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ABSTRACT

The theory of single particle electron cyclotron resonance heating

in a magnetic mirror is treated analytically and numerically, using the

techniques of (a) integration of the Lorentz force equation and (b) trans

formation to a Hamiltonian approximation, to study both short time scale

and adiabatic effects. The force equation is analytically integrated in

the vicinity of the resonance plane to obtain the energy dependence of

the effective time spent in resonance per bounce t . For electrons pass-

-1/2
ing through the resonant zone at constant parallel velocity v , t « v

zk. e ZK

_P
For electrons which turn in or near the resonant zone, t a Vi , P = 2/3,

where Vi is the transverse velocity at resonance. These results agree

with the exact numerical integration of the force equation, for which

P * 0.5-0.7.

Electron heating is limited by the existence of invariants at high

energies, which present adiabatic barriers to the heating. The calcu

lation of the barrier location is considered in a Hamiltonian theory of

electron cyclotron heating, using the technique of resonance breakdown
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of adiabatic invariance due to secondary island formation. It is found

that resonance between the fifth harmonic of the energy oscillation and

Ok

the half-bounce period t, (appearance of five islands) is sufficient to

2 2destroy the invariant. For a parabolic mirror B(z) = Bn(l+z /L ), the <*
3

field necessary to destroy the invariant at a given energy is given by

eEL > 1.81 (x /t. )Wi_, where e is the electronic charge, E the rf elec

tric field, Wi_ the transverse electron energy at resonance, and t is

the period for the cyclotron phase to slip 2tt with respect to the rf

field. This result is in good numerical agreement with exact calculations.
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I. INTRODUCTION

It has long been recognized that resonance between gyrofrequency and

an rf wave can rapidly accelerate charged particles to high energy. How

ever, ROBERTS and BUCHSBAUM (1964), treating the problem relativisticly,

showed that even in a uniform field at exact resonance the relativistic

change in mass detunes the frequency, thus generally leading to a limit-

tation in the energy gain. Furthermore, confined particles are not in

uniform fields, and thus would only be in resonance for part of the time

during their motion. Just as off resonance particles have phase oscil

lations with respect to the accelerating field, and therefore energy

oscillations, it might be expected that energy oscillations take place

on a longer time scale if the particles oscillate in and out of resonance.

SEIDL (1964) investigated this possibility, and showed that, for modest

excursions about the resonant frequency and an energy gain per pass

through resonance small compared to the total particle energy, invariants

of the motion could exist. These limited the energy excursions, creating

an energy oscillation on a time scale slow compared to the period at

which the particle returned to the resonance region (bounce period for

a magnetic mirror, which was the case treated by Seidl). TUMA and

LICHTENBERG (1967) and LICHTENBERG et al (1969) investigated the phe

nomenon numerically, confirming Seidl's results within the validity of

his theory, but also showing that for large excursions from resonance

and large energy excursions per pass through resonance, the energy no

longer appeared to oscillate, and the phase of the rf with respect to

the particle at resonance appeared to be random, rather than ordered

as predicted by Seidlfs theory.
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An entirely different approach to the problem was taken by BRAMBILLA

(1968), KUCKES (1968A) and CANNOBIO (1968). They performed an integration

through the resonant region from an initial magnetic field in which the

phase difference was rapidly varying to a final field in which the phase

was again rapidly varying. They showed that the energy change in this

process could be considered to consist of three parts: a rapidly oscil

lating part dependent on the instantaneous phase, a part dependent on the

initial phase, and a part independent of phase. The latter two parts

were considered to be the non reversible or "nonadiabatic" portion of the

energy gain. In calculating the energy gain over many traversals of

resonance, Kuckes further assumed that the initial phase for each suc

cessive pass was random and concluded that the energy change dependent

on initial phase would therefore not lead to an average energy change.

He therefore calculated an average energy increase as the product of the

number of times a particle transversed the resonant region times the non

phase dependent energy gain per traversal. This general procedure was

also used by GRAWE (1969) to calculate the energy gain of electrons in

the Oak Ridge magnetic mirror device. However, while Kuckes assumed that

the electron's parallel velocity was constant in successive traversals

of the resonance region, Grawe considered that the transverse energy gain

on successive traversals resulted in the particle turning around within

or before the resonance region, with the penetration decreasing with

energy. This effect was enhanced in Grawe's analysis by including the

relativistic shift in cyclotron frequency, which further shifts the

gyration frequency at the turning point away from resonance. Other

calculations by KUCKES (1968B) Indicate that the rf magnetic force
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(ignored by Grawe) causes significant acceleration along the lines of

force, which result in continued particle penetration of the resonant

region. Numerical studies presented in Section 2 of this paper also

indicate that the particles are not forced out of the resonance zone as

predicted by Grawe. Although the heating predicted by Grawe was con

sistent with the experimental results (GRAWE, 1969), theoretical dif

ficulties considered in Section 3 of this paper and in a companion

paper (LIEBERMAN and LICHTENBERG, 1971B), in addition to the one dis

cussed by Kuckes, indicate that his result may be somewhat fortuitous.

In all of the work discussed in the preceeding paragraph there are

two basic difficulties; one is the lack of determination of the region of

validity of stochastic acceleration (random phase assumption) and the

other is the ignoring of geometrical effects in velocity space and the

phase dependent energy diffusion. LICHTENBERG et al (1969) considered

both of these questions. They showed numerically that a transition did

occur between stochastic and adiabatic behavior. In the region predicted

numerically to be stochastic, large energy gains were in fact observed in

a pulsed electron cyclotron heating experiment (LICHTENBERG et al, 1969;

TUMA et al, 1969). They also demonstrated that the energy dependence of

the heating gave rise to a component of heating and an energy spread from

the phase dependent acceleration of the same order as that arising from

the phase independent acceleration. Their results were only of qualita

tive validity, in that the form of the distribution function was assumed

rather than calculated from a solution to the Fokker-Planck equation. In

Section 3 of LIEBERMAN and LICHTENBERG (1971 B), henceforth referred to as

II, the Fokker-Planck equation is derived and the time dependence of the
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distribution function and the average energy gain is obtained. The re

sults obtained are in agreement with numerical calculations.

Stochastic heating is limited by the existence of invariants at

high energies. These invariants present an adiabatic barrier to the

heating of particles. The transition between adiabatic and non-adiabatic

regions was investigated for cyclotron heating by LICHTENBERG and JAEGER

(1970). The general mechanism for the resonance breakdown of adiabatic

invariance has been investigated by CHIRIKOV (1960), ROSENBLUTH et al

(1966), WALKER and FORD (1969) and by JAEGER and LICHTENBERG (1971).

We apply the method to the cyclotron heating problem in Section 3. This

is done by transforming to variables which are slowly varying compared

to the explicit time dependence and then averaging over the time variable.

This procedure, developed by BOGOLIUBOV and MITROPOLSKY (1961), eliminates

the time dependence from the Hamiltonian, which is then a constant of the

motion. Successive averaging over other rapidly varying variables intro

duces additional constants of the motion. The procedure is essentially

the one used by SEIDL (1964). However, at each stage in the averaging,

resonances between the fast oscillation and harmonics of the slow oscil

lation may modify or destroy the invariant. An isolated resonance may

be removed by transformation to new variables, resulting in modified

invariants, while strongly interacting resonances result in destruction

of the invariants.

