) the set {z e a|f°(z) _< f^Cz^)} is compact convex
ii) there exists a compact convex set ®(Zq) containing

iz e a|f^(z) £ interior such that the functions f|
0, l,***,m, are convex and continuously differentiable in (II(Zq) and such

that

iii) the function f^ is strictly convex in (E(Zq).
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2-4 iv) (I* = {z|f^(z) < 0 j = 1, •*•, m} is not empty

2-5 Algorithm (Huard [4])^

Step 0. Select a z^ such that 2-2 is satisfied, and set i = 0,

Step 1. Compute a solution of

2-6 min{6|f^(z) - f^(z ) _< 6; f^ (z) 6, j =1,' **, m; z e (E(z^)}
(6,z) ^

Step 2, If 6(z^) = 0, set z = z^, and stop; else set i = i+1 and

go to Step 1.

First, if the algorithm stops, then z must be a solution of 2-1 (see

Polak [8] theorem 4.2.12). Next, from hypothesis 2-2 (i), (iv), and

theorem 4.2.12 in Polak [8], every accumulation point of a sequence

{z.} , generated by algorithms 2-5 in solving 2-1, is a solution of
^ 1-0

2—1, Now assumptions (i) and (iv) also imply that 2—1 has at least one

solution. From 2-2 (iii) this solution is unique. From the compactness

00 1

of I(z„), {z.} has at least one accumulation point. Thus iz.i

converges to the solution of problem 2-1.

Let z be the solution of 2-1 and let A(z) be the set of optimal

multipliers at z, i.e.,

m m m

2-7 A(z) = {A e = 0; A^f^(S) = 0; = 1; X> O)
j=0 j=l j=0

Referring to lemma 1-12 we see that

2-8 X° = mln{ <X.e >|X € A(g); e = (1, 0, O,---, 0) S > 0.

2-9 Theorem (at least linear convergence in cost)
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Let iz.j be an infinite sequence generated by algorithm 2-5, in
^ isO

solving problem 2-1, and suppose that assumptions 2-2 are satisfied.

Then, given any a ^ (0,1), there exists an integer iQ(oi) such that

2-10 - f°<2) 1 [1 - X°(l-a)][f°(z^) - f°(S)] for all 1>1^(0),

where z is the unique solution of 2-1.

Proof. To obtain a bound on f^(z^^j^) - f^(z) we shall investigate the
quantity - f^(z^), which, according to 2-6, in the algorithm, is
bounded by 6(z^), i.e.,

2-11 < 6(z^).

Then, using the strong duality theorem 1-5, we shall find a bound on 6(z^)

in terms of z^ and f^(z^) —f^(z). To complete the proof we shall elimi
nate the dependence on z^ of the bound on 6(z^).

Thus from 2-6

2-12 6(z.) = mln{6|f°(z) - f°(z ) < 6; (z) < 6, J = 1, ..., m; z e «(z-)}
(6,2)

The set {(z,6)|f°(z) - - 6 < 0; (z) - 6 < 0, j = 1,•••, m) is not

empty for all e Therefore the strong duality theorem 1-5 can

be applied to 2-12. Parts (a)(i) and (ii) of 1-5, as applied to 2-12,

imply that

m m

2-13 6(z ) =max {inf {(1 - T^u^f^Cz) +u®[f^(z) - f^(z^)]}}*
6 e

Let u(z,) = (^(z.),*•• ,u''̂ (z.)) ^ be a solution of 2-13, then from
i i i
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(a)(iii) of the strong duality theorem 1-5

m m

2-14 6(z.) =min{(l - ^ ^(z.))6 + ^ ^u^(z.)f^(z)
f6 z) ^

j=0 j=l

+u^(z^)[f^(z) - f°(z^)]|z ^ (E(Zq)}.

Clearly, equation 2-14 cannot hold unless

m

2-15 ^u^(z^) =1
j=0

Consequently,

m

2-16 6(z^) =min ]u^ (z^)f^ (z) +u^(z^)[f^(z) - f^(z^)]}.
^ ^ j=i

Upon replacing z by z in 2—16, we obtain the following bound on 6(z^)

m

2-17 S(z^) <'^P (z^)fJ (z) +^(z^) [f°(2) - f°(Zj^)].
j=l

Since z € c, f^(z) ^ 0,j = I,***, m, which, together with the fact that
m

u(z^) ^ 0 implies that u^ (z^)f^ (z^) _< 0. Hence,
j=l

2-18 <S(z^) _< u^(z^) [f^ (z) - f^(z^)].

For every z G {z.}" , we define U(z.) to be the set of solutions of 2-13,
r-0 ^ .<»

Let us show that every sequence {u (z.)} , consisting of the first com-
i=0

ponents of vectors u(z^) ^ U(z^), must always satisfy
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2-19 lira inf (z.) ^ ^

Q IQ
where X is defined by 2-8 and, according to lemma 1-12, satisfies X > 0.

