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ABSTRACT

In this paper necessary and sufficient conditions for

optimality are derived for systems described by stochastic differen

tial equations with control based on partial observations. The

solution of the system is defined in a way which permits a very

wide class of admissible controls, and then Hamilton-Jacobi type

criteria for optimality are derived from a version of BellmanTs

"principle of optimality".

The method of solution is based on a result of

Girsanov: Wiener measure is transformed for each admissible control

to the measure appropriate to a solution of the system equation.

The optimality criteria are derivetf for three kinds of information

pattern: partial observations (control based on the past of only

certain components of the state), complete observations, and "Markov"

(observation of the current state). Markov controls are shown to be

minimizing in the class of those based on complete observations for

system models of a suitable type.
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Finally, similar methods are applied to two-person,

zero-sum stochastic differential games and a version of Isaac*s

equation is derived.



1. INTRODUCTION.

A. This paper concerns the control of a system represented by a

stochastic differential equation of the form

(1.1) dzt = g(t,z,u)dt + a(t,z)dBt

where z is the state at time t and the increments {dB } are
t. ' *-

"gaussian white noise". The control u is to be chosen so as to

minimize the.average cost

(1.2) J(u) »E | c(t,z,u)dt.

Here T is either a fixed time or a bounded random time. The solu

tion of (1.1) is defined by the "Girsanov measure transformation"

method (see l.D, 2 below) which permits a wide class of admissible

controls. Controls based on three types of information pattern

(partial and complete observation of the past, observation of the

current state) are considered. In each case a principle of opti-.

mality similar to that of Rishel [13] is proved, and criteria for

optimality analogous to the Hamilton-Jacobi equation of dynamic

programming established by using an Ito process representation of

the value function. Controls based on observation of the current

state are shown to be minimizing in the class of those based on

complete observation for system models of a suitable type. Finally

similar methods are applied to 2-person zero sum differential games

and a version of Isaac's equation derived.

The results presented here are closely related to those



of Fleming on optimal control of diffusion processes. A brief outline

of the latter is given in l.B below in order to give:the flavor of

the former and for purposes of comparison. Some other possible

approaches to stochastic control are mentioned; then, in the light

of these, a more detailed statement of the contents of this paper

will be found in l.C.

B. Control of diffusion processes.

The results outlined here will be found in Fleming

[9] and in the references there. Let FC Rn be open and define the

cylinder Q C Rn+1 by

Q = [0,1]XF .

The system equation , to be solved in Q, is

(1.3) <Ut = g(t,5t,ut)dt + o(t,Ct)dBt

£0 « x eF.

{B+} is a separable n-yector Brownian motion process defined on some

probability space (n,&,P). a is an nxn-matrix-valued function on

[o,l]xRn and g: [0,l]xRnxR* -*Rn; both are of class C2, with g,a,gx,

a bounded on [0$l]xRnxK, for K compact in R£. Also there exists

c>0 such that

(l.U) * a1J(t,x^;)u1iij > =M2
i»J

for each ueRn, where a = 00' ('= transpose).

The control 1^ = Y(t,Ct) where Y is Lipschitz and

takes values in KCR*. compact. Thus the information pattern con

sists of complete observations of the current state. Under the above

conditions (1.3) determines uniquely a diffusion process g on [0,1]

with E|£t|2 <« for each t. The objective is to choose Y so as to



T

minimize J(Y) = E / c(t;?. ,Y[t,£. ])dt

where t is the first exit time from Q. Let gY(t,x.) = g(t,x,Y(t,x])
Y

and similarly for c . Define the differential operator'

(l-5> A* • *t + \/2\ ai^x x
i,«J * j

and consider the boundary problem

(1.6) Ai|»Y + ^YgY + cY = 0 (t,x) e Q

*Y = 0, (t,x) e 3*Q OQ- {0}*F

Under the stated conditions this has a unique solution with the

required differentiability properties. Applying Ito*s differential

formula to the function <r(t1£b)t where C^ is the solution of (1.3)

withu^ = Y(t,£fc)» gives
T

*Y(0,x). * E/ cydt • J(Y).
0

One can now drop the probabilistic interpretation and regard the

-problem as that of choosing -the- coefficients of the partial diff

erential equation (1.6) so as to minimize the initial value ty (0,x).

Let U(s,x) be the minimum cost, over the class of

admissible controls, starting at (s,x) e Q. Formal application of

Bellman's principle of optimality leads to the Hamilton-Jacobi

equation

(1.7) U(t,x) + min {U (t,x)gY(t,x) ♦ cY(t,x)} = 0 in.Q
Y X

U(t,x) =• 0 Qn 3'Q

Fleming's "verification theorem"[9,Thm.6.1] says that if

(i) 4>(t,x) is a suitably smooth solution of (l. "0, and

(ii) u° = Y°(t,x) is characterized by the property, that

[$x(t,x)g(ttx,v) +c(t,x,v)] is minimized in Q by v = Y°(t,x),



then ♦(t.x) =U(t,x) » /(t,x)

A unique solution of (1.7) satisfying the conditions of the veri

fication theorem exists if a is bounded and Lipschitz and satis

fies the uniform ellipticity condition (l.U), K is compact and

convex, and the boundary 8F has certain smoothness properties.

(It is possible to relax these conditions somewhat.)

The above theory can be generalized in various ways.

Let C = C [0,1] be the space of continuous functions on [0,1]

with values in Rn. Let 5t be the o-field in Cgenerated by the

cylinder sets {zeC: zge T) where r is a Borel set in Rn and s<t.

For z e C, te [0,1]f define ir z c C by

TT^z(s) = Zg 8<t

= Z^. S>t

A. function of the form. tL = u(t,Tr.z) is "non-anticipative" in that

it is adapted to 3 .A unique solution to (1.3) using a non-anti

cipative control u is obtained if u is Lipschitz, i.e.

|u(t,*tn) - u(t,TrtS)| 1 <lh-c||

where || • || is the uniform norm in C. See [l6]. Here the inform

ation pattern is complete observation of the past. It turns out

that Markov controls are minimizing in the class of non-anticipative

controls, so the Markov theory is the natural one in the case of

complete observations. The partially observable Markov case where

u. = Y(t,£t) only depends on certain components of £t can be

considered though this is a somewhat artificial problem since the

controller generally does better by using all the past observations,

not just the current value.



D. Methods of the type outlined above suffer from two

main drawbacks:

(i) The dependence of the admissible controls on the observations

has to be "smooth"(e.g. Lipschitz) to insure the existence of a

solution; for optimal control it is undesirable to be limited in

this way.

(ii) The observation o-fields {^^h depend on what control is
being used. This tends to vitiate variational methods since varying

the control at a certain time affects the admissibility of controls

applied at subsequent times. There are two cases where this does not

apply: (a) complete observations, as above, since then the observ

ation a-fields are those generated by the Brownian process,

(b) Linear systems of the form

QXj. = Atxtdt + u^dt + dBx(t)

dyt = ^tH6* + 'aB2^t^'

In this case W^ => y? ,where 4f? are the a-fields generated by
{y£},{x£,y°} being the solution of (1.8) with u»0. This is the

basic fact behind the separation theorem [18],[19] which says that

an optimal control is of the form v^ «u(t,5tt), where 5^ "E[xt|^].

Of course, one can define other problems where the observation a-

fields do not depend on the control (this amounts to observing

some function of the noise).Then variational methods can be used;

see for example [20]. But then the problem loses its feedback

aspects•



The system equation (l.l) treated in this report is

more general than (1.3) in that the dependence of the matrices g and

a on the state is non-anticipative rather than "Markov". The method

of solution - given in Section 2 - is designed to avoid (i) and (ii)

above. In §C above one took a measurable space (ft,fi) and random

variables {B } constituting a Brownian motion under a measure P,

and defined a transformation (1.3) B + 5 of the random variables.

Here a transformation P + Pu of the measure is defined such that

*^e original random variables generate under P the measure in their

sample space which is appropriate for the solution of (l.l). This

transformation is well-defined with only minimal restrictions on

the class, of admissible controls, and the observation a-fields do

not depend on the control since they are always generated by the

same random variables. On the other hand the most that is claimed

for the "solution" is that it has the right distributions.

Skorokhod remarks in the introduction to his book

[5] that the methods of probability theory fall into two distinct

groups, analytic and probabilistic, the former having to do only

with the distributions of random variables, the latter based on

operations with the random variables themselves. The method used

here is something of a half-way house .in that, while it is the dis-

tributions one is concerned with, the techniques used to derive them

are definitely probabilistic.

This method has previously been used in [7],[8] (on

the existence of optimal controls in the case of complete observ

ations) and [19] (on the "separation theorem" of (b) above).



With a solution defined for each admissible control,

the objective is to derive Hamilton-Jacobi-type conditions for

optimality for the system (l.l) analogous to (1.7).