The transition between stochastic heating and oscillatory energy

changes for cyclotron heating is closely allied to a wide class of prob

lems in which particles are subject to periodic, impulsive forces
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(ZASLAVSKII and CHIRIKOV, 1965; and LIEBERMAN and LICHTENBERG, 1971A).

Following a rough criterion for stochasticity found by Zaslavskii and

Chirikov, NEKRASOV (1970) obtained a criterion for the limit of stochastic

heating. In II, we employ the more exact methods of Lieberman and

Lichtenberg 1971A, to considerably sharpen this criterion. The approxi

mations required to obtain an impulsive heating model are considered, and

the adiabatic barrier to particle heating is derived. The results obtained

are in substantial agreement both with the Hamiltonian approximation of

this present paper and with exact numerical solutions. The averaging and

expansion procedure in the Hamiltonian approximation results in mappings

between resonances that are area preserving and thus different in char

acter from the impulse approximation. However, despite this fundamental

difference, the results are quite similar in most important respects.

We note that the treatment in this paper is for single particles,

which generally holds for the plasma frequency less than the electron

cyclotron frequency. This condition is often satisfied in ECRH experi

ments (LICHTENBERG et al, 1969, SPROTT, 1971). For experiments with

high gas pressure, the plasma frequency generally builds up only to

the level of the cyclotron frequency, beyond which the plasma may act

to shield out the applied field, changing the character of the heating.

The formalism which we develop is also applicable to ion heating, pro

vided the proper fields are used. However, in this case, the self

consistent properties of the plasma are usually important and we there

fore have emphasized electron heating. Another interesting case of

applicability is that in which the heating fields are self generated,

for example, a single quasi-flute mode of fluctuation in a mirror

i

machine (ROSENBLUTH, 1971). Here, as in the case of ion heating, the
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self consistent plasma properties must be considered.

2. EQUATIONS OF MOTION

A. Exact Numerical Integration of the Equations of Motion

The most complete solution for the motion of charged particles in

combined dc magnetic and rf electromagnetic fields is a numerical inte

gration of the relativisticly correct equations of motion

where

dr

dt
= v,

dv
—1 = e
dt mQY E + y x B - ^-? (E*y)

2\-l/2

Y- U-y-

(1)

(2)

For motion in a magnetic mirror, the dc magnetic field is approximated

near the mirror axis r < L1 by

where

x . „. irr . 2?rz
B0x =" 7 b Bo 17 sln 17

'oy

Oz

y . „. irr . 2irz
" r b B6 U sln 17

=»5[-[-(?)1 b cos
2ttz

L'
(3)

2 2 2
r =x +y,b=(R - l)/(Rm + 1), R is the mirror

m m m

ratio, Bq'U - b) is the magnetic field at the midplane, and z = + L'/2 are

the locations of the magnetic mirrors.
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For a given electromagnetic field, the six simultaneous differential

equations (1) and (2) can be solved by standard numerical techniques on

a computer. For simplicity a transverse electromagnetic wave propagating

in the z direction is considered, of the form

E = E [cos(wt - kz + <J>)£ + sin(u)t - kz + <j>)£]

(4)
E

B = — [sin(wt - kz + <J>)£ + cos(wt - kz + <f>)£],

where by proper choice of signs and amplitudes, circularly polarized,

linearly polarized, traveling and standing waves can be considered.

These fields correspond to practical heating configurations and are

appropriate to compare with various analytic heating models.

Exact computations are very convenient for phenonema that occur

on the time scale of the cyclotron period, rather time consuming for

practical orbits in mirror devices where the phenomena occur on the time

3
scale of the bounce period (10t < t, < 10 t ), and not very useful for

longer time scales. This allows for a detailed investigation of resonance

phenomena, an adequate method of treating energy oscillations for particles

oscillating in an out of a resonant region, and only very sketchy treat

ment of stochastic heating in which the longitudinal oscillation causes

phase randomization with respect to the resonant rf wave.

We have previously used numerical plots of the energy-phase relation

at successive resonance crossings to illustrate the different character

of adiabatic and stochastic behavior (LICHTENBERG et al, 1969). In

Section 3 of this paper and in Sections 2 and 3 of II, the exact compu

tations are used, as far as possible, to confirm the results of the
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approximate calculations determining the transition between adiabatic

and stochastic behavior and the properties of stochastic heating. The

computations are made to compare with phenomena on all time scales, with

the results successivly limited as the time scale becomes larger.

In Fig. 1 we plot graphs of the energy gain versus time for two

electrons of different energies confined in a magnetic mirror and accele

rated by a strong electromagnetic field that resonates with the cyclotron

frequency within the mirror region. In Fig. la, the injection energy is

low, 30 eV both perpendicular and parallel to the magnetic field, and

the electric field is sufficiently strong to raise the perpendicular

energy to approximately a kilovolt after the first pass through resonance.

From these calculations one observes that the parallel energy remains

fairly constant within the resonance region. On successive transits,

the energy perpendicular to the magnetic field may either increase or

decrease, depending sensitively on the phase at resonance. The particle

is also seen to turn within the resonance region provided the particle's

energy remains large. This is understandable, in that the parallel energy

at resonance does not change greatly, and thus the mirror force turns

the particle near resonance whenever the perpendicular energy at reson

ance has become large compared to the parallel energy. We shall put

these ideas on a more quantitative basis in the next subsection. The

type of orbit illustrated in Fig. la is one in which stochastic heating

can take place, on a longer time scale, and we shall treat this case in

detail in II.

In Fig. lb, the injection energy is higher, the applied electric

field smaller, and we observe that the particle's energy remains approxi

mately constant over times long compared to the bounce period. This be-
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havior is evidence of the existence of a new adiabatic invariant of the

motion, replacing the magnetic moment, which constrains the particle

energy. We deal with the theory of this motion in Section 3, and investi

gate the transition between the types of motion in Figs, la and lb, from

two different points of view, in Section 3 and in Section 2 of II.

B. Analytic Expressions

We now obtain expressions for the half-bounce time (time between col

lisions) and the time spent in the resonance zone, that will be useful for

later calculations. The half-bounce time in the absence of the rf field

is given by

I

0 • dz
Tb = 2 '2 / \11/2

where W is the total energy and y the magnetic moment (both assumed

constant) of the particle, and £ is the value of z at the turning point.