Let x -»• R be defined by

2-20 \|;(u,z ) =min ^u^f^ (z) + u^[f^(z) - f^(z.)]}ZE ^

Because ®(Zq) is compact, is well defined and continuous in both argu

ments. Now, from 2-13, 2-14 and 2-15,

m

2-21 6(z^) =max{ij^(u,z^) |u ^ 0; ^ û^ =l}.
" 3=0

Let F: Cn C(Zq) -»• Cp(R™^^) (the set of all subsets of R^^) be amap
defined by

m

2-23 r(z^) ={u e R®^ |̂i()(u,Zj^) =6(z^); u>0; =1>
j=0

Let {u(z )}~ be any sequence such that u(z^) E U(z^) for i = 0, 1, 2,***
i=0 _ _

Because of 2-20, 2-21 and 2-23, u(z^) E U(z^) implies that u(z^) E r(z^).
m

The set {u ER®^ |̂̂ ^u^ =1, u^ 0} is compact, and from 2-23 r(z^) is
j=0

—- -00

contained in that set for i « 0, 1, 2,"-. Therefore {u(z )} has at

nri-l
least one accumulation point. Let u E R be an accumulation point of

00 00 f ^ 00
{u(z )} and let {u(z. )} be a subsequence of {u(z.)> which con-

^ i=0 S j=0 i=0
verges to ii. From the continuity of 4* snd 6, from 2—23 and from the fact
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that z -»• S as j ^ we conclude that u ^ r(z). Consequently,
i. 2

lim inf u^^ <u,e >|u ^ F(z); e = (1, 0,•••,0) ^ R }
i-x»

From 2-23,

2-24 r(2) = {X e R'°+ |̂6(g) =min {X^If^Cz) - f°(S)]
m 0 m

+ X^f^(z)}; y^X^ =1; X>0}.
j=l j=0

We shall show that r(z) = A(z), where

m m m

2-25 A(z) ={A e (z) =0; ^X^V^(z) =0; ^X^ =1; X>0}
j=l j=0 j=0

Since z Is a solution of problem 2-1, 6(z) = 0. Therefore let us investi

gate the solutions X of the equation

2-26 min

zea;(z

m

{X°[f°(z) - f°(z)] +^X^f^(z)} =0
0^ j=l

m

which also satisfy X̂ 0, ^^X^ =1.
j=0

Let Xbe such a solution. If X^ = 0, equation 2—26 cannot be satisfied

(see hypothesis 2-4). Therefore X® > 0. From assumptions 2-2(ii) and

(iii), and the fact that X^ > 0, the problem min {X^[f^(z) - f^(z)]
zec(z )

m 0

+̂ ^X^f^(z)} has aunique solution, and the optimal value can be zero
j=l
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m

only if 2 is the solution (because(z) = X^If^(S) - f^(z)]
m m j=l

+̂ ^^A"^f^(z) ^ 0). Hence (2) =0. Furthermore, since zbelongs
j=l j=l

m m

to the interior of C(zq), ^^X^Vf^ (z) =0. Conversely, ^ ^X^f^(z) =0and
j=0' j=l

m

^^X^Vf^ (z) =0implies that 2-26 is satisfied by X. Thus r(z) =A(z).
j=0

—oBecause of the fact that (lim inf u C^^)) ^ ^ <u,e >|u € r(z),
i->oo

Itl+I
e = (1,0,* **>0) € R } implies that, given any (0,1), there exists

iQ(a) such that

2-27 u^(2^) X^(l-a) for all i ^

Therefore, from 2-18 and 2-27 we obtain that

2-28 <S(z.) < X^(l-a)[f^(z) - f^(z )] for all i > i^Cot)
1 — 1 — 0

and hence, recalling 2-11, we must have,

2-29 11°(l-oi)[f°(z) - f°(z^)] for all i >1^(0)-

It now follows that

2-30 1 [1 - "^(l-ot)][f°(z^) - f°(2)] for all i >1^(0),

which completes our proof. (ZH
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We now establish, an upper bound on the rate of convergence of

algorithm 2-5.

2-31 Theorem

00

Let {z } be an infinite sequence generated by algorithm 2-5 in
1=0 _Q

solving problem 2-1. Let z be the solution of 2-1 and let X be defined

—0
by 2-8. If assumptions 2-2 are satisfied, then, either X = 1 and the

sequence {f^(z.)} converges superlinearly to f^(z), or ^ < 1 and
i=0

there exists an integer i^ such that

2-32 i (l-^)[f°(z^) - f°(z)] for all 1>ij^.

Proof: Applying part (b)(ii) of the strong duality theorem 1-5

to problem 2-6, we conclude that a u^(z^) defined as the first component
of a solution of 2-13 must satisfy

2-33 u^(z^)[f^(z^^^) - f^(z^) - 6(z^)] =0.

—0 —0Now, according to 2-27, u (z^) ^ (l-a)X for all i ^ iQ(a). Therefore,

by making use of lemma 1-12, u^(z^) >0 for all i ^ i^Ca). Hence, from
2-33, we obtain that

2-34 "" = 6(z^).

Next, according to 2-13, for i = 0,1,2,...,

m m

2-35 5(2.) = max{inf
u^O z^(C(z

6

Setting u = X, some element of A(z) (defined by 2-7), we conclude that

{(1 +^^u^£^(z) +U®lf''(z) - f^CZj^]}}'
0^ j=0 J=1
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m

2-36 6(z.) > Inf (z) + X°If°(z) - {"(z.)]}

m

The infimum in 2-36 is achieved at £ because (z) = 0. Therefore

j=0

m

6(z^) ^y^X^f^(z) +X°[f°(2) - f°(Zj^)] =x°[f°(z) - f°(zp] for all Xe A(2)
j=l

Thus

2-37 6(z^) >X°[f°(z) - f°(Zj^)], for 1=0,1,2,...

and setting i^^ = i^Ca), for some a ^ (0,1),

,0. X .O./s. . TOxr.O, X r.0
2-38 f - f"(£) > (1-A")rf''(z^) - f"(£)], for i > i^.

which proves the second part of the theorem; the first part follows directly

from theorem 2-9. This completes our proof. £Z3

Combining 2-10 and 2-32, we see that whenever algorithm 2-5 constructs

an infinite sequence {z.} » we must have
^ i=0

_o
2-39 lim r 1 -

i-x» f (z^) - f (z)

with given by 2-8. This situation is rather unique. In the following

^0 / V -0 //\N
f (Zl+l) - f (z)

section we shall be able to obtain only an upper bound on lim —jr r
i-xx) f (z^) - f (z)
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SECTION III. MODIFIED METHOD OF CENTERS.

