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ABSTRACT

The mechanism by which periodic non random forces lead to stochastic

acceleration of particles is examined. Two examples considered are:

(1) The Fermi problem of a ball bouncing between a fixed and an oscillating

wall and (2) cyclotron resonance heating in a magnetic mirror. Numerical

studies show that the phase plane consists of a complicated but regular

structure of islands embedded in a stochastic sea. These islands may have

the character of either adiabatic barriers or sinks for particles. The

islands can be described analytically by expansions about elliptic singular

points. A velocity below which no islands exist is observed computationally

and is predicted from Floquet theory. Computations also demonstrate that, in

some cases, an adiabatic wall forms an upper limit to particle diffusion in

velocity space. A lower bound and the approximate location of this wall are

predicted analytically. Introduction of an external random force component

modifies, but does not destroy, the basic results. For velocities below

which no islands exist, it is shown that the random phase assumption holds,

and the particle motion can be described by a Fokker-Planck equation. Above

this velocity, strong phase correlations exist, and a Fokker-Planck

description is inappropriate.

Research sponsored in part by the Air Force Office of Scientific Research,
Grant AFOSR-69-1754 and the National Science Foundation, Grant GK-2978.
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I. INTRODUCTION

1-4
It is well know that in a large class of problems having more

than one degree of freedom, there are parameter ranges for which adia-

batic invariants exist that separate the degrees of freedom. The phase

space for each degree then exhibits adiabatic behavior; ie, the trajectory

of the solution is a closed curve in the phase plane. For other parameter

ranges, one or more of the invariants may not exist, such that the tra

jectory in a single phase plane is area-filling. Similar behavior is

found for one dimensional non-linear oscillators with periodic coefficients.

Results of the adiabatic theory and the numerical computations are summa

rized in ref. 4.

A one dimensional acceleration problem fitting into the above scheme,

that has received considerable attention, is that of a ball bouncing be

tween a fixed and an oscillaing wall. The problem was first examined by

Fermi^ as an analog to a possible cosmic ray acceleration mechanism, and

will be referred to here as the Fermi acceleration problem. Early numeri-

5 6 7cal calculations by Fermi and others * gave conflicting results, some-

times indicating oscillatory energy changes of the ball, and sometimes

indicating that the momentum transfer was stochastic; i.e., that

the ball struck the oscillatory wall with a random phase with respect to

7 8
the wall oscillation. Zaslavskii and Chirikov partially resolved this

contradiction by demonstrations that for high ball velocities, such that

the transit time of the ball was comparable to the wall oscillation period,

an adiabatic invariant existed which limited the energy excursions. For

lower velocities, they postulated that similar invariants did not exist,

and made numerical computations which they interpreted as verifying their

assumption.
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As is shown in this paper, the above interpretation is not complete

An examination of the phase plane for the Fermi problem, which is presented

in section II, reveals a large number of adiabatic islands imbedded in a

non-adiabatic sea. Depending on the details of the wall motion, the funda

mental island found by Zaslavskii and Chirikov is generally not the abso

lute barrier to stochastically heated particles, initially at lower energies.

In fact, for smooth force functions, the absolute barrier exists at velo

cities far below that associated with the fundamental island.

In part, the technique for analytically examining the linear aspects

' 9
of the Fermi problem is similar to one considered by Greene ' determine

the fixed points in the phase plane and examine the stability of the

linerized motion about these singularities. If the fixed points repre

sent elliptic singularities, and the Jacobian of the linearized motion is

equal to unity, adiabatic orbits exist in the neighborhood of the fixed

points. Otherwise the neighborhood of the singularities is generally

accessible from the stochastic sea. From these considerations, we generally

obtain a velocity boundary u^ in the phase plane below which no adiabatic

regions exist. In addition, we determine a simple lower bound on the

stochastically accessible phase space. These questions are explored in

some detail in section IIIA and compared with the numerical results of

section II.

An alternative procedure for examining the adiabatic regions involves

transforming the variables to a phase space in which the difference equa

tions can be approximated by differential equations. First integrals give

the Hamiltonian (adiabatic) trajectories, from which nonlinear motion in

the neighborhood of the fixed points may be examined, yielding the non

linear boundaries of the adiabatic regions. This is, in fact the technique
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employed by Zaslavskii and Chirikov for the fundamental resonance between

the bounce frequency and the wall oscillation frequency. Higher harmonic

and subharmonic resonances can equally well be examined by this procedure,

revealing the entire island structure. The nonlinear stability of the

adiabatic regions and the maximum velocity to which particles can be

heated can also be determined approximately from higher order resonance

theory as developed by Jaeger and Lichtenberg. These techniques are

presented in section IIIB.

Although the non-adiabatic or phase filling trajectories have been

called stochastic, this does not imply that the distribution function for

the ball velocities can be determined by use of a random phase assumption

for particle-wall collisions. In the region of the phase plane in which

adiabatic islands exist, the entire phase plane is not available to a non-

adiabatic particle, and the random phase assumption may be inapplicable.

Even in the region of the phase plane where adiabatic islands do not exist,

phase correlations may persist between successive wall collisions. An

examination of these correlations and their effect on the calculation of

the velocity space density distribution from the Fokker-Planck equation is

the subject of section IV.

The Fermi problem typifies a large class of acceleration problems

which exhibit much of the same phase space structure. There also can be

some notable differences, particularly if the heating is described by a

set of non-area-preserving equations. An example falling into this latter

category is cyclotron resonance heating in a magnetic mirror field. Where

convenient, we contrast the results of an approximation to this acceleration

mechanism with that of the Fermi problem.
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II. NUMERICAL RESULTS

We consider first the dynamics of a particle elastically bouncing

between a fixed and a periodically oscillating wall, as shown in Fig. la.

For the wall velocity given by a sawtooth function in time, Zaslavskii

and Chirikov have obtained the following set of exact difference equations

for the particle motion:^

n+l — n n

(u„^l> (2)

"'n+l = 1 - ""n + ''"n+r ("n+l - "'n'"'̂ '

) = + [ij; (1 - ) + )?,/4a]/(4u , i)} • C'̂ )
n n n n n+l

Here 2a is the peak amplitude of the wall oscillation; Z is the minimum

distance between the walls, u^ is the velocity of the particle normalized

to V, where V/4 is the amplitude of the velocity of the wall; n is the

number of collisions with the moving wall; is the phase of the vibrating wall

at the time of collision, and changes from 0 to 1/2 as the wall moves from posi

tion A to position B and from 1/2 to 1 during the reverse motion; brackets

denote the fractional part of the argument. The plus sign in Eq.

(1) corresponds to Eq. (2) during the preceeding step, and the minus sign

to Eq. (3) .
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A simplification of Eqs. (l)-(4) can be realized if we allow the

oscillating wall to impart momentum to the particle, according to its

velocity, without physically changing its position in space. The problem

defined in this manner has most of the features of the more physical prob

lem and is also capable of generalization to other wall forcing functions.

We shall compare results of the two problems in the numerical calculations.