1 2Substituting for u at B(£) = \ax, then yw^ = w» and W can be removed

from the integral in the form

*& X
dz

Tb = 371 I TI ., , -,1/2 <5>

u x max' J

-1/2-1
which shows that t, scales as W or Vi .. For a parabolic magnetic

field of the form

B=BQ(1 +z2/L2),
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(5) can be integrated to yield

Tb =TTL(1 +9}l\})lvLV (6)

The effective time a particle spends in the resonance zone can be

obtained by solving the equation of motion of the electron in the neigh

borhood of resonance. We choose a local coordinate with z = 0 at resonance,

and which is assumed to be locally linear: B (z) = B(l + az);

B = - — Bar. We consider a circularly polarized wave with the electric

field rotating in the same direction as the particle under study. In a

system of reference that is rotating with the particle; i.e., introducting

1

the complex notation h, = -;— (h - ih ), the Lorentz force law is:
v L /2 x y

fFv1 +icocv1 --* Ei +iv8(»I +GX) (7)

where

dt Vz = iVl ^1 + ®P ~ ivl(wl + np» (8>

eB

a) = = u)(l+az)»
c m

ar.
e _ ±_

w, = — B, = - to —t—,
_L m -L 2

r -±\\)

~ e s . kc 1
fit = — B, = - i s

1 m x ai mc

and where E, and S± represent the electric and magnetic fields of the wave,

-12-
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In many experimental situations, the following inequalities hold:

kv
z

J

kvi lav
! z

>

avi

0) 0)

, 1 - ••

1 u 0)
< < 1 (9)

The first two hold if the electron velocities are slow compared to

the phase velocity of the wave, which is generally true for electron

cyclotron heating to non-relativistic velocities. Under these con

ditions, the longitudinal and transverse forces due to the wave magnetic

field can be neglected in (7) and (8). These forces are also neglected

in the Hamiltonian approximation in Section 3, but included in the exact

numerical computation of Section 2A. KUCKES•(1968B) has examined the

effect of these terms on the particle motion for relativistic energies.

The second two inequalities above are valid provided that the electron

larmor radius and the longitudinal distance traveled during a cyclotron

period are both small compared to the scale length of the dc field.

Under these conditions, the forces due to the magnetic field inhomo-

geneity (mirror forces) can be described in the adiabatic limit and to

a first approximation can be neglected in (7). One then has:

-rr v| + ia)(l+az)vi z
m -L

dT vz • V

1 2where aQ = yQ aB/m and y = j mv. (0)/B. Solving (11) subject to the

initial condition that z(0) = Az and v (0) = 0 yields

-13-
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v (t) = Az - aftt
z 0

z(t) = Az - j aQt

(12)

Inserting (12) into (10), and introducing the change of variables v^(t) =

V, (t)e~ iWt and E. (t) =e.e" i(0t, we obtain the differential equation

dvl-A-HflO:)^--* e±. d3)

where fi =coa(Az -j aQt2). The solution to (13) with the initial per
pendicular velocity specified at t « - T, and the final velocity deter

mined at t = T is

where

and

Vj^T) = Vp + Vi(-T), (14)

V = - - e, e
P m

•±e~ i0(t) [ ei0(t,)dt' (15)
-T

0 = wa(tAz - "t aQt ) (16)

The above specification insures that the initial and final energy are

12 _measured at the same axial position z = Az - -^ aQT . Putting Vp -

|V |e F and V,(-T) = ^(-T^e ,we see that (16) describes an energy

gain in the form
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lV1(T)|2 =IV-T)!2 +|Vp|2 +2|vp||vi(-T)|cos(d>0-(|>p)' <17>

showing both a phase-independent and a phase-dependent heating.

As we will see, the energy gain is acquired in a narrow zone

around the resonant position z = 0. Provided T is chosen sufficiently

large, then |v | is insensitive to the exact choice of T, and we can

write

V |=^ |E, |t > (18)
P1 m • J.1 e

where t is the effective time the particle spends in resonance, given
e

by

t
e

00

= I1 cosfaaAzt - -r waaQt )dt|« (19)

This can be expressed in terms of the Airy function as

t = 2uf1r |Al(x)|» (20)

where x = - TaAz,

2/3
r = MM > (2D

Vi is the transverse velocity at resonance, and in view of (9), T > > 1.
J. R

We now discuss the behavior of the effective time t , which is a
e

factor in determining the rate of particle heating In the mirror Hold.
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A graph of Ai(x), given in Fig. 2 is useful for this purpose. We dis

tinguish three different forms of particle-field interaction, depending

on the location of the turning point with respect to the point of reso

nance. For Az > 0, the particle passes through exact resonance at z = 0,

turns at z = Az, and then again passes through resonance. It is con

venient to introduce the parallel velocity at exact resonance, v „. From
zR

2 2 2(12), vzR = 2aQAz, so that x = - Tv R/viR in (20). There are two cases

to consider, depending on the magnitude of x. Before the microwave heat

ing field is applied, we expect that most of the particles trapped in the

2
mirror which also pass through the position of exact resonance have v >

zR

—1 2T viR> ie, |x| > 1. This will be true for the usual Maxwellian or mirror

loss cone distributions. For x £ - 1, we can expand the Airy function

in an asymptotic series to obtain

t =
e ""1/2(^)1/2'Sin(3x3/2+^-

The oscillation in t as x varies (see also Fig. 2) is the beating which

results from the two successive passes through resonance for the para

bolic orbit given by (12). If we had considered a single pass through

resonance, this oscillation would not be present. The result in (22),

taking the peaks of the oscillation, agrees with that of KUCKES (1968A),

who calculated the energy gain of an electron in a linear magnetic field,

assuming a constant parallel velocity v , for a single pass through

resonance. In this case, as (22) shows, we expect a particle with low

velocity along the field lines to gain more energy than a higher velocity

particle, since it spends more time in resonance.
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If the particle continues to gain perpendicular energy, v _ re-
zR

maining constant, it turns closer and closer to the position of exact

resonance. The detailed motion depends on the existence and

location of an absolute velocity barrier, possible particle losses,

parallel velocity diffusion of particles, etc. If these processes do

not limit the perpendicular energy gain, we eventually obtain the con-

2 2dition VjR * r vzR for a large group of particles; ie, |x| s 1. (There
2 2is also a small group of particles for which v. > T v initially.)

In this case, Fig. 2 shows that Ai(x) * A(0) - .355, so that

te z .71a)"1?. (23)

We now find that t is independent of v s. Substituting for T from
e zR

(21), we find that tg is inversely proportional to v,£ ;ie, the higher

the particle's transverse energy, the less efficiently it is heated.

If viR continues to increase, then the assumption that v is a
zR

constant is not fulfilled and the yVB force within the resonance region

may result in the particle turning before the point of exact resonance

(Az < 0). There is also another small group of particles for which this

is true when the microwave heating field is first applied. From the form

of Ai(x) for positive x, we see that the heating falls off rapidly as

|Az| increases for this case. Expanding the Airy function for large

positive argument, we find

te z .SSSuTh x~lMexp(- |x2/3), (24)

where x = Ta|Az| > 1; the heating falls off exponentially as |Az| in

creases.
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We estimate the effective width w of the heating zone for the limit

(22) of deep penetration as w « v t . For turning near the point of

resonance, from (23) and (24), we estimate w ~ Az when x z 1; ie, w *

T a . In both cases, making use of the inequalities (19), we find

that

aw < < 1; (25)

namely, the width w of the zone is much smaller than the scale length

a of the dc field variation. We also note that in all cases,

tot > > 1; (26)
e

ie, the particle makes many cyclotron gyrations in the resonance region.