In [13] Rishel developed dynamic programming

conditions for a very general class of stochastic systems. In

Section 3 below, Rishel's "principle of optimality" is proved in the

present context and in Section h conditions for optimality close to

Rishel's are established. Using the special structure here these

can be recast (Thm. U.3) in a form close to that of (1.7) above.

In Section 5 the same methods are applied to the

(simpler) completely observable case.

Section 6 deals with Markov control of systems

similar to (1.3) (but without the technical conditions). The results

here are direct extensions of those of §1B above, coinciding with

the latter when the relevant conditions are satisfied.

Differential games are susceptible to attack by

the same methods. The paper concludes with a brief section

(section 7) outlining some of the possibilities in this direction.



2. PRELIMINARIES.

In differential form, the system equation (l.l) is

(2.1) dzt = g(t,z,ut)dt + o(t,z)dwt

with initial condition z(0) = z0 e Rn, a fixed value. Here t e [0,1]

and for each t, z^ e Rn, wt e Rn, u-^ e R-. When necessary g and o

will be written g' = (gj[ , g2') and a' * (ci**0?1) ^ 9 transpose)

corresponding .to z^' = (x^',yt'), the "state" and "observation"

processes with dimensions (n-m),m, respectively.

Let (B+,t e [0,1]} be an n-dimensional separable

Brownian motion process on some probability space (ft,&,u). For

each t let H^ c&* be the a-field generated by the random variables

{Bs, 0<s*t}, Consider the stochastic differential equation

dz+ = a(t,z)dB+
(2.2)

z(0) = z0 .

The following properties are assumed for the nxn matrix-valued

function a =.[o^j];

(i) The elements a..:[0,l]*C + R are jointly measurable

functions; a_. i(t,») is 7+-measurable for each t.
(2.3) lJ n

(ii)There exists a process zt, t e [0,1] , adapted to ^,

satisfying (2.2) and

1

. I J a|,(t,z)dt < «

' C and {3+} were defined in section l.B.



(iii) o(t,z) is non-singular, and a2(t,z) has rank m, for

almost all (t,z).

In (ii), the process {z^} is assumed to be unique in the following

sense: all solutions of (2.2) , which must necessarily have con

tinuous sample paths, generate the same measure in the sample

space"(C,J), This is the definition used by Girsanov in [ll].

Conditions (ii) and (iii) are given in the form in which they are

required rather than in such a form as to be easily verified; any

sufficient conditions insuring their satisfaction could be imposed.

Under the condtions (2.3), (2.2) defines a measure

P on (C,?) by

PF = m[z"1(F)] for F c ? •

Observe that

(2.10 &t = z~H?t)

for each t, since

t _
w+ = / a-1dz .
t 0

The function g satisfies the following conditions:

(i) g:[0,l]*Cx5 -*• Rn is jointly measurable. (Here 5, the

control set, is a Borel set of R^).
(2.5)

(ii)For fixed (t,u), g(t,»,u) is adapted to ?t.

(iii) For all (t,z,u),

|a"1(t,z)g(t,z,u)| < g°(|| z ||)



where | | • | | is the uniform norm in C and g° is an increasing real-

valued function. Thus

/ |a-lg|2dt < (g°(||z||))2 <- a.s.(P).
0

Admissible controls. The class of admissible controls is denoted

by %and defined as follows. For s,t e [0,1], s<t, let U.\ be the
s

class of functions satisfying (2.6) below.

(i) u:[s,t]xC + EcR is jointly measurable in (t,z).

(2.6) (ii) For each t, u(t,«) is adapted to t^..

(iii) E[p*(u)|?s] = 1 a.s.(P).

Here p^(u) =exp[c|(g(u)) ], where g(u)(t,z) =g(t,z,u[t,z]) and
£{g(uh is defined by

C*(g(u)) = J (a'^T.zJgd.z^T^]))^
S l

1 t-i/ |a"1(T,z)g(T,z,u[x,z])|2dT
s

t t

(2.7) =/ (a^gj'a^dz - \\ ja-ig^dT .
s s

Now define ft =Hi ,

From(2.7), ^(u) can be computed directly from
s

{zT, 0 <t< t). Thus pt(u) can be regarded as a random variable on

the probability space (C,S^,P); in fact this is taken as the basic

space from now on, the symbol E referring, as in (2.6)(iii), to

integration with respect to the measure P. It is shown in [ll] that

(2.5) and (2.6)(i,ii) imply

E[pt(u)|3s] 1 1 a.s.

10



There is no known criterion for equality, though various sufficient

conditions have been derived; see [8].

Remarks. 1. If u' e %G and u" e fy* , where r <_ s <^ t, then
——-— r s

u £ It^t where

u(t,z) = u'(t,z) t e [r,s)

= u"(t,z) t e [s,t].

Indeed, u clearly satisfies (2.6)(i),(ii), and

E[p*"(u)|Jt.] * E[pBt(u») E{pt"(u")|7s}|^t,]

=E[p|,(u')|?tl] = 1 -va.8.

for r<>t'<>s<>t"<_t. The other cases work similarly.

2. If u etC » then u restricted to [s,t] belongs to Jit. This

follows from Lemma 2 of [ll].

Theorem 2.1 (Girsanov) For u e&let the measure Pu on (C,^ ) be

defined by

PUF = Jp£(u)dP , F e 2
F

Then (a) dw = dB - 0""^ dt is a Brownian motion process under

the measure uu defined by

Ujz-MF)] = PUF ..

(This defines yu for each Aelt in view of (2.U)).

(b) The process {zt} satisfies

(2.8) dzt = g(t,z,u[t,z])dt + a(t,z)dwt

z(0) = z0 ,

11



This result is immediate from Girsanov's Theorem 1

[11]. Lemma 6 of [ll] states that if {0t} is adapted to #t and

/|ej2dt <» a.s. then

t t t

/ 0s^s * / ^s + / V"1* ds •
0 o 0

Putting Qt ma(t,z), (2.8) follows from, (i) above and (2.2).

Theorem 2.1 shows that the process (zt> is, with

measure Pu, a solution of (2.1) in the sense that

dz = g dt + a d(Brownian motion).

Remark: All measures arising in this paper are, by definition,

mutually absolutely continuous with respect to the measure P; so

when some property is stated to hold "almost surely" (a.s.), it is

irrelevant which measure is referred to.

Let c:[0%l]xCx5 + R+ be a non-negative real valued

function satisfying (2.5)(i),(ii) and

(2.9) c(t,z,u) <. k for all (t,z,u) e [0,l]xCx5

where k is a real constant. The cost ascribed to an admissible

control u is

(2.10) J(u) * Eu[/ c(s,z,u{s,z})ds] = E[pjku)/ c<u}ds] .
. 0 0

Note that this allows for a random stopping time t as long as t< 1

a.s. For c' » c.Ir >t-i is an admissible cost rate function and

t 1

Eu / c ds = Eu / c' ds .
0 0

The following results will be required in

subsequent sections.

12



A. Compactness of the set of densities.

Let C be the set of measurable functions

Y:[0,l]xC -*• Rn adapted to 7t and satisfying:

(i) |a-1(t,z)Y(t,z)| ! g°(||z||)
(2,11)

(ii) E[exp{^(Y)}3 = 1.

Let 5)= (exp[Co(Y) ' Y?$)•

Theorem 2.2 J) is a weakly compact subset of L1(C,?,P).

This result is contained in Theorem 2 of [8] for the

case o=I (the identity matrix). Only minor modifications are

required to establish the result as stated.

Note that pj(u) e 3) for each ueK . Thus for any

sequence ^ e t there is a subsequence {%!_) and an element hew

such that

Po^k* "" e*P[<£(h)]
weakly in L^ as k •+• ».

B. Innovations process and representation of Martingales.

The main result here is Theorem 2.3, which says that

any martingale adapted to *L has a representation as a stochastic

integral with respect to the "innovations process" of (y^), defined

below. This definition was given in [15]. The result is proved in

[10] for the case a = I ; the following is a similar method of

proof using also ideas from [15].

Let y e Q ,y = (h", h) with dimensions m-n, n, and

define the measure P* on (C,» by the Radon-Nikodym derivative

13



dP* = exp[?J(y)] dP .

P* is a probability measure in view of (2.11) and from Girsanov's

theorem the process {z^} satisfies

(2.12) dzt = Ytdt + atdwt

where (wt,jrt,P*) is a Brownian motion. From (2,12), the observation

process {yt> satisfies

(2.13) dyt = htdt + a2.(t)dwt

and .

1

(2,1*0 / |ht|2 dt < « a.s.
0

Choose any vector G e R111 and let £t = 9'yt . Applying Ito's diff

erential formula to the function F(£) = £2 gives

t t

/ B'o2o2'Q ds = % - eg - 2/ c dC_ .
0 0

This shows that the symmetric positive definite matrix a2(t)o'(t)

is ^-measurable for each t. Thus there exists a unitary matrix Q.

and a diagonal matrix L^ ,both ^-measurable, such that

(2.15) a2(t)a£(t) = QfyQ •

Now define Tt = (Lfc)"^^

ht = E*[ht||ft] .

nt = *t ' *t

( E*[»]yt] denotes conditional expectation with respect to P*.)

