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Abstract

This paper presents two new algorithms belonging to the family of

dual methods of centers. The first can be used for solving fixed time

optimal control problems with Inequality constraints on the Initial and

terminal states. The second one can be used for solving fixed time opti

mal control problems with Inequality constraints on the Initial and

terminal states and with afflne Instantaneous Inequality constraints on

the control. Convergence Is established for both algorithms. Qualita

tive reasoning Indicates that the rate of convergence Is linear.
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1. •Introduction,

The construction of optimal control algorithms is often hampered by two

difficulties. The first is due to the fact that the cost function usually

has a gradient only in L^, while the convergence >6f the algorithm must be

studied in L^j since control sequences constructed by an optimization

algorithm are not likely to converge in L^. The second difficulty stems

from the fact that "primal type" subproblems, such as those resulting from a

direct application of methods of centers or feasible directions, cannot be

solved directly and usually require some sort of "dualization". Both of

these sources of difficulty are taken into account in the dual method pre

sented in this paper. The algorithm in this paper may be classified as a

dual method of centers. It has the very important feature that it is

implementable, since both the direction finding procedure and the step size

finding procedure are finite, in the sense that they require only a finite

number of function evaluations per iteration. Since a closely related

algorithm presented in [6] converges linearly on finite dimensional prob

lems, it is reasonably certain that the algorithm presented in this paper

also converges linearly on problems in IR^. However, since certain sets,

used in the proofs in [6], loose their compactness in general Banach spaces,

the proof of rate of convergence given in [6] cannot be extended to general

Banach spaces. In spite of this, there are heuristic reasons which lead

us to believe that the algorithms presented in this paper does converge

linearly at least on a class of optimal control problems with linear dynamics

and convex costs.
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2. Optimality and Convergence.

Because of the peculiar nature of optimal control problems, which

necessitates the simultaneous use of both the and the L norms on a
2 oo

space of regulated functions, we need the following abstract structure

and accompanying theorems.

Let Vbe a linear space, let 11 'il^ be a norm on Vand let < ^ be

a scalar product on V, such that = {V,!I*II^} is a Banach space and

is a subspace of a Hilbert space. Let be the

induced by <•, • >2 on

2.1. Assumption;

There exists a C> 0 such that ilzll2 ^ for all z ^ V. Q

Now consider the problem

2.2. min{f°(z)|f^(z) < 0, j = 1,2, ...,m},

where f^: V IR^ for j = 0,1,2, ..., m.

2.3. Assumptions:

(i) The functions f^(*), j = 0,1,2, m, are Frechet differen-

tiable on^., with the Frechet derivative at z being denoted by f^(z)(')>
X z

j ~ 0,1,2, •••) m.

(ii) The restrictions to {z ^ of the functions f^(0,

j = 0,1,2, ..., m, are continuous for any (0,®) (i.e. they are con

tinuous in "*"2 {z ^ V|llzll^ <M}).

(iii) There exist functions Vf^: V-> V, j = 0,1,2, ..., m, with the

following properties: (a) the f^ are eontinuous on^^^C^)
have continuous restrictions on {z ^

(c) the Vf-^ satisfy

norm
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2.A. f^(z)(h) - <Vf^(z),h >2, j =0,1,2, ..., m,

for any z, h in Q

2.5. Theorem; Suppose that z ^ Is a solution of (2.2) (i.e.,

f^(z) <0 for j =1,2,..., m, and f°(2) =min{f°(z) |f^ (z) <0, j =1,2, ..., m})
Then there exist multipliers ^ 0, ^ 0, ..., y"' ^ 0 such that

m

2.6 y^Vf^(z) = 0 ,
j=0

2.7 y^f^(z) = 0 for j = 1,2, ..., m,

and

m

2.8 = 1. •
Z—^

j«0

Theorem (2.5) is a straight forward generalization of the well known

F. John condition of optimality [A], It can be proved in essentially the

same manner as the F. John condition (see the proof of Theorem (3.5.11)

in J2]).

2.9. Definition: Let the set of feasible points Q C be defined by

2.10 Q={z e<^ |̂f^(z) £ Or j =1,2, ..., m},

and let the set of desirable points A C be the set of points z ^ for

which there exist multipliers y^(z), j = 0,1, ..., m, such that

2.11. y^(z) ^ 0, j = 0,1,2, ..., m.
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m

2.12. y^y^(z) =1,
J=1

m

2.13. ^y^(z)Vf^(z) =0,
j=0

2.14. iJ^(z)f^(z) = 0, j = 1,2, ..., m. Q .

Thus, A is the set of feasible points which satisfy the optimality

condition (2.5). Since in general it is not possible to identify points

in ^2 which are optimal for (2.2), the best we can hope to achieve is to

compute a desirable point.

The algorithm which we shall describe in the next section uses a

map A: -> 2^ and is of the following form.

2.15. Algorithm Model

Step 0; Compute a Zq ^ fi, and set i « 0,

Step 1; Compute a y G A(z^).

Step 2; If f^(y) <f^(z^), set ~ ^~ Step 1;
else, set z = z^, and stop. CZ]

The convergence properties of our algorithm are stimmarized by the

following result.