In view of (25), we can choose the integration time T in (15) such that

t < < T < < t, , (27)
e d

where x~ is the time between collisions with the resonant zone. The
b

inequality (27) insures that the replacement T •* » in (19) is valid.

The scaling of x, and t can be tested numerically from the exact

equations of motion. We consider typical energy trajectories of particles

in the stochastic region as shown in Fig. la. The time x. between suc

cessive crossings of the midplane and the time tf spent in the resonant

zone, defined by a phase shift of tt between the rf and cyclotron phases,

are determined numerically. We note that tf is closely related to the
e

effective time spent in resonance t . Measuring t and t' over a wide

range of energy, the results are given in Fig. 3. These results are
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found to agree well with proportionality (6) for x, , and to the proportion

ality (23) for t applicable to particles turning within the resonance

zone. We also justify the assumption that v = constant for successive

resonance crossings from the numerical data. In Fig. 4, v, /c (triangles)
—R

and v R/c (crosses), the values at resonance crossing, are plotted for two

particles with different initial conditions. The parallel velocity is

seen to remain relatively constant, while the perpendicular velocity may

increase to a large value. For particle 1 there was a slow increase in

parallel energy at resonance, while for particle 2 (encircled points), the

parallel velocity decreased slightly and failed to reach exact resonance

on the last three passes. In both cases, the perpendicular velocity changes

included a random phase governing the acceleration, but particle 1, by

chance, gained energy nearly continuously.

3. HAMILTONIAN APPROXIMATION

A. Basic Equations

In the absence of the electromagnetic fields, the particle motion

can be approximately transformed to action-angle variables such that the

motion in each of the three degrees of freedom (cyclotron, longitudinal,

drift) can be considered separately (LACINA, 1963). SEIDL (1964) ex

tended the treatment to include the rf field as a perturbation and demon

strated that for sufficiently small rf fields, new invariants of the

motion exist which prevent particle heating. In this section, Seidl's

treatment is extended to larger fields. For this situation, the in

variants may not exist, in which case the particles may gain energy.

The important result is the calculation of a transition energy between

-19-



adiabatic and nonadiabatic behavior, which predicts an energy barrier,

as a function of applied field, beyond which particles cease to be

heated.

We calculate the transition from adiabatic to nonadiabatic behavior

using the method of resonance modification of invariants of JAEGER and

LICHTENBERG (1971) and following Seidl's treatment of cyclotron heating.

We use orthogonal coordinates as shown schematically in Fig. 5. All

lengths are normalized to £., the half-length between mirror points. The

2 2 2
magnetic field B is assumed parabolic, B/B. = 1 + an , where a = Jt /L

and n = z/£. Following Seidl, we designate action variables for the

Larmor, azimuthal, and longitudinal motions, P-, P« and P_ respectively.

The corresponding angle variables are w- , w~ and w... P.. is equivalent

to the longitudinal action integral

p3 =Jf (pn dn (28)

and w~ is the phase of the longitudinal oscillation so that n = n sin w~,

where n is the maximum longitudinal penetration, which can be shown

to be n2 = (2/a)1'2 P../P-1 . Similarly, w0 is the phase angle for the
m J 1 £.

azimuthal drift of the guiding center and P„ is proportional to the flux

through the drift orbit. The angle w- is related to the Larmor angle Q-

by the relation

Ql "wl "4pJ Sln 2W3 (29)

such that the longitudinal variation of the Larmor motion has been sub

tracted out to make v. = w. the average value of the Larmor frequency
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d

over a longitudinal bounce, rather than the instantaneous value. In the

midplane where w = 0, P. is proportional to the magnetic moment y =

Wi/B. Hence P is proportional to the perpendicular energy W, in the

midplane. In terms of P^ P2> ?3> W]L, w2> and w3, an expansion in powers

of P~ yields

, - v2

Hn = u P
0 o 1

Y0(P2) +Tl(P2) -f"/2+ Y2(P2) Kf.
1 ^ 1

where cd is the Larmor frequency at the midplane,

YQ(P2) =1-aP2 -\ a2P2

yx(?2) =(2a)1/2 (1 +aP2 -3a2P2 +...)

Y2(P2) =10 a2P2(l -4aP2 +| a2 P2 + ...)

and P and P2 are related to the particle energy in the midplane by

W1q =mW2L2Y()(P2)P1

¥ [VWi/2 +̂2<P2>P3]W = mw
zo

(30)

(31)

We note that (30) is independent of w_, w2, w„, and time t, so that P ,

P2, P , and H are constants of the motion.

If we add to the system a radio frequency electric field propagating

parallel to the mngnetic field; this rf field can be treated as n per-
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turbation on the original Hamiltonian H_ so that

H= HQ(P1,P2,P3) - e o)o E± (w1,w3,P1,P3,Wt) (32)

where

and

1 / 0 ii

^ = P1 cos(w -Tp- sin 2w3) cos(kLn sin 2wg)sin cot (33)

- vr
o)B L

o

(34)

and to, E and k are the frequency, amplitude, and wave number of the

electric field.

The dependence of the Hamiltonian on the time can be removed by

transforming to a new phase variable w' = w. - wt + Nw„» where N is the

number of 2tt phase slippages per complete period of longitudinal oscil

lation (2x, ). The angle w' is slowly varying with respect to tot, so we ,
b J-

can then average over cot. The procedure employs the method of averaging,

as developed by BOGOLIUBOV and MITROPOLSKY (1961). Although the limits of

validity of the method have not been established, recent work of JAEGER

and LICHTENBERG (1971) indicates that the method works provided the

period 2ir/to is at least a factor of five shorter than any other periodi

city in the system. A canonical transformation to the new phase variable,

using the generating function

F2 = (W;L - wt + Nw3)P^ + w2P^ + w3P^» (35)
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and performing the average, yields

<H>cot =%[(Y0 - w/a)o)Pl +Yl Pl (P3 +OT1> +VP3 +NV
1/2 (36)

eco P

H « sin(w' - a sin 2w_)cos(6 sin 2w_) ,

where a = -r P„/P, and 3 = kLT> . The primes have been omitted from all
4 3 1 m

variables that are unchanged. Hamilton's equations can then be inte

grated numerically in time to obtain the particle trajectory, with the

time scale for integration being on the order of a fraction of the bounce

period, rather than a fraction of the cyclotron period. The procedure

used by SEIDL (1964) to reduce the motion to quadratures is to assume

that wq is rapidly varying with respect to w' and perform a second aver

aging. Resonances between harmonics of the slower oscillation and the

fundamental of the bounce oscillation can locally distort the phase

space, either modifying the existing invariants of the motion or de

stroying them altogether. We shall consider these topics in detail

shortly.

An alternative to averaging over w_ is to choose a fixed w_ and

examine the phase plane at successive crossings of w.. = Const. This

technique is useful for numerically determining the existence of in

variants. Here, we reverse the procedure, assuming adiabatic invari

ance, and demonstrate that we can plot P. - w' in a surface of section,

giving answers very similar to the values obtained after averaging. We

,/„^v •, . *- /77 \ ,_ and chose
start from (36) , substitute appropriate constants for \H >cot

w_ at resonance (sin 2w. = (-1) for the unperturbed system). With
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these substitutions, (36) becomes

pl/2

Pl +(pi>1/2(p3 " OT1> " S" Pl +£"2~ cosCkLT^C-D11)
o

(37)

0?, - w\>

"•*(•!-*-hr1™') = Const.