For the simplified problem, the difference equations, in normalized form,

become

where M = 5,/(16a), M/u = 2£/(vT) is the normalized transit time,

T = 32a/V is the wall oscillation period, and v = uV, the particle velocity.

We have introduced the absolute value signs in Eq. (5) to correspond

to the velocity reversal, at low velocities u < 1, which appears in the

exact Eqs. (1) and (3). This assumption has no effect on the region

u > 1, which is the region of interest. These simplified equations can

be obtained as an approximation to the exact set for ifa > > 1 and u > > 1.

Eqs. (5) and (6) are readily generalized to nonlinear force functions;

for example, for a cubic momentum transfer we have

Vl= [2VlHl-(2Vl)h| (7)

Vi =

For a sinusoidal momentum transfer.



u ,- = |u + sin ^ I (9)
n+1 ' n n' ^ '

and

\ (10)

with the phase of the wall oscillation extending over 27r rather than unity.

As we shall see, the nonlinear force function is in many ways simpler than

the linear one.

The difference equations (l)-(4), (5) and (6), (7) and (8) or (9) and

(10), are readily solvable, for hundreds of thousands of wall collisions, on

a high speed computer. To explore the entire phase space, we divide the

phase interval (0,1) or (0,2Tr) into 100 increments and the velocity interval

(0,u ) into 200 increments. We keep track of the number of times a par-
max

tide is found within any of the 20,000 cells of the phase space. The re

sults of the calculations for Eqs. (5) and (6), with M = 10., for ten par

ticles, are given in Fig. 2, after 163,840 wall collisions per particle.

Normalized velocity u is measured downward. The symbol in each cell

represents the number of cell occupations according to Table 1. A blank

means zero occupations. The density distribution, f(u), integrated over

phases and over all collisions, is given to the left of the phase space.

The particles are initially given phases and low velocities, chosen ran

domly. Subsequent collisions allow them to stochastically explore the

phase space available. The final phase-plane plot is independent of the

initial conditions of the particles. The unoccupied islands are bounded

by adiabatic curves, and therefore are inaccessible from outside. The centers

of the islands are elliptic singularities in the phase plane. Near these
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Table 1. Number of occupations in a phase space cell as a function

of the symbol in each cell.

Symbol Number of Cell Occupations

blank 0

0 1-10

1 11-20

2 21-40

3 41-80

4 81-160

5 161-320

6 321-640

7 641-1280

8 1281-2560

9 2561-5120

* above 5120
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centers, the particle motion also traces out closed trajectories, as we

1 1/2shall discuss in the following section. We also show that for u < — M ,

the linearized motion about all the principal singularities is unstable,

as is readily verified from the numerical phase plot. The elliptic singu

lar point of the main island at u/M = 1 corresponds to one-to-one resonance

between the particle oscillation and the wall oscillation. The successive

central resonances at lower velocities u/M = 1/2, 1/3, 1/4 ••*, correspond

to the 1-2, 1-3, 1-4, ••• resonances respectively. The other islands give

the m-n resonances where m and n are relatively prime integers. The positions

of the elliptic singularities and the linearized motion around them are ob

tained in Section III A.

In Figs. 3 and 4, we repeat the calculation for the nonlinear wall

velocity of Eqs. (7) and (8) and Eqs. (9) and (10) respectively. In Fig. 3,

M = 10,, with ten particles, for 81,920 collisions per particle. In Fig. 4,

M = 100,, with 622,592 collisions of a single particle. For these nonlinear velo

cities, the sizes of the adiabatic regions are diminished at low velocities

due to the presence of higher order resonances between the period of the

island trajectory and the average bounce period, as discussed in Section

III B. An upper velocity boundary u^ (absolute barrier) also exists,

beyond which the motion is adiabatic, so that no particles can

penetrate from smaller velocities. The seeming contradiction of greater

adiabaticity for nonlinear wall velocities is resolved if the discontinu

ities at the edge of the sawtooth wall velocity are included. Provided

the motion is localized within one period of the phase (libration within

the separatrix of an elliptic singularity) the sawtooth wave gives rise
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1 1/2
to stable motion for u > — M . However, outside of the separatrix, the

drifting orbits encounter the wall velocity discontinuities which destroy

the adiabatic motion. The dashed curves in Figs. 2 and 4 show the separatrices

for two island oscillations as calculated from Hamiltonian theory. With the

linear force (Fig. 2) the separatrix is approximately an ellipse. With the

sinusoidal force (Fig. 4) the trajectories hear the separatrix are unstable,

due to second order island formation, as described in section III B. For this

case a Hamiltonian trajectory is also given that corresponds to a maximum phase

excursion near the stability limit. The slight skewing of the islands in the

numerically calculated plots arises from a term neglected in the Hamiltonian

approximation of section III B.

The qualitative features of the phase space are retained for arbitrarily

large values of M. In Fig. 5 we give results of Eqs. (5) and (6) for M = 1000.

There are ten particles with 40,960 collisions per particle. The central is

lands occur at the same values of u/M as in the M = 10. example. We now see

rather large values of u below which islands do not exist.

In Figs. 6 and 7, the phase space for the motion specified by Eqs. (l)-(4)

is given, with M = 1000. and M = 10,000. respectively, for ten particles, with

40,960 collisions per particle. Except at small u, the results are similar to

those of the simplified problem Eqs. (5) and (6). The difference in f(u) within

the stochastic region will be explored in detail in Section IV. Briefly we can

observe that a random phase assumption as applied to Eqs. (1) or (5) would lead

to a uniform velocity distribution. It is the departures from this assumption,

embodied in higher order phase correlations, that lead to the differing results

for f(u) in Figs. 5 and 6.

g
Numerically integrating Eqs. (l)-(4), Zaslavskii and Chirikov obtained f(u),

and recognized that an island existed at u = M. They postulated that a random

1/2
phase assumption was appropriate for u < M . In the intermediate velocity
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region < u < M, they postulated further that the density fell off

due to partial phase correlation. In fact, the density in velocity

space falls off due to the existence of adiabatic islands in the phase

plane. As we shall see in Section IV, the phase correlation results in

modifications in the Fokker-Planck coefficients that may lead to an en

hancement, rather than a diminuation, of the density at higher velocities.

The procedures considered here are applicable to a wide class of

problems associated with particles being acted upon by periodic forces,

or more generally the behavior of differential and difference equations

with periodic coefficients. One problem of practical interest is that

of a charged particle confined in a magnetic mirror, interacting with an

r.f. wave that is resonant with the particle gyrofrequency at some magnetic

field within the containment region. As a simple model, we consider the

longitudinal and transverse motion of a charged particle trapped in a

linear magnetic field otz) , as shown in Fig. lb. A per

fectly reflecting wall at z = 0 reflects a negative velocity particle

back toward the positive z-axis. The r.f. heating zone at z = consists

of a circularly polarized electric field lying in the x-y plane, of

negligible longitudinal extent, rotating at the local cyclotron frequency.