2.16 Theorem: Suppose that (2.3)(ii) is satisfied, that for every M> 0

= {z ^ J2|llzll^ <m}, and that for every z ^ fi, z^ A, there exist an

e(z) >0 and a 6(z) <0 such that for every M> "zll^

2.17 f°(z") - f^(z') < 6(z)

for all z* ^ {z* £ S2 |llz*-zlL < £(z)}. for all z" ^ A(zM.
21 z-
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Suppose that is a sequence generated by algorithm model (2,15).

If {z,} is finite, then its last element z is in A. If K C {0,1,2, ... }
1

is an infinite subset and z ^ is such that either (i) lim iz.-z 11=0
i e K ^ ^

or (ii) lim Hz -z*IL = 0 and Hz.H^ <Mfor some M>0 and all i GK, then z ^ A.D
i e K ^ ^ -

We omit a proof of this theorem since it follows directly from

Theorem (1.3.10) in [7] and the assumption (2.1).

With the preliminaries out of the way, we can now get down to the

task of establishing a specific algorithm for finding points in the set

A.
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3. A Dual Method of Centers.

For the algorithm below to make sense, we need the following addi

tional hypothesis, as is usual in conjunction with methods of centers

and methods of feasible directions (see Sees. 4.2 and 4.3 in [7]).

3.1. Assumption: The set S = {z < 0, j = 1,2, ..., m}
*

IS not empty.

3.2. Algorithm (3 ^ (0,1) is a step size parameter).

Step 0: Compute a ^ fi, and set i =» 0.

Step 1; Compute la(z^) = (]i^(z^), y^(z^), ..., ]i"(z^))^e to be a
solution of the quadratic programming problem

m m

2

2

j=l j=0
m

y^ = 1, y > 0}.
j=o

»** ui

3.3 ^ y ^ f^ (z^ ) - J II y ^y^vf^(z^)fl

Step 2; If <j)(z^) = 0, set z = z^, and stop; else, set

m

3.4 h(z^) =- ^ (z^).
j=0

and go to Step 3.

Step 3; Compute the smallest non-negative integer k(z^) such that

* ~^en Qis empty, the algorithm below stops at z^ and hence is useless.
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k(Zj) T k(z )3.5 0(3 ^ , h(z^),z^) - I 3 <P(z^)<0,

where 0: x x -»• is defined by

3.6 0(A,h,z) = max{f^(z+Xh)-f^(z); f^(z+Ah), j = 1,2, ..., m}.

k(z.)
Step 4; Set z^^^ = z^ + 3 h(z^), set i = 1+1, and go to Step 1. O .

The following result Is obvious.

3.7 Proposition: Let (f): defined as In (3.3) and let z ^ Q

be arbitrary. Then (j)(z) £ 0, and (z) = 0 If .and only If z ^ A. O.

3.8 Lemma: Suppose that z^ ^ Is such that (|)(z^) ^ 0, and let h(z^) be

defined as In (3.4). Then

3.9 max{ <Vf^(z^),h(z^) >2; (z^) +<Vf^(z^),h(z^) >
j =1,2, ..., m} <<\>(z^) - I" Ilh(z^ll2 <0.

Proof: Since (3.3) Is a quadratic problem In and y(z^) Is an optimal

solution for this problem. It follows from the Kuhn-Tucker optlmallty

conditions (see (3.3) In [2]) that there exist real multipliers A^ ^ 0, A^ ^ 0, ... ,
A^ ^ 0 and a real multiplier ip, such that

(' m m \
^ y^(z^)f^(z^) - I i ^Vi^(Zi)Vf^(zpil2l +il^e +A=0,
j=l j=0 /

where e = (1,1,1, ..., 1)^^ j ! A= (A^,A^, ..., A™)^e and

3.11 A^y^(z^) =0 for j =1»2, ..., m.
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m

Setting h(z^) =- (z^)Vf^ (z^) , (3.10) yields,
j=0

3.12 - <Vf°(z^) ,h(z^) >2+1/^ - =0

3.13 - (f^(z^) +<Vf^(2^),h(z^) >2) +^ =0, j =1,2, ..., m.

Multiplying (3.13) by li^(z^), for j =1,2, ..., m, and (3.12) by y^(z^), and
sunrming, we obtain.

m

3.14. - +l'h(z^)D^ +t|) =0
j=l

Hence

3.15 rj) =̂ - "h(z^)»2
j=l

=((i(Zj^) - I flhCzplI^ .

Inequality (3.9) now follows from (3.15), (3.12), (3.13) and the fact

that ^ 0 for j = 0,1,2, ..., m. CH

3.16 Corollaryr Suppose that z^ ^ is such that <l)(z^) <0, then there

exists an integer k(z^) 0 such that (3.5) holds.

Proof; This corollary follows directly from the definition of a Frechet

differential, (2.4) and the fact that by (3.9), <Vf^(z^) ,h(z^) >2 £<l'(Zj^)»
and <Vf^ (z^) ,h(z^) )^j< (j)(z^) for all j G{l,2, ..., m} such that f^ (z^) =0. CZl

3.17. Theorem: Let be e sequence generated by algorithm (3.2) in

the process of searching the set for a point in A (see (2.9)), and

suppose that assumptions (2.1), (2.3) and (3.1) are satisfied. Then,
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either {z^} is finite and its last point 2 € A, or {z^} is infinite, in

which case any z ^ satisfying either limllz.-z fl_ = 0 or limHz -z Il« = 0,
i^K ^ i^K

where K is an infinite subset {0,1,2, }, also satisfies z* ^ A, pro

vided there exists an M ^ (0,°°) such that ^ i ^ K.