The method of centers 2-5 requires that at each iteration we solve

the problem

3-1 min{6|f^(z) - f^(z.) £ 6; f^(z) < 6, j = 1,***, m} .
(<5,z) ^

In the modified method of centers [5], this problem is replaced by two

subproblems: a direction finding subproblem,

3-2 min{h |̂ <Vf^(z ),h> £ h®; (z.) +<Vf^(z.),h> £ h^, j = I,***, m;

where S = {h € r"| |h |̂ ^1, i = 1, 2,-»-, n}, and a step size determination

subproblem,

3-3 min {6 |̂f^(z^ +yh(z^)) - f^(z^) £ 6^^; f^ (z^ +]Jh(z )) £ 6^^, j =I,***, m},
(\,y)

Referring to the example in the appendix, we see that the algorithm using 3-2

and 3-3 does not converge linearly. Therefore, we modified 3-2 to the fol

lowing form:

3-4 mln {h° +^ Ilh0 |̂ <Vf°(z.),h ) <h°; f^(2 J +<Vf^(z,),h > <h°, j = 1,
0 1 1 --

Problem 3-2 is a linear program with m+n+1 constraints, while 3-4 is a

quadratic program with m+l constraints. Although 3-4 is harder to solve

than 3-2, it makes 3-3 easier to implement. The reason for this is (as

we shall show) that an algorithm, which uses 3-4 and solves 3-3 by means

of a Golden Section search of finite'precision, converges, while such a
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result Is not true when 3-2 is used.

We shall first establish linear convergence for the modified method

of centers which uses the subproblems 3-3 and 3-4, with respect to prob

lems with strictly convex inequality constraints. Then we shall show

that this result is also true for the case of convex constraints. The

last part of the section is devoted to establishing linear convergence

for an implementable algorithm which uses a Golden Section search of

finite precision to solve 3-3.

Consider the problem

3-5 min{f^(z) |f^(z) ^0 j = 1,***, m},

where f^ i -»• R, j = 0, 1,..., m, are twice continuously differentiable

functions. Let (E be the set of feasible points, i.e.,

3-6 € = {z|f^(z) £ 0, j =1,*••, m}

3-7 Assumptions.

We shall suppose that

i) there exists z^ in (E such that ®(Zq) ={z ^ (E|f^(z) £ f^(z)}
is bounded;

ii) the set (E* = {z|f^(z) < 0 j = I,*", m) is not empty;

iii) the functions f^, j = 0, I,***, m, are convex^

iv) there exist m^ > 0, j = 0, I,"*, m,^ and e > 0 such that

2 j
3-8 m^Ilyll^ £<y» ^ ^ (z)y ) for all y ^ r"^ and all z S B(z,e)j

~ 3z

where z is the solution of problem 3-5 and B(z,e) = {z|Bz-zll £ e}.
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3-9 Algorithm (modified method of centers)

Step Q. Set i = 0 .

Step 1, Compute a solution (h^Cz^) h(z^)) of the problem

3-10 min{h^ +-I* Bhll^l <Vf^(z^) ,h ) h^; f^ (z^) +<Vf^ (z^) ,h >
_< h®, j =1,•••, m} .

Step 2« If h^(z^) =0, set z =z^, and stop; else compute a solution
(fih^^i^* ^(2^)) of

3-11 min {6j |̂ f°(z^+yh(z^)) - f^(z^) ± f^ (z^+Mh(z^)) 1 5^ j =1,*", m}

Step 3, Set = z^ + ]i(z^)h(z^) and go to step 1.

Theorem. (Convergence)

Let "Cz^} be a sequence generated by algorithm 3-9, in solving problem

3-5. If assumptions 3-7 are satisfied, then, either "tz^} is finite and its

last element z, is the solution of problem 3-5, or else ^z^} converges to

Q

We shall omit giving a proof of this theorem since it can be deduced

easily from theorem 4.2,32 in Polak [8] and lemma 1-31.

/\ iWith e > 0, z and m*', j = 0, l,***, m, as in 3-8, we define

dz

3-13 L = max{l; , j = 0, I,***, m}.

3-12 =max{ll ^^ (z)"|z ^ B(z,e)}>

3-14 a = min|1; m^, j = 0, 1,•*•, m}.
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3-15 Theorem (linear convergence).

CO

Let {z.} be a sequence generated by algorithm 3-9 in solving problem
^ i^O

3-5, whose solution is §. Suppose that assumptions 3-7 are satisfied. Then

-*• z linearly as i ->• "», f^(z^) f^(S) linearly as i ->• in accordance
with the following bounds. Given any a G(0,1), there exist i^Ca), K^Ca) > 0,

such that

3-16 llz -zll <. [1 - I (a) for all i ^ igC").

3-16' 1 f X°(l-a)][f°(z^) - f°(z)] for all i >1^(0),

where

m mm

=min{ <X,e > ^X^Vf^ (z) =0; ^^X^f^ (z) =0; =1; X̂ 0, X£
j=0 j-1 j=0

e = (1, 0, 0,---0) e and L, Z are defined by 3-13, 3-14. O

Let us outline our strategy for proving theorem 3-15. From 3-11 in

the algorithm, we have

3-18

We shall find an upper bound on in two steps. First we shall show

that [h^(z^) +y llh(z^)II^]. Then we shall prove that h^(z.) +
1 2Ilh(z^)ll ^£6(z^), where 6(z^)(see 2-12) is the optimal value of problem

3-1. Finally, making use of 2-28 (i.e. 6(z^) X^(l-a) [f°(z^) - f^(z)]), we
shall obtain 3-16*. Inequality 3-16 will then follow from lemma 1-20.