The guiding center approximation is used to describe the particle motion.

As the particle is reflected back and forth in the mirror between z = 0

and z > Jl, it passes through the heating zone at z = il. The motion of the

particle, assuming an impulsive transverse force in the heating zone, and

assuming that the longitudinal velocity of the particle is zero at z = i+,

is described by the following system of difference equations:

V = (v^ -f + 2v Vcos 8 (11)
n+1 n n n
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where

0 , « 0 + 271MV/V + A0; (12)
n+1 n n+1

Vsin0

A0 = Sin" ( — ), V > - V cos 0
n+1

- Vsin0

= TT - Sin ( ^ ), V < - V cos 0 ;
''n+1 " "

(13)

where is the magnitude of the transverse velocity of the particles, n

is the number of collisions with the heating zone, 0^ is the angle be

tween the r.f. electric field and the transverse velocity vector of the

particle just before a collision, V is the magnitude of the velocity

increment which the r.f. field imparts to the transverse velocity of the

particle, and M= ~ (a£ + to^Qil/V, where is the cyclotron

frequencey at z = 0. Fig. Ic shows the geometrical relation between the

various quantities in Eqs. (11)-(13) for this system.

In Fig. 8, the phase space is given for the cyclotron resonance

problem, with M = 57.8, with ten particles, after (a) 2560 collisions

per particle and (b) 5120 collisions per particle. The phase space

exhibits some features strikingly different from those observed in the

Fermi acceleration model. The low occupation numbers at low velocities

indicate the presence of a strong frictional force which accelerates

particles to higher energies. It is clear from the form of the phase

plane and the way it changes with the number of collisions, that there

exist points in the phase plane which are sinks for particles. These

sinks have replaced the adiabatic portions of the phase plane that ex-
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eluded particles in the previous problems. There is also no maximum

velocity u, beyond which particles cannot be accelerated. At large u,
b

the trajectories of the particles slant across the phase plane such that

the particles march inexorably toward higher velocities. In Fig. 8, these

effects can be clearly seen. Of the ten particles started at low velocities,

one has been trapped in a double sink at u = 12, four in a sink at 28.9, and

one in the sink (main island) at u = M = 57.8. The other four particles have

penetrated above u = M; their velocities are observed to continuously

increase in a non-stochastic fashion. The difference between the model

of cyclotron resonance acceleration and the Fermi acceleration models,

that accounts for the strikingly different trajectory behavior, rests on

the fact that the phase space mapping of the former is not area-preserving.

The mathematical exposition is given in the following section.

The force function may include a stochastic component in addition to

the periodic component. We introduce such a component, modifying Eq. (6),

for example, to

T ^ = {T + M/u ,T + AT} (14)
n+1 n n+1

where AT is a random phase shift. If AT is allowed to take on all phases

between 0 and 1, we would expect the motion governed by Eqs. (5) and (6)

to reduce to the usual random walk problem, independent of the phase shift

M/u and this is indeed what is observed computationally. For a more
n+1

restricted allowable region for AT, which corresponds to a weak stochastic

force, the adiabatic regions are filled in, but on a slower time scale
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than that required for generating the island structure itself. In Fig. 9,

we illustrate this behavior for - .005 < < .005. We have chosen M = 10.,

with ten particles, for (a) 10,240 and (b) 20,480 collisions per particle.

For a small random component of the total force, the timescale for diffusion

into the islands is longer than the timescale for the delineation of the

adiabatic regions. As we see from Fig. 9, the smaller islands have been

considerably filled in while the larger islands have only been slightly

modified. It is interesting to note that more densely occupied bands

appear within the adiabatic region, corresponding to particles that have

penetrated the adiabatic region due to the random phase fluctuations, but

have subsequently primarily followed the adiabatic orbits. These denser

bands also appear in the stochastic portion of the phase space near an

island where the particle trajectories are almost closed. On a sufficiently

long time scale, governed by the statistics of the occupation numbers, one

expects these bands to disappear.

III. THEORY

A. Mappings for Difference Equations

Particle motion of the type we consider is described by a set of two,

first-order, coupled difference equations:

n+i n n n

y = f + A(u + G(u , y ) (16)
n+1 n n+1 n+1 n

where F and G are periodic in with a period 0 of 2it (or sometimes, for con

venience, unity), and F, G 0 as the periodic force tends to zero. The function
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A is chosen to describe the advancing of the phase ^ in the absence of the
n

applied, periodic force. It is useful to introduce the variable 4)^ =

modulo 0. The quantities u^ and are often conveniently chosen to be

respectively the normalized velocity and phase (with respect to the force)
f"Vi

of the particle just before its n collision with the force. If the

force acts continuously rather than impulsively on the particle, then a

reference plane, for example z = Zq is chosen on which u^ and '1'̂ can be

defined. It is often convenient to regard Gas a function of u^^^ rather

than u^; no loss of generality is involved.

Equations (15) and (16) define a mapping in a two-dimensional space

p = (u,4>), such that

Sn+l =

which can be iterated:

En+k =

The condition that the mapping (17) is area-preserving is that

Det(J) = 1. Here J(p^) =J ^n+l'̂ n'̂ n^ Jacobian matrix of
the mapping, and for Eqs. (15) and (16)

Det J = (1+8F/8u)(1+3G/9H')-

It is well-known that a dynamical system describable by a Hamiltonion

H(q •••q ,p •••p ,t) induces in the 2n-dimensional phase space of thev^i 1 n

system an area (measure)—preserving flow. Thus, if the mapping (17) is

obtained directly from a one-dimensional Hamiltonian H(q^,p^,t), it must
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be area-preserving. The Zaslavskii-Chirlkov equations (l)-(4) and their

simple variants (5)-(6), (7)-(8), and (9)-(10) are examples of area-preserv

ing mappings. For a three-dimensional Hamiltonian, it is sometimes possible,

making use of one or more integrals of the motion, to obtain a reduced phase

space of less than six dimensions which undergoes an area-preserving flow.

However, this is often not the case. In general, the flow in a restricted

phase space of two dimensions is not area-preserving. The approximation

to cyclotron resonance heating given by Eqs. (11)-(13) is an example of a

non-area-preserving mapping. It should be noted, however, that in other

approximate treatments of the cyclotron heating problem, for portions of

the parameter space, sufficient invariants exist to recover the area-

preserving property.

Fixed Points. Equations (15) and (16) possess a fixed point of

order k at P = (u,<t)) when P = m'̂ (P) and P is not a fixed point of any order

less than k; i.e., a particle located exactly at P will re-appear after

k collisions. For every positive integer value of k, there is a de-

numerably infinite set of fixed points. Fixed points of order k occur in

families of exactly k members each. These families of fixed points may

9
be organized into a hierarchy, as discussed by Greene.

til
To obtain all the k order fixed points, we solve the 2k+2 algebraic

equations;

^•a.1 ~ 1^- + F(u. ,H' ) I3+1 ' 3 3 j '

= ^. + A(u.^-) + G(u.^,,^.), 3 = l,...kj+1 j j+1' j+1' (20)

"k+1 " "l

4', - = H'- + 27Tm m = 0,1,*
k+1 1 —

-16-



where m is an integer relatively prime to k.