Proof: We shall show that algorithm (3.2) is of the form of algorithm

(2.15) and that it satisfies the assumptions of theorem (2.16). Thus,

V
let S: 2 be defined by

m m

3.18. S(z) = { - iJ^Vf^ (z) ly ^ 0, = 1;
j=0 j=0

m m

y^f^(z) - j II y^Vf^(z)ll2 =4>(z)},
j=l j=0

and let A: -»• 2^ be defined by

3.19 A(z) = {z' = z + e s(z)},

where k(z,h) is the smallest non-negative integer which satisfies (3.5)

for z^ = z, h(z^) = h and k(z^) = k(z,h). (Since by (3.6) and (3.5)

f^(z') <"I 8^^ '̂̂ ^(J)(z) <0for j =1,2, ..., m, it is clear that A(-)
maps into 2^). Thus, to complete our proof, we only need to show

that (2.17) is satisfied by the maps f^(') and A(-)> as defined in (3.19).

Therefore, suppose that z € is such that <}>(z. ) < 0. Then, because of

lemma (3.8) and because S(z ) is compact (see (Al)), there exists an integer

—

k(z ) such that (see (3.5))

3.20 max 0(3^^^ \k,z*) - ~ 3^^^ \(z*) <0.
hes(z*)
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Now, let M> Hz 11^ be arbitrary. Then since by theorem (A.l), the restric-

tion, of S(*) to is upper semi continuous, it follows from th6?

maximum theorem [([1], page 116)] and our assumptions that the function

defined by

— * — *

3.21 n (z) = max 6(6^® \h.z) - ^ ^())(z)
M hes(z)

is upper semi-continuous in both norms, and "•Il2» It also follows

from the same maximum theorem that <1)^^: -> Redefined by =4>(z), is
also upper semi continuous in both norms, II •II ^ and H*H2• Hence there exists

it

an e(z ) > 0 such that

3.22 (Kz) I|)(z*)

and

3.23 n (z) < 0
M —

for all z ^ such that Hz-z II2 ^ e(z ). Now, for every z* ^ A(z), with

z ^ such that Hz-z H^ _< e(z ), we must have (see (3.19), (3.5) and (3.21))
I

— *
3.24 k(z,h) _< k(z ) for every h ^ S(z).

Hence we obtain that (see (3.6), (3.5), (3.24), (3.22)) for every h^ S(z)

3.25 f°(z+6''̂ '''''̂ h) - f°(z) £ max e(e''̂ ^*^\h,z) ,
h^S(2)
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3.26 max 0(e''̂ '̂''\h,2) <i 4,(2) £ i ^4,(2) ,
h € S(z) ^ ^

and hence

— *

3.27 f°(2 + 6''̂ '̂''̂ h(z)) - f°(z) <i g''<^ ^4,(2*) ^ 6(z*) <0

for all z G such that ilz-z*ll _< e(z), which completes our proof. I—I
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4. An Application to an Optimal Control Problem.

We shall now show that the algorithm, presented in the preceding

section, can be used to solve the following problem,

t.

4.1. min{ J h^(x(t) ,u(t) ,t)dt
^0

^ x(t) =h(x(t),u(t),t),

t ^ < 0, g^(x(t^)) < 0;

u e L® [tQ,t^]},

where h^: x fR® x [tQ,t^] h: x x [tQ,t^] g^:
IR^ ^ R® , g^: -»• IR™ , and L® [t^jt^] is the space of equivalence classes of

essentially bounded integrable functions from ItQ,t^] into R^.
We must begin by transcribing problem (4.1) into the form of prob

lem (2.2). Therefore, let V= {(^ ,u) | C£ R^, u^ L® It^,t^]}, let
the norm 11*11^: V->• R- be defined by

4.2 il (c ,u)II^ = I? 1^ + ess sup |u(t)|^,
te[to,tf]

where |*| denotes the euclidean norm, and finally, let the scalar product

< •, • > - on V be defined by

4.3 <(^ ,u),(.^,u») >2 =<5, ?M +J <u(t),u»(t) >dt,
^0

where < •>• ) denotes the euclidean scalar product. Then we see that the

space is a Banach space and the space ^2 ®"Cv, <•, • )2} ''
is a subspace of a Hilbert space. Furthermore, setting 11 *112 ®^ * ^2 *
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±t is not difficult to show that there exists a C e (0,<») such that

''*"2 —̂ "*"1* Next, let x(t, ^ ,u), t GIt^jt^], denote the solution of
the differential equation

4.4
_jd
dt

X= h(x,u,t), xCt^) « e , t e ItQ,t^],

corresponding to a given (^ ,u) G v. Then we define the functions f^:

V -»• R. , f : y IR.^ and f«: V IR.°^ as follows:
tf

h^(x(t, c ,u) ,u(t) ,t)dt

^0

^•7 f2(C,u) = g^(x(t^, C,u)) .