Since a part of the proof of theorem 3-15 will also be needed in proving

subsequent theorems, we break up the proof of theorem 3-15 into three

-26-



lejqmas.

3-19 Lemma.

Suppose that assumptions 3-7 (i)-(iii) are satisfied. Let 6j^(z),

(h^(z),h(z)), z respectively be defined as solutions of 3—11, 3-10 and

3-5, and let L and (E be defined by 3-13 and 3-6. Then there exists a

> 0 such that ^ for all z ^ B(z,Y-j^)

Proof: according to 3-11,

3-20 ~ min{6, If^(z+vih(z)) - f^(z) £ f^(z+yh(z)) £ j = 1»***»

It is straightforward to show that the strong duality theorem 1-5 applies

to 3-11. Therefore, if z G (C then, from 1-5 (a) (ii)

m m

3-21 (z) = max{inf {(1 - ^ )6, + ^ f^ (z+ph(z))<eO (6^.y) ^

+ a)^[f^(z+yh(z)) - f^(z)]}}

m m

3-22 =max{inf{^ w^f^ (z+yh(z)) + aj^[f^(z+yh(z)) - f^(z)]} \ =1}

Applying the Taylor expansion formula and making use of equation 3-13, we

obtain,

m m

3-23 y^Jf^ (z+yh(z)) +aj°[f^(z+yh(z) - f°(z)] <̂ Jf^(z)
j=l j=l"

m 2

+M <Vf^(z),h(z) >+^L Ilh(z)ll^,
j=0
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m

for all we such that to ^ 0, ^ V =1, and all (z,y) such that
j=0

z + |Jh(z) e B(S,e). It follows from the strong duality theorem 1-5, as

applied to problem 3-10, that

m m

3-24 h°(z) llh(z)ll^ =max{inf {(1 - y^u^)h^ +^^u^f^(z)
(h°,h) j=0 j=l

m

+y^u^ <Vf^(z),h >+I Ilhll^}}
3=0

mm m

3-25 =max{lnf{y^u^f^ (z) + <Vf^ (z) ,h >+| "hll |Tu^ =D
..SA t, A—'
"^0 j=l j=0 3=0

and hence that

m m

3-26 h^(z) +-j llh(z)ll^ =max{^ Vf^ (z) +̂ ^ <Vf^(z),h >
u>0 r 1 ._n
= 3=1 3=0

m m

+"I llhll^iy^u^ =1; y^u^Vf^ (z) +h=0}
3=0 3=0

Therefore

m mm

3-27 h°(z) +i llh(z)ll^ =inax{^u^f^(z) - | ll^u^Vf^ (z)ll |̂̂ u^ =1}
"=° j=l j=0 j=0

Let u G be a solution of 3-27, then

m m

3-28 h°(z) +i Oh(z)ll^ =^u^f^(z) - -I Oy^Vf^(z)P^.
J=1 j=0

and from 3-26 it follows that
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® 6
3-29 hCz) - - (z)

j=0

Hence, if z € d,

m

3-30 h°(z) + Ilh(z)ll^ = Cz) < 0,
j=l

and therefore -j Ilh(z)Il^ ^ - [h^(z) +^ ilh(z)ll ]. From 3-27, it is clear
that h^(*) lih(*)"^ is continuous, negative in (E and that it takes the

0

value of zero at z. Therefore there exists ^ (0, •« ] such that
2

max{ - [h®(z) +YIlh(z)II^] |z e B(z,y^) d} £ • Hence, it follows that

3-31 llh(z)0 <j for all z e B(z^Yj^) n a.

which implies that z + yh(z) ^ B(z,e) for all y e [0,1] and all z e B(z,y^) n d,
m

Thus 3-23 is valid for all 0) ^ 0, such that = 1, all y e [0,1] and all
j=0

z e B(z,Y^) n d. Therefore, for any z e b(z,Yj^) ^ d, from 3-22,

j< max{inf w^f^ (z+yh(z)) + a)^[f^(z+yh(z) - f^(z)]} |^ =1}
ceo ye[0,l] ^ "

and from 3-23

m m

3-32 6, (z) <max{inf uPf^ (z) + y <Vf^(z),h(z) >

2 ®
+ Lllh(z)ll= 1}

j«0
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By setting y =^ in 3-32 (and deleting the Inf operation) we obtain

m

3-33 £max{^ (z) +l 53^^ <Vf^ (z) ,h(z) >
m

+I iih(z)n |̂̂ ^ =1}-
j=o

Since z e (C, f^(z) £ 0, j =!,•••, m; and since L£ 1, it follows that

Cz) 1 ^ (2), j =1, •••, m. . Therefore

m m

3-34 6^(z) <f max{y^a)^f^(z) +^^0)^ <Vf^(z),h(z) >
h — L

j=l j=0
m

+I llh(z)II |̂̂ aJ^ =1}*
j=0

By definition, (h^(z), h(z)) is a solution of 3-10 with z^ = z. Therefore

<Vf^(z),h(z) >£h^(z); f^ (z) +<Vf^ (z) ,h(z) >£h®(z), j =l,.-»

Hence, from 3-34, £-^ max{^^h^(z) llh(z)ll |̂y^a)^ =l), i.e.,

6 (z) <- [h°(z) +^ llh(z)II^], which proves the lemma. •
h — L 2

3-35 Lemma

Suppose that assumptions 3-7 (i)—(iv) are satisfied. Then there

exists a Y2 ^®such that h^(z) +^ "h(z)II^ ££6 (z) for all z^ B(S,Y2)
where z is the solution of problem 3-5, (h (z),h(z)), 6(z), il, CI are re

spectively defined by 3-10, 3-1, 3-14, 3-6.
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Proof: From the continuity of 5(*)i (E "*• R, defined by 6(z) = min{6|f^(z*)