Let us consider the velocity and phase equations for the simplified

Fermi problem

"j+l = + FCfj)! (21)

= ¥. + 2ttM/u.^- (22)
J+1 1 J+1

A few simple properties of these equations can be shown. Summing over the

k+1 velocity equations, and assuming u^ > F(Y^) for all j, we obtain a

relation among the phases for each family of fixed points:

k

5] F(f^) =0. (23)
j=l

Summing over all k+1 phase equations, we obtain the "average" velocity

thUj^ of each family mof k order fixed points:

"km =

where m is an integer relatively prime to k,

and where ,
k

1 -1 -1"km =k X; "j •
j=l

For each k, the integer m is used to order the families of fixed points.

The k members of each (k,m) family are all found within a velocity spread

Au = (k-l)|F|
max ' 'max
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As can be seen from Figs. 2-9, the most significant fixed points are

those for u > > 1, for which the quantity e = |f| /u. 0. For € 5 0,
' 'max km

the k members of each (k,m) family of fixed points are then located at

(^.,u.) = + 2lTjm/k, kM/m), j = l,'**k; (m,k) relatively prime; where

is arbitrary. The effect of a small but finite ^ is to determine the

possible values for For a finite is obtained from Eq. (23):

k

^ FCfg + 27rjm/k) =0- (24)
3=1

For a given k, this equation may have from none to an infinity of solutions,

depending on the form of F. In the usual case, F has two zero crossings

0Q, < 6^) in the interval - IT < 0 _< it, and is antisymmetric about

0Q. It follows that 9^ = 0Q + TT and that F is antisymmetric about 0^.

In this case, = 0^ and = 0^ + ir/k, k = 1,2,3, . Some of these

latter fixed points can easily be seen as the centers of the island

structures in Figs. 2-9. In Table 2, the calculated locations of the

k = 1 and some k = 2 fixed points are given for the various acceleration

problems considered here.

Linearized Mappings and Stability. It is of interest to study the

stability of the particle motion in the immediate neighborhood of a fixed

point of order k. Letting Ap^ ~ ~ ^1' define a linearized mapping

L by

Ap , - = L • Ap . (25)
~n+k ~n

Clearly, L is equal to the ordered product of k Jacobian matrices of M,
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Problem

Zaslavskii and Chirikov

Eqs. (l)-(4), sawtooth

wall velocity

Approximate Eqs. (5)-(6),

sawtooth wall velocity.

Eqs. (9)-(10),

sinusoidal wall velocity

Eqs. (11)-(13),

simplified cyclotron

heating.

Eqs. (7)-(8), cubic

wall velocity.

Table 2. Location and stability of k •= 1 and k = 2 fixed points.

k = 1 fixed points

Location Stability

("l. *3^),

m = 1,2,3,••.

(f ' (M +

(f »M/m)

(0,M/m)

(TT,M/m)

(j(TT + m/M) ,M/m)

(j(3ll - m/M) ,M/m)

Uj. Uj > > 1

("2 ' M/m)

stable if

stable if

stable if

hyperbolic (unstable)

unstable

trapped orbit if

u^ >(| TTM)^^^;

stable if

-19-

k = 2 fixed points

Location

\x^) and (<(>2, U2),

m = 1,3,5,7,.-.

. 2M/m + and (| , 2M/m - -|)
U2 > > 1

Some at (V^, 2M/h)andCl'Q + 'nm,2M/h),

where = Sin"^ 2M(m"^ - h"^) and

h = 1,3,5,...

Stability

stable if

= U2 >

for h = m,

stable if

1/2u^ > (TIM)



each evaluated at the k successive fixed points of thp family of which

is a member

L = J(P^) ••• •J(Pi) (26)

Under successive iterations of L, the particle moves in an orbit near the

fixed point. To determine the character of the orbit, we solve the two

alinear difference equations (25) by introducing ~ ^Pq ^ obtain

the following characteristic equation for r:

r^ - r Tr L + Det L = 0. (27)

It is well known that the quantities Tr L and Det L are invariant.

Independent of the cyclic order of the k Jacobian matrices in Eq. (26).

Thus the roots of Eq. (27), are the same for all k fixed points in a

given family.

The character of the solutions of Eq. (27) have been studied ex-

^ . 11
tensively in connection with non-linear mechanics, and we summarize the

results below. For an area-preserving mapping M, Det J = 1, and it

2
follows from Eq. (26) that Det L = 1. For (Tr L) <4, the two roots

of Eq. (27) are complex conjugates and have unit magnitude:

r =e^ ; cos 6=-I* Tr 'L. (28)

In this case, the particle traces an elliptical orbit about the fixed

point P^, completing one orbit every nk collisions. If, on the other

hand, (Tr L) >4, then the two roots of Eq. (27) are real, and one of

them has a magnitude greater than unity. The particle traces one or

-20-



both branches of a hyperbolic orbit, ultimately moving far from the fixed

point. The character of these orbits (elliptic or hyperbolic) and the

rotation angle 0 (if elliptic) is the same for all k members of the given

family of fixed points. However, the actual shape and orientation of the

orbit in the u - (j) plane is different for each member of the family.

For mappings M which are not area-preserving, the character of the

1 2orbits may be quite complex. For 0 < -^ (Tr L) < det L < 1, the two

roots of Eq. (27) are complex conjugates, having a magnitude less than

unity. The particle then spirals in toward the central fixed point ("trapped

orbit"). Such orbits are responsible for the particle "sinks" seen in Fig.

1 28. For - 1 + |Tr l| < det L < (Tr L) < 1, a trapped orbit is also ob

tained, with the particle moving in toward the fixed point in a non-

1 2spiraling orbit. For det L > ^ (Tr L) >1, complex conjugate roots

having a magnitude greater than unity are obtained (unstable, spiraling-

out motion). In all other cases, two real roots, one of which has a

magnitude greater than unity, results. The orbit is then hyperbolic

(unstable).

Stability of the Fermi and Cyclotron Problems for k = 1 and k = 2.