•^ie innovations process {v^} is defined by

(2.17) . dvt = Tt( dyt - n^dt)

• Tt(_a?(t)dwt + S^dt)

14
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Lemma 2.1 ^vt»?t'^*^ ^s a Brownian motion process.

Proof: It is evident from the definition that {v, } is adapted to

*9^ and has almost all sample paths continuous. Again pick 9 e Rm.

In view of (2.15) and (2.l6), for each t,

(2.18) Tta2(t)a£(t)T£ = I

so that applying Ito's differential formula to the function

f(v) = ei0'v gives (using (2.17)),

eie'v(t) . ei6'v(S) =/Ve '̂̂ ^T&dx ♦ /(-i|e|2)eie'v(T)dT
s s

♦ 7tie-eie'v(T)v2(t)dwT
s

Now,

E*[i6'ei6'v(T)TTftT|)s] =E«{i9'ei8*v(T)TT E*[hT- hT|̂ ]| %}
- 0 a.s.,

and,

t

E*[/ ie'eie'v(T)TTa2(T)dwT|M] = 0 a.s.
s

E«[eieMt) _eio'v(8)|Jf<] „ m}\_ i|6|2)eie'v(T)dT| , >
2

s

or, alternatively,

(2.19) E*[ e19'{w^J " v(s)}- l|Jf,] . - f|e|2l»[/tele,{v(t)-v(,)}dT|f9]

Pick A £ U and define

n = ;ei8'{v(t)-v(s)} ^ m
A

Then from (2.19), -

s



t
r

A s

t

r.
s

This integral equation has the unique solution

t>»a llnl2 f f ie,{v(x)-v(s)} • #nt * P*A - ^.|e| * J J e dx dP*
A s

, t

- P*A - i|6|2 /. nT dx .

nt - p.Ae-W2'!6!2^'

from which it is immediate that

E%[ei6'{v(t)-v(s)}|̂ s] me-(l/2)|9|2(t^s)

The statement of the lemma follows from this.

Theorem 2.3 Suppose (Mj., 1jt, P*) is a martingale. Then there

exists a process {$.} adapted to J. such that

1

/ |^t|2dt < * a.s.
0

and

t

(2.20) M = Mq + / * dvs .
0

Proof: Mq is a constant a.s. since fyQ » {C,0} .For convenience

assume that $*Mt = Mq = 0. For n=l,2... define

t A
xn = min( 1, inf{t: / |T hg|2ds >_n} )

0

This.is a stopping time of ft. , and xn + 1 a.s. from (2.11)(i).
rt

Now define

t t

*t " exP( /(-TsSs)dvs -7/ lTsSsl2ds )

and define the measure Pn by

n tAxn

16



From Girsanov's theorem, PQ is a probability measure for each n,

and the process

tATn a
(2.21) Yn - v + / Tshs ds

0

is a Brownian motion under F^, Let

'I = ottj} , 0 <.s <.t) .

17

By Theorem 3 of [6], if (Mt»^ ,Pn) is aseparable martingale then

it has continuous sample paths and has the representation

• K =A§<v
t

Observe from; (2.17) and (2.21) that Yn = / Tsdys for t <xn and
o

hence that

^t " 7t4Tn •

Thus if. (Mj. »jftAT , Pn) is a martingale,

<v t*xn
(2.22) M^^ . / *nTs dy8 .

Now suppose (Mt,fft,P*) is a separable martingale. Then (Mt»/tAxn»pn^

is a martingale, where

(2.23) Mt = ^ <*Ux >-1

Indeed, (MtAT ,VtAT ,P*) is amartingale by the optional sampling

theorem, and, denoting integration with respect to Pn by F^,

*\» .^

. E,,tMt>Tn(,tATn)-'nTniy8,Tn]

E't^nll|SATn]



= "•['s-tJW
'S*Tn

= MsATn^svrJ"1 = MS •

In this case M^. = MtAT so that from (2.22)

* HxnMt = / <J>nTs dy£
0

(2.21*) =T%?dvs +T%nTs&s ds .
0 0

Now tt^aT satisfies the Ito.equation

t*x,n A

VV
0

Applying the Ito differential formula to the product in (2.23),

using (2.210,(2.25) , gives

t4Tn «
MUtn = / *8«*.

0

where *S " «»( *5 " *W»J •

Such a representation is clearly unique, so that

t|£ • ♦J* for n' >,n, s £ xn.

If ip is the function which, for each n, agrees with ^n on [s < xn],

then tAxn

^n " L *« dVs0

i.e.

t

(2.26) Mfc * / 4»sdvs
0

on [t<xn] for each n. Thus (2.26) holds a.s. for each t since xntl a.s,

(2-25) ^tATn - 1 " / .Vshs dvs •

18



3. VALUE FUNCTION AND PRINCIPLE OF OPTIMALITY.

The results here are similar to those of Rishel [13].

I^ie value function W is defined by (3.3) below and shown in

Theorem 3.1 to satisfy a version of Bellman's principle of optim

ality. In Rishel's paper this depended on the class of controls

satisfying a condition called "relative completeness". Here it

turns out (Lemma 3.1) that this condition is always satisfied.

Suppose control ueE? is used on [0,t] and v e %
0 v

on (t,l]. Then the expected remaining cost at time t, given the

observations up to that time, is

1

(3.1) *OT(t) = E r/ csds|tf ]uvx ' uvlJ vs ' 2?t
t

= E[P*(u)pJ(v)/ <yis|$t]
a.s.

See [3.S2U.2], Define

fuv(t>= E[pS(u)p^(T)/\«.iyt].
x>

The notations to = to and f= f for u e % will also be

used. Now fuv(t) e L-^CjJ,?) since f >_ 0 a.s. and

Efuy(t) =E[p*(u)pJ(v)J cgds] <Wl-t)

from (2.9). L^ is a complete lattice [2,p.302] under the partial

ordering f^f^ <=> M2) »?2M a»s. The set {fuy(t): ve%\}
is bounded from below by the zero function, so the following

infimum exists in 1, for each t.
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(3.2) V(u,t) = A,f„v(t)

Notice that the "normalizing factor" E[p*| 1jA =E[pg|^t] does

not depend on v . The value function Wu(t) is thus defined as

(3.3) W(t) = A Euv[/ c.ds|^t] 11 ^ V(u,t).ve%l UVi S 7t E[pt(u)|^t]
Thus V(u,t) is an unnormalized version of the g.l.b. of the

expected additional cost at time t . Suppose 0 £ L-^ , V(u,t) •< 0;

i.e. V(u,t)(z) <0(z) for zeM, PM>0. Then there exists v e%t

and a set My with PMy > 0 such that fuy(t,z) < 0(z) for z eM .

The class % is said to be relatively complete [13] if for any

t e [0,1] and £ >0 there exists v £ el such that

fuv(t) < V(u,t) + £ a.s.

This amounts to saying, in the above, that for © = V + e there is

a v with PM = 1 . The fact (Lemma 3.1) that this is true is used

in the proof of Theorem 3.1.

Lemma 3.1. fit is relatively complete.

Proof: Fix £>0,t £ [0,1] and u £ %*. Let V(z) = V(t,u)(z)

and for v £ Z( let

\ = {z: fuv(z) <V(z) + £} &
t •

A partial ordering is defined on the set X= {(v,Mv): v e H^} .
Then Zorn's Lemma is used to establish the existence of a maximal

element (v*,M ^) which has the property that PMV* = 1, proving

the lemma.
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The partial ordering > on X is as follows:

(ujMj > (v^) if and only if

(i) \ => My

(3.1*) (ii) PMU > PMy

(iii) u and v agree on M^ .

Each chain in (X,>) has an upper bound. Indeed, let

((va,Ma):a e A} be a chain in (X,^»).

1. If for some a_ € A, PM = sup {PM }, then (u ,M ) is the
1 ai a e A a al al

upper bound.

2. If M * PM < sup {PM } for each ct_ € A_- then PM +m < 1. For
1 a ^ A

each n=l,2... pick a such that
n

PM > m - i
an n

Let M = U M . Then M= \J Ma ;clearly M ^> N m
cxeA n=l n n^i an

and conversely, given a £ A, TM^ <m - i^ for some integer n'
oo n'

4and hence Ma c Man^ C {J Ma . Thus Mis. ^-measurable and
n=l n

PM = m .

3.Define the control v on t < x < 1 as follows:

v(x,z) = v0n(x,z) zeMa
n

This specifies v on M •; on Mc let v(x,z) = v (x,z). v is
al

clearly measurable; and

00

{z: v(x,z) eD = U Ma fi {z:va.(x,z) £ r} e %
i=l i •" l °

a i-1so that v is adapted to *L. Let M. » Mq^ U Mc, Mj_ = Ma — \J M,
1 i j=l °

for.i=l,2,3... Then {M^ is a partition of C into &-measurable

sets. Hence

K[pl(v)|#t] =[E[lM pl(v )\%]
i=l -1
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Thus v e 1tJ .