- f (z) <6; f^(z') _< 6 j = 1,-• •, m}, and the fact that (z) = 0, there
0 7

exists y2 ^ C0>"2 ^ such that

3-36 6(z) =min{6|f°(z*) - f°(z) <6; f^(z') 1 5 j ^ z' e B(z,-|)}
(6,z')

for all z e b(z,Y2) ^ Upon applying the strong duality theorem 1-5 to

3-36, we obtain

m IP

3-37 6(z) =max {inf O Vf^(z*) +v^[f°(z*) - f^(z)] +{1 - ^ V ]6}}
"=° z'eB(S,f ) j=l J=0

&eB.

m m

3-38 =max {inf (z') + v°[£°(z')]}| VV = !}•
V>0 £ ^ ^= z'eB(z,|)j=l j=0

Expanding the function inside 3-38, according to the second order Taylor

expansion formula, and making use of hypothesis 3-5 (iv) we conclude that

m mm

3-39 y\^f^(z') +v°[f°(z') - f°(z)] >y\^f^ (z) + <Vf^(z),z'-z >
j=l j=i j=o

+-I" II z*-zll ^

for all z e B(z,Y2) ^ for all z* ^ B(g, -j ), and for all v > 0 such that
m

=1. As a function of z', the right hand side of 3-39 is minimized

j=0 m

by z* =z- -^^^^Vf^Cz). Hence,
j=0
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m m m

3-40 y^v^f^(z') +V°l£°(z') - f°(z)] >yv^fj (z) - Py^v^Vf
j-=l j=l j=0

^(Z)P^

Making use of the fact that z G (C and that f, ^ 1, we conclude from 3-40

that

m

3-41 yVf^(z') +v°[f°(z') - f°(z)] >i
j=l

m m

yVf^ (z) - Y vf^ (z)ii
j=l j=0

for all z e B(z,Y„) n (t, for all z' € B(z,-|- ), and for all v > 0 such that
m

= 1. Therefore, 3-38 and 3-41 imply that

j=0

m mm

3-42 6(z) >_ - max{yy f^ (z) - y O^^v^Vf^ (z)ll^= 1}
j=l j=l j=0

which, according to 3-27, implies that 6(z^) ^[h^(z) +llh(z)ll^] for
all z G B(z,Y2) This completes our proof. / 1

3-43 Lemma.

r -.CO
Let iz,/ be a sequence generated by algorithm 3-9 in solving

^ i=0
problem 3-5. Suppose that assumptions 3-7 (i)-(iii) are satisfied and

suppose that the function f^ is strictly convex in a convex neighborhood

of the solution z of 3-5. Furthermore, suppose that the functions f^,

j = 0, I,***, m, are such that there exist Y > 0> > 0 such that

3-44 ~ k6(z) for all z G B(z,y) ^ ®.

Then, given any (0,1), there exists an integer iQ(a) such that
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3-45 <II - K^(l-a)]I£°(z^) - f°(g)] for all i >i^Ia)

Proof; According to 2-28, given any a ^ (0,1), there exists an integer

such that 6(Zj,) _< X^(l-a) [f^(z)-f^(z^) ] for all i ^ i^Ca). It therefore
follows from 3-44 that

3-46 1 K(l-a)l°If°(2) - f°(zj^)] for all i >iiiin{lQ(a), ±3(0)}

Hence from 3-18,

3-47 f°<=i+i) " 1 - K(l-a)^If°(z) - f°(Zi)]

which, rearranged, becomes

3-48 " K̂ (l-oi)][f°(Zi) -

and completes our proof. CD

Proof of Theorem 3-15;

Inequality 3-16' follows directly from the lemmas 3-19, 3-35 and

3—43. Inequality 3—16 follows from 3—16' and lemma 1—20. This completes

the proof of theorem 3-15.

In proving theorem 3—15, assumption 3—7 (iv) was used only to es

tablish lemma 3-35. We shall now prove that a theorem similar to 3-15

can also be derived when assumption 3-7 (iv) is weakened as follows.

3-49 Assumption: There exist e' > 0 and m^ e (0,1) such that

2 0 2
<y, ^ ^ (z) y>^ m^Uyll for all y^ r'̂ , and all z ^ B(z,e) n (1^ where

3z^

z is the unique solution of problem 3—5 and Cis defined by 3—6. ^

3-50 Theorem. (Linear convergence in the case of non strictly convex
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constraints),

Let {zj}"* be a sequence generated by algorithm 3-^9 in solving
^ i=0

problem 3-5. Suppose that assumptions 3-7 (i)-(iii) and 3-49 are satis

fied. Then -»• z linearly as i -»• «>,f^(z^) -»• f^(z) linearly as i
in accordance with the following bounds; given any a ^ (0,1) there

exist i^Ca), K^Ca) > 0, such that

2 0

3-51 < [1 - ^ (l-ct)^] '̂̂ K:Q(oi) for all i >1^,(0),

2 0

3-52 - f°(2) 1 [1 - ^ (l-a)^][f°(z^) - f°(2)]
for all i > IqCoi),

where m^, L, ^ are respectively defined by 3-49, 3-13, 3-17.

Proof: Theorem 3-40 follows directly from lemmas 3-19, 3-43, 1-20 and

lemma 3-53 below.

•

3-53 Lemma.