We now consider in detail the stability analysis for the problems shown

in Table 2. All of the Fermi problems are area-preserving mappings,

while the cyclotron resonance problem, Eqs. (11)-(13), is not. For the

simplified sawtooth wall velocity problem, Eqs. (5) and (6), at the k = 1

2
fixed points (see Table 2), we find Tr L = 2 - m /M. An elliptic point

1/2 1 1/2(stable, closed orbit) is thus obtained if m < 2M ; namely, if u^^ > —M
1/2The rotation angle 6 is given by Eq. (28); for u^ > > M , we have
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0= For k=2, , "2 ^^1, we find Tr L=2- m^/M,
1/2

and thus obtain stable orbits provided ~ > M . We note that as

u is decreased from large toward small values, the k = 2 fixed points go

unstable before the k = 1 fixed points. For the cubic wall velocity,

Eqs. (7) and (8), one similarly obtains the stability condition for k = 1

that M For the Zaslavskii-Chirikov mapping, Eqs. (1)~(4),

1 , 1n1/2
for k = I, one obtains the condition for stable orbits ^ "2 "g''

For the sinusoidal wall velocity, Eqs. (9) and (10), there are two k = 1

fixed points as shown in Table 2, for each value of m. The fixed point

at = TT has Tr L = 2 + 2'nm /M, so that the orbits are unstable (hyper

bolic) for all m. On the other hand, the fixed point of = 0 has Tr L =

2 1/22 - 2iTm /M, so that these points are stable provided m < (211/77) ; i.e.,

provided u^ > ttM) '̂̂ ^. For k=2, a similar calculation shows that the
fixed points = (0,2M/m) and = (7T,2M/m) are stable, provided u^ =

1 /2u^ > (ttM) . We again note that, as u is decreased, the k = 2 fixed

points go unstable before the k = 1 fixed points.

The cyclotron resonance heating problem, Eqs. (11)-(13), has two

k = 1 fixed points for each value of m, as shown in Table 2. For u^ > > 1,

we obtain Tr L and Det L as:

Tr L = 2 + 27Tm^/M + O(u^)
1 (29)

Det L=1- +0(u^^),

where in Eq. (29), the positive sign refers to the fixed point at

(j)l = (tt + m/M) and the negative sign to the fixed point at =

\ (377 - m/M). From the stability conditions, we find that the former
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fixed point is always unstable (hyperbolic), while the fixed point at

^ (37r - m/M) has trapped orbits (particle spirals into the fixed point)
1/2 1 1/2 1/2

provided m < (2M/7r) ; namely, provided > (— ttM) . For > > M ,

the rotation angle 0 of the particle around the fixed point is approxi-

1/2mately M /u^. At the same time, the particle spirals exponentially in
2 -1toward the fixed point as exp(-3n), where the spiraling-in rate 0 = (2u^)

These trapped orbits can be seen very clearly in the phase-plane structure

of Fig. 8. For convenience, the stability conditions for k = 1 and k = 2

are summarized in Table 2.

Stability for Large k. In general, the stability analysis for the

k = 3,4,5, etc. fixed points becomes progressively more difficult. How

ever, by an expansion procedure, we can obtain an expression for the

stability of fixed points for the simplified Fermi problem for large k.

The Jacobian matrix of the mapping at ((()^,Uj), j = 1,2, •••k, is given by

J =

i f!
3

6. 1 + 6.F!
L 3 3 3-

(30)

where 6 = - 0M/u? and 0 = 27T (or sometimes 1). Recalling that u, - kM/m
3 3 Km

and Au = (k-l)|F| , it is clear that we may write
max ' 'max

6. = 6 = - 0M/u? = - 0m^/(k^M), (31)
3 km

provided ^m' Provided

f| < < M/m . (32)
'max
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For large k, l6| < < Ij and we can easily establish by induction,

using Eq. (26), that

k

Tr L= 2+ k6 ^ ®
j=l

Inserting Eq. (31) into Eq. (33) yields

2 ^

j=l

If Z F' is negative, then the fixed points are always unstable (hyperbolic)

If Z F' is positive, then stable orbits (elliptic fixed points) are ob

tained if

Vf' <-^ • (35)
0m

As an example, consider the sawtooth wall velocity, Eqs. (5) and (6), for

which F'«l,.) = 1 for all and the period 0 = 1. Then E F' = k, and
1/2

the k^^ order fixed points have stable orbits provided m< 2M , or

u, >-^ • (36)
km I

1 1/2 2

At the stability boundary itself, u^ = - kM , <5 = - 4/k , and M/m =
i For k > 3 and M> > 1, both the assumption that jdj < < 1 and

the inequality (32) are satisfied.

From Eq. (36) and the results listed in Table 2, we see that, the

larger the value of k, the larger is the associated stability boundary u.

It is clear that the k = 1 stability boundary represents an important
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transition velocity for a particle. Below this velocity, no adiabatic

islands exist, and all phase space states are accessible to low velocity

particles.

Stochastic Transition Velocity u^. In addition to the above stability

analysis for the sawtooth wall velocity, numerical computations of the non

linear difference equations (15) and (16), for a wide variety of forcing

functions F, G, and with A(u^^^) = 27rM/u^_^_^, show the existence of a

transition velocity u , below which no adiabatic islands or (for non—area-

preserving mappings) trapped orbits are observed. Figures 2-9 all show

evidence of this transition velocity. We hypothesize that, except for

pathological cases, a transition of this type always exists. Below u^, all

phase space states are accessible to low velocity particles. Above u^,

disjoint areas in phase space exist, with either no (area-preserving),

or only one-way (non-aren-preserving) access among these areas. Since a

minimal requirement for a stochastic description of particle motion in a

given region of phase space is that all positions in phase space be acces

sible and have access to all other positions, we refer to u^ as a stochastic

transition velocity; below u , a stochastic description of the motion may
s

be possible, as described in Section IV.

To calculate the value of u , one must in principle examine the
s

character of the orbits around families of fixed points of all orders k.

However, numerical computations and analytical results for the sawtooth

wall velocity suggest that the stochastic barrier u^ is associated with

the stability or instability of the k = 1 fixed points of the mapping M.

It is thus sufficient to calculate the stability boundary of the k = 1

fixed points. A comparison of the calculated stability boundaries for

k = 1 with the computational result for u^ is shown in Fig. 10, for

various wall velocity functions and values of M.
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A physical interpretation of the transition velocity can be obtained by

observing that the stability boundary occurs at cos 9 = - 1 in Eq^ (28)

the phase shift per bounce of the island oscillation around the fixed points is

equal to tt. This is just the well known condition for stop bands in a periodic

structure. In terms of the period of the island oscillation, x^ < 2x^ for

stochasticity, where x^ is the bounce period. Setting 6 = tt in Eq. (28), we

can determine the ordering of the natural periods for stochasticity,

-1

^b ^ (VttF') where typically, ttF' is of order unity.
Absolute Barrier Velocity u^. An examination of Figs. 2-9 shows

that, for certain mappings, an impenetrable velocity barrier u exists,
b

above which particles initially at low velocities can never be sub

sequently heated. This barrier does not exist for the cyclotron heating

problem, because the mapping is not area-preserving. Particles which

penetrate to u > M are thereafter continuously heated. For the sawtooth

wall velocity, either Eqs. (l)-(4) or Eqs. (5)-(6), the barrier also does

not exist, due to the discontinuous nature of the wall velocity. However,

in this case, for a finite number of collisions, f(u) drops off sharply

1 1/2
for some u > M , since the particle can only penetrate considerably

beyond this value of u near the discontinuity at tj) = 0 or 1.

For an area-preserving mapping with a smooth wall velocity, such as Eqs.