CO

X

i=l x i

" I *M< " 1 a's'
i=l *

22

U, (v,M). is an upper bound for {(v ,M ):a £ A> .

(a) (v,M) e X; i.e. M = My= {z: fuv(z) < V(z) + £},since ze M

•>" ze M„ for some i •> v = va => f„„(z) < V(z) + £,
ai i uv

while z e Mc •> v(z) • va (z) =>z £ Mf: since M CM.

(b) For any a e A, (v,M) > (va»Ma^ This is immediate from (3.10.

Since each chain in X has an upper bound, X has a maximal element,

i.e. anelement (v*,M*) with the property that for each comparable

(va,M0) e X,

(v*,M*) > (v^).

It remains to show that PM* = 1. Suppose PM* < 1. Then P(M*)C > 0

so there exists v*£ %\ and a set ¥C (M*)c with P¥ > 0 such that
t

fuv'(z) < V(z) + e, z e *

Recall that ¥,M are %> measurable. Define

v°(t,z) * v*(t,z) z e M*

= v'(t,z) z e (M*)c

This is admissible and

M° • (z: v°(t,z) < V(z) + e} O M*U*

Thus PM° > PM and hence (v°,M°) > (v*,M*), contradicting the maxi-

mality of (v*,M*). So PM* = 1, as required.



Theorem 3.1 For each t e [0,1] and u e %^ , the value function

Wu(t) satisfies the "principle of optimality":

t+h , .

(3.5) Wu(t) < Eu[ / csu)ds| ^ft] + Eu[Wu(t+h)|ft] a.s.
t+h

/
t

for each h > 0.

23

Proof:
A t+h 1 * x

••-• ,« E[p$(u)p£(v) / cWds +p$(u)pl(v) / csv;ds|^t]
ve Vi t t+h

(3.6) ^
t+h . , A ! / \< E[P*^(u) / <4»>dsi yt] + A E[P*+h(u)pi+h(v) / c^a.1 jti
t ve %^+jj t+h

(Otherwise there would be a v e lit+h and Me ^t ^^ ^ >° such that

t+h . 1 „
V(u,t) - E[p**(u) / csds|^t] >E[p^(u)pJ+h(v) / csds|#t]

t ' t+h

for z e M; i.e.

V(u,t) >E[p£+h(u)p£+h(v) /csds| %t] for ze M, a contradiction.)

The next stage is to show that

(3.7) E[V(u,t+h)|#t] = A E[p*+h(u)p£+h(v) / cWde| jft] .
V£^n t+h *

For any v' eft£+h»

V(u,t+h) <E[p*+h(u)p£+h(v») / c^') ds|^t+h] a.s.
u t+h °

Hence,

E[V(u,t+h)| Vt] <E[p£+n(u)p£(••) / c8v,)ds|^t] a.s.
g t+h

Therefore

K[V(u,t*)||t] < A. E[p*+h(u)pl+h(v') / <4v,)ds!3ft] a.s.



Since the class %^ is relatively complete, given t+h, u£ %Q ,
1
t+h

and £ > 0, there exists u'e %I^.y% such that

E[p§+h(u)p^+h(u') /4u,)ds|ty.+h] < V(u,t*h) +£ a.s.
t+h

Then,

E[p*+h(u)pl+h(u«) / csut)ds||t] < E[V(u,t+h)|^t] +e a.s.
t+h

and thus

A E[pt+h(u)pl+h(u,) ) csu,)ds|^ft] <E[V(u,t+h)|^t] a.s.
u'e %t+h t+h

This establishes (3.7). From (3.6) and (3.7),

t+h

V(u,t) <. E[p*+h(u) / csu>ds|tyt] + E[V(u,t+h)|^t] a.s.
\»

Dividing this through by E[pq(u)| j^\ gives (3.5) after noting

that

E[V(u,t+h)|%t] E[Wu(t+h) E{e?h\%+h)\Vt]

E[p&(u)|«ft] ". E[p$|^t]

E[Wu(t+h)P*+h|frt]
E[p*|^t]

• Eu[Wu(t+h)|^J .
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4. CONDITIONS FOR OPTIMALITY.

Two sets of criteria - Theorems 4.2 and U.3 - are

presented in this section. Theorem 4.2. is included for two reasons:

it is used later in establishing other criteria, and it is the

equivalent in the present context of Rishel's results (Theorems 8

and 9 of [13]). The process MWu(t)" of Rishel's Theorem 9 corres

ponds to the process Z^t) defined by (4.5) below.

The objective of this and the following sections is

to get Hamilton-Jacobi-like criteria for optimality; i.e. a local

characterization of the optimal policy in terms of the value

function. The results are bound to be less than satisfactory in the

case of partial observations as there is a different value function

for each control: the expected remaining cost from a certain time

on depends on what control was applied prior to that time. By

restricting attention, as Rishel does, tonvalue decreasing'1 controls,

in which class the optimal control, if it exists, must lie, one can

get some way towards the above characterization. This is Theorem 4.3.

Tlie case of "complete observations" is a great deal

simpler as here there is only one value function. This case is

treated in section 5.



The potential generated by an integrable increasing process {a^i

is

bt - E[ai| |t] - at

It is easy to check that the process ^u(t) of (3.1) is a potential

under measure Pu.

Lemma 4.1 Under measure Pu, ^u(t) is the potential generated by

the integrable increasing process

0

Proof: {a^} is clearly increasing, positive, and adapted to yt«

Also sup Eua£ <_ k. It remains to show that
t

*u<t> = Eu[*ll |t] - *t

In the following, c3 = cgu' .

♦ ^[f\ic.\ ys)dsi yt] - at

- /EJcslVt3ds

i

" EJ/ cs dsl?t] * ♦„<*> •

The legitimacy of the interchanges of integration and conditional

expectation in the above is easily seen in view of the boundedness

of c .
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Theorem U.2 u* e X is optimal if and only if there exists

a constant J* and for each u c % an integrable process {au(t)>

adapted to If. and satisfying

1

<*> Eu / *«(•)** s J*
* 0

(ii) Eu#[c|uf)| ^tl-au#(t) » 0
# for almost all (t,z)

•aKu)lV - au(t) - °

Then J* * J(u*) t the cost of the optimal policy.

Proof; Suppose u* is optimal. Let J* » J(u») = *u*(0). Define

<u c J# (^u(0))*"1 ;thus ku <. 1 and ku = 1 if u is optimal. Then

the process

«u(t) - ««»ui4u)lKt1

is clearly integrable and in fact satisfies (i) and (ii). Indeed,

1 1

Ej au(s)ds = ku Ej/ c8ds] = ku*u(0) = J*
0 0

and

•uKl ft J " °u(t) " (1 - Ku> V^IVtJ i °«

Conversely, suppose there exists an integrable process {au(t)}

satisfying (i) and (ii). Let Zu(t) be defined by

(4.5) Zu(t) • EjaJDl^.] - ajt)

t

where a„(t) = / ^(sjds. Recall that *u(t) is the potential
0

t

generated by / Eu[cs.| ft 8]ds. Thus
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1 .(«)♦tt(t) - Zu(t) =Ej/ Eu(o^| ^s)ds - / «u(s)dS| 1ft]

-/=ute(«)f|(,]d. +Au(s)ds

=Eu[/\(4U)l^s)-«uU)}ds|^]
^0 a.s. from (ii)

It follows that

(4.6)(a) ^ >_ zu a.e. (dA*dP).

Similar steps using the equality in (ii) lead to

(4.6)(b) ^ = zu« a.e. (dAxdP).
Thus

(4.7)(a) Vu(0) 1 Euzu(°)

M W(0) = W(0)-

But ¥u(0) =J(u) and EuZu(0) =Eu*Zu*(0) =J* from(i). So (k.l)
says

J(u) >^ J* = J(u«)

for all u £ U . This completes the proof.

Following Rishel [13], a control u £ U is called

value decreasing if

Wu(t) 1 Wt+h)l$tJ • a.s. for each t,

i.e. if (Wu(t), $ttpu) is a supermartingale. Any optimal control

is value decreasing: from Theorem U.l, W (t) » \f> (t) if u is

optimal, giving equality in (3.5) and hence that

t+h , .
Wu^> - ^[W^t+h)!^] =* Eu[/ csu>ds|^t]l0 a.s.

t
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On the other hand, optimal controls could conceivably be the only

value decreasing ones, though normally one would expect this class

to be a good deal larger.

In the case of value decreasing controls the value

function can be represented as an Ito process and the conditions

for optimality restated in a more intuitively appealing way.

