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ABSTRACT

In this paper necessary and sufficient conditions for
optimality are derived for systems described by stochastic differen-
tial equations with control based on partial pbsefvations. The
solution of the system is defined in a way which permits a very
wide c¢lass of admiséiﬁle controls, and then Hamilton-Jacobi type
criteria for optiﬁality are qerived from a version of Bellman's

"principle of optimality".

The method of solution is based on a result of
Girsanov: Wiener measure is transformed for each admissible control
to the measure appropriate to a solution of the system equation.
The optimality criteria are derived for thfee kiﬁdstof information
péttern: partial observations (control based on the past of omnly

certain components of the state), complete observations, and "Markov"

(observation of the current state). Markov controls are shown to be

minimizing in the class of those based on complete observations for

system models of a suitable type.
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Finally, similar'methods are applied to twg-perséh,,
zero-éum'stdcbastic differential games and a version of Isaac's

aquation,is derived.
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1. INTRODUCTION.

A. This paper concerns the control of a system represented by a

stochastic differential equation of the form

(1.1) dzt = g(t,z,u)dt + o(t,z)dBt

where z  is the state at time t and the increments {dBt} are
"gaussian white noise". The control u is to be chosen so as to
minimize the.average cost
. T :
(1.2) J(u) = E f c(t,z,u)dt.
0

Here T is either a fixed time or a bounded random time. The solu-
tioﬂ of (1.1) is defi;ed by the "Girsamov measure transférmation"
method (see 1.D, 2 below) which permits a wide class of admissible
controls. Controls based on three types of information pattern
(partial and complete observation of the past, observation of the
current state) are considered. In each case a principle of opti-.
mality similar to that of Rishel [13] is proved, and criteria for
optimality analogous to the Hamilton-Jacobi equation of dynamic
programming established by Qsing an Ito process representation of
thé value function. Controls based on observation of the current
state are shown to ﬁe‘minimizing in the class of those based on
completé observation for system models of a suitable type. Finally
similar methods are applied to 2-person zero sum differential games
and a version of Isaac's equation derived.

The results presented here are closely related to those



of Fleming on optimal control of diffusion processes. A brief outline
of the latter is given in 1.B below in order to‘éiQefthe flavor of
the fo;mer and for purposes of comparison. Some other possible
approaches to stochastic control are mentioned; then, in the light

of these, a more detailed statement of the contents of this paper

will be found in 1.C.

B. Control of diffusion processes.

The reésults outlined here will be found in Fleming
[9] and in the references there. Let FCR" be open and define the
cylinder Q € R14'1+l by

Q = [0,1]xF .

The system equation , to be solved in Q, is

(1.3) agy = glt,Ep,up)at + o(t,54)dB

50.9 x €F,

{Bt} is a separable n-vector Brownian motion process defined on some
probability space (2,4&,P). 0 is an nxn-matrix-valued function on
{0,1]*R? and g:[0,1]1xRPxR% +R®; both are of class C2, with 830 s8ys
Oy bounded on [O,l]XRnXK, for K compact in~Rz. Also there exists
¢>0 such that
(1.14) ) aij(t,x.y)uiyd > clul?

i,J :
for each ueR®, where a = oo’ (“= transpose).

The contfol u = Y(t,&t) where Y is Lipschitz and
takes values in KCR", compact. Thus the information pattern con-
sists of complete observations of the current state. Under the above
conditioné (1.3) determineS'uniquely a diffusion process £ on [0,1]

with E]Etlz < © for each t. The objective is to choose Y so as to

oj



- N . . . T
minimize J(¥)=E

oty ,¥(t,5,])at .
0 . .

where T 18 the first exit time from Q. Let gl(t,x) = g(t,x,¥[t,x])

and similarly for c. Define the ditferential'bperator’.

(1.5) Ao = ¢, + 1/2) 8444
vt 153 J X;%y
and cﬁnsider the boundary problem
(1.6) AwY + wﬁgy + oY = 0 (t,x) € Q

o= 0, (t,x) e 3°Q = 3Q ~ {0}xF
Under the stated &onditions this has a.uniqﬁe solution with the
Hreéuired differentiability'properties. Applying Ito's differential
‘formula to the fumetion wY(t,Et), vhere £, is the solution of (1.3)
with-uy = Y(t,5.), gives
 Y(0,x) = E éfcydt = J(Y).
One can-nbv drop fhe-p;obébili;tic interpretation and regard the-
“problem as thét of choosing-the- coefficients of the partial diff=
erential equation (1.6 ) 50 as to minimize the initial value ¢Y(O,x).
Let U(s,x) be the minimum cost, over the class of
admissible controls, starting at (s,x) € Q. Formal application of
ﬁellman’s principle of optimality leads to the Hamilton-Jécoéi
equation »
(L.7)  ~ U(t,x) + min {U_(t,x)g¥(t,x) + ¥(¢,x)} =0 1in.Q
! U(t,x) =0 9on 3°Q
Fleming's "verification theorem"[9,Thm.6.1] says that if
(1) ¢€t,x) is a suitably smooth solution of (1.7, and
(i1) u® = Y°(t,x) is characterized by the property that

[¢x(t,x)g(t,x,v) +c(t,x,v)] is minimized in Q by v = Y°(t,x),



then o(t,x) = Ult,x) = ¥ (t,x) |

A unique solution of (1.7) satisfying the éonditiona of the veri-
fication theorem'exists if a is bounded and Lipschitz and satis-
fies the uniform ellipticity condition (1.4), K is compéct and
convex, and the boundary oF has certain smoothness properties.

(It is possible to relax these conditions somewhat.)

The above theory can be generalized in various ways.
Let ¢ = C_[0,1] be the space of continuous functions on [0,1]
with values in R®, Let 31; be the o-field in € generated by the

cylinder sets {zeC: zge T} where I is a Borel set in R® and s<t.

For z ¢ C, te [0,1], define: T2 € C by
mz2(s) = 24 s<t
= zy s>t

A. funetion of the fox;m.ut = u(t,ntz) is "non-anticipative" in that
it isvadaptéd to ae « A unique solution to (1.3) using a non-anti-
cipative control u is obtained if u is Lipschitz, i.e.

lu(t,men) = u(t,mee)| < «|in --£f]
where || ¢ || is the uniform norm in C. See [16]. Here the inform-
ation pattern is coﬁplete observation of the past. It turns out
ﬁhat Markov controls sre minimizing in the class of non-anticipative
" controls, so the Markov theory is the natural one in the case of
complete observations. The partially observable Markov case where
u = ¥(t,E,) only depends on certain components of £, can be
considered fhough this is a somewhat artificial problem since the
controller generally does better by'using all the past observations,

not just the current value,



D. " Methods of the type outlined above suffer from two
main.drawbacks{

(1) The dependence of the admissible controls on the observations
‘has to be "smooth"(e.g. Lipschitz) to insure the existenée of a
sblution; for optimal control it is undesirable to be limited in
this’vay.-

(1i) The observation o-fields {yé‘i)} depend on what control is
being used. This tends fo vitiate variational methods since varying
the conﬁrol at a'qertain time affects the admissibility of controls
applied at subsequent times., There are tvo cases where this does not
apply: (a) complefe observétions;,as above, since then the observ-
ation o-fields are those generated by the Brownian process.

(v) Linear systems of the form
dxy = Apxpdt + u.dt + dBi(t)
dyy = Fyxedt + @B,y(t).

(1.8)

In this case éu) = 'yg » Where %’g are the o-fields generated by
{yg},{xg, g} being the solution of (1.8) with u=0. This is the
basie fact behind the separation theorem [18],[19] which says that
en optimal control is of the form u, = u(t,it), vhere &, = E[xtuygl.
0f course, one can define other problems where the observation o~
fields do not depend on the control (this amounts to observing

some function of the noise).Then variational methods can be used;
see for example [20]. But then the problem loséslits.feedback

aspects,



The system equation (1.1) treated in this report is
more general than (1.3) in that the dependence of the matrices g and
o on the state is non-anticipative rather than "Markov". The method
of solution - given in Section 2 - is designed to- avoid (i) and (ii)
above, .In S§C above one took a measurable space (2,4 ) and random
variables {Bt} constituting a Brownian motion under a measure P,
and defined a transformation (1.3) B + £ of the random variables.
Here a transformation P > P, of the measure is defined such that
the original random variables generate under Pu the measure in their
sample space which is appropriate for the solution of (1.1). This
transformation is well-defined with only minimal restrictions on
the class of admissible controls, and the observation o-fields.do
not depend on the control since they are always generated by the’
same random variables. On the other hand the most that is claimed
for the "solution" is that it has the right distributions.

Skorokhod remarks in the introduction to his book
[5] that the methods of probability theory fall into two distinct
groups, anal&tic and probabilistic, the former having to do only
with the distributions of random variables, the latter based on
operations with the random variables themselves. The method used
here is something of a half-way house .in that, while it is the dis-

1

tributions one is concerned with, the techniques used to derive them

are definitely probabilistic.
This method has previously been used in [7],[8] (on

the existence of optimal controls in the case of complete observ-

ations) and [19] (on the "separation theorem" of (b) above).