(7)-(8) or Eqs. (9)-(10), the absolute barrier always exists. This barrier

12 13curve, located at u^, is the Arnol'd-Moser invariant curve ' of the

mapping Eqs. (15) and (16), having the lowest average value of u. Arnol'd

and Moser have shown that, given suitable smallness conditions on the

derivatives of F, G and A, invariant curves of the mapping always exist.

However, in practice, their existence proofs are of little use in pre-

13dieting the location u, of an absolute barrier. However, for the
D

Fermi problem, we can obtain a lower bound on the location of the absolute
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barrier as described below. In iSection III B, we approximately

determine its location by Hamiltonian techniques.

To find the lower bound, we insert the transformation w = 27TM/u,

into Eqs. (21) and (22). We obtain

n+1 n n n

¥ . = f + w ,, (38)
n+1 n irt-l

H(w ) = - w^ F(¥ )/[27rM + w FCf )] (39)
n n n n n n

If we introduce the rotation angle f2(c|)) and the radius w((l)), which para

metrize the assumed invarient curve in (f), we find from Eqs. (37) and (38)

that

i^(c{)) = w(4)) + H(w((|>) ,<{)) (40)

fi(4>) = w(<|) + f^((J))) (41)

We impose the condition that and w be continuous, single-valued

functions of ({>; i.e., breakup of the invarient curve into islands or a

double-valued invarient curve does not exist. Differentiating Eqs. (40)

and (41), we find

. = w. + H w. + H. (42)
(p <p w (p (p

% ="xd + (43)

where the subscripts w and (J) denote differentiation with respect to that

variable, and w^ is w^ evaluated at 4) + f2(4)).

It is clear from Eq. (43) that > - 1 and w^ < 1; otherwise wand

Q are not continuous, single-valued functions of (}>. We can then form a

necessary condition for the existence of an invarient curve;
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- (1 + H,)/(l + H ) < w. < 1 (44)
^ <p w (p

where the left hand inequality in Eq. (44) is obtained by substituting the

smallest possible value of - 1, in Eq. (42). (Note that by Eq. (39),

H > - 1). From Eq, (44), a sufficient condition that an invariant curve
w

does not exist is;

H + H. < - 2 (45)
w <p

for some (}) in the range - n < (f) ^ n. As an example, consider F((j)) = sin cj).
-2 2-1 -2 -12

Then H + H. = - (u cos ({) - 2u sin <f) - 2TrMu cos <p)/(l + u sin (J)) .
w <p

Putting c|) - 0 to make as negative as possible, Eq. (45) yields

1/2u = (ttM) . For velocities below this value, an invariant curve (absolute

barrier u^) does not exist. Particles can be heated to at least a velocity
1/2

(ttM) under the influence of the periodic wall velocity. As can be seen

1/2
from Fig. 4 and Fig. 10, the lower bound (ttM) is within a factor of 1.5

of the actual barrier velocity u^.

B. Hamiltonian Form of Fermi Problem with Sinusoidal Wall Velocity

The difference equations can be represented as differential equations

by introduction of the singularity function in the force equation

du

dx

m=—00

=^ giZirmT ^

and

dY
- = 2ttM/u (47)
dT
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where the time variable T, is measured in units of the number of wall

collisions n, and the Fourier representation of the 6-function has been

employed. Eqs. (46) and (47) have the Hamiltonian form

H(t) = 27rM In u + ^i2'nmT ^

with u and ^ the cannonical coordinates.

Averaged Equations. For very large u (u > > M),

and

<"n+l - V''"n ^ ^

^ )/27r < < 1, (50)
n+1 n

allowing Eq. (48) to be averaged over T to obtain a first integral of the

motion 2'irM In u + cos ¥ = C. However, velocities this large are not of

major interest to us, as can be seen from Figs. 2-9. For the velocity

range of interest, 1 < < u £ M, Eq. (50) is not satisfied, while Eq. (49)

is. However, if we introduce a change in variable.

u = u - M/m
m an integer (51)

$ = Y - 2TTmT,

^ so as to transform to a coordinate system around a k = 1 fixed point at

u- = M/m, then (<1) ,, -(f) )/2tt < < 1. In the hat variables, Eqs. (46) and
U n+i n

(47) take the form

^ sin $ (52)

ii = _ G • (53)
"O
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Equations C52) and (53) can be integrated to obtain the Hamiltonian

2 ^
„ 2TrM u i27nnT 2 ^ / r / \

= ~Y~ 2 (j) = C. (54)
^0

If the motion in the u - (}) phase plane is assumed slow on the time scale

T, Eq. (54) can be averaged over t to give the averaged Hamlltonian

— 2TTM An /cc\
~2~ 2 cos (j) = C, (55)
"o

which describes the trajectories near the main (k = 1) fixed points at

n ^ n

9 = 0, 7T and u = u^. Near the elliptic singular point at = 0, the

Hamiltonian curves of H consist of encircling orbits out to the separatrix

(hyperbolic singular point), beyond which there are drifting orbits. The

maximum oscillation of u occurs for the separatrix trajectory, for which

C has its maximum value of C = + 1. From Eq. (55)

(56)

The Hamiltonian curves from Eq. (55) can be compared with the results

from the numerical calculations. These results are shown as the dashed

lines in Fig. 4. Near the fixed point, the linearized solution of the

difference equations, Eq. (25), are in agreement with the numerical cal

culations and the Hamiltonian curves.

Estimate of the Absolute Barrier. The validity of the phase space

trajectories obtained from the averaged Hamiltonian is limited by second

order resonances between the wall collision frequency and harmonics of
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the frequency of oscillation about the fixed points. For the linearized

motion, the minimum value of u for stable oscillations was calculated in

Section III A. The nonlinear stability (breakup into islands) is now

investigated by use of Eqs. (54) and (55), in the manner described in

detail in reference 4. We note from Eq. (55) that the linear frequency

1/2of oscillation about the elliptic singular point is Wq = (27rM)

which is to be compared with the bounce frequency of 27rM/uQ. For 2TrM > > 1

and 2TrM/uQ = 0(1), resonances involve only high harmonics of the motion in

the u - $ phase plane. Except possibly near the separatrix, these har

monics have very small amplitudes, which lead to significant perturbations

of the Hamiltonian curves as obtained from Eq. (55), only in the immediate

vicinity of the resonances. Thus, we expect no significant non-linear

breakup of the invarient curves in this region. On the other hand for

1/22'irM/uQ = 0^1 )> the phase plane, as obtained from Eq. (54), exhibits

chains of islands with significant amplitudes, formed by alternating

elliptic and hyperbolic fixed points. These islands break the smooth

trajectories calculated from Eq. (55), at those values of C for which

resonances occur. The lowest harmonic number resonance occurs at a

frequency near Wq, with successively higher harmonics resonating at

values of C for which the "soft spring" nonlinearity cos 4> in Eq. (55)

sufficiently reduces the frequency.

/s

Two types of orbits need to be examinedi libration for which
y\

oscillates, and rotation for which (j> advances or retards continuously.