With the above definitions problem (4.1) can be written as follows,

setting z = (C ,u),

^•8 min{f®(z)|f^(z) <0, f2(z) ^ 0},

i.e. it can be written in the form (2.2).

4.9. Assumptions.

CD For every ( ^,u) e V, the solution x(',?,u) of (4.4) exists

and is unique.

(ii) The functions h^ and h are conl;inuously differentiable in x
and In .. and h" h 3h° 3h 3hana in u, and n , h, , -g— , are piecewise continuous in t.

(iii) The functions g^ and g^ are continuously differentiable.

(iv) The set {z = ( ^,u) € v|f^(z) <0, f2(z) < 0} is not empty. \—|
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4.10 Lemma; Suppose that (4,9)(i) - (4.9)(ill) are satisfied. Then the

functions f^, f^ and defined in (4,5) - (4,7), are Frechet differen-
tiable on with their differentials f^, f^^, f^^, defined as follows:

4.11. f°(z')(h) =<Vf°(z'),h >2,

4.12. fj^(z')(h) =<Vf2(z'),h >2. i =1.2

4.13. f22(2')(h) = <'f2^z').h >2. i = 1.2,

where, for z' = (C',u'),

4.14 Vf°(z') =(-p(tg,5',u'), -|| (x(.,?',u').u'(.),-)'̂ X

p(•,C^u') +1^ (x(-,r,u'),u'(-),0^).

with p(t,?*,u*) defined by

4.15 p(t,C',u') =- II (x(t,C',u'),u'(t).t)'̂ p(t,C',u') +

3h^ T
y te UQ,t^],

p(t^,.5*,u*) = 0;

4.16 Vf^''"'^ - '' —-l(z') = ( (€') , 0) i = 1,2, ..., m»;

and

4.17 Vf^Cz') = (-qj^(tQ,C'.u'), - II (x(-.5'.u').u'C),-)'' X
q^(*,^',u')), i = 1,2, ..., m";

with q^(t,^*,u*) i = 1,2, m", defined by
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, ah(x(t,^',u'),u*(t),t)^
dt ^ q^(t,c»u'),

Qgi

4.19 Corollary; For any M>0, f°, f^, f^, Vf°, Vf^, i =1,2, ..., m\
^ ~ • • •» have continuous restrictions on

(z •

This lemma and the corollary follow directly from Theorem (10.7.1)

in [3] and from Theorem A1 in [5]. We therefore omit its proof.

Thus we see that the functions f^, f^ and £2 satisfy the assumptions
(2.3). We now show that the set Adefined in (2.9), with f'̂ =f^, for
j = 1,2, ..., m^, and for j = 1,2, ..., m", is the set of

initial states and controls for which the Pontryagin-Maximum-Principle

in differential-form is satisfied.

4.20 Lemma: Let and Abe defined as in (2.9), with f"^ = f^, for
j = 1,2, ..., m', and f^^ = f^, for j = 1,2 ..., m", and let m=.

2

m^ + m". If (J ,u) ^ A, then there exists a multiplier function X:

O'^f
0

[t_,t-] IR'̂ , and a scalar X ;< 0 such that

4.21 X(t) = - (x(t, i ,u) ,u(t) ,t) X(t) +
0

+ X (x(t,^ ,u),u(t),t).

/<. rp

9go(0^
4.22 X(tQ) - Vq

ag (x(t., ^ ,u))^ ^
4.23 X(tp= ^ Vf,
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where > 0, ^ 0 are such that (Vq,V^) 0,

^•24 (VqjSqCO) " <v^,g^(x(t^, i ,0) > =0,

and

Is' I ,a),{5(t),t) +<X(t),h(S(t,i ,u),a(t),t) >] =o.

/ '^ /V(since (% ,u) e ACfi, we must have g( C) <0 and g^(x(t^, ^ ,u)) <0 by
definition). PI

Proof; Let (C ,u) ^ A and let , j = 0,1, ..., m, be such that (2.11) -

^ ./si a2 T ^
'o = (y. y , .... y ) . let(2.14) are satisfied. Let V- =• (jj^ .... let V, = (p®'"*"^, ...,

'^m*+m'\ , CO "0 ^ r»V )> Ifit X = |i , and let X: [tQ,t^] fR be defined by

m'

4.26 A(t) = p(t) + ^ p^" '̂ 5^(t), t e [tp.tj],
1=1

where p(t) = p(t, C,u) and q^(t) « q^(t, ^ ,u), are defined as in (4.15) and

(4.18) respectively. Next (2.13), in conjunction with (4.14), (4.16) and

(4.17) yields

4.27 - pO ^Ctg) + pi- '̂ q^Ctg) =0,
i=l

and also (with x(t) E x(t,.^,u)).