[



With a solution defined for each admissibl}e control,
the objective is to derive Hamilton-Jacobi~type conditions for
" optimality for the system (1.1) analogous to (1.7).

| In [13] Rishel developed dynamic programming
conditioﬁs for a very general class of stochastic systems. In
Section 3 below, Rishel;s "principle of optimality" is proved in the
present context and in Section 4 conditions for optimality close to
Rishel's are established., Using the special structure here these
can be recast (Thm. 4.3) in a form close to that of (1.7) above.

In Section 5 the same methods are applied to the
(simpler) complefely observable case.

Section 6 deals with Markov control of systems
similar to (1.3) (but without the technical conditions). The results
here are direct extensions of those of §1B above, coinciding with
the latter when the relevant conditions are satisfied.

Differential games are susceptible to attack by
the same methods. The paper concludes with a brief section

(section T) outlining some of the possibilities in this direction.



2. PRELIMINARIES.
In differential form, the system equation (1,1) is
(2.1) dzy = glt,z,u)at + o(t,z)dw

with initial condition z(0) = z, ¢ RP, a fixed value. Here t € [0,1]
and for each t, z; ¢ RR, Wy € R, up e Rg. When ﬁecessary g and ¢
will be written g' = (gi » ') and o' = (01',02') (‘.= transpose)
corresponding o z,' = (x',yy'), the "state" and "observation”

processes with dimensions (n-m),m, respectively.

Let {Bt,t e [0,1]} be an n-dimensional separable
Brownian motion process on some probability space (Q,ﬂL,p). For
each t let & €A be the o-field generated by the random variables

{Bg, 0<ss<t}. Consider the stochastic differential equation

(2.2) dz, = o(t,z)dB,

z(0)

Zo o

The following properties are assumed for the nxn matrix-valued

function ¢ ='[°iJ]‘

(i) The elements ciJ:[O,l]XC + R are jointly measurable
(2.3) functions; oij(t") is ?%-measurable for each t.T
2.3
(ii)There exists a process zy, t € [0,1] , adapted to at-

satisfying (2.2) and
1

1 [ ofyt,z)at <
i,J 0

T ¢ and { 3t} were defined in section 1.B.



(iii) o(t,z) is non-singular, and 0,(t,z) has rank m, for

almost all (t,z).

In (ii), the process {zt} is assumed to be unique in the following
sense: all solutions of (2.2) , which must necessarily have con-
tinuous sample paths, generate the same measure in the sample
space (C,}). This is the definition used by Girsanov in [11].
‘Conditibns (ii) and (iii) are given in the form in which they are
required»rather than in such a form as to be easily verified; any

sufficient conditions insuring their satisfaction conld be imposed.

Under the condtions (2.3), (2.2) defines a measure

P on (C,?) by

PF = u[z"}(F)] for Fe ¥.

Observe that
- -1
(2.4) Ay = ==1(3,)
for each t, since
[
w = o} dz .
t 0

The function g satisfies the following ‘conditions:

(i) g:[0,1]xCx= + R® is jointly measurable.(Here E, the
. control set, is a Borel set of RY).
(2.5) _

(ii)For fixed (t,u), g(t,+,u) is adapted to 3£.

(iii) For a1l (t,z,u),

lc"l(t,z)g(t,z,uﬂ 2 go(” z H)



where ||+|| is the uniform norm in C and g° is an increasing real-

valued function. Thus
1
[ lo~tg|2at < (°(]|]z]]))2 <=  a.s.(P).
0

Admissible controls. The class of a.d.missible controls is denoted
by U and defined as follows. For s,t € [0,1], s<t, let ug be the

class of functions satisfying (2.6) below.

(i) usls,t]xCc » Z¢ R is jointly measurable in (t,z).
(2.6) (ii) For each t, u(t,+) is adapted to yt'

(1i1) CEleS(wF) =12 a.s.(P).

Here og(u) = em[cg(vg(u))], where g(“)(t,z) = g(t,z,ult,z]) and

v

%5

(g(u)) is defined by

t
cg(g(u)) = f (o'l(T,z)g(T,z,u[r,z]))'dBT
. s . ,
- ..3;[ 6™ (t,2)g(t,z,ul1,2])]%ar
2 s .
t t .
(2.7) = [ [071g)'0c" Az - %f lo-1lg|2at .
S s

No#r define ‘M=~ué .

From(2.7), ';z(u) can be computed directly from
{z¢, 0 <1< t}. Thus p:(u) can be regarded as & random varisble on
the probsbility sbace (c,#P); in fact this is taken as the basic
space from nov on, the symbol E referring, as in (2.6)(iii), to
inteération with respect to the measure P. It!is shown in [11] that
(2.5) and (2.6)(i,ii) imply

E[p'g(u)ws] < 1 a.s.

10
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There is no known criterion for equality, though various sufficient

" conditions have been derived; see [8].

Remarks. 1. If u' e %5 and u" e t(g , Where r < s < t, then
D e r — —
u e Z(f_, where

u'(t,z) . e [r,s)

L}

u(t,2)

u'(t,2) t e [s,t].
Indeed, u clearly satisfies (2.6)(1),(3‘.1’.),. and
Elpt, (w){Fe] = E[oS, (u') E(E"(u")|F}F,,]
= E[pf+(u')]|F 4] = 1 -a.s.
for r < t' <s < t" < t. The other caseé work similarly.

2. If uclh, then u restricted to [s,t] belongs to Wt. This

follows from Lemma 2 of [11].

Theorem 2.1 (Girsanov) For u €Y let the measure P, on (C,# ) be
defined by
P,F = I‘,l:p%(u)dl’ , Fel

‘Then (a) dw = dB - ¢~lg dt is a Brownian motion process under
the measure y, defined by
uglz=(F)] = PF .

(This defines py for each A e in view of (2.4)).
(b) The process {zy} satisfies

(2.8) dzy = glt,z,ult,z])dt + o(t,z)dw,

z(0) = z5 .

11
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- This result is immediate from Girsanov's Theorem 1
[11]. Lemma 6 of [11] states that if {6y} is adapted to . 4, ana
fl@tlzdt <®  a,s, then
t t t
[ o.aB; = [ oaw, + [ eo"lgas .
0 o 0

Putting @, = o(t,z), (2,8) follows from (i) sbove and (2.2).

Theorem 2.1 shows that the process fzt} is, with

measure P,, a solution of (2.1) in the sense that

dz = gdt + o d(Brownian motion).

Remark: All measures arising in this paper are, by definition,
mutually absolutely continubus with respect to the measure P; so
when some property is stated to hold "almost surely" (a.s.), it is

irrelevant which measure is referred to.

Let c:[0,1]xCxE + R* be a non-negative real valued
function satisfying '(2.5)(i),(ii) and
(2.9) e(t,z,u) < k  for all (t,z,u) € [0,1]xCxE
where k is a real constant. The cost ascribed to an admissible
control wu is

1l -1
(2.10) J(u) = E“[g c(s,z,u{s,z})das] = E[p%(u)g céu)ds] .
Note that this allows for a random stopping time t as long as 1< 1
a.s. For e¢' = °'1[1>t] is an admissible cost rate function and
r_. 1l
E,[cdas = E, [c'as.
0 0
The following results will be required in

subsequent sections.
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A. Compactness of the set of densities.

Let gbe the set of measurable functions
v:[0,1]xC + B adapted to J, and satisfying:
e°(ll=z]])

1.

(1) [o7Ht,2)v(t,2)]
(2.11)
(1) Elexp{tl(v)}]

jA

1]

Let @:‘{exp[c%(v) Ty sg}.
Theorem 2.2 $ is a weakly compact subset of Ll(C,?,P).

This result is contained in Theorem 2 of [8]) for the
case o = I (the identity matrix). Only minor modifications are

required to establish the result as stated,

Note that pf(u) ¢ D for each u e ¥ . Thus for any
sequence u, € /A the.re is a subsequence {unk} and an element h ¢ 9‘

such that ‘
ogluy) > exple(n)]

weakly in Ly as k + =,

B. Innovations process and representation of Martingsales.

The main result here is Theorem 2.3, which says that
any martingale adapted to y’c has a representation as a stochastic
intAegra.l with respect to the "innovations process" of {y.}, defined
below. This definition was given in [15]. The result is proved in
[10] for the case 0 = I ; the fé)llowing is a similar method of

proof using also ideas from [15].

Let v eg .y = (h, h) with dimensions m-n, n, and

define the measure P* on (C,}) by the Radon-Nikodym derivative
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@* = explcd(v)] ap .
P* ig a prdbabil;ty measure in view of (2.11) and from Girsanov's
theorem the process {2z} satisfies
(2.12) dzy = y.dt + o.dw,
vwhere (wt,:ft,P*) is a Brownian motion. From (2,12), the cbservation

process {y;} satisfies

and . N
1
(2.14) [ Ing]?2 at < = a.s,
. 0

[

Choose any vector 6 ¢ R™ and let £, = 8'yy . Applying Ito's diff-
erential formula to the function F(g) = g2 gives
t , ' t
f 8'0,0,'6 ds = E% - 68 - 2f EsdEs .
0 0
This shows that the symmetric positive definite matrix cz(t)oé(t)

is yéémeasurable for each t. Thus there exists a unitary matrix Qt

and a diagonal matrix Ly ,both 2&-measurable; such that

(2.15) | opltlog(t) = QLQl .