The former are the orbits inside the separatrices joining the hyperbolic

singular points of Eq. (54), and the latter are the orbits outside the
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separatrices. If the successive chains of islands do not interact

strongly; i.e. do not have nearly overlapping amplitudes, then between

the resonances, phase trajectories as given by Eq. (55) isolate the

resonant regions of the phase plane from each other. The isolation

achieved by the rotation orbits is physically more important, since the

lowest velocity adiabatic orbit isolates the stochastic region of the

phase plane which can be explored by a single, initially low velocity

trajectory from the remainder of the phase plane; i.e., the lowest velocity

adiabatic orbit is the absolute barrier u, . Generally, the amplitudes of
b

successively higher order resonant island chains rapidly decrease, such that

only the amplitudes of the second order resonances need be examined.

The second order island chains are calculated by a procedure de-

4
veloped by Jaeger and Lichtenberg, to determine the breakup of the

libration orbits. We apply the technique here to the rotation orbits.

The average precession frequency is determined by transformation of the

averaged Hamiltonian of Eq. (55) to action-angle variables by solving

the Hamilton-Jacobi equation

2TTM . In /C-7N
—2 ^ ~ ^ - cos (t) = C, (57)
2u„ 9({)

u

n

1 r -
where the action is, by definition, ~ J ud(|), and the new and old

-7T

variables are related by the usual relations u = 9S/34) and 6 = 3H/9J.

For C > 1 (rotation orbits), S may be solved in terms of elliptic inte

grals, and to lowest order in the nonlinearity,

H(J,0) =ttMJ^/uq =C, (58)
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2
with angular rotation frequency O) = 2TrMJ/uQ. The transformation leading

to Eq. (58) is performed on Eq. (54), the Hamiltonian before averag-

til
ing. If the lowest harmonic resonant term is the I harmonic of 0 re-

thsonating with the m harmonic of T, then the generating function

W = (£0 - 2TTmT)J (59)

transforms the Hamiltonian to new variables 0 = il0 — 2'iTmT and J = J/^,

such that in the § - J phase plane, the resonance appears as a singu

larity about which 0 is slow compared to all other frequencies. An

average over t then yields

H=^ - 2TTm J - ^ cos 0=C (60)

giving

Ato

= 2-"'V^(C + 1)""'' (62)

^0 "o

Aw

th
where A- is the coefficient of the Z harmonic obtained from the nonlinear

expansion of the Hamiltonian in terms of elliptic integrals. Within a

numerical factor of order unity, Aj^^ is given by

A (61)
Z ^2Z\C+1/

Assuming A^ < < 1, Eq. (60) has elliptic and hyperbolic singular points
Op

at J = UQm/(MJl ) and 0 = 0 and it, respectively; and the maximum excursion

of J is AJ = (2A„J^) '̂'̂ . The strength of the singularity is measured
max ^Z

by comparing the shift in frequency due to the resonance,

with the separation of resonances 6to Fi^om Eq. (58), 8w/3J = Wq/J,
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We note that Eq. (62) is a function of 2. = 2Tr/(j) , and from Eq. (58),

Uq =2(TfMC) '̂̂ /Ug,

1/2such that £ is a function of the ratio u^/M . Therefore, the absolute
1/2barrier occurs at a value of u^ = KM , where K is a function of C, but

independent of M.

The value of K can be obtained, approximately, from Eq. (62) by
Aoj

constructing the following table of — :

cX 2 3 4 5 6

1 1 .91 .7 .49 .31

1.5 .65 .46 .3 .16

2 .25 .27 .14

(63)

Jaeger and Lichtenberg have shown in a number of numerical examples that

island breakup occurs for Aw /6oj between .3 and .5. This indicates a
max

range of values of and C from the table for which breakup can occur,

but that the boundary must occur for C < 2. Unfortunately it is in this

region that higher order nonlinearities become important and the period

becomes longer, with infinite period (5, = «») at the separatrix at C = 1.

However, over a reasonable range of the higher order nonlinearity, we

might expect that Aw /6w would not differ much from the table above.
max

Assuming that island breakup ceases to occur for Aw /6w < 0.3, and
max

setting C = 1.5, we obtain a value of K = 2.75. For permissible values

of C in this neighborhood K varies only slowly. We compare this result
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with the numerical values at which an absolute barrier is observed in

Fig. 10, which gives the predicted linear relation between Uq and

with K = 2.8.

A similar calculation to the above, performed for the closed orbits

of the main island resonances, indicates that serious erosion of the

elliptic trajectories occurs at comparable values of u^. Thus the non

linear effects have substantially equivalent roles in determining the

transition from adiabatic to stochastic behavior for the orbits of li-

bration and rotation. This result is in marked contrast to the trajec

tories of Eqs. (5) and (6), for which F((f)) = (j) Mod 1. In the latter

case, the elliptic orbits are nearly linear, giving adiabatic orbits

around stable fixed points that extend to the neighborhood of the

separatrix. The rotation orbits> on the other hand, are not adiabatic,

since the discontinuity of F(({)) at the edges = 0 and (}> = 1 introduce

large amplitude perturbations in all harmonics of the rotation frequency.

This behavior can be observed by comparison of Figs. 2 and 4. In Fig.

2, F(({>) = <p Mod 1, the main stable regions are observed out to the

boundaries of the phase interval (hyperbolic fixed points), but no

absolute barrier (adiabatic rotation trajectory) is observed. In Fig.

4, for F(<}>) = sin (p, in contrast, the area of the main adiabatic region,

at values of u lower than the absolute barrier, is significantly reduced

from that predicted from the Hamiltonian Eq. (55).

IV. STOCHASTIC ACCELERATION

In this section, we investigate in what sense the evolution of the

velocity distribution function can be described by a stochastic process.
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Clearly the motion in the two dimensional phase plane is deterministic.

However, provided u < u , so that adiabatic islands do not exist, it may
s

be possible to express the evolution of f(u,n), the distribution in u

1 14alone, in terms of a Markov process in u:

f(u,n) =Jf(u-Au,0) P(u-Au,n|u)d(Au) , (63)

where P is the conditional probability of a particle being at u if it were

at u-Au, n collisions earlier. All quantities in Eq. (63) are independent

of phase. If we make the additional assumption that n > > 1 and that

Au < < u; i.e., that there exists a collision number n such that

1 < < n < < u/|f| (64)
' 'max ^ '

then Eq. (63) can be written in the form of a Fokker-Planck equation

f =-|̂ (Bf)+i^(Df). (65)
du

where the frictional coefficient is

B(u) =-^^uP(u-Au,n|u)d(Au) (66)
and the diffusion coefficient is

D(u) =^ P(u-Au,n|u)d(Au). (67)