4.28 y° (- It («(t).Q(t),t)^ p(t) +1^ (S(t),fl(t),t)^) +3^ fc/vuy T ^

m"

1^ (8(t),(5(t),t)''̂ qj^(t) =0, t G[tg.tj].
i=l

+
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Now, making use of C^,26), C4.15) and (4,18), we find that A(0 satisfies

(4.21); (4,27) yields that ^(tQ) satisfies (4.22), and X(t^) satisfies
(4.23). Finally, (4.28) shows that (X^,X(*)) satisfies (4.25). By con

struction Vq and satisfy ^ 0, > 0 and (4.24), which completes

our proof. •

4.29. Remark: The relations (4.21) - (4.25) are known as the Pontryagin-

Maximum-Principle-in-Differential-Form. CD

For the problem (4.1), algorithm (3.2) assumes the following specific

form.

4.30. Algorithm; (Solves (4.1); 3 ^ (0,1) is a step size parameter).

Step 0: Compute (^q>Uq) ^ ® 8f(x(t^,^Q,Uq)) £ 0

and set i = 0.

Comment: The algorithm (4.30) can be used to compute such an

solving the problem

t
:f

4.31 {min | x^(t)dt| x=h(x,u,t);
^0

g^(x(tQ)) - x°(tQ) £ 0, j =1,2, ..., m';

g^(x(t^)) - x®(t^)) £ 0, j =1,2, ..., m"},

where x = (x^,x) and h= (0,h), and for which an initial point (^
= (Xq.^q), can be chosen as follows: let Cq, Uq(0 be arbitrary, and let x®

max{g^(5Q), j =1,2, ..., m'; g^(x(t^,^Q,u), j =1,2, ..., m"}. Since
the optimal value of (4.31) is strictly negative, a (Cq,Uq(0) for

Step 0 above can be computed by means of a finite number of iterations.

-17-



StegJ,: For « (Cj.,u^), compute Vf^Cz^), VfJCz^), j »1,2, m',
j 1>2, ••tj m' , eccordlng to (4tl4) •" (4.IS).

Ste£_2: Compute y°(Zj^), p^(z^), j =1,2 m', P^(z ), j •= 1,2, ..., m".
as a solution of

m' m'

4.32 (ti(z^) =max{ ^^ulgoCSi) +̂ p^g^(x(tj,?. ,u^)) +
j=l _ j=l

- i OyVcz^) +2 y^VfJ (z^) 1 yivf^2(z,)»2 I
j=l j=l

m' m"

+^yi[ +^"2 " y°iO. "iiO J=1.2. .... m',
j=l j=l

y^ >0, j =1,2 m"},
2where "zU^ = (z,z ^ defined as in (4.3).

Step 3; If cf>(z^) = 0, set | = u(0 =u^(*) and stop; else, go to Step 4
(see (4.14) - (4.18))

Step 4: Set ,

A.33 =y°(z^)p(to,5i.u^) - +
It

m

j=i

^i(*) =y^(z^) [ |~ (x(',c^,u^),u^(.),0^ X
ah° TP(-,Ci,Ui) (x(-,?i,u^),u(.),-) ] +

m"

j=l
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and go to Step 5.

Step 5; Compute the smallest integer k, such that

rf
4.35 max{ J [h^(x(t,Cj. + +3^v^),u^ +3^v^,t)dt - h^(x(t,?^,u^), u^,t)]dt,

^0

^0)^)5 j ~^9^9 •••» m*; g^(x(t^,^^ +3(o^»u^ +3'̂ ^))>
gk

j = 1,2, ..., m"} - ~ (ftCz^) £ 0.

Ste£_6: Set ^i+1^*^ u^(*) + 3^v^(-), set i =i+1,
and go to Step 1. q

The following result is obvious.

^•35 Proposition; Theorem (3.17) holds for algorithm (4.30), with the

set A defined as the set of points ( C»u) ^ satisfying the Pontryagin-

Maximum-Principle-in-Differential Form for problem (4.1), (see 4.29). D

-19-



5. An Extension to Problems with Instantaneous Constraints on the Control

We shall now show that the so called "Valentine's trick" can be used

to adapt algorithm (4.30) for the solution of the following optimal control

problem:

5.1 min{ J h (x(t) ,u(t) ,t)dt|̂ x(t) =h(x(t) ,u(t) ,t) ,

^ ^ gf(x(t^)) < 0; ue L®[tQ,t^];

£<aj^,u(t) >_< c^, k=1,2,... ,r, for all t e [tQ,t^]},

where h^,h,gQ,g^ are as in (4.1); a^^ ^ IR® for k=l,2,...,r; c^ G for
k = l,2,...,r, b^G for k = l,2,...,r', r' £ r, and bj^ = - for

k = r' + 1,... ,r.

5.2. Assumptions:

(i) We shall assume that (4.9) is satisfied.

(ii) The vectors k = 1,2,...,r are linearly independent,

(iii) There exists a control u G [tQ,t^] and an initial state

Ĉ such that gQ(T) <0, g^(x(t^,T,u)) <0, and b^ <<a^,u(t)> <c^
for k = l,2,...,r and all t ^ [tQ,t^]. dl

To apply the Valentine trick, we must use certain substitutions for

the inequalities on the control. Thus, consider the constraints

5.2 b^ <(aj^,u(t) ><c^, k=1,2,...,r', t e [tQ,t^]

5.3 <aj^,u(t) >£ c^, k=r' +l,...,r, t e [tQ,t^].
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Suppose that u ^ [tQ,t^] satisfies (5.2), (5.3), then we can associate

with this u functions v : [tQ,t^]

k = 1,2,...,r - r', such that

with this u functions v^: [tQ,t^] (R^, k=l,2,...,r* and w^: [tQ,t^] ^

Ic k5.4 cos v'̂ (t) =-|^^ <aj^,u(t) >- >k=1,2,.. .r',
c -b c -b

t e [tQ,t^],

2

5.5 (w^(t)) = - <a^^^,,u(t) >, k=l,2,...,r - r*,

t ^ [tQ,t^].