Now define .Tt = (Lt)’yﬁqé
Ry = E*[ngly)
hy = hy - by

( E*['{yt] denotes conditional expectation with respect to-P*.)

The innovations process {vi} is defined by
(2.17) avg = T,( ay, - fat)



Lerms, 2,1 (vys yt,P*) is a Brownian motion process.

Proof: It is evident from the definition that {v;} is adapted to
'yt and has almost all sample paths continuous. Again pick 6 € RE,

In view of (2.15) and (2.16), fof each t,
(2.18) | Ttoe(t)oé(t)'r,; = I

so that applying Ito's differential formula to the function

£(v) = ei®'V gives (using (2.17)),

‘ t t .

cnt -0t :hnt n, ?

el0'v(t) _ oif'(s) o [ yg110"v(Tp | 4 4 [(-Zle[2)e® V() g
S 1]

.t A
+ f ig'etd v(T)’I‘Tce(r)dwT
s

Now,
cay 16'(T), o _ iy i0'v(T) s
E¥[i6'e TH (4] = Ex{io'e T, B*[h- n Y]] 4.}
= 0 8a.8.,
and,
b ietv(1)
E*[i ig'e Troe(t)dwtlys] = 0 a.s.

sat sa t ie' ‘
pr[el'V(t) _ .6 V(S)lys] = E*[£ (- %‘-Ielz)ele V(T)drlys] g

or, alternatively,
|. t .o
(2.19) E¥[ e"‘ia bo(t) = vls)}_ 11y = - .éJ;lele*[i .18 {v(t)-V(s)}dTl?s]

Pick A € ys and define

= Ieie'(v(t)-v(s)} ap* .

n
¢ A

Then from (2.19),

15
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ﬂt = P¥A = %,elz { f eie {\’(T)-\’(B)} ar .dP*
. s .

= P¥ - 54ef2 [ npar.
S

This ;‘.ntegral equation has the unique solution

n, = P¥A e-(1/2)|9l2(t-s)

from which it is immediate that ‘ B

E*[éie'{v(t)-V(S)}Iy] - e—(1/2)|9|2(t-s)
S

The statement of the lemms follows from this.

Theorem 2.3  Suppose (M, yt’ P*) is a martingale. Then there

exists a process {wt} adapted to yt such that

1 :
[ e l2at < o 8.8.
0

and

o t
(2.20) M, =My + g Vv dvg .

Proof: My is a constent a.s. since yo = {C,¢#} .For convenience

assume that E*M, = My = 0. For n=1,2... define

t
T, = min( 1, inf{t: ({ ITsﬁslde, :_n} )

This.is a stopping time of ?t’ and 1, + 1 a.s. from (2.11)(1).
‘Now define
t A 1 t a 2
m, = exp( é (- hg)av, - z-g | hg|2as )
and define the measure ?‘n by
ar¥ ,

a® =
n = Ttat,

16
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From Girsanov's theorem, %‘n is a probability measure for each n,
and the process

. ‘ n n a
(2.21) Yg= v, o+ ({ Tghg ds

is a Brovnian motion under ¥,. Let
Yt = ol¥g ,0<s <t} .

’ R b n X s
By Theorem 3 of [6], if (Mt”t » P,) is a separsble martingale then
it has continuous sample paths and has the representé.tion

N t n
- n
My o= [ an .

S t ‘
Observe from:(2.17) and (2.21) that Y} = [ Tgdy_  for t < 1 and
| . A

hence that

n
e = lyurn .
- N m .
Thus if (M ’yt“n’ P,) 1is a martingale,

tATy

\
(2.22) My, = é ¢gTs &g

" '\,
Now suppose -(Mt,‘yt,P*) is a separable martingale. Then (Mtiytun ’Pn)

is a martingale, where

~

(2,23) M )71

t % My (tary) .
Indeed, (Mt“n’yt“n’ P*) is a.‘ma.rtinga.le by the optional sampling
theorem, and, denoting integration with respect to %n by En’

n,

B 1Y g ] = EalMoae (rpney P Wsaey)
B*[M

-1
t»\‘rn("tun) el Y sntn!

E*[Tlfnl y SA‘[n]
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B 19 41,
' Tsat,

"
-1 -
MSATn(“SATn) = Ms .

1]

v N
In this case My = My,r so that from (2.22)

tat
[ " e
0 ¢8 s dys

N

taT tat

(2.24) " obavg + [7 oR Tl as .
0 0

Now TEATy satisfies the Ito.equation
tat,

(2.25) Toar, 1 - £ TgTghg dvg .

Applying the Ito differential formula to the product in (2.23),

using (2.24),(2.25) , gives

tnrn n

Mtatn = é ¥g dvg

N A
where ¥o ng( 62 - MgTgh ) .

Such a representatioh is cléarly unique, so that

d
’

wg=wg' forn' > n, 8 < 1,.
If ¢ is the function which, for each n, agrees with y" on [s < 1_],

then tAtn
Mgz, = [ v W

i.e.

, t
(2.26) M, = g vgdvg

on [t<t,] for each n. Thus (2.26) holds a.s. for each t since T,t1 a.s.



3. VALUE FUNCTION AND PRINCIPLE OF OPTIMALITY.

The results here are similar to those of Rishel [13].

The value function W is defined by (3.3) below and shown in
Theorem 3.1 to satisfy a version of Bellman's principle of optim-
ality. In Rishel's paper this depended on the class of controls
satisfying a condition called "relative completeness". Here it

turns out (Lemma 3.1) that this condition is alwsays satisfied.

Suppose control uegg is used on [0,t] and v ¢ %i‘
on (t,1]. Then the expected remaining cost at time t, given the

observations up to that time, is

_ 1
(3.1)  uy,(e) Ew,[{ cgds| Y, ]

1
E[DB(“)D%(V){ csdfslyt]

Elogl ¥l

See [3,824.2]. Define
N
fp(t) = E[po(u)pt(V){ cgas| Y. 1.

. _ _ 1.
The notations ‘pu = wuu 4a.nd fu = fuu for u e '%0 will also be
used. Now f_ (t) € L,(C,¥,P) since fiy 20 a.s. and
t 1 1
E £ (t) = E[po(u)ot(V){ e ds] < K(1-t)

from (2.9). L, is & complete lattice [2,p.302] under the partial

. ~ Y . 1
ordering f; 4f, <=> fl(z) ;fe(z) a.s. The set {f (t): ve ut}
is bounded from below by the zero function, so the following

infimum exists in Ll for each t.

19
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(3.2) e = N e
vV € £

Notice that the "normalizing factor” E[pol yt] = E[pol ?t] does

not depend on v . The value function W, (t) is thus defined as

V(u,t).

(3.3) W (t) = /\ ([ c.as|Y,] =
u ul uvfc S[yt E[Ot(u)lljt

Thus V(u,t) is an unnormalized version of the g.l.b. of the
expected additional cost at time t . Suppose © € Ly , V(iu,t) <05
i.e. V(u,t)(z) < ©(z) for z ¢ M, PM>0. Then there exists v e 1(%
and & set My with PM, > O such that f  (t,2) < 0(z) forz eM .

The class u is said to be relatively complete [13] if for any

t € [0,1] and € >0 there exists v ¢ ut such that
fat) < Viut) + e 8.S.

This amounts to saying, in the above, that for © =V + € there is
& v with PM_ = 1 . The fact (Lemma 3.1) that this is true is used

in the proof of Theorem 3.1.

Lemma 3.1. U is relatively complete.

Proof: Fix e>0,t ¢ [0,1] and ueug. Let V(z) = V(t,u)(z)

1
and for v € Z(t let

M, = (21 fylz) < V(z) + e} € Y,

A partial ordering is defined on the set X = {(v,Mv): v e 'Kt} .
Then Zorn's Lemma is used to establish f;he existence of a maximal
element. (v*,Mv*) vhich has the property that PM_4 = 1, proving

the lemma.

e
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The partial ordering > on X is as follows:
(w,M,) > (v,M,) ' if and only if
(1) M, 2 M,
(3.4) (i) PMy > PM,
(iii) u and v agree on N, .
Each chain in (X, ) has an upper bound. Indeed, let

{(vysMy):c € A} bve a chain in (x,>).

1. If for some a, € A, PM_ = sup {PM }, then (u ,M ') is the
1 @1 L Ea LA |
upper bound.

2., IfEM=PM < sup {PM } for each a, € A then P 4m < 1. For
o a« €A 1 1

each n=1,2... pick @ such that

PM > m-2
an n

@
Let M= U M ., Then M= U My s clearly M 2 U
' ' ' n=1 I n—l

~and conversely, given a € A, PMy <m - .l., for some integer n~
n
and hence M, ¢ M, - € UMa . Thus M is 'yt--mea.sura.ble and
n=1
PM=m,.
3.Define the control v on t <t <1 as follows:
v(r,z) = van(t,_z) - z € M“n .