Validity of the Fokker-Planck Equation. Of course, P is actually a

function of the initial phase distribution as well as the initial velocity

u-Au. However, we expect that a correlation "time" n (measured in
c
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number of collisions) exists, such that any reasonably smooth initial

phase distribution relaxes to a uniform phase distribution after approxi

mately n^ collisions. Provided n can be chosen considerably larger than

n , P will be independent of the initial phase distribution. To estimate

n^, we use Eq. (30) to obtain

Au ,. = Au + F'A({)n+l n n (ggj

,, = - R Au + (1 - RF')A(t) ,
n+l n n

where R=0 M/(u+F)^. Below the stochastic transition velocity u^, Ris
greater than two. In the worst case, we assume that the initial phases

are spread over a small interval A4)(0), and that Au(0) = 0. Provided

R> > 1, the dominant terms in Eq. (68) then yield A(j)(n) ~ R^ A(f)(0) and

Au(n) ~ F' R^~^ A(j)(0). Setting the phase spread A<{)(n) equal to the phase

interval 0(1 or 27t) , we find

n^ = In I©/A4)(0)]/ln R, (69)

showing the weak logarithmic dependence of n^ on the initial phase

interval, and thus on the form of the initial phase distribution. In

contrast, since Au(n ) < < u, the velocity distribution remains constant
c

while phase randomization occurs. Provided n > > n^ and inequality (64)

is satisfied, then the Fokker-Planck description of the time—evolution

of f is valid, and the Fokker-Planck coefficients B and D can be obtained

from a random phase assumption.

For u > u . invariants exist which relate velocity and phase, in-
s

dependent of time. Such invariants exist within the adiabatic islands
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which cannot therefore be described by Eq. (63). In the sea surrounding

the adiabatic islands, the process may be Markoffian in u, but the random

phase assumption is clearly not appropriate, as all phases are not avail

able at a given velocity.

Making the simplest assumption that n = 1, for Fermi acceleration

given either by Eqs. (l)-(4) or (5) and (6), and assuming all phases

equally probable, we find B = 0 and D = 1/12. In Fig. 11, we compare

the above analytical result using the random phase assumption to the

value of D obtained numerically as a function of n for 1000 particles

placed at various initial values of velocity u. Equations (5) and (6)

are used for the computation, with M = 10,000 and a stochastic transition

boundary predicted at u = 50. For u = 10,20,30 and 40, and initially

uniformly distributed phases, the phase correlation is found to be neg

ligible so that D(u,n) = D(u,l) = 1/12 for n > 1. For u = 50, on the

other hand, there is strong phase correlation, so that D is not indepen

dent of n, even for n > 200. For u = 60, another process also enters, as

a number of the particles are initially trapped in adiabatic regions and

do not take part in the diffusion process. Finally, if particles are

not initially spread over all phases, there is a transient behavior for

the first few n collisions, during which phase randomization is occuring,
c

as seen from the dashed curve in Fig. 11.

Steady State Solution and Frictional Coefficient B. For the Fermi

acceleration mechanism, the small phase correlations which appear for

n > 1 do not significantly alter the diffusion coefficient. However,

since B = 0 for n = 1, they may be of great importance in determining

the frictional coefficient, and ultimately the distribution function
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integrated over collisions, f(u).

Figure 12 shows a comparison of the velocity distribution f(u) be

tween the Zaslovskii-Chirikov problem, Eqs. (l)-(4) and the simplified

problem, Eqs. (5) and (6). The frictional coefficient can be determined

from the numerical calculations of f as follows: We assume perfectly

reflecting barriers at u = 0 and u = u , such that - Bf = y 9(Df)/8u at
s ^

u = 0, u . The steady state (3/9n = 0) solution of Eq. (65) with these
s

boundary conditions and with f specified at u = Uq is

u

f(u,n =f(u) =f(uQ)D(uQ)D ^(u) exp / 2B(u')D"^(u')du' (70),
"O

from which we obtain, for D(u) - 1/12,

- , (71)
B(u) = (l/24)d(ln f)/du.

For the Zaslavseii-Chirikov equations, from Fig. 12, f(u) ® u, so

that from Eq. (71), we obtain B == (24u) This value of B is in rough

agreement with an analytical calculation for n = 2, as follows: Assuming

u > > 1, from Eqs. (1), (2) and (4), we obtain

u_ = u + T -i+(l+x + M/u ,} - J • (72)
n+2 n n 2 4 n n+i z

For u^ < M, { } is a rapidly varying function of u and Averaging over

^ and a small velocity interval Au « 1, yields <{ } ) ~ 2 '

(72), we obtain B(u) = (16u)~^. For the simplified Eqs. (5) and (6), in

the same manner, we obtain B(u) ~ 0, and thus f(u) = const. The devi

ations from this result as seen in Fig. 12 are due to higher order phase

correlations.
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We conclude that, in the portion of the phase space in which no

islands appear, the evolution of the velocity distribution can be described

by a Fokker Planck equation. In order to calculate diffusion and frictional

coefficients the time step must be chosen to correspond to a sufficiently

large number of "collisions" that the phases are randomized.
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FIGURE CAPTIONS

1. a) The one-dimensional Fermi problem.

b) The simplified cyclotron heating problem.

c) Relation between v and v ,- for the cyclotron heating problem.
~n ~nTi

2. Phase space u - (|) and velocity distribution f(u) for Eqs. (5) and

(6), sawtooth wall velocity. M= 10., 10 particles with 163,840

collisions/particle.

3. Phase space u - (|) for Eqs. (7) and (8), cubic wall velocity. M= 10.,

10 particles with 81,920 collisions/particle.

4. Phase space u - (j) and velocity distribution f(u) for Eqs. (9) and (10),

sinusoidal wall velocity- M = 100., 622,592 collisions of a single

particle.

5. Phase space u - (j) and velocity distribution f(u) for Eqs. .(5)-(6),

sawtooth wall velocity. M= 1000., 10 particles with 40,960 collisions/

particle.

6. Phase space u - ^ for the Zaslavskii and Chirikov Eqs. (l)-(4),

sawtooth wall velocity. M = 1000., 10 particles with 40,960

collisions/particle.

7. Phase space u - <j) for the Zaslavskii and Chirikov Eqs. (l)-(4),

sawtooth wall velocity. M = 10,000., 10 particles, with 40,960

collisions/particle.

8. Phase space u - <j> for Eqs. (11)-(13), cyclotron heating. M = 57.8,

for 10 particles, after (a) 2560 collisions/particle, and (b) 5120

collisions/particle.

-42-



9. Phase space u - 6 for Eqs. (5) and (14), sawtooth wall velocity with

an additional, weak stochastic force. M = 10., - .005 < < .005,

(a) 10,240 collisions and (b) 20,480 collisions of a single particle.

10. Absolute barrier and stochastic transition velocity as a

function of M, for the sinusoidal wall velocity of Eqs. (9) and (10).

11. Diffusion coefficient D as a function of n for Eqs. (5)-(6), sawtooth

wall velocity. M = 10000., with 1000 particles placed at various

initial velocities u^, with random phases.

12. Comparison of velocity distribution f(u) for the Zaslavskii-Chirikov

Eqs. (l)-(4) and the simplified Eqs, (5)-(6), for M == 1000.
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