Provided P is a constant of the motion, (37) will trace out a unique

trajectory in the P.. - w' phase plane, representing a mapping of the

curve of constant Hamiltonian into itself. This mapping can also be

constructed directly from Hamilton's equations without requiring Pj to

be a constant. In this case, no simple V^ - w^ phase curves may exist.

However, the Hamiltonian nature of (36) insures that the mapping is

area-preserving.

B. Results for Average over Bounce Oscillation

We consider the case of exact average resonance (w^ = w1 - wt) as

treated by Seidl. Expanding the perturbation YL^ in a Fourier series,

keeping only the slowly varying term,

- v}/2 * 1/ °° \ / -iw' iw'
"i --z- Zi(S >(B) ^-<°>)(- * +(-lA x

-i(w' + 2wt) „ ±<p\ + 2tot))V i2nw
+ e 1 - (-Dn e / e J,

where % is a Bessel function of order shown.3 is
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Averaging over w_ and tot, the total averaged Hamiltonian is

where

H=«o[Y0 "-/»„)?! +Tj. P[/2 P3 +y2?23)
(39)

• pl/2
+ e ai —x— f(P1,P3)sin wj,

f =E 4.<«> 4.<«
m=-°°

Since H is independent of wq, the lowest order adiabatic invariant is

P * constant. (40)

This is the main conclusion of Seidl's work. We note that the range of

validity of the averaging is considerably more restricted here than in

Section 3A, as the average is not only over the fastest variable with

frequency w but also over the slower longitudinal variable with bounce

frequency w,,. We check the accuracy of the average over w», by compar

ing the slow P , w' oscillation from (39) (Fig. 6a), with numerical in

tegration from (36) before the average over w_ but after the average

over wt (Fig. 6b). The numbers in Fig. 6b represent successive cross

ings of a plane of section in w ,

sin 2w - 1.0. (41)
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There are approximately six longitudinal bounces for each oscillation in

the perpendicular energy P_, the particle crossing a resonance twice

during each longitudinal period. The slight scatter in the points plotted

is due to inaccuracies in satisfying (41) exactly. The relatively smooth

curves traced out in the P. - w' phase plane indicate the existence of an

adiabatic invariant which in this case we know is P_ to lowest order. The

values of P., averaged over a longitudinal bounce are plotted in Fig. 7

for one of the phase loops of Fig. 6b, and we see that P~ is approximately

-4
constant and equal to its initial value of 4 x 10 . As a further check

on the theory, we have integrated the exact equations of motion (1) and

(2) numerically for parameters corresponding to Fig. 6b. The good agree

ment between the phase space plot of the exact numerical calculation in

Fig. 6c with the Hamiltonian result in Fig. 6b indicates that the Hamil

tonian approximation is valid. The agreement between Figs. 6a and 6b,

which shows that the average over the bounce is valid, holds for the

very low value of £ (field perturbation) chosen, for which the energy

gain per pass through resonance is very small compared to the total energy

of the particle. Since the particle energy is proportional to P-, we see

that the energy oscillates and continuous heating does not take place.

In the next sections, we examine the case for somewhat larger value of

e in which the bounce average is not valid, and determine a criterion

for the validity of the averaging.

C. Second Order Resonances and Invariant Destruction

In Figs. 8a, b and c, we plot trajectories similar to Figs. 6a, b

and c, except that the value of e has been increased sufficiently for a
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chain of islands to appear surrounding the closed phase orbits, indicating

a significant bounce-energy resonance. We include the exact numerical cal

culation in Fig. 8c, for the island chain only, to demonstrate that islands

can be observed in the absence of any approximations, although the islands

may not be stable over long times. A plot of P_ averaged over the longitudi

nal oscillation for the island trajectory is shown in Fig. 9. P- oscil

lates with the period of the island oscillation as is shown by the number

ing of the points. Points 11-16 lie on the inside of the islands in Fig.

6b and hence enclose a small area inside their phase loop. We see from

Fig. 9 that these same points have relatively low values of P_. On the

other hand, points 21-26 lie on the outside of the islands enclosing a

larger area inside their phase orbit, and we see from Fig. 9 that these

points have relatively high values of P..

To explain the behavior exhibited in these figures, it is necessary

to treat the higher order resonance in the system which in this case is

the bounce-energy resonance. We transform to the action-angle variables

of the P. oscillation; i.e., solve the Hamilton-Jacobi equation

H(3S/3wJ, w^,P2,P3) =H(JrP2>P3), (42)

where S(w|>J^) is the partial generating function to transform to action-

angles J- ,8-. As in Section 3A, we expand the average Hamiltonian, H,

about the elliptic singular point P , wJ . The average part of the

Hamiltonian in action-angle variables is then of the form

H=wo{[Y()(P2) -w/a)o] P~ +Yl(P2) P^/2P3 +Y2(P2)P3>

+F(P3) -fi°(P3)J1H -X2(JrP3)M(P3)] (43)
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where SI is the lowest order energy oscillation frequency, A =

3/2 0 1/2(2J^R) /(2ft J-) a e 9 an(j we have written J and J_ as P9 and P

respectively, since these variables are unchanged by the transformation.

F, R, ft and M are functions of P3 resulting from the expansion which are

derived in Appendix 1. The varying part of the Hamiltonian can be Fourier

analyzed as

pl/2

fil """X~S Sn(PrP3)[(-1)Jl +W>^ i£[(2J1/R)1/2]eXp(U01 +2inw3)

where

£,n

n^O
(44)

vw - L ^ X-2*M
m=-°

and a and 3 are defined as in (38) except with P replacing P . The

total Hamiltonian is

H = H(J1,P2,P3) - e<o0 H1(J1,P2,P3,91,w3) (45)

where H and H are given by (43) and (44) respectively.

If we now define the unperturbed frequencies:

v3(J-,P2,P3) = 9H/9P = longitudinal bounce frequency (46)

^J1,P2,P3^ = ^/BJ- = ener§y oscillation frequency, (47)

we see from the exponential argument in (44) that there can be resonances

in (45) of the form v'/H - - r/s. These resonances will introduce secu-

larities in the time rate of change of the simple adiabatic invariant V^.
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The resonances only occur for certain values of J- and P.- which in general

may vary due to the secularities. As we see in Fig. 8b, islands form

around elliptic singularities in the JL,9. plane. Hence we can transform

to coordinates (ei,w2,w_,J.,P2,P3) in which 8\ is the difference phase

2sw + r6-, which is slowly varying near the elliptic singularity. The

required generating function is

F2 = (2sw3 + r81)J1 + w2P2 + w^, (48)

which defines the transformation to the hat variables in the rotating

frame,

9^^ = 9F2/3J1 = 2sw3 + r01 J = W2/dQ1 = r3±

w2 - 3F2/8P2 = w2 P2 = 9F2/9w2 = P2 (49)

w3 = 3F2/9P3 = w3 P3 = 3F2/9w3 = P3 + 2sJr

Writing the perturbation (44) in terms of the hat variables and averaging

over w., we get

H — 2-»sn(Pl'^3 +^eS^U-l)1 +(-l)n] j)£I(2ri1/R)1/2]eXp[Uei/r].
Jw ,n

n^O
nr-£s«0 (50)

The double bar average corresponds to keeping just the most slowly varying

terms which, for the v3/ft = — r/s resonance, are the I = jr and n = js

terms where j runs over all positive integers.