This specifies v on M3 on M® let v(r,z) = val('t,z). v is

clearly measurable; and

{z: v(r,z).s r} = 31 M“i n{Z{Vai(Toz) e} ¢ 'y.,

. i-1
so that v is adapted to ’@t. Let M, M(, Ve, My = My — U M,

for.i=1,2,3..., Then {M;} is a partition of C-into yt-measura.ble

sets. Hence

Elog(v)| Y] zizlE[IMi p%(vai) 1Y,
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[}
= Zl IMi = l 8080
Thus v e u} .
L, (v,M)_j is an upper bound for {(v, ,M ):a e A} .
(a) (v,M) € X; i.e. M= M= {z: fi,(2) < V(z) + e},since z.¢ M

=> z¢ M“i for some i => v =1vy = f (z)<V(z) +e¢,

: i
while z ¢ M® => v(z) = yal(z) =>z ¢ M since M, G M.

(b) For any a € A, (v,M) > (v ,M,). This is immediate from (3.k).

Since each chain in X has an upper bound, X has a maximal element,
i.e, anelement (v*,M*) with the property that for each compareble
(vysMy) € X,

| (v, M%) ¥ (vy,My).
It remains to show that PM* = 1, Suppose PM* < 1, Then P(M*)"; >0

so there exists v’e u% and a set ¥ € (M*)C with PY > 0 such that
fave(2) < V(z) +e, ze¥
Recall that ¥ ,M are yt measurable. Define

v°(ﬁ,z-) = v*(t,z) z € M*
= v (t,2) z ¢ (M*)C
This is admissible and
M° = {z: vP(t,z) < V(z) + e} D M*UY¥
Thus FPM® > PM and hence (v°,M°) » (v*,M¥), contradicting the maxi-

mality of (v*,M*), So PM* = 1, as required.

22
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Theorem 3.1 For each t € [0,1] and u € %% , the value function

W,(t) satisfies the "principle of optimality":
| U ()
(3.5)  Wy(t) < EJl [ e MaslY,) + E W (em)]H ] as.
t

for each h > O,

Proof:
t+h 1
V(u,t) = /\ 1 Elof(wo(v) [ cgv)ds + pg(u)p%(V) / cé”)dsv?t]
ve t . t+h
(3.6)
t+h 1
< Elof™(w) [ efWas| Y, + /\1 EloS* (u)od,, (v) | o{as| ¥, ]
- t ve Uian t+h

(Otherwise there would be a v € Yiqy, and M ¢ Y, with PM > O such that
t+h 1 1
V(u,t) - E[pg*'h(u) { csdsly,t] > E[93+h(u)pt+h(v)t{hcsds|yt]
for z € M; i,e,
44h 1
V(u,t) > E[pg (u)p%+h(v)tfcsds| %t] for ze M, a contradiction.)
The next stage is to show that

1
) , o N g (V)a .
(3.7)  E[V(u,t+h) | Y] v Ui, (oG (u)pt.,.h(V)tlhcs Jys

For any v' e?.(%_._h,

1
V(u,t+h) f_E[pg"'h(u)p%.,.h(v’ )tihcé"') d.s|?jt;h] 8.8,
Hence,
1
B(V(u,t4n)] Y] < Elof B (ulod,y, (v )t{hcg"' Jas| Y] a.s.
Therefore

1
E[V(u,t+0)|Y ] < /\ 1 E[og+h(u)p%+h(v') / cév')dsl'gt] 8.5,
! t+h t+h
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Since the class 'ZL% is relatively complete, given t+h, u €. ?48”’,

and € > 0, there exists u'e %%-m such that

1 L)
Elp&* (u)og,p,(u') [ céu )dsl%uh] < ‘V(u,t4h) + € a.s.
t+h |

bThen,
1
E[°g+h(“)°%+h(u')t_{hcgu')dsl?t] < E[V(u,t+h)l1ft]+e a.5.
and thus
l ]
/\ N ElpE*B(u)ed,, (u') [ céu )dslfgt] < E[V(u,t+n)| %] a.s.
u'e Win t+h

This establishes (3.7). From (3.6) and (3.7),
t+h
Viw,t) < ElpE*(u) [ c{Was|Y, 1 + E(v(u,t+n)| Y] a.s.
t

Dividing this through by E[pg(u)l y't] gives (3.5) after noting
that .
E[V(u,t+h) | Y ;] E[W,(t+n) Ep§*™B| ¥, ., M #y)

Elo§(u)| %] Elo§| %]

E[Wy(t+n)of™R Y o]

E[Pgl?{t]

!}
o

MUNCE VY y.1.
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4. CONDITIONS FOR OPTIMALITY.

Two sets of criteria - Theorems %.2 and 4,3 - are
presented in this section., Theorem 4.2. is included for two reasons:
it is used later in establishing other criteria, and it is the
equivalent in the present context of Rishel's results (Theorems 8
and 9 of [13]). The process "W,(t)" of Rishel's Theorem 9 corres-

ponds to the process Z,(t) defined by (L4.5) below.

The objective of this and the following sections is
to get Hamilton-Jacobi-like criteria for optimality; i.e. a local
characteriz;tion of the optimal policy in terms of the value
function. The results are bound to be less than satisfactory in the
case of partial observations as there is a different value function
for each control: the expected remaining cost from a certain time
on depends on what control was applied prior to that time, By
restricting attention, as Rishel does, to"value decreasing" controls,
in vhich class the optimal control, if it exists, must lie, one can

getvsome way towards the above characterization. This is Theorem 4.3.

The case of "complete observations" is a great deal
simpler as here there is only one value function. This case is

treated in section 5.



The potential generated by an integrable increasing process {ayl}
is

o, = Elag] Yl - =

It is easy to check that the process ¥,(t) of (3.1) is a potential

under measure Py.

Lerma 4.1 Under measure P, ¥,(t) is the potential generated by

the integrable increasing process

t
(b.4) ay = [ Egle{W| Y] as.
A "

. Proof': {a,t} is clearly increasing, positive, and adapted to yt'

Also sup Eyai < k. It remains to show that
t

v, (t) = Eyla, | 'y‘t] - ay .

In the following, cg = cgu) .

t .
Eu[all qjt] - a-t Eu[g Eu(csl ‘ys)dsl y‘t]

1 .
+ Eu[{ Ey(cgl q{s)dsl yt] - 8

1 '
Eu[{ Eylcgl Yglasl Y. ]

B

1
E,l la
{ ucslat s

i

1
Eu[{ cq dslyt]' = uylt) .

The legitimacy of the interchanges of integration and ccnditional
expectation in the above is easily seen in view of the boundedness

of ¢ .

27



Theorem U.2 u* ¢ N is optimal if and only if there exists
a constant J* and for each u ¢ { ean integrable process {a,(t)}
adapted to ¥, and sstisfying

1l

.‘(i) Eu({uu(s)ds = J*

(10) Byalel™] Yol - ay(d) = o

(u) . for almost all (t,z)
Eyleg” I?t]‘ - aft) > 0

Then J* = J(u*), the cost of the optimal policy.

1]

Proof: Suppose u* is optimal. let J* = J(u*)

v,#(0). Define
Ky = J* (9,(0))"! ; thus ky <1 andky =1 if u is optimal. Then
the process

ay(t) = xy Eu[ci(;u)l Y.

is clearly integrable and in fact satisfies (i) and (ii). Indeed,

1 1
Eu(f) ay(s)ds =k, Eu[(f) cgds] =k, (0) = J*

and

Eglegl Pl = ault) = (1 - ) Ejleg| Yyl 2 o,

Conversé]y, suppose there exists an integrable process {au(t)}

satisfying (i) and (ii). Let 2Z,(t) be defined by
(L.5) Zo(t) = Eylay(D)| Yl - aylt)

, t
vhere @ (t) = [ ay(s)as. Recall that y,(t) is the potential
0

, t
generated by [ E,[cgl 7,3169- Thus
0

28
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1 1
W) = 2y08) = Bl B Yodas - [ayleas| )

t t
- ())' Eu[céu),l.!ys]ds + g au(s)ds>

1
L (B, [Y ) - ayle)1as| Y, ]

0 a.s. from (ii)

jv

It follows that

(k.6)(a) by 2 2, a.e. (dAxaP).

Similar steps using the equality in (ii) lead to

(4.6)(b) Ve = Dyx a.e. (dAxdp).
Thus
(4.7)(e) Ev,(0) > Eu2.(0)

(v) Eav(0) = E a2 4(0).

But ¥,(0) = J(u) and E,z,(0) = E#Z4(0) = J* from(i). So (L.7)
says
J(u) > J* = J(u*)

for all u ¢ ¥ . This completes the proof.

Following Rishel [13], a control u e ¥ is called

value decreasing if
wole) > E (W (t+n)[Y.] - a.s. for each t,

ices if  (Wu(t), ‘yt,Pu) is a supermartingale. Any optimal control
'is value decreasing: from Theorem 4,1, W,(t) = v (t) if u is

optimel, giving equality in (3.5) and hence that

- th
w,(t) - EglWy(t+n) [§ ] = Eu[£ cgMas|Y 1 >0 a.s.
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On the other hand, optimal controls could conceivably be the only
valve decreasing ones, though normally one would expect this class

to be a good deal larger.