Lemma 4.2 pet u e % be value decreasing. Then there exist

processes {AWU>,{VWU} taking values in R, R11 respectively and

adapted to ft., such that

1

(i) / [AW |2dt < « a.s.
0

1

(ii) E'/ |VWIds < «
0

t t

(ii) W (t) = J* + / AW (s)ds + / 7Wu(s)dys a.s.
0 0

under measure P.

Proof: By assumption (Wu(t), M, Pu) is a supermartingale, so that

from (3.5)

t+h / x

(U.10) |Eu(wu(t+h) -Wu(t))| <Ej / csu;ds] <kh .
t

Thus the function t -*• EuWu(t) is right-continuous, and therefore

( VI Tl* ) (such a reference is to Meyer's book [k]) {Wu(t)} admits

a right-continuous modification, which is assumed to be the version

30

t So called because they play a similar role to the functions A<j>

and <J>X =V<{> in the Markov case (see §l(C)). This will become apparent.



chosen. It is clear from the definition that Wu(t) +0 as t+1,

a.s. and in I»i(pu) so that {Wu(t)}is a potential. From(VII T29)

there exists a unique integrable natural increasing process {Aj.}

which generates Wu(t) ; i.e. such that

(4.11) Wu(t) « EutAil^] - At .
Define, for h>0,

Then (VII T2£) also states that

t

(4.12) / g| ds + ^
0

weakly in Li(Pu) as h+0 for each fixed t. Now from (3.5)

u , t+h f \
6t i |V/ 4U)d8l¥t3 <.k- a...

Thus the subset ft • {Bt :h>0} is uniformly integrable and hence,

from (II T23), weakly compact in L^(PU). There therefore exists a.

sequence hg+0 and an element o^. of L^ such that

.hn ^$t" + ot as n + •

It is then immediate that there is a sequence hg+0 and a subset

{ouj-: t e S}£L^ , where S is a countable dense subset of [0,1],

such that

3.n ? a. as n+» , for each t e S.

For t i S define a^ by

(4.13) a+ • w-lim a„
t , s*t 8

s e S
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To see that this limit exists, note that Bg is right-continuous in

s for each fixed h. Let 6 e 1^ . For t,t« e S, t»>t,

(U.14) |Eue(ot - v)| <(E^tot - #*)! +lv<°f - 3t?)|

♦ IV<?t"-*tn)l

Now e(ejjn - $7°) + 0 a.s. as tfvt and hence also in Llt in view
¥ t

of the uniform integrabillty. Chopsing n such that the sum of the

first tvo terms in (U.lU) is < % and then t' such that
2

lEue((?t, - ot)| <c .

Thus if tn*t,{ot } is a weak Cauchy sequence and the limit in
n

(4.13) exists.

For 6 e 1^ ,

t t t

(4,15) |E 6(/ ft ds - At)|< |E 6(/ «8ds - / B* ds)|
o o o

t

+ |Eue{/ S*ds - At)|
0

The last term converges to zero along {hn> from (U.12), and since

the expectations E $£ are uniformly bounded for h>0, by tebesgue^

bounded convergence theorem

t

/ E„e(ads - 6?n)ds •*• 0, n -* • .
0 u 8

Thus from (4.15),

t

EL6(/ a8ds - At) - 0 6 c I* , tc [0,1]
0



It follows that

t

(4.17) Aj. = / agds a.s. for each t.
0

Recalling (4.12) and in view of (U.17), evidently

<xt » w-lim B^n
n + »

for every subsequence {hjj} such that the limit exists. Therefore

(1+.18) ot = w-lim b£ .
h+0

Now (4.11) says

t

(U.19) Wu(t) = \[A±\yt] - / ctsds .
0

Y = Eu[A-jJ y.] is a right-continuous, hence separable, uniformly

integrable martingale on (C,?,PU). Applying Theorem. 2.3 with

Y = g^u), P* = Pu ,. shows that {Y^ has the representation

t

(4.20) Yt = YQ + / ^dvs
0

where &\>^ = T^dyt - gv> At) is a Wiener process under Pu. Here

(4.21) g<u) = Eu[g2(t,z,ut)||t] .

Thus from (4,19) and (U.20),

t , t

Vt} = Yo• " / K +VS4U (s))ds + / *sTs ^s •
0 0

Now Wu(0)= J* = YQ ; and defining

AWu(t) - - ot - i|»tTtg^u)(t)

and VWu(t) = i(;tTt
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finally gives
t t

Wu(t) =J* +/ AWu(s)ds +/ VWu(s)dys
0 0

as required.

34

Theorem 4.3 u* £ % is optimal if and only if there exists a

constant J* and for each value decreasing control u e% processes

{n+ },(siU^}» taking values in R, R01 respectively and adapted to

y , and satisfying the following conditions:

(i) n4u)!2dt <- a-s-» EAluWt =o.
o o

(ii) x^uHl) = 0 a.s., where

(4.22) XU)(t) = J* + / n£u)ds + / 5<u>a>
0 s 0 s S

(iii) 4u) +4*>Si<u)(t) +4U> 10 =n<u*> +4U*)4U*)^) +^

for almost all (t,z), for each u £ % .

Then xi ="u*^ a,s# and J* =J^u*^» tne ni*1111*11 cost-

Here g£U^(t) is defined by (U.21) above, and 4 is defined
similarly.

Proof: Suppose uc|( is value decreasing. Then from (3.5) >

t+h .

(4.23) Wu(t) - Eu[Wu(t+h)|^t] 1 Ej / csu'ds|^t] .

Now from Lemma 4.2,
t t

W(t) = J* + / AWu(s) ds + / VWu(s) dy8 .
0 0



35

Under measure Pu , (y. } has, from Lemma 2.1, the innovations

process representation

dyt * T^dvt + g£u)(t) dt
and thus

t t

Wu(t) = J* + / (AWu(s) + VWu(s)g^(s))ds + / VW^sjT^1 dv,,.
0 o

Therefore,
t+h , .

Wu(t) " EJWu^+h)|̂ t] = - Ej / (AWu(s) +VWu(s)|(u)(s) ds|$.],

so (U.23) becomes

t+h(4.24) EJ / (AWu(s) +VWu(s)g^u)(s) +c^))ds|̂ t] > 0 a.s.

Denote the integrand in (U.24) by Xg and take 8 eLtt, Then

_ t+h , t+h

x> x>

as h+0 for almost all t. Hence from (4.2U),

(4.25) AWu(t) +Wu(t)^ul(t) +4U) 1 0

for almost all (t,z). If u is optimal then equality holds in (U.23)

and hence in (U.25). Thus, identifying

n iu) = AW (t)
t u

4u) = wu(t>

4U) - wu(*) .

properties (i) - (iii) are seen to hold.
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Conversely, suppose J*, (ni-) »(§t ) exist and

satisfy (i) -(iii), for each value decreasing control. Let uel(

be value decreasing. Then under measure P , xt satisfies

where {dvt) is a Brownian motion. Define

^(t) = - n<u) - 4u)4U)(t) •

Then from (U,26) and (ii),

1

E / a (s) ds = J*.
0

{(^(t) } is adapted to U , and from (iii),

(4.27) EuCctU)l?t] " au(t) - ° •

In the case u = u*, (U.27) holds with equality. It now follows from

Theorem U.2 that u* is optimal in the class of value decreasing

controls. Since these are, as remarked earlier, the only candidates

for the optimum, u* must be optimal in H.

Since u* is optimal, wu*(t) =* ^(t) from Theorem U.l.

Now

*u«(t) =v[/4u*)dsi1ft)
t

- Vi/V -(«•> -«<*>#») ds -A<">*.! }t]
Xf V

from (iii),

u* t s t s s **



t

r
0

t , ^ t

• v Mu*)ds *Asu*w?t] *j* ««(")

xt

=;A<*%s ♦,A<tf,)*r8 * '*
o o

Thus .x|u** =Wu»(t.), as claimed.
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5. COMPLETELY OBSERVABLE SYSTEMS.

This section treats the case where the entire past

of z is available for control; i.e. (in the definitions of

Section 2) m=nand U^ = Jr^ for each t. Thus the admissible

controls (denoted by U ) are functionals of the past of z, and are

for that reason sometimes referred tp as "non-anticipative controls"

[9].

The considerable simplification that results in this

case is due to the fact that there is now only one value function.

In fact

*uv(t) = Bw[AiT,««| >t]
Xt

= E[p*(u)p£(v)/ 4v>ds| J%]

P&(u)

(5.1) = K[pJ(T)AiT)«B| 3t]

does not depend on u; thus Wu(t) = W(t) for all u, where

W(t) = A, B[pJ(y)AiT>a«|>t] .
™ni t s t

The principle of optimality (3.5) becomes

t+h

(5.2) W(t) < Eu[/ csu)ds|?t] + Eu[w(t+h)| 7t] .