We shall now use these functions to construct a problem which is

T 2equivalent to 5.1. Let A be the s^r matrix whose columns are —^ a^^,
c -b

k = l,2,...,r' and a^^, k = r* + 1, r* + 2,...,r. Then its transpose. A,

is an rxs matrix which can be partitioned as follows A = [A*jA"], (re

arranging the components of u(*)> if necessary) where A" is an rxr

nonsingular matrix. We partition u similarly, i.e., we set u = (u*,u"),

with u" £ IR® and u* ^ Then, if u,v^, w^, satisfy (5.4) and

(5.5), we obtain

5.6 u"(t) = A" ^(cosv'(t),..., cos (t), a)^(t)^,..., ^ (t)^) )

- A""^ A'u'(t) = f(u'(t),v(t),w(t).

Now consider the problem

5.7 min{ | h^(x,(u',f(u*,v,w)),t)dt
^0
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X = h(x,(u',f (u* ,v,a)) ,t) , t e

go(x(to)) i 0; gf(x(tf)) < 0; (u'.v.u) e L®

where all the quantities are as in (5.1) and (5.6). It is trivial to

show that if (^,u,v,0) is any optimal solution of (5.7), (^,(u,cos v,aj^

is also optimal for problem (5.1). However, not all the points

(^, u*,v,U) ) which satisfy the Pontryagin principle

for problem (5.7), result in apair (|,S) Aa,(n',cos v.S^)) which satisfy
the maximum principle for problem (5.1). Hence, although algorithm

(4.30) is directly applicable to problem (5.7) (with h°, h, redefined,
of course), it is desirable to modify it so as to prevent convergence

to points which do not satisfy the optimality conditions for problem

(5.1). This can be done as stated in the algorithm below, where, for

the sake of simplifying our expressions, and without loss of generality,

we assume that there is only one constraint of the form (5.2) and only one

constraint of the form (5.3), i.e. we assume that (5.2), (5.3) have the

following specific form;

5.8 - 1<u®"^(t) <1, u®(t) >0, t e [tg.tj]

and that the remaining components of u(t) are unconstrained. In this
tcase we have - (u\u2.... .u®-^), ^=(5,u',v,o>), f°(s) = TV (x(t.C.u))dt,

^0
f^Cz) ^ 8q(C), and f2(z) = g^(x(t^,^,u)), where u = (u^,cos v,a}^).
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5.9 Algorithm (Solves (5.1) for r' =1, r= 2, b^=-l, c^= 1,

= (0,0,...,0,1,0)^, = (0,0,...,0,-1)^, = 0; 3 ^ (0,1) is a

step size parameter).

Step 0: Compute a (^q,Uq(0) such that gQ(CQ) 0; g^(x(t^;CQ,UQ) ^ 0;

|uq ^(t)| <1, u®(t) >0, t e [tQ,t^]*; set Vq(-) =sin""^UQ®"^(*);
s 1/2

"" ^0^*^ * set 1 = 0. (Note that we dropped the super

script 1 on Vq and 03^ since these are redundant in this case.)

Step 1; Compute x^(t), t ^ [tQ,t^], by solving

" h(x^(t),u^(t),t), t e [tQ,t^], with x^(tQ) = q.

Step 2; Compute p^(t) e fR'', q^^^(t) e IR^, £=1,2,..., m", t e [tQ,t^],
by solving

dt ^i^^^ " "H u^(t),t)^ p^(t) +1^ (x^(t),u^(t),t)^,
t ^ ttQ,t^], Pj>(t^) = 0;

5.12 dt " 8x ,u^(t) ,t) Qj^^^Ct), te [tQ,t^],
9gr(x.(t ))^

" 3x ' ^ l,2,...,m",

*

To compute (Cq»Uq(*)) choose e > 0 small and use algorithm (4.30) on the

following problem

§ 0 2 2min{ i h (x, (u*, (1-e) cos v,a)+e) ,t)dt |x = h(x, (u*, (l-e)cos v,a}+e),t)

^0 goCxCt^)) <0; gj^(x(t^)) <0},
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Step 3; Compute Vf°(z^), Vf^(z^), k=l,2,...,m', Vf^Cz^), Z=
2with z^ = ~ (u^,cos v^,w^)) according to

5.13 = (- (- (x^(-).u^(-).-),

- sin v^(-)Pj^(-)^ ^3_J^ (Xj^(-),u (•),•),
9u

2w^(-)p^(-)'̂ -^ (x^(-),u^(-),-))); *
9u

k T5.14 Vff(zJ = ( —. 0), k = 1.2,...,m'
"1 i' 9x

5.15 = (- (- (x^(-),Uj^(-),-)

- sin (u^(-).u^(-),-),

2w^(-)qj i(-)'̂ (Xj^(-),u (•),•))), i =1,2,....m".
* 9u

Step 4; Compute y°(z^), y^(z^), Z=l,2,...,m', , k=l,2,...,m",
as a solution of

m' m

5.16

k=l i=l

m m

- I OpOvf°(z^) +
k=l £=1

by C^,u(0)^ we mean C^^,u(0^).
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m' m

0
U

k=l Jl=l

° +2 Kj +2 1^2 = i 0. i 0. k=1.2..., m'.

y, > 0, a = l,2,...,m"}.