In the case of value decreasing controls the value
function can be represented as an Ito process and the conditions

for optimality restated in a more intuitively appealing way.

Lemma b4,2' Iet u ¢ K ve value decreasing. Then there exist
processes {AW} ,{un}* taking values in R, R" respectively and

adapted to yt" such that

1
(1) / [AW |2at <=  a.s.
0 .
. 1 .
(i1) Ef |wlas <=
0
t t
(ii) Wo(t) = g% + [ AW (sdas + [ vW(s)dyg  a.s.
0 0

under measure P,

Proof: By assumption (Wu(t),y, P,) is a supermartingale, so that

from (3.5)
' tHh
(4.10) |E, (Wy(t+n) = Wy(t))| < E L [ cg/as] < kn .
t

Thus the function t -+ EW,(t) is right-continuous, and therefore
( VI T4 ) (such a reference is to Meyer's book [4]) {W,(t)} admits

a right-continuous modification, which is essumed to be the version

+ So called because they play a similar role to the functions A¢

and ¢, =V¢ in the Markov case (see §1(C)). This will become apparent.

[



chosen, It is clear from the definition that Wu(t_) + 0 as ttl,
a.s. and in Ij(P,) so that {W,(t)}is a potential. From(VII T29)
there exists a unique integrable natural increa.sing process {At}

which generates W, (t) 3 i.e, such that

(ha1) Wy(t) = Eu[All‘lgt] - A .
Define, for h>0.
e (w (t) - E, [w (t*h)l?t])

Then (VII T29) also states that
(k.12) g BR as -+ A
weakly in L;(P,) as hi0 for each fixed t. Now from (3.5)

"t+h
< %Eu[f cg“)dslyt] < .k  a.s.
t

' Thus the subset f)‘ = {BE : 1>0} is uniformly integrable and hence,

from (II T23), weakly compact in Lj(P,). There therefore exists s

sequence h 40 and an element a, of Ly such that
\ b A 1

v
Bl,:n*at as n >

It is then immediate that there is a sequence h,+0 and a subset

{og: t € S}e Ly , where S is a countable dense subset of [0,1],

such that
B:n 3 ay as n-o , for each t ¢ S,
For t ¢ S define a, by

. 8¢t
s e S

31



" To see that this limit exists, note that Bls‘ is right-continuous in

s for each fixed h. ILet 6 be L, « For t,t' € S, t'>t,
(4.14) |E0(ay = a.i)] < |B 6(ay - ghn)| + |& 8(ay, - Bt?)l
. | . |
+ |Bo(8.7 - stn)l

Now Q(B:’.‘ - B:“) + 0 a.s. a8 t'+t and hence also in L;, in view
of the uniform integrability. Chopsing n such that the sum of the
first tvo terms in (4,14) is < -;e and then t' such that

|E0(85% = B1)| < 3¢ aives
}Eue(qt. - at)l <€ .

Thus if tn‘to{“tn) is a weak Cauchy sequence and the limit in

(4.13) exists,
-For 0 e L, ,

t t t
(4,15) |E“e(£ agds - A< IEue((])' agds = (f) Bl as) |

+ lEue(gtegas- A)l .

The last term converges to zero along {hn} from (4.12), and since
the expectations Euﬁg are uniformly bounded for h>0, by Lebesgue's

bounded convergence theorem
t h ‘
/ E“O(asds - gN)as+» 0, n+e= .
) :
Thus from (k.15),

Eua(ftusda -A) =0 8¢ Ly, te [0,1].
0
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It follows that

‘ t
(b.17) A, = [ agas a.s. for each t.
‘ 0

Recalling (4.12) and in wview of (4,17), evidently

oy = w=1lim glén
n -+

for every subsequence {h,} such that the limit exists. Therefore
(4.18) @y = w-lim 62 .

h+0
How (4,11) says

t
(4.19) w(e) = ElnIY.T - (j)asas .

Yt = Eu[All "}t] is a right-continuous, hence separable, uniformly
integrable martingale on (C, 7 »Py)e Applying Theorem 2.3 with
y o= g(u), P* = P, , shows that {Yt} has the representation

t
(4.20) Y, = Y, + [ vgdvg
: 0
where dvg = T, (dyt - @éu)dt) is a Wiener process under P,. Here
(4.21) 2l = Btz Y,)
Thus from (4,19) and (4,20),
o (u) ¢
wu(g) = Y, - g (ag + ¢sng2“ (s))ds + é % S VN

Now W _(0)= g% = Y, ; end defining

Ay(t) = -ap - ¢tTtg§“)(t)

and vW,(t) Uy Ty
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finally gives R
t ot
W (t) = J% + g A (s)as + é’ W (s)dy,

as required.

Theorem 4.3 u* ¢ % is optimal if and only if there exists a
constant J* and for each value decreasing control u e ) processes
{né‘,l)},{g,(c“)}, taking values in R, R® respectively and adapted to

'y £ and satisfying the following conditions:

1w 1
(i) [ leg% |2at < = a.s., Ef zfc“)dyt = 0.
0 0
(ii) x(W(1) = 0 a.s., vhere
t t
(4.22) W) = ¢ o+ [alWas + [ elWay
' .0 - 0

(iii) néll) + g‘t(',u)géu)(t) + e£U) 10 = n‘gu*) + Eéu*)ééu*)(ﬁ) + eéu*)
for almost a;ll (t,z), for each ue U.
Then xﬁu*) = Wu(t) a.s. and J* = J(u*), the minimal cost.

Here gé“)(t) is defined by (4.21) above, and ef,'“) is defined

similarly.
Proof: Suppose u € i is value decreasing. Then from (3.5),
t+h ( ) ‘
(4.23) W,(t) - Eu[Wu(t-bh)th] < Bl [ et ds“/t] .
. t

Now from Lemma 4.2,

t t
W, (t) = J* + g M (s) ds + ({ Wy(s) dyg -
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Under measure P, , {yt} has, from lemma 2.1, the innovations

process representation

g = Tolavy + &lM(t) at
and thus
| t t
Ha(t) = % e [ () + W (s)gl W (s))as + [ wig(e)Tgt av,.
Therefore,

t+h
() = EBlug(een) | ) = - B[ () + wi()2{W(s) as|$,1,
so (4,23) becomes
t+h

(k.2%) Bl [ (my(e) + m(e)gl ™ (s) + c{W)as| Y1 > 0 aus.
t

Denote the integrand in (L.2h) by X, and take 8 € L, . Then

1 t+h 1 t+h
= EByle Eu{{xsaslyt}] = = {Eu{Eu[Gl’yt]Xs}ds

- Eu{Eu[eI%lt]xt}n Eu{eEu[XtHjt]}
as h+0 for almost all t. Hence from (L4.24),
(n2s)  iye) + Wy(0)g We) + &lW > o

for almost all (t,z). If u is optimal then equality holds in (4.23)

and hence in (L.25). Thus, identifying

n é“) = (%)
Egu) . - Wu(t)
xéu) = wu(t) .

properties (i) - (iii) are seen to hold.
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Conversely, suppose J¥*, ‘{ni“).} ,{gt(,‘u)} exist and

satisfy (i) -(iii), for each value decreasing control. Let ue X

(u)

be value decreasing. Then under measure P, , x ~ satisfies ‘

t ' t 3
(k.26) xﬁu) =J% + é(niu) *Eéu)géu)(snds + gﬁiu)T;‘avs

where {d\’t} is a Brownian motion. Define
V= (u) (u) a{u)
a () = = ng® - g HER(e) .
Then from (4.26) and (ii),
1
E, f qu(s) ds = J¥,
0
{a,(t)} 1is adapted to gt , and from (iii),
() _ |
(4.27) E [ Wt] -a (8) 2 0.

In the case u = u*, (4,27) holds with equality. It now follows from
Theorem 4.2 that u* is optimal in the class of value decreasing
controls. Since these are, as remarked earlier, the only candidates

for the optimum, u* must be optimal in n.

Since u* is optimal, Wu*(t) = ﬂ"u*(t) from Theorem k4,1,

Now

. |
(t) = Bul fo{™as| § )
t

L}

| 1 | 1
Eu*[{ [- néu*) - géu*)fgéu*)) as - {; g‘iu*)dbsl 7 t]

from (iii),

1 1
Eanl- ‘1{, n;u*)ds ) { Eéu*)dysl?gt]



v, t
Euﬁtofné“*)ds +(f) ey |§,] + 9% from (10)

t t . :
f niuﬁ)ds + gé“*)dys + J¥
o s 0

e ‘u*
= xi )70

Thus xéu?) = Wuﬁ(t)? as claimed.
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5. COMPLETELY OBSERVABLE SYSTEMS.

Thié section treats the case where the entire past
of z 1is available for control; i.e. (in the definitions of
Section 2) m = n and yt = g't for each t. Thus the admissible
controls (denoted by # ) are functionals of the past of 2z, and are

for that reason sometimes referred to as "non-anticipative controls"

(9].

The considerable simplification that results in this
case is due to the fact that there is now only one value function.