Suppose that assumptions 3-7 (i)-(iii) and 3-49 are satisfied. Then,

0 1 2
given any a ^ (0,1), there exists a ^ ® such that h (z) + "h(z)II

^ m^ ^(l-a)6(z) for all z in B(z,Y2(o')) where z, (h^(z) ,h(z)),
m^, 6(z), (E, are respectively defined by 3-5, 3-10, 3-49, 3-17,

3-1, 3-6.

Proof: According to lemma 3-35 (see 3-38), for any z G B(z,Y2) ^ ®

m m

3-54 6(z) =max {inf {y^^f^(z') +v°[f°(z') - f°(z)]}|2'̂ =
^1° z'6b(2, I ) j=l j=0
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Therefore

TO

3-55 (5(z) ^ inf (z*) +v^If^(z*) - f (z)j}
z'sb(2, I ) j=l

TO

for all V>0 such that ^ V =1 and all ze n a,
j=0

Applying the Taylor second order expansion formula and using hypotheses

3-49 and 3-7(iii), we obtain

TO TO Q

3-56 6(z) inf f^ (z) H- <Vf^ (z), z'-z >+~ v^Uz'-zH^}
z»€b(S, I ) j=l j=0

TO

for all V̂ 0 such that ^ V =1, and all ze b(z,Y2) ^
j=0

By deleting the constraint z* ^ ^ 3-56, we obtain

TO TO

3-57 6(z) (z) |-Q oyjr'vf^ (z)ll^
7^ j=0

TO

for all V ^ 0 such that = 1 and all z ^ vCz) ^ R
j=0

m

be a solution of problem 3-27. Then, since m^v^(z) _< 1 and v^(z)f^(z) <_ 0.
j=l

TO TO

we must have,
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Hence, from 3^57, and 3-'27,

3-58 6(z)>-5Z^
m V (z)

m m

I? (z)f^ (z) - (z)V£^(z)»
jel j=0

m V (z) L
(z) + i lh(z)II^J

By following the same pattern of reasoning as in the theoretical method of

centers, it is easy to prove that

3-59 lim inf v^(z)
z->z

z^C

where ^ is defined by 3-17 and, according to lemma 1-12 satisfies "^ >0.
It now follows from 3-59 that, given any a ^ (0,1), there exists y^icL) ^ (0,Y2)

such that ^(z) >X^(l-a) for all z e B(z,Y3(a) ^ Therefore 3-58 implies
that 6(z) >

m^(l-a)
[h®(z) +YDh(z)Il^], which completes the proof of the

lemma.

•

Algorithm 3-9 is not implementable on a computer because of the exact

minimization required in 3-11. Let Step 2 in algorithm 3-9 be replaced

by Step 2*

3-60 Step 2* If i = 0 select a 3 > 0, else

If h®(z^) =0set z =z^, and stop; else apply the
Golden Section Search (or any similar scheme) to the function 0: R R

defined by
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3-61 604) =maxIf^Cz^ +)iKCz^)) - f^Cz^); Cz^ +phCz^)) j =I,***, m}

to find two points p(z^), |i'(z^) with p*(z^) > yCz^) > 0, such that [u(z^),

]i'(z^)] contains the minimizer yCz^.) of 9 and such that

3-62 0(y(2^)) <elV'Cz^) - V(Zj)] (V£°(z^),h(z^) >

3-63 Theorem (linear convergence) .

r 3°°Let iz i be a sequence generated by algorithm 3-9, modified to use
i®0

Step 2* above, in solving 3-5. Suppose that assumptions 3-7 (i)-(iii)

and 3-49 are satisfied. Then, either {z^} is finite its last element is

2, the unique solution of 3-5, or is infinite and z^ z linearly as

i ooj f^(z^) f^(z) linearly as i -»• «», in accordance with the following
bounds. Given any (0,1), there exist iQ(a), '̂ Q(a) such that,

3-64 8z^-z0 £ [1 - ^ [A°(l-a)]^ -jlg- ]^^^Kq(oi) for all i ^

3-65 1 - f- illg J[f°(Zi) - f°(S)]
for all i ^

where m^, L are respectively defined by 3-49, 3-17 and 3-13.

Proof. The function 0: R ->• R defined by 3-61 is convex. Therefore

3-66 e(y) >y<Vf°(z^) ,h(z^)>

because f^ (z^) <0,j =I,-**, mand i =l, 2, 3,*'*, and hence =
(Vf^(z^),h(z^) ) for all i ^ 1. It follows from 3-62 and 3-66 that
y(z^) ^ y, where ysatisfies y<Vf®(z^),h(z^) >=3(y(z^) - P) <Vf®(z^),h(z^))
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(see Fig. 1). If the point is not a solution of 3-5, then from lemma

1-31 and 3-10, <Vf°(z.),h(z.) > < 0. Thus
1 1

3-67 U(z^) 1 P = Vi(z^) •

Next, it follows from the convexity of 0(-) and the fact that y(z^) is a

minimizer of 0(*) that

3-68 0(y(z 6(y(z.))>

which, together with 3-67 implies that

2-69 e(v(z^)) 1 lie 0(U(Zi) '̂ ^

Therefore, from 3-61 and 3-11

3-70 1 1+3

where 6, (z.) is defined by 3-11.
n 1

Thus the convergence of algorithm 3-9, modified to use Step 2*,

follows from 3-70, theorem 1.3.10 in Polak [8] and the proof of con

vergence of algorithm 3-9. Inequalities 3-66 and 3-67 follow from

lemmas 3-19, 3-43, 3-53, 1-20 and inequality 3-70.
•

The following theorem highlights an important facet of algorithm

3-9 when modified to use Step 2* instead of Step 2.
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a*

3-71 Theorem*

If a Golden Section Search is used, in Step 2* of algorithm 3-9, to

compute ]j(z^), which satisfy 3-62, then

3-72 limlia*(z.) - y(z.)] > 0«

Proof;

Since, 0(*) is convex, 6(ii) ^ - (]i(z^) - y) <Vf^(z^),h(z^) >
for all y ^ y(z^). Therefore, from lemma 3-19, there exists an i^ > 0

such that

3-73 e(|J) [h°(z^) +1 llh(z^)] - (y(z^)-y) <Vf°(z^).h(z^) >
for all i ^ i^ and all y G [0,y(z^)],

where (h^(z^),h(z^)) is a solution of 3-10. It follows from 3-30 and
3-73 that

_ 0

3-74 0(y(z^)) £—21] (yCz^) - y) <Vf (z^),h(z^) > for all i ^

and all y ^ [0,y(z^)] .