Step 5; If <(.(z^) =0, set 2(-) =x^(-), <i(-) =(u*(-).cos v^(-),w^(.)) and
Stop; else (c.f. (4.33), (4.34)), set

5.17 0). =
• ' 0'

k=l £=1

m' ^

5.18 vj =

with

V '̂''̂ (-) =y°(z^)[ |~ (x^(-),u^(-),*)^p^(-) - 1^ (x^(-),u^(-),-)^]

.i. V 8h

ii=l

^(O =- sin v^(-){y^(z^)[ 3̂^3^ (x^(-),u^(-),-)^P^(-)
0 ^

dli

+ (Xi(-),u^(-).-)\^i(-)

srr +S y^(z,) ^ (K,(.).u,(.).-)\^,(-)}
3u 3u

v?(-) =20) (•){y°(zJ[ ^ (x.(-).u.(-),-)V.(-)
3\JL XX X

0
Bh , , V sT, . . 3h , . s . V vT

3n 3u

and go to Step 6.
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Step 6; Compute the smallest integer satisfying

r f 0 ^-1 k. -5.19 max{ j [h (x(t,q+3 w^,(u^+3 cos(v>3 , (03^+3 V)^),
^0

k. k k 2
(u^(t)+e V(t), cos(v^(t)+e ((o^(t)+6 ^v®(t)) ,t)

0 ^ •- h (x^(t),u^(t),t))dt, ggCq+e \), gf(x(tj,q+e

5.20

V c-i k. 2(u^+3 V^,cos(v^+3 ), (w^+3 ^v®) ))} < 0;

k.

3 ^ \2 ^ ess sup {max{
t e [0,1]

sin v^(t)
V®(t)

-1

SteaJ.: Set 5.^^ = ^ + g u^^^(.) = „•(•) + 6
k. -

1 s-l- v^(-) + 3 (•), = w^(-) + 3 ^v®(-).

Ste£_8: Set cos

Step 9: Set i = i+1 and go to Step 1. CZl

5.21 Lemma; Let A={z =(C,u',v,w)|̂ e IR", u' e I^"^[tQ,t^],

4.(z) = 0, gQ(?) < 0,

§£Cx(t^, (u',cos v,w)) ^ 0} where is defined as

in (5.16). Then the conclusions of theorem (3.17) remain true for

algorithm (5.9).
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Proo^; Algorithm (5.9) differs from algorithm (4.30) only in the additional

kbound (5.20) on 3 . Now, since this bound, in turn, has a denominator which

can be bounded from above by a continuous function of (Cj|̂ ,u^,v^,w^) , i.e..

since

5.21 max{ sin v^(t)
V®(t)
w^(t) —

«,=!

1 2 (x (t).u (t),t))
k=s-l

it follows from arguments essentially duplicating the proof of theorem

(3.17) that the conditions of theorem (2.16) are satisfied. a

5.22 Lemma; Let ^ sequence generated by algorithm

(5.9) in the process of solving problem (5.8). Suppose that K is an in

finite subset of the positive integers such that lim (Cj »ul ,v. ,(0 ) -

(|,u* ,v,fiJ)ll« = 0 and sup H(?• >v. ,03 )B _ < <». Furthermore, let K* be
iSK ^ ^ ^

an infinite subset of K, such that lim {(u (z.),y-(z ),y«(2.)} =
^0 ^ ^ iGK' Q ^ ^ ^ ^

{y ,y^,y2}, where z^ = (^^,(u^,v^,03^)) and y (z^),y^(z) and

defined as in Step 4 of (5.9). Then

5.23 { X
3u® '• Su

m"

(P°?(t) +2vi2?;^(t))} (-1)'' 1 0
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for almost all t ^ {t|v(t) = kir}, k » 0,1,

and

5.24 - ($(t) ,u(t) ,t) - (2(t) ,a(t) +
<\ O • rk O U
du du

m"

£=1

for almost all t e {t|w(t) = O}, u = (u',cos v,(jU^), x(t) =x(t,|,u),

p, defined by (5.11) and (.5.12) for u^Ct)= uCt), x^Ct)..E xCt) .