In fact

1l
by = Byl[ e{Vas| F,)
t
- E[oo<u>ot<v>f e{Was| 3,1
p§(u)
(5.1) = E[pt(v)f c(V)ds 3]

does not depend on wu; thus W,(t) = W(t) for all u, where

1
W(t) = /\n L E[pi(v){ e{as| F,1 .

Ve t

The principlé of optimality (3.5) becomes
(5.2) W(t) < E [f (u)dsl F.1 o+ E (w(t+n)] ?tl

Using this, a genuine Hamilton-Jacobi~-type criterion (Theorem 5.1)
for optimality can be obtained. The method is as follows: first one

shows (Lemma 5.1) that there is a measure P¥ such that (We, yt ,P¥)’
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is a supermartingale. Then an Ito process representation for w(t)

and conditions for optimality are obtained as in the previous

section.

Recall the definitions of the sets ? and &) from
section 2.
Lemma 5.1 There exists a process h & g such that (W, }t ,P¥)

is a supermartingale, where

£ = emlidm)],

Proof: Select a sequence {un}c ﬂ such that
IJ(uy) = xpun(o) + w(o) = g% ,

Now g(“n) € (} and. hence pJO‘(un) e d for each n. From Theorem
2.2 there exists a subsequence, also denoted by {p(un)} , and an

element h e § such that
(5.3) oé(un) > p¥ . weakly in L (P)
where p* = exp[cg(h)] .
Evidently, from (5'3),’ for any t ¢ [0,1],
(5.4) pS(uy) = Elpd(uy)] ¥, » Ele*| 3,1 = explef(n)] .
Define the measure P* by d4P* = p#dP and let
p*g = E[p*| #.1 .

To show that (Wg, ?‘t,P*) is a supermartingale it suffices to prove

that for any t, hy F ¢ }t ’
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- (5.5) é(w£+h - W )ap* = %p*g*h(w5+h - W)aP < 0.

"

Let p, = p*t+h and n

o p§*P(w,). Then

(5.6) fo (Wypy = W) = %(p, - o) (W = W) + gpn(wuét) - W)

+ fo (Hyyp= ¥y [0401) gpn(wuét+h)-wu£t>).

The third and fourth terms of (5.6) afe non-pasitive, the third

because wu£t+h) majorizes W, and the fourth because ¢un is a

supermartingale under Pun'

Fix € > 0 and choose n' such that wun‘O) <

W(0) + € forn >n', From (5.2.) (with t=0, h=t),
Eun[wugt) -W] < ¢

for each t. Hence

A

(5.7) ;pn[wuét) - W] fpn[¢ (t) - ¥l

E [wuét) -W]<e forn>n'.
n
Now [W, - W ]IF € L, ,50 there exists n" such that for n > n",
I(O*- pn)(wt-i-h - wt) < € .
F
Thus for n > max[n',n"], in (5.6),
f Palyyy = W) < ¢

which is equivalent to (5.5) since € was arbitrary. This completes

the proof.
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Lemma 5,2 There exist processes {Awt}, {th}' taking values in

R, R%, re.spec‘cilrely;, and adapted to ?t . such that

1
(1) [ |ww|2as < 8e8a

0

1
(i1) Ef |awlas < @

0

t t

(ii1) Wy = J% 4 g M as + (f)vwsazs

almost surely pnder measure P,

Proof: Choosé a sequence {un} CCU satisfying (5.3) and such

that -

' J(un) + W(0) as n + =,
Now
x® . * ;
(5.8) [E (W, - W)= |Elp (v, - wtnll
< [EL6™ - o)) (v, - W1

+ [Elo ) (W, - W]

The first term on the right goes to zero.as n + ® gince (Wt-l-h - Wt) A

*
€ L_ and since p(un) + p weakly in L, by (5.3). Also

Blp (a,) (W, = W) = Elo(u ) (W, - b (or)]

+ELp @) Oy (6) = WO + BloGa) (, (4h) =, (2D,
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and by (5.7) the first two terms on the right go to zero as n * «.
Finally from (5.1) it is easy to check that

t+h
Elo(u ) (b, (£) = ¥ ()] = Elol (u ) f ¢ ds] < kh.

n n t
Thus letting n + @ in (5.8) we get

*
(5.9) |E G wt)l < kh.

This implies, as in Lemma 4.2, the existence of a right-continuous

modification of th and since (W, 3t,P*) is a potential, that

vy = ERlA | Fe] - A
where A' = w=-lim Bods
' Mo o °
h
and B, = 1/h (W, - E*[W 0| F 1)

The next stage is to show that ay = 4 A, = w=-1lim 62 . It suffices to
' at h+0
show that _j¥ = {82: h>0} is uniformly integrable; then the rest

of the proof is exactly as in the proof of Lemma 4,2, From (IIT19)

of [4], ¥ is uniformly integrable if
(i) E*Bg are uniformly bounded for h>0 , and
(11) [|eB|aP* + 0 as P®F + 0, uniformly in h.
F

(i) follows from (5.9). Since 82 is E}t-measurable, in proving

(1i) we can restrict ourselves to F € E;E' Now



W, -W ]dP*

Lo :hhé*
(5.10) - J By dP t t+h

g

. ' F '

+f [wt - Wt+h]p(un)dP
F

w

' . *
Once again since. (Wt: ) € L_ and p(u ) > p , the first term on

t+h

the right‘gbes to zero as n » «, Next,

e fw - 1:+h]p<u ae = fow )0, - v, @)
T F ' "

p(u ) (p, (t+h) - W_ )dP

n

t+h

+

+ j“ p(u ) (b, (£) = ¥ (t+h))de.
n n
F
From (5.7), the first two terms on the right go to zero as n + .

On the other hand from (5.1)

 et+h :
h
by ) =Bl (un>§ c ds| ]
: t
[t+h

+ (u Wy (t+h)|51 1,



so that
I p(u ) (t)dP = I pglu )b, (t)ap
F n F n
t+h
= J- pg"h(un)[f csds]dP
F t
+ I p;*h(un)wun(t+h)dp.
- F .
Also
f o(un)wu (t+h)dP = J' p;+h(un)¢u (t+h)dpP
F n . F . n

so that the last term in (5.11) is equal to

t+h
t+h

j °S+h(un)[ s c ds}dP < kh f Py (u))dP
F t-. ' F

*
and converges to khP F as n » =, Thus letting n - « in (5.10) we

conclude that

%
I hgh ap” < kne'F.
'F ’
and (ii) is established. Therefore

t
(5.12) W, = E*(A] X 8 I {)asds.
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To represent the separable martingale E*[All ;t]’

agein Theorem 2.3 is used. Recall from Lemma 5.1 that
dp* = exp[cé(h)]dP .

Thus

(5.13) dw = o"!(dz - hydt)

is a Browvnian motion under P* and is in fact the innovations process
for {Zt} since it is adapted to ?t' From Theorem 2.3 there exists

a process {¢t} such that

: t
(5.1%) : E*[All 3%] = E*[a,] + g ¢ AV
Combining (5.12) - (5.14) gives
t t
W o= J% + [ nWgds + [ Wiz
0 o
where MW = -oy - 6,07 hy
- -1

This is the desired result.

Theorem 5.1 (Non-anticipative controls).
| u* s #] is optimal if and only if there exist a
'constant J¥ and processes {ni},{£} taking values in R, R® respect-
ively, adapted to 9t,.and satisfying the following conditions:
1 1
- (4) g leg|2at < = aus., E£ g,dzy = O

(i1) x(1) =0 a.s., where
t t
(5.15) x(t) = J% + gnsds + ({Esdzs
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ces f *
(lll) nt + Etgéu) + c‘t(',u) z- 0= "t + Etgéu*) + c‘t(;u )
for almost all (t,z), for each u e¥.

Then x(t) = Wy a.s. and J* = J(u*), the minimal cost.

Propf': Let w € { .Then from Lemma 5.2 and Girsanov's
theoremn,
t (u) t
= u)y:
Wy = J% + é (awg + W gi")as + é VW 0 dw,

vhere {wt} is a Brownian motion under P,. From the principle of
optimality (5.2),
t+h (w)
(5.16)  Eylwy - W | d) = - Eu[{ (awg + v g ")as| 3]
t+h ()
i Eu[{ cs d5| yt]

.

i.eq,
t+h

(5.17) Eu[f [AWS + szgéu) + céu))dsl ;t] >0 a.s.
%

Denote the integrand in (5.17) by Xg and pick 6 € L.

t+h t+h
%Eu[e E, { Xgds| .1 = L {Eu(Eu[el:}t]xs)ds

> Ey(Byl0] R 1K) = Eyex,
as h+0 for almost all t. It follows that

(5.18) X = AWy + thgé“) + ct(_'“) > 0 a.e. (drxaP).
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If u = u*, optimal, then equality holds in (5.16) and hence in (5.18).