The total average Hamiltonian taking into account the bounce-energy
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resonance can now be written as

- V771/2,*H=coo[(Y0(P2) -U/(oo)P1 +Y^P^i Z(P3 +2sJx) +Y2(P2)(P3 +2SJ./]

+FCPg.J^ -fi°(P3,J1)rJ1[l-A2(P3,J1)M(P3,J1)] (51)

pl/2 •

+£0)o "T- ^Sjs(P3'Jl)I(~1)Jr +(-1)JS] 4r[(2rVR)1/2]cos dV

where all quantities are derived in the appendix. Since H is independent

of w3, the correct adiabatic invariant for the island case is

P3 = P3 - 2sJ /r « constant, (52)

which reduces to the invariant P for a very high order resonance, r > > s

Since H in (51) is independent of time, we can use H - constant together

with P = constant to plot J. versus 9 for various values of H. Rather

than do this directly, we see from (52) that if J oscillates, then P ,

the adiabatic invariant without resonances, must also oscillate. This

explains the sychronized oscillation between P and J. observed in com

paring Figs. 8b and 9. We plot the oscillation in P , §. for the five

island resonance as solid lines in Fig. 10. The inner bold curve corres

ponds to the initial conditions of the five island trajectory in Fig. 8b.

On the right hand axis we give the ratio v./ft. The oscillation centers

about an average bounce-energy resonance number of v./ft = 2.5, as does

the five island trajectory in the numerical integration. At the extremes

of the oscillation, the ratio v./ft never moves very far from 2.5, going

to 2.54 at the top of the phase loop and 2.46 at the bottom, thus justi-
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fying the fundamental assumption for keeping only the most slowly vary

ing terms, that the system should remain close to a particular bounce-

energy resonance.

In the numerical integrations of Fig. 8b, we also find relatively

smooth phase loops near the elliptic singular point and ergodic tra

jectories beyond the islands. By plotting P3» §1 phase diagrams for

these other types of behavior, we can distinguish the physical mechanism

that differentiates among them. The most slowly varying term for the

islands (v«/ft =2.5) had £=5, n=l in the sum (44), plus higher harmonics

Taking r=7 and s=l leads to the much smaller oscillation about v3/ft =

3.5 shown as the family of dot-dashed curves at the top of Fig. 10.

Also, r=3, s=l contributes the drifting oscillations shown as dashed

lines. (The integral resonances v^/ft = r/2s = 1,2,3 lead only

to extremely small oscillations in the adiabatic invariant P3, and are

not considered). The bold dot-dashed and dashed drifting curves in

Fig. 10 correspond to the 9/2 and 3/2 resonances, respectively, for the

island oscillation of Fig. 8b. In the remaining discussion, we focus

the discussion solely on the bold curves, corresponding to the initial

conditions of Fig. 8b. Close to the 2.5 resonance, the drifting curves

of Fig. 10 average nearly to zero over an island oscillation. To see

this, we recall that the nonresonant terms average exactly to zero when

the system is right at the 2.5 resonance due to the orthogonality of the

exponentials making up the Fourier series (44). If the system is not

exactly at resonance, the nonresonant terms do contribute, but in the

approximation of a symmetric oscillation about resonance, the contri

butions above and below resonance cancel. The assumption of symmetry
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around the resonance is valid in the linear region close to the island

singularity, so that the total nonresonant contribution averages nearly

to zero over the island oscillation. Thus the double bar average (51)

with r = 5 and s = 1 is a reasonable approximation for the island

trajectory in Fig. 8b.

For the ergodic trajectory in Fig. 8b, shown as unconnected numbers,

the nonresonant terms do not average to zero since the system is not

close enough to the 2.5 resonance. The random trajectory, being a combi

nation of the bold curves in Fig. 11, lies between the 2.5 and 3.5 reso

nances, and is not close enough to either resonance to justify keeping

only one term in the sum. Furthermore, P,. cannot remain constant in

this case because of the large variations introduced by the r/2s =3/2

term. This term will also be rapidly varying with respect to the natural

bounce-energy frequency of the system which is approximately 2.72; the

net result is a random mixing of the three rapidly varying terms r/2s =

3/2, 5/2, and 7/2, leading to the ergodic behavior observed.

If we plot P , 9- phase diagrams for one of the relatively well

behaved phase loops near the elliptic singularity of Fig. 8b, we find

that although there is no single dominant slowly varying term, none of

the terms introduces significant variation in P-, as seen in Fig. 12.

This result is to be expected, as the strength of the near resonant

1/2
harmonic terms is proportional to Bessel functions depending on J .

The amplitudes of the harmonics decrease rapidly with decreasing action

V
If we compare the amplitude of the oscillation in P. as shown by

Fig. 9 to the amplitude of the 2.5 island oscillation given by the bold
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curve in Fig. 10, we see that the observed variation in P3 is a factor

of 2 to 3 times larger than the value predicted by removing the higher

order resonance. An underestimation of the variation of P. is to be

expected, since we have overestimated the nonlinearity by expanding the

average Hamiltonian to only fourth order in AP and Aw. The next term

would be of opposite sign, thus reducing the nonlinearity and making the

amplitude of the predicted island oscillations larger. We note, how

ever, that even if the phase loops in Fig. 10 were 2 to 3 times larger

in amplitude, the variation in P would still be only 1/5 to 1/3 of

that necessary for marginal overlap between the 2.5 and 3.5 resonances.

The actual overlap of neighboring island oscillations is not necessary

for breakdown to occur. Rather, it is only necessary that the islands

be close enough that a phase orbit between the two resonances is affected

significantly by both terms, as is the case in Fig. 11.

D. Limits of Stochastic Acceleration

In the previous subsection, we have explored the condition for the

breakdown of the invariants of the motion. This condition is, in fact,

complementary to the limit of stochastic acceleration, for it is the

existence of invariants that create curves of constant Hamiltonian which

bound the stochastic orbits. We now proceed to obtain simple approximate

criteria for the limits of stochastic behavior.