Using this, a genuine Hamilton-Jacobi-type criterion (Theorem 5.1)

for optimality can be obtained. The method is as follows: first one

shows (Lemma 5.1) that there is a measure P* such that (W-t, ^t»p*)
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is a supermartingale. Then an Ito process representation for W(t)

and conditions for optimality are obtained as in the previous

section.

Recall the definitions of the sets 5 and $) from

section 2.

Lemma 5.1 There exists a process h <2 6 such that (Wt, JTt,P*)

is a supermartingale, where

gr - exp[cj(h)] .

Proof: Select a sequence (u^C % such that

J(V a *un(0) +W(0) = J* #

Now g(un) e§ and. hence PqC^) e$ for each n. From Theorem

2.2 there exists a subsequence, also denoted by {p(un)} , and an

element h e 6 such that

(5.3) PoK5 + p* 'weak1^ in Ll^p)

where p* = exp[c (h)] .

Evidently, from (5.3), for any t ^ [0,1],

(5.4) p^uj *EtpJ^)! ?t] + E[p«| }t] =expU§(h)] .

Define the measure P* by dP* * p*dP and let

P** « E[p*| ?t]

To show that (W^, J^,?*) is a supermartingale it suffices to prove

that for any t,h,FE ?•£,
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(5'5) /<wt+h -V*** = /P*J+h(wt+h -Wt)dP 1 °'
" F

Let p^ =p*£+h and pn =P^d^). Then

(5.6) K(«t+h -wt) = /(p» -Pn)(wt+h -wt) ♦ /pn(*uU) -wt)

+ /Pn(Wt+h" K ft+hJ) * /Pn(*Jt+l»M (t)).F n t+n un J, n Un un

The third and fourth terms of (5.6) are non-positive, the third

because i/> (t+h) majorizes W. .. and the fourth because dr is a
un t+n Un

supermartingale under P„ .
un

Fix e > 0 and choose nf such that tj>uio) <

W(0) + £ for n >_n» . From (5.2.) (with t=0, h=t),

V**^ "Wt] < e

for each t. Hence

(5.7) /pnt*u(t) - V 1 I*rSKM " *J
Pun r'J;n

= E [*Jt) - W. ] < e for n > n».
Un Ujj x. — —

Now Cwt+n- W ]IF e L^ ,so there exists n" such that for n >_ n",

/(p.- P„)(Wt+h - Wt) < c .
F

Thus for n >_ maxtn^n"], in (5.6),

/ '.<wt+h - wt> < e
F

whiqh is equivalent to (5.5) since e was arbitrary. This completes

the proof.



Lemma 5.2 There exist processes {AWt>, {VWt> taking values in

R0 TP9 respectively, and adapted to ?t ,such that

1

(i) / |vw|2ds < « a.s.
0

1

(ii) E/ |Aw|ds < «
0

t t

(iii) W+ = J® + J AW„ds + / VW„dzet £ s & s s

almost surely under measure P.

Proof: Choose a sequence {unl Cv~U satisfying (5.3) and such

that

n

Now

J(u ) •+ W(0) as n •+ ~.
n

(5.8) |E*(Wt+h-Wt)|= |E[P*(wt+h - Wt)]|

l|E[(p*-p(un))(Wt+h-Wt)]

+ |E[p(un)(Wt+h - W)]|.

The first term on the right goes to zero- asn->» since (W ,, - W )

£ L and since p(u ) •+ p weakly in L_ by (5.3). Also
™ n jl

E[p(un)(Wt+h - Wt)] = E[p(Un)(Wt+h - *u (t+h)]
n

+ E[p(un)0{>u (t) - Wfc)] + E[p(un)(^ (t+h) - * (t))],
n n n
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and by (5.7) the first two terms on the right go to zero as n •+ «.

Finally from (5.1) it is easy to check that

t+h

E[p(u )(if, (t) -* (t+h))] =E[p^+h(u )J cds] <kh.
n u u c ii *. ©

n n t

Thus letting n •+ » in (5.8) we get

(5.9) lE*(wt+h "wt)l -kh*

This implies, as in Lemma 4.2, the existence of a right-continuous

modification of W.; and since (W^., 7+tP*) is a potential, that

Wt * E^l^] - A,.

t

where A+ = w-lim / 3gds
h+0 o

and 6* = 1/h (Wt - E*[Wt+n|7t]).

The next stage is to show that 04. = d A. =w-lim 0? . It suffices to
dt h+0

show that Jr = {$*?: h>0} is uniformly integrable; then the rest

of the proof is exactly as in the proof of Lemma 4.2. From (IIT19)

of [U], Jf is uniformly integrable if

(i) E*b£ are uniformly bounded for h>0 ,and

(ii) /1B^IdP* + 0as P*F + 0, uniformly in h.
F

h —t(i) follows from (5.9). Since $t is ^-measurable, in proving

(ii) we can restrict ourselves to F £ <Zf~ . Now



(5.10) jh&l dP* =f [Wt - Wt+h]dP5

/[Wt-Wt+h](p*-p(un))dP
! F

+ I Cwt-wt+h^(VdP

Once again since (W. - W. ,,) € L and p(u ) *+ P , the first term on
u t+n oo xi

the right goes to zero as n •> «. Next,

(5.11) f'[Wt -Vh3p<Un)dP =f^V.^t "*u (t))dP
• F . •• F n

+ p(un)(^ (t+h) -Wt+h)dP
JY n

+ a P(un)(*u (t) - * (t+h))dP
Jf n n

From (5.7), the first two terms on the right go to zero as n •* »,

On the other hand from (5.1)

t+h*Un(t) =E[p^+h(un) J cgds|^t]
t

+E[pt+h(un^u <tHl>.l^t3» •
n
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so that

f p(u )* (t)dP = f P^(un)*u (t)dP
%. n Vi n

F

t+h

=/Cv(J csdaldp

Also

f Prh(« >♦I H0 n/ru
•^ n

(t+h)dP

fp(u )*|t (t+h)dP = fp^^n^u (t+h)dP
J n % n
F F

so that the last term in (5.11) is equal to

fpS+h(un)C J csds3dPlkh Jp0+h(un)dP
F t F

and converges to khP*F as n-* •. Thus letting n+»in (5.10) we

conclude that

* JL A

h$ dP < khP F.H
and (ii) is established. Therefore

(5.i2) wt - k-IaJ^I - /-.a..
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To represent the separable martingale E*[A1| J ],

again Theorem 2.3 is usepL. Recall from Lemma 5.1 that

dP* = exp[cJ(h)]dP .

Thus

(5.13) dw = a"!(dz - l^dt)

is a Brownian motion under P* and is in fact the innovations process

for {z^} since it is adapted to J . From Theorem 2.3 there exists

a process {«j>t> such that

t

(5.14) E*[Al| >t] = EMaJ + / ^dw

Combining (5.12) - (5.14) gives

s

0

t t

W = J* + / AWsds + / VWsdzs
0 o

where AW. = -at - <J>. oTlh+

This is the desired result.

Theorem 5.1 (Non-anticipative controls).

u* 6 ft is optimal if and only if there exist a

constant J* and processes {nt},{St} taking values in R, Rn respect

ively, adapted to 7^, and satisfying the following conditions:

1 1

(i) / UJ2dt < » a.s., E/ £.dz+ = 0
0 X 0 *

(ii) x(l) = 0 a.s., where
t t

(5.15) x(t) = J* + / nsds + / Csdzg
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(iii) nt ♦ 5t4u> +«4«> »0=nt +St4«*> ♦ c<u*>
for almost all (t,z), for each u zfl,

Then x(*) = Wt a.s. and J* = J(u*), the minimal cost.

Proofi Let u e H .Then from Lemma 5.2 and Girsanov*s

theorem,

t t

Wt = J* + / (AWg + VWsgsu>)ds + /?VsdWs
0 0

where {w^} is a Brownian motion under Pu. From the principle of

optimality (5.2),

t+h

:/
t

t+h

:/
t

i.e.,

(5.17) Eu[/ (AWS +VWsgsu) +csu))ds| 7t) 1 0 a.s.
V

Denote the integrand in (5.17) by Xg and pick 6 e L,,,.

t+h t+h

1Eu(9 EJ /Xsds| 7 ] * i /Eu(Eu[6|?t]Xs)ds
h t n t

+ EjEjel J^xJ = V*t

as h+0 for almost all t. It follows that

(5.18) Xt sAWt +VWtg|u^ +c^ >_ 0 a.e. (dA*dP).

If u = u*, optimal, then equality holds in (5.l6) and hence in (5.18).

Thus (iii) is satisfied with

nt = AWt , 5t - VVt , Xt = wt •

t+h f ,
(5.16) EjWt - Wt+h| ?t] = -Ej/ (AWs +VWs4U,)dS|^t]

t+h , .
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(i) and (ii) are easily seen to hold also. Conversely, suppose J*,

fr^MSt* exist and satisfy (i) - (iii). Take u eH . Then from

(5.15),

(5.19) xt * J* +/(n8 +5,gJtt))ds + /tCsasdws
0 o

where (Wt, ut»pu) is a Brownian motion. Define

«u(t) - -nt-et4u>-

Then from (5.19) and (ii),

1

Eu / au(s)ds = J* ,
o

and from (iii),

°tU*} "V(t) =°-H^ "V*) a.e.(dAxdP).