Thus (iii) is satisfied with



(i) and (ii) are easily seen to hold also, Conversely, suppose J¥,
{n },{8,} exist and satisfy (i) - (iii). Take u €/ . Then from
(5.15),

t .t
R T My

where (Wy, J.,Py) is a Brownien motion, Define

a(t) = =, - g™,

Then from (5.19) and (ii),
1
E, [ a,(s)as = g |
o
and from (iii),

ofu™) . o u(t) =0 < ef®) - ay(t) a.e.(drxdp),

It now follows from Theorem 4,2 that u* is optimal., From Theorem

b1, W, = Y a(t) and so

]

1
ba(8) = BLJ c{as| 2,1
t

1 1
E*(f (‘“s‘isgéu*))ds -/ Esosdw*lgt] from(iii)
t t

1 1
B - [ nas - [ goaz] )
t t

t t
E* [ ngds + / Esdzsl Jhl + J% from {ii)
0 0 S

x(t).

Thus x(t) = W, , as stated.
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6. MARKOV CONTROLS.

In this section a more resticted class of models is
considered, namely those where the system matrices g‘ and o depend
at a given time on the state only at that time. More precisely,
let 61; be the o-field generated by the single random variable zy .
The definitions (2.3) and (2.5) are unchanged except for (2.3.)(ii)

and (2.5.)(ii) which now read:

(6.1) (ii)” For each fixed (t,u), glt,,u) and o(t,*) are -

measurable,

In view of [3, §35.1a] this amounts to saying that g and ¢ are
functions on [0,1]xRBxR%* taking on values g(t,z4,u) and o(t,z¢)

at (t,z,u).

\ The class of Markov controls is denoted by M=m1,
where m: is the class of functions u satisfying the following
conditions:

(i) u:[0,1]1xR%> ek is Jointly measurable.

(6.2)
(11) E[p';(u)|3s] =1 a.s.

where p:(u) is defined by (2.6) with
gé“) = g(t,zt,u[t,zt]) .

Let ueM, Then, from Theorem 2.1, under measure Pu the process {zt}

satigfies

t t
(6.3) 2y =25 + fg.gu)d't + fo dw,
8 S

where (w,, 3t’ Pu) is a Browniam motion. From (6.3) it is evident



that
Eu[ztlys] = Eu[zt|88] a.s.
so that z is a Markov process under P,; hence the term "Markov

controls". {zt} is also Markov under the original measure P.

The cost rate function c¢ is also assumed to

satisfy a conditioh similar to (6.1), so that
C£u)(z) = elt,zgult,zy]) .

Stopping the. pfocess at the first exit time t from
a cylinder Q (as in §1(C)) can be accommodated within this frame-
work, For let I(s,x) = 1 for (s,x) € Q and =0 elsewhere. Then
new system functions g° = Ig, ¢° = Io and c° = Ic satisfy all the
relevant conditions. If u eM and Eg denotes integration with

respect to the measure corrésponding to g°(u), c® , then
T 1 (u)
Eglf c{Was) = E3[[ c3'Vas] .
0 o '

The remaining cost function ¢,(t) is defined as

1]

l
w(t) = Bl c{was| 8.1

1.
Eu[{ céu)dsl jt]

E[p%(u) f céu)dslyt]
t

This does not depend on ug for se[0,t] ; there is therefore, as in
the case of complete observations, & single value function U(t,zt)

defined by
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Uy = U(t,zy) = A

1
ue”h;

wu(t) .

since M €N, it is clear that U, > W, a.s. for each t. The main
result of this section (Theorem 6.2) is that in fact Uy = W, . This
is intuitively clear: since the system's evolution from time t
depends only on zy the controller gains nothing by taking account
of prévious values. Zgs s<t. The proof depends on a priciple of
optimality for the Markov case and results exactly analogous to
Lemma 3.5 and Theorem 5.1 for the completely observable case. The
proofs are almost identical here, the Markov property stepping in
whereever the fact ys"?t for s<t was used in section 5. So in the

following, complete details are provided only where there is sig-

nificant deviation from the corresponding previous proofs.

Lemma 6.1 (Markov Principle of Optimality.)

Let ueM. Then for each t,h,

t+h-
Uy .E.Eu[{ céu)dsl Gt] + Eu[Ut+h| 61;] a.s.

Lemma 6.2 There exist measurable functions AU: [0,1]xR® + R

and Ug: [0,1]xR" + R? such that

1
(i) : E[f |Aau(t,zy)]lat < =

0

1
(ii) : flUx(t:,zt)l2 dt < = 8.S.

(o]

| t t

(111)  Ult,zy) = gy + gAU(s,zs)ds + (f)Ux(s,zs)dzs

where Jy = inf J (u) , the minimum Markov cost.
uefM



Proof: The methods of Lemma 5.2 can be used to show that Ut has the

representation
t t .
(6.5) Uy = Jdy + [ngds + [gdz
0 0

where {nT} {gT}are adapted to 3;‘ It remains to show that | PR Y
are ﬂt-measurable for each t. For n=1,2... let

. t B
T, = min (1, inf{t: [ lislzds > n})
0

T, is a stopping time of.3t and t,4» a.s. since

1
[ legl2as < = a.s.
0
Let gln) = ¢ for £ T
= 0 for T <t21
Let: .
. ot
(6.6) My = [ gdzg
0
t
)= = (n)
Mén N Mtnrn - g &y dzg

: 1
Now Ef [Eén)|2ds < n, so that Mén) is a second-order (square
0
integrable) martingale for each n; thus My is by definition a local
second-order martingale. The following results are proved in Kunita

and Watanabe[12], Let

T = {(al(t) - a5(t)) : a;(tat,) is a natural,integrable increas-

ing process adapted to ?t’ i=1,2; n=i,2...}

Ir (X, ?t),(Yt, }t) are local second order martingales there exists

a unique process <Y,X>t €T such that for t>s
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3 ( - - .
L[‘thrn XSaTn)<YtRTn YsArn

In addition,

i}

(6.7) <Y,X> 1/4(<X+Y>, = <X-Y>,)

t

where <X>t <x,x>t .

<X>t is known as the quadratic variation of X for the following

reason: if X has continuous sample paths then [12, Thm.l.3] there

exists a sequence of partitions {téh), k=l,2..kn} of [0,t]

such that
(6.8) m:x Itén> - tﬁf{l + 0 N
(6.9) E(Xtén) - Xtﬂﬁi)z > <X>y - <X>; B, @S D>

It is shown in [15] that for local martingales of the form (6.6),
t
(6.10) M>, = g [Eslz ds a.5.

Aléo, referring to (6.5) and (6.9),

- 2 -
(6.11) 1§ (Ut(n) Ut(n)) - <M>t <1§4>0 a.S., as n-» 0.
k k-1
(The sums corresponding to fnsds converge to zero a.s. since this
term is of bounded variation.)

Let superscript i denote the i'th component of a

vector. Then from (6.6),

t t

i
M, +2z} = [ Jedazd o+ [ (¢
t t 0 J;i s ' 0 s

i

+ 1)dzg ,

so that, using (6.10),



t
<Mrzds, = é (1g)2 + 26% +1)as
1 t ;
<M-z>, = [ ([g]2 - 28" +1)as .
0
Therefore
vy
(6.12) <M,zi> = [glas
£t g s
i.e.,
& = Szt

In view of (6.9) and (6.11), for each h>0 there is a sequence of

partitions {tén)} of [t,t+h] satisfying (6.8) and

. - 2 -
(6.13) Il2{:(1’1_'(11) Yt.(n)) -> DO ST 8.8., D+
k k-1
where in this case -Xt = Mt + z% or Mt - z% and Yt = Ut + z%
i
or Ut - zt

(6.13) is an ?'€+h-measwable random variable, where

. In either case, for any n the sum on the left of

IPR 2 ol selt,t+n])

It follows from (6.12) that

e® o L ey

t h % S
is 3:’+h-measurable. Now Eih) -> E; w-L, for almost all t. Hence
a subsequence of a sequence of convex combinations converges a.s.
and therefore g% is }Z*h -measurable for every h and hence
measurable with respect to

N yt+h -

T

no °

There is thus a measurable function Ux:[O,l]XRn + R® such that
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(6.14) Up(t,z,) = &

Referring back to (6.5) now gives
t+h t+h
[ ng@ds = U, -U - / U, (s,25) ds .
t b .
t+h .
Thus }.f n ds 1is ?t+h-measurable, so n, must be é -measurable
ny s Tt t s 1

by the same reasoning as above. ‘Defining

AU(t,zt) =,

concludes the proof of the lemma.
Corollary. Suppose the value function U(t,x) has continuous first,

and continuous first and second, partial derivatives respectively

in t and in x; then

\ _ 3
(6.15) Ux(t,x) = gkU(t,x)
(6.16) AU(t,x) = aU(t,x) + 1/2 ] _ 92 U(t,x) (oo”),
Tt 1,3 Txpox, 1J

Proof: Denote the right hand sides of (6.15) and (6.16) by Ul ,
AU” respectively. Under measure P
dzt = o(t,zy)aB, : : .

so applying Ito's lemma to the function U(t,zt) gives -

Qu, = Ug(t)azy + AU“(t)at .

t t

Thus [ (U, - UZ)dz = [ (AU’- AU)dt and the left hand member is a
0 0 :

local martingale which must be of bounded variation. It follows
t

that | (U, - Ugldz =0 a.s. for each t, and hence that
’ 0

AUZ = AUy , UZ(t) = U (t) a.s.