The results of the previous subsection indicate that breakup occurs

when the width of the second order resonances is approximately equal to

1/3 the resonance separation. Calculations performed on other systems

give similar results (JAEGER and LICHTENBERG, 1971). This criterion can

be written
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r dfi „, 1

fl dJ "max = 3* (53)

I'll
where ft is the frequency of the first order resonance at which the r

harmonic resonates with twice the bounce frequency, and J is the
max

island amplitude (half the island width). We can simplify H in (51) to

obtain to lowest order in e and in the nonlinearity

= ^ r 9ft A2 — "
H = ft J + - — J + e 6(J)cos 9 = const., (54)

9J

where

6(J) =|uiopJ/2S1 j)r[(2J/R)1/2]. (55)

It follows that

j .2(£Mllxl/2
max I Jift

\ 3J

such, that C53) becomes

1/2
ft^Ie r6(J)3ft/8Jl = 1/12 . (57)

(56)

Substituting for all values from Appendix 1, keeping only lowest order

terms in e, setting S = 1, and § [2J/R] = 1/r! (an over estimation),

(57) simplifies to

3/Ir(r!)"1/2 = 1. (58)

On the left, we have 1.9 for r = 5 and .95 for r = 6. This result is in

good agreement with the observed relatively unstable island formation for
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r = 5. Similar calculations on other multidimensional systems also in

dicate that the invariants cease to exist for second order resonance

numbers of approximately this value.

Although the equations in Section 3B describe the case of exact

average resonance (N = 0), closely analogous results hold for the more

general case in which there are 2N additional 2tt phase slippages within

each bounce. Here we briefly consider this more general case to demon

strate the similarity in the criterion for invariance breakdown and the

stochastic acceleration limit; and to derive some simple formulae from

which the adiabatic orbits and the stochasticity limit can be calculated.

From (36), with £ = 0, we obtain the unperturbed resonance condition

9<H > ,,/aP., = 0; namely,
wt l

u -to +a) (a/2P1)1/2PQ +No) (2aP1)1/2 =0> (59)
o o 1 3 o 1

from which we can obtain P3 as afunction of P1 at resonance. The un

perturbed bounce frequency v3 and the linearized energy oscillation

frequency ftn can also be found from (36). Differentiating (36) with

respect to P. with e = 0, we obtain

v3 =a)0(2aP1)1/2. (60)

To obtain ftn we first pick out the resonant term in (36), obtained as in

(39):

<H, > =u) P*/2f (p\,P.)sin w'* (61)
1 w_ olnlJ i
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where

fn "<-"X^«-2-(a) 2»(S)
m

The dominant term in f is generally m = 0, which gives
n

'.*<-»" 4.(*£) (62)

In the linear approximation, we can calculate the frequency of adiabatic

orbits from ft = (FG)1'2 (LICHTENBERG, 1969), where F=9H/9w]L and G=

92H/9P2 are the lowest order terms of the linearized Hamiltonian. We

find

ffD-3N) (2a)1/2 '0)

^o"

Similarly, the elliptic phase space trajectory is given by

AP, =(F/G)1^2 -tf'*

where, in lowest order

1/2

(I)
2 e Plfn
~p3

•&— + 6N

1

1/2

(63)

(64)

(65)

and <J>- is the phase at which P1= P (AP- = 0).

We now use (63) to obtain an approximate overlap criterion, with the

results equivalent to those for the case of exact average resonance (N = 0)

Numerical calculations for the case of 2ttN slippage, although not as ex-

-36-



tensive as those carried out for N = 0, indicate that the adiabatic orbits

are destroyed at a low order resonance between the bounce motion and the

energy oscillation, of the form

v3/ftQ = r/2, (66)

where r is an integer between 4 and 6. Because of symmetry considerations

the even harmonic interactions are considerably weaker than the odd har

monics (LICHTENBERG and JAEGER, 1970) and we consider that r = 5 at the

breakdown of adiabaticity.

We first compare this result for the value of the rf field necessary

to obtain stochasticity with the numerical calculation of Fig. 8b. Substi

tuting (60) and (63) into (66), with N = 0, and setting f = -r, we obtain

e=C8/r)2 P2/P3, (67)

which, for the numerical values of the five island case of Fig. 8b, gives

an e = 6.5 x 10 , which is in reasonable agreement with the e = 4.7 x 10~5

used in the five island calculation. If a somewhat smaller value of €

were used in the calculation, the five islands would appear closer to

the elliptic singular point, corresponding more closely to the linear

frequency used in the calculation of ftQ and thus giving better agreement.

However, in this case, the Bessel function approximation leading to (58)

would be a greater over estimation, and we would find that island overlap

would not occur.

We can get a feeling for the magnitudes involved in the stochasticity

criterion by substituting into (67) the physical parameters. The normal

ized action integrals are related to the physical parameters by (31) and
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the additional relations P. =77 (r_ /L) and P0 =^ (r /L)2, where rT
1 i. JLiO z Z. go Lo

and r are the Larmor and guiding center radii measured at the midplane.

A set of nonrelativistic parameters corresponding to Fig. 6 are A =

30 cm, L =6 cm, v, /c = 1.8 x 10" ,v /c = 3.7 x 10"3, r = 2cm, r
-to zo go Lo

-28.5 x 10 cm, BQ = .36 KG, and E = 4.5 V/cm. This is a weak electric

field case which has also been scaled to low velocities. The breakup

of the invariant curves, corresponding to Fig. 8, is for a field 5 times

as large.

Returning to the more general case of 2ttN phase slippages per bounce,

we can obtain a condition analogous to (67) for the stochastic boundary.

Combining the unperturbed resonance condition (59) with the assumption

1/2
that n = n , then to/o) - 1 = 2N(2aP-) , and we find that P0 = 2NP-. Sub-

res m o 1 0 1

stituting this result into (63), (66) yields for the stochasticity

condition

e=2(8/r)2P2/P3 (68)

We note that (68) differs from (67) by a factor of two, because exact

resonance is a special case that must be treated separately. However,

since P3 is considerably larger for N f 0 than for N = 0, (68) gives

values of e smaller at the stochastic barrier.

To obtain a physical feeling for the barrier conditions, and to

facilitate calculations, we reintroduce the physical parameters from

(31) and (34), to obtain

2 T
I / X t

eEL >7=(!><i.
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where x = 2Nx, is the period for the gyration phase to slip through 2-n

radians with respect to the field in a half-bounce time T,. T is related
b s

to the gyration period by a small numerical factor, which for the parabolic

well is

Ts=Tco(L/*>' <70>

where t is the cyclotron period at the bottom of the well and the

resonant points are at z = + I. Therefore, except for a factor of order

unity, the energy gain over the scale length of the system L must be

greater than the particle energy by the ratio of the cyclotron period

to the bounce period for the particle to be stochasticly heated. Although

slightly less physical, a more practical form of (69) is given by solving

for the energy in terms of the field. Substituting for T, from (6), we

obtain

WlR <1.15(t/xs)2/3 eEL, (71)

where t is a field dependent time given by

(72)

To illustrate these results with a practical example, we take the

parameters of an electron cyclotron heating experiment previously re

ported (LICHTENBERG et al, 1969), for which Tcq = 10" sec, L = 15 cm,

£2/L2 = .25 and E = 10 volts/cm (200 kw pulse transmitted into a 10 cm

diameter chamber). Then x = 4x from (70), t = 8.5 x from (72), and
S CO s

from (71), we obtain the criterion for stochasticity that Wj R < 70 keV.

This is well above the actual heating of - 10 keV measured experimentally
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However, for weaker fields or longer heating pulses (a 0.25 usee pulse

was used in the experiment) the heating limit can easily be reached.