It now follows from Theorem 4.2 that u* is optimal. From Theorem

4.1, Wt = *u*(t) and so

1 f *} 1= E*[/ (-ns-CsgsU ;)ds - /5o dv*|* ] from(iii)
t t

1 1

=E*[ -/ngds -/^dzs| Jt]

t t

= E*[J n ds + / ? dz | J- ] + J* from (ii)
0 o

= x(t).

Thus x(t) = Wt , as stated.
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6. MARKOV CONTROLS.

In this section a more resticted class of models is

considered, namely those where the system matrices g and a depend

at a given time on the state only at that time. More precisely,

let $t ^e ^he a-field generated by the single random variable zt .

The definitions (2.3) and (2.5) are unchanged except for (2.3.)(ii)

and (2.5.)(ii) which now read:

(6.1) (ii)' For each fixed (t,u), g(t,-,u) and a(t,») are $t-

measurable.

In view of [3, §35.la] this amounts to saying that g and a are

functions on [0,l]xRnxR& taking on values g(t,zt»u) and o(t,zt)

at (t,z,u).

The class of Markov controls is denoted by #f ^Wq,

whereJH* is the class of functions u satisfying the following
s

conditions:

(i) u:[0,l]*R + HCR is jointly measurable.

(6'2) + 1(ii) E[p*(u)|?8] =1 a.s.

where p*(u) is defined by (2.6) with
s

gM as g(t,Zt,u[t,Zt]) .

Let ueZW. Then, from Theorem 2.1, under measure Pu the process (zt>

satisfies

t t

(6.3) zt = zs + Jg<u;dx + JaTdwT
s s

where (w., ?t, P )is aBrowniam motion. From (6.3) it is evident



that

so that zt is a Markov process under Pu; hence the term "Markov

controls", {z.} is also Markov under the original measure P.

The cost rate function c is also assumed to

satisfy a condition similar to (6.1), so that

c£u)(z) » c(t,zt,u[t,zt]) .

Stopping the process at the first exit time t from

a cylinder Q (as in §l(C)) can be accommodated within this frame

work. For let I(s,x) « 1 for (s,x) e Q and =0 elsewhere. Then

new system functions g° • Ig, a° = la and c° = Ic satisfy all the

relevant conditions. If u £ HI and E° denotes integration with

respect to the measure corresponding to g°*u , o° , then

Eu[/TcWds] = E°[/cs(u)ds] .
0 0

The remaining cost function .$u(t) is defined as

*u(t} = v/ 4u>dsi K]
t

- EjAi^dsl^]

= B[pJ(u) /"c^ds^]
x t

This does not depend on us for ss[0,t] ; there is therefore, as in

the case of complete observations, a single value function U(t,zt)

defined by
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Ut =U(t,zt) = An *„(t) .
ueWJ U

Xt

Since "I Cfl1 it is clear that U. > W. a.s. for each t. The main
t t t — t

result of this section (Theorem 6.2) is that in fact Ut = Wt " This

is intuitively clear: since the system's evolution from time t

depends only on z+ the controller gains nothing by taking account

of previous values z , s<t. The proof depends on a priciple of
s

optimality for the Markov case and results exactly analogous to

Lemma 3.5 and Theorem 5.1 for the completely observable case. The

proofs are almost identical here, the Markov property stepping in

whereever the fact ?se7t for s<t was used in section 5. So in the
following, complete details are provided only where there is sig

nificant deviation from the corresponding previous proofs.

Lemma 6.1 (Markov Principle of Optimality.)

Let ueW. Then for each t,h,

t+h

Ut<Bu[/ c(u)ds|0t] + EjUt+h| |t] a.s.
Xt

Lemma 6.2 There exist measurable functions AU: [0,l]xRn -* R

and Ux: [0,l]xRn -»- Rn such that

1

(i) E/ |AU(t,zt)|dt < »
0

1

(ii) / |Ux(t,zt)|2 dt < • a.s.
o

t t

(iii) U(t,zt) = JM + / AU(s,zs)ds + /U (s,zs)dzs
0 0

where JM = inf J(u) , the minimum Markov cost.
mUE
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Proof: The methods of Lemma 5.2 can be used to show that Ut has the

representation

t t .

(6.5) Ut = JM + /nsds + /Csdzg

where (nTi {£T>are adapted to ?t. it remains to show that nt,£t
are 0t-measurable for each t. For n=l,2... let

t

xn = min (l, inf{t: / |g |2ds > n})
0 s

xn is a stopping time of 3t and Tn+» a.s. since

1

/ Us|2ds < »
0

a. s.

Let
*t *t f or t< t

^- n

= 0 for Tn<tll

Let:

(6.6)
t

*t " / ?sdzs

n o

1 ,x

Wow E/ |?U;|2ds £n, so that M£n) is asecond-order (square
0 s

integrable) martingale for each n; thus Mj. is by definition a local

second-order martingale. The following results are proved in Kunita

and Watanabe[l2], Let

T= {(a1(t)-a2(t)) : ai(tAxn) is a natural,integrable increas

ing process adapted to ^t, i=l,2; n=i,2...}

If (Xt» Jt)»(Yt» ^t^ are local second order martingales there exists

a unique process <Y,X>^ eT such that for t>s
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a.s.

In addition,

(6.7) <Y»x>t = 1/^(<X+Y>t - <X-Y>t)

where <x>t = <X,X>t .

<X>t is known as the quadratic variation of X for the following

reason: if X has continuous sample paths then [12, Thm.1.3] there

exists a sequence of partitions (t^°', k=l,2..k }of [0,t]

such that

(6.8) max |t£n> -t£{\ +0 n-~>
k

(6,9) l{x4a)" x42l)2 * <x>*" <x>° a,s*as n-*• a>

It is s^own in [15] that for local martingales of the form (6.6)t

t

(6.10) <M> = / Is |2 ds a.s.
0 s

Also, referring to (6.5) and (6.9)9

(6.11) I (u (n) -U (n))2"*" <M>t - <M>0 a's* a8n**-
k * *

k k-1

(The sums corresponding to /n_ds converge to zero a.s, since this

term is of bounded variation.)

Let superscript i denote the i'th component of a

vector. Then from (6.6),

t t .

\ + z\ - / I ?Jd«J + /(Cs +Ddzs ,
0 J?H , 0

so that, using (6.10),



Therefore

t

<M+zi>t = / (|c|2 +2C +l)ds
0

. t

<M-zx>+ = / (|c|2 - 2S1 +l)ds .
0

t .

(6.12) <M,zi> = / 5 ds ,
*• 6 s

i.e.,

«t - ft<M«zi>t

In view of (6.9) and (6.11), for each h>0 there is a sequence of

(n)partitions {t£ '} of [t,t+h] satisfying (6.8) and

(6'13) ' nyt(n) -Yt(n))2 + <X>t+h-<X>t a.s.,n-
, k k-1

where in this case Xt =Mt + z£ or M. - z\ and Yt = Ut + zt

or U. - z^ . In either case, for any n the sum on the left of
t t

(6.13) is an J*+h-measurable random variable, where

?*+h u a{ze, s£[t,t+h]>
t s

It follows from (6.12) that

, . t+h .

is 3t+n-measurable. Now C **• £+ v-L, for almost all t. Hence
t t t ±

a subsequence of a sequence of convex combinations converges a.s.

and therefore $J is Jt+n -measurable for every h and hence
* t

measurable with respect to

h>0 z t

There is thus a measurable function Ux:[0,l]xRn -v Rn such that
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(6.1k) ux(t»zt) = h '

Referring back to (6.5) now gives

t+h t+h

/ V8 = Ut+h -Ut * / Ux(s'Zs) ds •
X X

t+h . -

Thus if n ds is 7X -measurable, so n. must be ^-measurable
hi s t ^

by the same reasoning as above. Defining

AU(t,zt) = nt

concludes the proof of the lemma.

Corollary. Suppose the value function U(t,x) has continuous first

and continuous first and second, partial derivatives respectively

in t and in x; then

(6.15) Ux(t,x) = |xU(t,x)

(6.16) AU(t,x) = 3U(t,x) + 1/2 J _j£jj(tfx) (go*)
3t i,«3 3xi3x J

Proof: Denote the right han£ sides of (6.15) and (6.l6) by Ux ,

AIT respectively. Under measure P

dz = a(t,zt)dBt ,

so applying Ito's lemma to the function U(t,zt) gives

dUt = Ux(t)dzt + AlT(t)dt .

t t
Thus / (U - tT)dz = / (AIT- AU)dt and the left hand member is a

o x x 0
local martingale which must be of bounded variation. It follows

t

that / (U - tT)dz = 0 a.s. for each t, and hence that
0 x x

AU£ = AUt , Ux(t) = U(t) a.s.