According to part (b) (ii) of the strong duality theorem 1-5, as applied to

3-24,

3-75 v°(z^)[ <Vf°(z^),h(z^) >- h°(z^)] =0

where v^(z^) is the first component of a solution of 3-24. From lemma
3-53 (see 3-59) there exists i2 £ i^^ such that v^(z^) >0for all ±^ ±2*
Thus from 3-75.

3-76 h^(z^) =<Vf®(z^),h(z^) > for all 1^ ^2
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and therefoire 3-72 heconea.

3-77 e(v) i I ^ - ()i(2j)-W}] <Vf°Czp.h(Zj) >, for all Me lO.uCz^)]
and all 1^1-2

In Step 2*, starting from an interval containing y(2^), the

Golden Section search generates a sequence of interval {}^„q such
L- V |k+l k+1

that y(z ) e [y ,y' ] and r—= A(A - 0.68) and y^ ^ y(z^); y'̂ =
y' - y

y'(z^). Since the search for y(z^) did not stop at y^ y^ ^must have
failed the test 3-62 i.e.

3-78 6(yP~^) > <Vf^(z^) ,h(z^) >

and therefore

3-79 e(pP"^) >I (y'(z^)-y(2j^)] <Vf°(zp.h(z^) > •

Hence, from 3-75,

3-80 j [y'(z^)-y(z^)] iIl -

Making use of the fact that y(z^)-y^ ^ ^ [P* (Zj|̂ )-y(z^)]

we obtain

3-81 [y'(zj-y(zj] >-^ ^i' - 2L 1+g

which completes our proof. O



3-82 Theorem

0 —0Let L, m , A and {z^} be defined as in theorem 3-63 and suppose that

the assumptions 3-7 (i) - (iii) and 3-49 are satisfied. Then there exists

and integer i^ such that

3-83 VI (z^) £ —^ +4(L-^m^) I q-q ) ^̂ '•i
m \m X/

*

where y (z^) is defined as the strictly positive root of 0(lJ), (0(*) as in

3-61).

Proof. From 3-61,

3-84 0(y) >_ +Uh(z^)) - f^(z^) for all y£ 0

Applying the second order Taylor expansion formula to the right hand side of

3-84, we obtain

2

3-85 0(y) £y <Vf^(z.) ) + ^Vf^(z.), h(z.) ) +~ vP llh(z.)ll^, for all y > 0,

which, because of 3-76, becomes

3-86 0(y) £ y[h^(z^) + llh(z^)ll^ for all i £ for all y£ 0.

2
The right hand side of 3-86 is strictly positive for all y >

m^ llh(z^)ll
icConsequently, y (z^), the strictly positive root of 0(*)» is such that

3-87 y (z.) < ^ r- for all i > i«.
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Let (X^,X^,...X™) G A(z) (see 2-7), then it follows from 3-10 that

m m

3-88 X^ f^(z^) +< X^ Vf^(z^), h(z^) ><h®(z^).
j=l j=o

Expanding the left hand side of 3-88 about z and making use of 2-7 and

3-49, we conclude that there exists an integer i^ such that

3-89 I - Lllz-z^O nh(z^)ll <h°(z^) <0 for all i >
Therefore

0.0

3-90 llh(z^ll > Hz-z^II , for all 1 >

Next, from 3-27,

m m

3-91 hO(z^) +1 Oh(zpl|2 > ^ fJ(z^) - I II 2 XJ Vf^(z^)»2,
j=l j=0

which, with the aid of the Taylor expansion formula, yields

2 . 1,.0 03-92 h°(z^) +j Bh(z^)ll^ >|(X°in -L)llz-z^

Combining 3-90 and 3-92, we obtain

3-93

h^Cz.)

llh(j

Inequality 3—83 now follows from 3—93 and 3—87. £Z3

fi_ ^ 1 kn >0^°^ / 2L \--2-2(^- >Lo^oj
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OS

3-94 Corollary.

Let be as in theorem 3-63 and suppose that for 1=0, 1, 2, ...

is the smallest integer such that 0(z^ + h(z^)) > 0. Then

2

k. <-^ + 4(L-l^m^) —+ 1, for all i > i, , where i^ is as m3-82.
X U wTV X X

m m A

Furthermore if p(z^), y*(z^) in 3-60 are computed by means of the Golden

Section search using the initial interval [0,k^] then there exists an
/s /v

integer k such that ij(z^), y*(z^) are computed with no more than k

evaluation of 0(y), for i = 1, 2, ... . CJ

Corollary 3-94 together with theorem 3-63 show that algorithm 3-9

modified to use Step 2', implemented as in Corollary 3-94 converges linearly.

CONCLUSION;

We have seen in this paper that duality theory can be used to construct

bounds needed for determining the rate of convergence of a class of opti

mization algorithms. We have also demonstrated how the use of duality

theory can influence the construction of new algorithms. The approach used

in this paper has a certain amount of generality, since it can also be used

to deal with a number of methods of feasible directions and optimal control

algorithms. We shall present our work on these other algorithms under

separate cover.