We shall show in Section 3 of II that the experimental heating can>

be predicted very accurately from a stochastic theory. In Section 2 of

II, the criterion for stochasticity (71) derived from the Hamiltonian

theory is compared with a similar criterion obtained from an impulsive

treatment of the rf field, and both criteria are compared with the re

sults of exact numerical calculations. Anticipating this comparison,

we find good agreement (within 30%) among the Hamiltonian, impulse and

exact numerical calculations.

4. CONCLUSION

In conclusion, we have shown that the effective time a particle

spends in resonance per bounce t for particles turning in the resonant

-2/3
zone is, from (23), t « Vi , where Vi is the transverse velocity at

resonance. Numerically we have found that if the energy gain per pass

through resonance is comparable to the initial particle energy, then the

particle will turn in the resonance zone after the first or the first few

bounces. Any theory of stochastic heating will therefore have to incor-

-2/3
porate the t « Vi law, and we do so in II, Section 3.

Using Hamiltonian theory we have shown that sufficient invariants

may exist at high energy to create an energy barrier for a given field,

beyond which stochastic heating cannot be maintained. The mechanism by

which the invariants are destroyed is a resonance between the fifth har

monic of the slow energy oscillation and the half-bounce period. By

examining the energy oscillation in the adiabatic approximation, the

fifth harmonic resonance can easily be found, for a parabolic magnetic
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well, in terms of the system parameters. For exact average resonance,

we have shown that the result agrees well with exact numerical calcula

tions. For the more general case of phase slippage, a relation between

a given field strength and the limiting energy for which stochastic

heating can be maintained is given in (71) and (72). In II, Section 2,

these results will be shown to agree well with an impulse approximation

and with an exact numerical integration of the equations of motion.
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APPENDIX 1.

In this appendix, we expand the average Hamiltonian (39) about its

elliptic singularity and use second order perturbation theory to trans

form to action-angle_variables. Repeating (39),

H = wo[(y0 -*-^/too)P1 +Y V]12 P3 +y2P21
+2eft)o-Pl/2 f(pi»p3)sln w{'

we write Hamilton's equations

pi - - IwT - - i -o pi/2f (prp3)cos wi

9H

1 9P.
w: = =uo [(Y0 " 1 Y1P3

0)/Wo) + 23/2

1 c ,.1/2 3f
2 £U)o(Pl W+ -^ ew_ (P"'* ~- + - —^pi )sin wj

For the elliptic singularity P , w.', using (A2) and (A3) , we obtain

3f

8P. eP1/2

Wi = 2

Y1P3
(Y0 - tt/tto> +7^1/2

-44-

f<Pl>P3)
2P,

(Al)

(A2)

(A3)

(A4)

(A5)



where (A5) must be solved numerically for P-. We expand the functions

«l/2f(P1,P3), Px , and sin wj about P ,w'. Defining

«p - p - p

Aw = w' - w'

we obtain

H = a)
— —1/9 9<Y0 - o,/loo)P1 +y^'h +Y2P3 + F(P3)

(A6)

G(P jim! . P(P) s&L +A(P >i^il +B(p >̂ f^ +i(p >-^

+D(P )WV'?' +E(P )-^

where

f =iuo pi/2f^pi*p3)

u_epy2/3Y,*o/e + 3f(P,,P,)/2 2(yn - u/u )
G - ° 1G 2

13'

^i
l'"3"" + "N,0

ep3/2 3P?

%£ /3y1P3/£+3f(P1,P3)/2 ^
A -1/2 I „-2 + Pl _3

2
. 3 9 f

I 2z 9p:4P 2P!
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, 3 (Y0 - fl,/Mo)
2 £p3/2

fc 1

(A7)



I =

D =

E =

B. "° £/l/2 f3(YQ - (°/M°) +3Y1P3
e P 2 e P

-3o>o e /3YlP3/-8 +3f (P1,P3)/2 4(Yq - M/M<>) ^^
16P^/2l 2P2 3e?l/2 38P2

"o EPl/2 (2y1P3/E +3f (P1,P3)/2 2(yq - ui/wo)
2 * ai2 +~7?p"

"o £Pl/2 £<pi>.p3)

9 1 3
3p:

4 «2 A
p

9 1

»I

32f
3P^

Since the first two terms on the left of (A7) do not depend on the vari

ables P. , w' they can be combined with H in determining the AP - Aw

motion with P_ and P constant. The Hamilton-Jacobi equation for Hamil

tonian (A7) becomes

-G(P3)-^ -F(P3)-^+A(P3)-^ +B(P3)^f^+I(P3)^

2,. .2

+D(P3)<AP^ <*»> +E(P3)-^- =K(J]L,P2,P3)

(A8)

We can now transform to action-angle variables J., 6 for the linear

problem using the polar coordinate transformation
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AP = (2J°R)1/2 cos 0°

Aw - (2J°/R)1/2 sin 0°,

for which (A8) becomes

HQ(J°) +5H1(J°,eJ) +62H2(J°,eJ) =K(JX,P2,P3), (A9)

where

Wl - - *°%

1^,8°) =x{n°j° f(Acos3e; +\ cos ej sin2^)}

^(jO.eJ) =x2 In0^ f(ico.4e; +̂ cos2e° sin2e°
^ R

;»}+ ^7 sin 6
R4

R= (F/G)1/2, Q° •= (FG)1/2, X=(2J1R)3/2/2fi°J1

and 6 is an artificial constant measure of smallness. Using standard

perturbation theory, we solve for the first order generating function

S=|J^X sin Q1 fA(cos29° +2) +~ (sin20°)] » (A10)
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and the second order change in the energy,

k2 =n°J1x2M(P3),

where

W/D, 3 PT11 GD.3 GE.5 .2,1 AB, 1 B
M(P3} =16 GI +16^2 +16 7+24A +12 ^2 +24 ^

(All)

The average Hamiltonian H in action-angle variables J.,,0, , valid to X ,

is

H(J1,P2,P3) = wo <y0 -./Wo)P1 +YlP^/2P3 +Y2P^ + F(P3)

-fi°J1(l-X2M), (A12)

and the frequency of the energy oscillation, 6- , is

K-§; - - *°<p3> 1-2X^(J1,P3)M(P3) (A13)

The nonlinearity in the energy oscillation prevents a secular increase

in the action. The second order term in S(J-,8-) is

S2 =V2{f sin 9° cos 6° [l(cos28°+f) +̂ (-<=os26°+\)

+\ <-.i»28° -|)]+|sin 8° cos 8° [a2(± co.*8°

,5 2A0 _,_ 5 N ^ AB ,1 2 0. 2 0+ -^ cos 01 + -jj) + -j (j cos 01 sin ©x
R

-48-
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-Icos28? +|) +̂ (i sin^ -ij .*.*.« -&]}> ttU)

from which we obtain the transformation from variables AP, Aw to action-

angle variables J1, 0.. correct to second order in <5. As a check of this

transformation, it can be substituted into (A8) to verify that this

equation is satisfied.
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Fig. 2. The Airy function Ai(x) vs. x.
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energy W.
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Fig. 5. Orthogonal coordinate system defined by the magnetic lines of

force.
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