Proof: Let H: x x tR?"^ ^ x IR^ be defined by

5.25 H(x,u,i|̂ ,t) = - h^(x,u,t) + <i|;,h(x,u,t) >. Then, from (5.18)

and the instructions in Step 7 of (5.9), we find that for t ^ [tQ,t^],

Ir
*1 /)"H5.26 ~ ^ ^ (x^(t),u^(t),i|;^(t),t) ,

8u

5.27 = w^(t) 23 w^(t) —^ (x^(t),u^(t),i|^^(t),t), with,
9u

for t e [tQ,t^],

m"

5.28 =y°(2j^)p^(t) +^ •
2=1

k
Now, the purpose of the bound (5.20) on 3 was to ensure that for

almost all t^ [t^jt^],

5.29 ®^ "J 1

5.30 "I w^(t) _< w^^^(t).
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Since we must have lim v (t) « ^(t) for almost all t € suppose
ieK» ^ ° ^

that t' e [t^,t.J is such that lim v. (t*) = v(t') = kTr, with k = 0 or 1,
ieK» ^

i ?)HIt now follows from (5.26), since 3 "^1* and since r- (x, (t'),
8u®'-^ ^

a^(t') ,i|̂ ^(t*) ,t') is bounded for i S K*, that we must also have

5.31 lim v.,-(t') = kir,
iGK*

Lor almost all t' such that lim v (t') = kir.
iOc' ^

By construction, v^Ct) e (0,7r) for all t e [tQ,t^], and hence sin v^Ct*) > 0,

Let K" be an infinite subsequence of the positive integers defined by K" =

K' U {i|(i-l) e K'}. It now follows from (5.29) and (5.31) that

•^("*1) (k'n"~v^(t)) is a strictly positive sequence which converges

to zero, and hence there must exist an infinite subsequence K"* C k'

such that

5.32 <(-l)'''̂ ^(kir-v^(t')) for all 1e K"'.

Combining (5.32) with (5.26), and recalling that sin v^(t*) > 0 for

all i, we conclude that

If Stt5.33. (-1)''-^ > 0 for all 1 S K'"
3u 111 -

9HIt now follows from the continuity of ^ that
3u®"^

Note that {t|lim v _(t) lim v (t)} is a null set
iQC IGK ^
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5.34. (-1)'' > 0,
z

m"

where =y%(t') + ^ This establishes (5.23); (5.24)
Z=1 '

can be established in a similar way. Q

The following result is now obvious.

5.35. Corollary; Let {(^^,u^)} be a sequence generated by algorithm

(5.9) in solving problem (5.1). Then, either {(C^,u^)} is finite and

its last element satisfies the Pontryagin maximum .principle in dif-

ferential form , or {(^^,u^)} is infinite and every pair of points

(^,u) which satisfies, for some K C {0,1,2,..} either (i) lim II(5.,u.) -
i^ ^

(Ijvi)"-, = 0, or (ii) lim II(?. ,u ) - (C,u)IL 5; 0 and sup "(^.,u.)L <", also
iSK i K ^ ^

satisfies the Pontryagin maximum principle in differential -'form. D

In the maximum principle in differential form, the condition of maximum

on the hamiltonian is replaced by the condition 5u ^ 0 for

all admissible 6u and for almost all t ^ [tQ,t^].
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Conclusion.

In the form stated, algorithm (4,30) is readily implementable pro

vided that the integrations of the various differential equations in

volved are done with reasonable care. The results in [3] indicate that

the accuracy of integration can be relaxed in the method of steepest

descent and the algorithm speeded up considerably, provided that an

adaptive mechanism of integration is introduced into the algorithm.

It appears that a similar device should also be possible for algorithms

of the type described in this paper, though the exact manner in which

this can be done is still to be worked out.

In constructing algorithm (5,9), a substitution formula (Valentine's

trick) was used to extend algorithm (4,30) to problems with affine in

stantaneous inequality constraints and, in addition, a perturbation

method was added to ensure that convergence was possible only to points

satisfying both a first and a second order optimality condition for the

desired problem (5,7), This eliminated points which satisfy a first

order condition for (5,7) but not for (5,1), Industrial experience with

the substitution formula, used in conjuction with simpler algorithms, in

dicates that it performs quite well, and certainly better than a penalty

function. Incidentally, penalty functions could also have been used to

cope with constraints on the controls, by following the pattern of algorithm

(4,3,91) in [7],
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Appendix A.

The functions and norms used below are as in Sections 2 and 3.

Al. Theorem: Let M> 0 be such that = {z S fi|llzD < M} j! and let

^ ^ 2 be the restriction of s to 0^, where Swas defined In
(3.18). If assumptions (2.3) hold, then Sjj(.) is upper seml-contlnuous
on with respect to the norm

Proof; We recall that by assumption (2.3), the functions f^ and Vf^,

j - 0, 1, 2, are all continuous on with respect to ll*fl . Now,
fRm+1 2

^ ^ defined by

m

A.2 r^(z) ={y =(y°, yi y™)| ^ vf^(2) e Sjj(z)}
j=o

We note that is a closed, compact valued map, and therefore it is

upper semi-continuous (see [1] corollary to theorem 7, p. 112). Next,

^ ^ ^ ->• !R^ be defined by

m

A.3 Xj^(z,y) Vfj(z),
j=0

with y=(y°, y^, y®). Then we see that Sj^(2) =X^(2, r(z)) and
hence is upper semi-continuous, according to theorem 1' p. 113 of [1],

since z I—»- (z, r(z)) is upper semi-continuous by theorem 4', p. 114 of

[1] and is continuous, which completes our proof, f—|
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