Remark: The corollary shows that the results of this section are

precisely equivalent to those of Fleming mentioned in the Intro

duction, when the relevant conditions are satisfied.

theorem 6.1 (Markov Controls.) u*e7W is optimal if and only if

there exists a constant JM and measurable functions n:[0,l]xRn -> r

and £:[0,l]xRn •+ Rn satisfying:

1 1

(i) / U(t,z. )|2dt <» a.s., E f?(t,z. )dz+ = 0
0 z 0 t

(ii) x(l) = 0 a.s. , where

t t

x(t) = JM +/ n(s,zs)ds + / £(s,z )dz
0 0

(iii) n(t,zt) + C(t,zt)g(t,zt,u[t,zt]) + c(t,zt,u[t,zt]) >, 0 a.s.

n(t,zt) + e(t,zt)g(t,zt,u*[t,zt]) + c(t,zt,u*[t,zt]) = 0 a.s.

Then x(t) =ut a.s. and JM =J(u*), the cost of the optimal Markov
policy.

Proof: As for Theorem 5.1, using Lemma 6.2.

Notice that since u(t,z^) can take any value in 5,

and the restriction of Wiener measure to'jft is absolutely con

tinuous with respect to Lebesgue measure, (iii) is equivalent to:

(6.17) n(t,x) + minU(t,x)g(t,x,v) + c(t,x,v)} = 0
veE

for all (t,x) e [0,l]xRn, and the optimal policy u* is character

ized by the property that [Ux(t,x) g(t,x,v) + c(t,x,v)] is

minimized by v = u*(t,x).
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Theorem 6.2 For the system considered in this section (i.e. satis

fying (6.1)),

inf J(u) = inf J(u) ,
U£#J UE#

where H is the class of non-anticipative controls.

Proof: From Theorem 6.1 and (6.17),

(6.18) AU(t,x) + Ux(t,x)g(t,x,v). + c(t,x,v) ^0

for all (t,x,v) e [0,l]xRnx5 .

Let u e#. Then the process {w.} defined by

dwt = ^(-g^dt +dzj

is a Brownian motion under Pu and

t t

Ut " JM + ! (AUs +ux8 )ds + /Uodw .
0 0 X

Now U(l) = 0 a.s., so taking expectations at t=l gives:

JM = EJ ("AU -Uxg(u))ds

1/ ^<" Eu fcwds from (6.18),

= J(u).

Since u was arbitrary,,

JM <_ inf J(u) .
usft

The reverse inequality is immediate from the inclusion Vt ^ H
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7. A NOTE ON TWO-PERSON. ZERO-SUM STOCHASTIC DIFFERENTIAL GAMES.

Stochastic differential games - control problems

where there are several controllers with conflicting objectives -

can also be treated by methods based at least implicitly on dynamic

programming. For instance Friedman in [22] has developed a theory

using partial differential equations analogous to that of Fleming

[93 for the optimal control problem. The "Girsanov" method of this

paper can also be applied. The intention here is not to provide

an exhaustive account but merely to indicate one or two.of the

possibilities; in particular, attention is restricted to two-person

zero-sum games where complete information is available to both

players. The method was first applied to games of this type by

Varaiya [8],[21]. See Theorem 7.1 below.

The game (G) is defined as follows. The system

dynamics are represented by

dz^ » g(t,z,u,v)dt + a(t,z)dwt

where g and a satisfy (2.5) with the obvious modifications. The

control strategies u and v take values in E.. c R and S c R

respectively and satisfy (2.6) with V = Jf. (complete observations)

The measure Puv is defined for any admissible strategy (u,v) by

where

uv » pl(Uv) = exp[i;l(g<uv))3dP.

dP

g<uv>(t.,*V' '<* g(t,z,u[t,z],v[t,z]).
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The payoff is.

1
r

o

Here E denotes expectation with respect to Puv and c*uv' *

c(s,z,u[s,z],v[s,z,]) is abounded function satisfying similar

conditions to thpse satisfied previously by the cost function.

Player I (control u) is attempting to minimize the payoff while

player II (control v) wants to maximize it. The game has a saddle

point if there is a pair of strategies (the equilibrium strategies)

(u*,v*) such that for all admissible (u,v),

J(u*,v) l J(u*,v«) <. J(u,v») .

Assumption; There exist equilibrium strategies (u*,v*) for the

game (G).

In [8],[21] it is shown that a saddle point does in

fact exist under certain conditions. To be precise,

J(u,v) = •ttr[/~cJttr,<to] .

Theorem 7.1 Suppose

(i) a = I (the identity matrix)

(ii) g has the form g(t,z,u,v) rg^t.z^n

(iii) For fixed (t,z), g.(t,z,-) and g (t,z,») are continuous

on 51 , E respectively.
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(iv) g.U.ZpH ) and g(t,z,g ) are closed and convex for each (t,z).

Then game (G) has a saddle point.



Let (u*,v*) be an equilibrium strategy for (G) and

let P* « pu»v* 9 E* a Eu»v» • For any admissible strategy, define

the process \|>uv by

r Juv)
vt " "uvW

Let

♦f - EuvC/ eiW'd.|?t]

>t - ♦?'V9

Lemma 7.1 For each t e [0,1] and h > 0,

t+h

(T.2) Eulfv[ / cf^sl?^ +Vv^t+hl?t3 1 *i
x

t+h

i Euy*t / e»*d.|7t] + Euv«[*t+hl?t] a-

Proof: Suppose there is a strategy v for player II such that for

some t,h,

t+h

♦t <W / cu*vds|3t] ♦ VvC*t+hl?t]

for z £ MC Jt , PM>0. Define the strategy v1 for player II by

v' = v t e [t,t+h], z e M

= v* elsewhere.

Then

t+h

(7.3) J(u*,v») - J(u*,v*) = Eu#v,(lM / cu*v'ds)
t

1 1

+ EU»V.(IM / cfv'ds) - E*(IM/ eg ds)
t+h t

where IM: is the indicator function of M. Now,

t+h t+h

Vv'(*M / cfv ds) - E*(IM E[p£+h(u*v) / cfvds|?t])
t t
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X*

- *tIM - E*(E[p*+h(uMlM*t+lA3)

(T.U) = ^M " Vv»(Vt+h) •

From (7.3) and (7.U),

J(u*,v») > J(u*,v»).

So PM must be zero. The other inequality in (7.2) is proved

similarly.

Lemma 7.2 Uuv} is the potential generated by the integrable

increasing process {auv(t)} , where

0

Proof: As for Lemma k.l.

0
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Lemma 7.3 There exist processes A<{>0 V$ such that

t t

<J> = J* + / A* da + / V<J>sdz8
0 0

Proof: From Lemma 7.2, <{> has the representation

1 t

♦t = E*t/ c* ds|?.] - / c* ds .
0 0

Under measure P* the innovations process of z is dw * a~*(dz - g*dt).

Hence from Theorem 2.3 there is process (Yt) 8Ucn that

1 t

E*[/ c* ds|?t] « /y^l1 (dz8 - g* ds) .
0 o



The result follows after defining

V$ = y a"*1

A<j> = c* -

Theorem 7.2 (u*,v*) is an equilibrium strategy if and only if

there exist processes {n+} {£+} adapted to ? , and a constant J*

such that

1 1

(i) / Uti2dt <a a,s# and E / 5tdzt = °*
0 0

(ii) x(l) = 0 a.s., where

t t

r nsds + /
0 0

x(t) = J* + / nsds + / 5sdzs

,...v „ . . , (uv*)r , (uv*)N , , (u*v*)r , (u*v*k(iii) nt + min(gN '£ + cx ') = n + (gv '£ + cv 0
u

, , (u*v) -. , (u*v) N _
- n + max(g '£ + c ) = 0

v

Then Xt = ♦t a*s' for each *» and J* is tne value of the g8^6*

Proof: Sufficiency is proved as in the proof of Theorem 1+.3.

Necessity is established by showing that nt = A<J>t and £t = v4>t

satisfy (i) -(iii). Fixing v = v* and using precisely the methods

of Theorem U.3 together with Lemma 7.1 gives the result with the

left-hand side of (iii), while fixing u = u* similarly gives the

right-hand side. This completes the proof.

For p g Rn, define
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(7.5) min max H(t,x,u,v,p) = max min H(t,x,u,v,p)
u v v u

for all (t,x,p) e [OjlJxCxR13.

The equality (iii) in Theorem 7.2 is a version of

Isaacs1 equation (the game equivalent of the Hamilton-Jacobi

equation). The partial differential equation counterpart of this

for the Markov (pure .strategies) case was derived by Friedman in

[22], and a solution shown to exist under certain conditipns;

notably ^ under the assumption that (7.5) is satisfied.
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