APPENDIX A: Counter example to the linear convergence of the

modified method of centers in 15] and of the Topkis-Veinnott method of

feasible directions [11].

1) Topkis-Veinnott method of feasible directionsf11]

Consider the problem

A-1 min {x^ + y |̂y ^ 0^

and let Zq = (xQ»yQ) be such that 0 < |xq| £ yQ £ solve a problem

of the type min {f^(z)|f^(z) £ 0 j = 1, ... m) the Topkis-Veinnott method

of feasible directions, computes a feasible direction h(z^) at z^ as a

solution of min {max{<Vf^(z,),h>;f^(z.) + (Vf^(z.),h ) j = 1, m}}
I X X X

Ih I<1
0 2 2 1which, for f (z) == x + y , f (z) = -y, m= 1, becomes, at Zq,

A-2 min {max{2xQh^ +2yQh^, - h^ - yQ)} •
-l<h^£l
-l<h^<l

Hence

A-3 =-sgn Xq ; =- _2 —2^
1 + 2yo

The step size y(z^) is computed as the solution of

min{f^(z^ +]i h(z^))|f^(z^ +yh(z^)) £ 0 j =1, ..., m}. Therefore
PCZq) is found as the solution of

2 ^0 " ^l*ol ^0 " 2|*olA-4 min{(xQ - y sgn x^) + [y^ - y ] | y - y ^ 0}
y 1 + 2yQ 1 + 2y^
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From A-3 and A-4, (see Fig. 2), It is clear that the constraints in A-4

is not active at p(Zq). Therefore PCzq) satisfies

A-5
, , ^0 " ^0 " ^l*ol(IxqI - p(2o)) + 1+2y^ % - ^^<=0) 1+2yQ ^

Let = (x^, y^) be the next point computed by the algorithm. Then from

A-3

A-6 X, = x^ - y(z^) sgn Xq » yi = yQ "
1 0

Hence, from A-5 and the assumption on x^, y^,

Ix.

A-7
(^0 "

1 + 2y,
a' =

1-2

0 1 + 2y,

which implies that

X,

A-8 ly/

yp - ^1^0
1 + 2y„

Let {z^} be the sequence generated by the Topkis-Veinnott method of feasible

direction, in solving problem A-1, and starting from Zq = (Xq, yQ) such that

0 I^qI —̂0 ~ 2^ * iteration the algorithm decreases the cost
1

therefore if y^ is chosen such that yQ ^ >by making repeated use of A-8,

we obtain 0< |x |̂ £ y^ £-|- for all i £ 1. From A-3 it follows that
h^(z^) <0for all i >1. Hence (see Fig. 2)

-45-



i+1 ~ ^
llz. - ^ II =

where

A-IO Yj = TT -

y ^

From A-8, tan 3.. t = > ~ . Hence, 3. 7 as i and from A-10,
1+1

llzf^l - zll
Y. 0 as i 0®. Therefore, from A-9, lim = 1» which proves
^ 1-^ Hz. - gii

1

that cannot converge linearly.

2) Modified method of centers

Huard*s modified method of centers [5] has the same direction deter

mination subproblem as the Topkis-Veinnott algorithms just described, but

the step size y(z ) is given by min{max{f^(z^ +uh(z^)) - f^(z^); +iJh(Zj^))
y

, j = 1, ..., m}} which for problem A-1 becomes, at Zq,

A-11

y

.. . -2 / yp"min{max{(x - y sgn x^) + ~ 1 + 2y / * ^0 ~ ^ 1 + 2y^
11 0 0

Consequently, y(z ) satisfies either A-5 or
0
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9 / ^0 " \ ^0 ~ ^^*0'A-12 (Ix^l-y) +(yo - 1+2yQ i - ^0 "^ 1+2yQ

Therefore, the point z^ = Cxj^,y^) computed by the Huard modified method of

centers, after Zq is given by A-6 with y(Zj^) >0 being the smallest strictly



positive number which satisfies either A-5 or A-12. Note that if y(z^) is
2 2

given by A-12 then satisfies ~ Hence it is clear (see

Fig. 2) that if (x^jy^) is close enough to (.0,0), Xwill never be given by

A-12, which implies that, for problem A-1, and starting from Zq such that

0 < |xq| Yq ^ e, the Topkis-Veinnott and the Huard algorithms compute

the same sequence of points and hence neither of those two algorithms can

converge linearly.
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Footnotes

1. This condition is stronger than the one used by Geoffrion [3].

2. This algorithm is not implementable because of the exact minimization

required in 2-6.

3. Note that the map ^(R) defined by F (z) = { ^u,e ) j

u G F(z)} is closed (see Berge [1]).

A. Actually, the convexity of f, j » 0, 1,..., ra, is needed only in a

compact convex subset of R*^ containing (E(Zq) in its interior. It

is only for the sake of simplicity that we assumed global convexity.

5. As we shall see later, it is sufficient for 3-8 to hold for j = 0

only, to insure linear convergence, but in that case the bound on

the rate is larger.

6. Note that in some cases it might be easier to solve 3-27 and use

3-29, than to solve 3-10 in algorithm 3-9.

7. The mapping F: R^ ^(r'^) define by F(z) = {z*|f^(z*) - f^(z)
£ 6(z) ; f^(z*) £ 6(z)} is upper semi continuous (see Berge [1]).

8. The process of replacing the computation of a minimizer y of a con

vex function 0: [0,+<») -»• (-«>,0] by the computation of two points

y,y* such that 0 < y £ y £ y* and such that 0(y) £ 6(y*-y) (0 )

constitutes, because of 3-69, a general procedure for implementing

algorithms of the type of 3-9.
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