Remark: The corollary shows that the results of this section are
precisely equivalent to those of Fleming mentioned in the Intro-

duction, when the relevant conditions are satisfied.

Theorem 6.1 (Markov Controls.) u*eM is optimal if and only if
there exists a constant Jy and measurable functions n:[0,1]xR® + R

and £:[0,1]xR® + R® satisfying:

(i) glli(t,zt)|2dt <o 8.8., E J;g(t,zt)d2£ =0
(i) x(1) =0  a.s. , where
| | t t
x(¢) = J, + é n(s,zg)ds + g £(s,2 )dz
(iii) ‘n(t,zy) + E(t,zt)g(t,zt,u[t,zt]) + c(t,zg,ult,z;]) 20 a.s.
n(t,2g) + E(t,2¢)g(t,2,,ub(t,24]) + c(t,2¢,u*lt,2¢]) = 0 a.s.

Then y(t) = Uy a.s. and J = J(u*), the cost of the optimal Markov

policy.
Proof: As for Theorem 5.1, using Lemma 6.2,

Notice that since u(t,zt) can take any value in Z,
and the restriction of Wiener measure to}ﬁL is absolutely con-
tinuous with respect to Lebesgue measure, (iii) is equivalent to:
(6.17) n(t,x) + min{g(t,x)g(t,x,v) + c(t,x,v)} = 0

VeE
for all (t,x) € [0,1]xR®, and the optimal policy u* is character-
ized by the property that [U (t,x) g(t,x,v) + c(t,x,v)] is

minimized by v = u*(t,x).
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Theorem 6.2 For the system considered in this .section (i.e. satis=-

fying (6.1)),

inf J(u) = inf J(u) ,
uely uefl

where /[ is the class of non-anticipative controls.
Proof: From Theorem 6.1 and (6.17),

(6.18) AU(t,x) + Ux(t,x)g(t,x,v)_ + c(t,x,v) >0
for all (t,x,v) ¢ [0,1]xR"xz .

Let u el . Then the process {w,} defined by
v, = 0;1(-g(“)dt + dz,)
is a Brownian motion under P, and

t
U

I

Now U(1) = 0 a.s., so taking expectations at t=1 gives:

Y

1 (u)
Eufo[-AU - Ug")ds

< E, Ji(u)ds from (6.18),

= J(u).
Since u  was arbitrary,,

Jy < inf J(u)-.
uefl

The reverse inequality is immediate from the inclusion men.

: ‘ t
& Iy * ({ [AUS + ng(u))ds + ({Uxodw .
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7. A NOTE ON TWO~-PERSON, ZERO-SUM STOCHASTIC DIFFERENTIAL GAMES.

Stochastic differential games - control problems
vhere there are several controllers with conflicting objectives -
cén also be treated by methods based at least implicitly on dynamic
programming, For instance Friedman in [22] has developed a theory
using partial differential equations analogous to that of Fleming
[9] for the optimal control problem. The "Girsanov' method of this
paper can also be applied. The intention here is not to provide
an exhaustive account but merely to indicaxe_one or ﬁwo,of the
possibilities; in particular, attention is restricted to two-person
zero-sﬁm games where complete information is available to both
playérs. The m@thod{was first applied to games of this type by

' Varaiya [8];[21]. See Theorem T.1 below,

The game (G) is defined as follows. The system

dynamics are represented by
dzy = g(t,z,u,v)at + o(t,z)aw,

where g and o satisfy (2.5) with the obvious modifications..The
control strategies u and v take values in Elc Rll and 326 Rﬂ'2
respectively and satisfy (2.6) with yt = }t (complete observations)
The measure P, is defined for any admissible strategy (u,v) by
Puv o o%(uV) = eXP[C%(g(“V)}]
dp

where

g(uv)(t'a‘z"‘ ':= 8(t’z’“[t QZ],v[t .Z]).
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The payoff is.
| 1 |
J(u,v) = Eylf cé“")ds] .
0

. . (uv)
Here Euv denotes expectation with respect to P,, and cg =

e(s,z,uls,2],v[s,2]) is a bounded function satisfying similar
conditions to thpse satisfied previously by the cost function.
Player I (control u) is attempting‘to'minimize the payoff while
player II (control v) wants to maximfze%if. The game has a saddle

point if there is a pair of strategies (the equilibrium strategies)
(u*,v*) such that for all admissible (u,v),

I(utyv) < J(uk,v#) :_J(u,v*,‘ .

Assumption; There exist equilibrium strategies (u*,v*) for the

game (G).

In [8],[21] it is shown that a saddle point does in

fact exist under certain conditions. To be precise,

Theorem 7.1 Suppose
(i) "o =1 (the identity matrix)

(ii) g has the form g(t,z,u,v) = gl(t,z,u
. V Sg(t’z’v)
(iii) For fixed (t,z), gl(t,z;°) and ga(t,z,°) are continuous
on B 8  respectively.

-l’-a

(iv) gl(t.z,El) and g(t,z,Ea) are closed and convex for each (t,z).

Then game (G) has a saddle point.

]

"
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Let (u*,v®) be an equilibrium strategy for (G) and
let P* = Pu*v* , ER = E, sy# o For any admissible strategy, define

the process wgv by

1
wgv = Euv[f cgw)dsl?t] .
t
Let

udv#
¢t = #"t .

Lemma 7.1l For each t ¢ [0,1] and h > O,

t+h #y :
(7.2) Eu*v[ f cg dBl;t] + Eu*v[¢t+h|;t] :. ¢t
t

t+h
. -<" Euv*[ { cgv*dslyt] + Euv*[q’t'fh‘?t] 8.5,

Proof: Suppose there is a strategy v for player II such that for
some t,h,
t+h
¢t < Eu*v[ f clsl vdslgt] + Eu*th*'hut]
t

for z € M€ ?t s PM>0, Define the strategy v' for player II by

v = v t e [t,t+h], 2 ¢ M
= v¥# elsevhere.

Then

t+h
(7.3) J(u*,v') = J(u¥,v*) = Eguyr (Ty [ 2"V ds)
t
1 ' 1
+ Byt (IM ! c\s;*v ds) - E*(IM f C's' ds)
t+h t

where IMf‘is the indicator function of M. Now,

t+h ot +h t+h .
Ey syt (IM / c: Vas) = E*(IM E[pt (utv) [ e Vas|} 1)
t t



60

E#(I

t4h ufv
M Eu.))v[ {" cB dsl?‘t ])

> 6T, - E*(Ty Euaylopanl %)

= ¢tIM - ‘E*(E[p§+h(u*V)IM¢t+h|71;])

‘b

(T . h) ‘ = ¢tIM - Eu&v' (IM¢t+h) .

»

From (7.3) and (T.4),
J(u¥,v') > J(u* v#),
So PM must be zero. The other inequality in (7.2) is proved

similarly.

Lemma 7.2 {wgv} is the potential generated by the integrable
increasing process {auv(t)} , where
* (uv)
ayy(t) = [ e %as.
0

Proof: As for lemma k4.1,

Lemma 7.3 There exist processes A¢, V¢ such that

t t
oy = J* + é Ao ds + g Vo dzg

(L%

Proof: From Lemma T.2, ¢ has the representation

1 t s
o = E*[g ok as|?,] - g c¥ s .

Under meesure P* the innovations process of z 1is dw = o~!(dz - g*dt).

Hence from Theorem 2.3 there is process {Yt} such that

1 t
E#([ c¥ ds|}t] = [ ygog! (azg - gt as) .
0 o



The result follows after defining

vé y o~}

A = c¥ - Vog* .

Theorem 7.2 (u*,v*) is an equilibrium strategy if and only if
there exist processes {nt}’{gt} adapted to?t , and a constant J*%*
such that
1l ' 1
(1) [ e, ]%dt < = a.s. and E [ g.dz, = 0.
. 0 t o 14

(ii) x(1) = 0 a.s., where

t t
x(t) = J* + [ngas + [ gaz,
. 0 0
(111) n, + min(g™ g + vy n, + g 4 (V9
u
=n.* max(g(u*v)g + c(u*v)) = 0.

v

Then Xg = ¢4 a.s. for each t, and J% is the value of the game.

Proof: Sufficiency is proved as in the proéf of Theorem L.3.
Recessity is established by showing that n, = A¢t and £, = Vé,
setisfy (i) -(iii). Fixing v = v* and using precisely the methods
of Theorem 4.3 together with Lemma 7.l gives the result with the
left-hand side of (iii1), while Fixing u = u* similarly gives the

right-hand side. This completes the proof.

For p ¢ Rn, define
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(7.5) min max H(t,x,u,v,p) = max min H(t,x,u,v,p)
u v v u )

for all (t,x,p) € [0,1]xCxR%,

e’

The equality (iii) in Theorem T.2 is a version of

Isaacé' equation (the game equivalent of the Hamilton~-Jacobi

M

equation). The partigl differential equation counterpart of this
for the Markov (puiesstrategies) case was derived by Friedman in
[22], and a solution shown to exist under certain conditions;

notebly, under the assumption that (7.5) is.satisfied,

(3
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