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ABSTRACT

This paper is concerned with the foundational aspects of nonlinear

n-ports. Differential geometry provides the natural setting for this study.

The p-atlas proposed herein for characterizing algebraic n-ports is general

enough to provide the "closure property" desirable in the formulation of a

unified theory of nonlinear n-ports. It is shown that most n-ports of

practical interest may be characterized as an immersion in R . The rank

of the immersion provides a logical definition for the dimension of an n-port.

An "n"-port is then classified as singular, regular or dense, depending on

whether its rank "m" is less than, equal to, or greater than "n".

Most results in this paper are concerned with regular n-ports and their

representations. The existence of a hybrid or a transmission representation

is interpreted geometrically as equivalent to the commutativity of a certain

projection diagram. From the global point of view, a regular n-port is class

ified into various subclasses such as increasing n-ports, homeomorphic n-ports,

proper n-ports, etc. Some of these classifications have the desirable prop

erty of being an invariant of the n-port. From the local point of view, the

important subclass of reciprocal n-ports is characterized. Reciprocity and

antireciprocity criteria for various modes of representations are derived.

Research sponsored by the U. S. Navy Electronics Command, Contract N00039-71-
C-0255 to the University of California, and by the National Research Council
of Canada, Grant A 7113.

f
Department of Electrical Engineering and Computer Sciences and the Electronics
Research Laboratory, University of California, Berkeley, California 94720.

*f**f*

Department of Electrical Engineering, University of Waterloo, Waterloo,
Ontario, Canada.



-1-

I. INTRODUCTION

An electrical n-port is a black box with n pairs of external terminals

called "ports" such that the current entering a terminal of each port is equal

to the current leaving the second terminal. The theory of n-ports is probably

the most fundamental aspect of network theory since most network theoretic

concepts such as reciprocity, passivity, losslessness, etc. are defined only

for n-ports. Indeed, with the help of the "connection n-port" recently intro

duced by Brayton [l], any network may be viewed as an interconnection of

appropriate n-ports . Although network theorists have succeded in developing

a unified theory of linear n-ports during the last two decades [3-6], very

little has yet been done for nonlinear n-ports. The relatively slow progress in

the theory of nonlinear n-ports is due not only to the difficulty in the math

ematics involved, but also to the lack of a precise and logical characterization

and classification of n-ports. The class of nonlinear n-ports is much too large

.-- indeed, it includes all n-ports! In order to obtain useful results, it

would be necessary to characterize and classify n-ports into appropriate hier-

achies. Our main objective in this paper is to present an in-depth study of the

characterization, classification, and representation of n-ports. The results

presented will serve as the foundation for a subsequent paper dealing with the

circuit theoretic properties of nonlinear n-ports.

II. MATHEMATICAL CHARACTERIZATION OF N-PORTS

Let v = [vr v2, ... vn], i = [i1, i2, ..., in], 9 ° 1<9V V2> "'> ^x?»
and q = [q^, q2, ..., q ] denote respectively the port voltage, current, flux-

2
linkage, and charge vectors associated with each n-port N, where v = cp. and

i. = q.« If we define the "mixed port vectors" x = [x., x„, ..., x ] and
J J u 1 2 n

y =[yp y2> •••» vn]> where l*y y^ c£vj» ij» Vy ^^' xj * yy xj ^ ^i and
x. ^ y V j = 1, 2, ..., n, then N is snid to be an algebraic n-port if it
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is characterized by m functional relationships

fj(x, y, t) « 0, j = 1, 2, ..., m (1)
where m need hot equal n. An algebraic n-port is said to be time-invariant if

the time variable t is not explicitly present in (1). Otherwise, it is said to

be time-varying. An algebraic n-port is said to be an n-port resistor if

{x, y) = {v, i}, an n-port inductor if {x, y) = {cp, i}, an n-port capacitor if

{x, y] = {v, q), and an n-port memristor if {x, y) = {cp, q}. Since (1) does

not involve either time derivatives or integrals of x and y, there is no loss

of generality in restricting our study to time-invariant algebraic n-ports.

Moreover, to avoid redundancy, we will address this paper only to n-port

resistors. Analogous results would apply mutatis-mutandis to any other algebraic

n-port.

In order to motivate and justify the large hierachy of n-ports to be

introduced in this paper, consider the following examples illustrating the

types of composite v-i relationships that could arise as a result of inter

connecting n-ports together.

Example 1. The simplest case consists of connecting two 1-ports R. and R^ in

series as shown in Fig. 1, where six interesting possibilities are shown.

Observe that with only 2 segments per v. - i. curve, j = 1, 2, it is possible to

obtain a composite curve with self^intersections, as in (a) and (b), or with a

finite perimeter, as in (c). More complicated v-i curves can be obtained as in

(d), (e) and (f) with only 3 segments per v. - i. curve. Here, it is possible to

obtain two disjoint branches.

Example 2. The circuit in.Fig. 2(a) consists of a 2-port N (in fact, a current-

controlled current source) and two 1-ports R and IL characterized by the v. - i.

curves shown in Figs. 2(b) and (c). The composite v-i curve shown in Fig. 2(d)

consists of the union of a closed line segment and two isolated points. It is
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easy to see that if we replace R_ by a short circuit, the composite v-i curve

would reduce to 3 isolated points; namely, (0,-1), (0, 0), and (0, 1). If we

also replace R by an open circuit, the composite v-i curve degenerates into

one point at the origin and becomes a nullator [6].

Example 3. The circuit in Fig. 3(a) consists of a 2-port N and three 1-ports.

With the v. - i. curves shown in Figs. 3(b) and (c) for R and R , the composite

v-i relationship covers an entire area, as shown in Fig. 3(d). In fact, if we

replace R and R by short circuits, and R_ by an open circuit, the composite

v-i relationship would cover the entire v-i plane and become a norator [6].

Example 4. To show that an unicursal v-i curve [8] v s v(p), i = i(p),

pepC r , could be synthesized, including those with self-intersections and

cusps, we introduce a new linear 3-port N in Fig. 4(a), called the "unicursal

3-port" and characterized by the hybrid matrix:

"0 -1 0~| Tv.

0 0 1

-10 0
*3'J 3J

If we connect two voltage-controlled resistors R, and R^ (characterized by

iA = gA(vA) and i = g„(v ) respectively) across ports 2 and 3 of N , as shown
A A A a o D P

in Fig. 4(b), we obtain a 1-port with the composite v, - i, curve ij = g.(p),

vi = 8t»(P)* To show that the unicursal 3-port is nothing exotic, we offer a

simple realization using only a voltage-controlled voltage source N and a

current-controlled voltage source N, , as shown in Fig. 4(c).

Example 5. To show that actually any subset of points in the v-i plane could

be realized, we introduce yet another linear 3-port in Fig. 5(a), called a

"union 3-port" and characterized by v, s v, = v. and i. = -i- = -i^. If we

connect two 1-ports R and R^ across ports 2 and 3 of a union 3-port as in

Fig. 5(b), then the composite v. - i. relationship of the resulting 1-port is

simply the point set union of the v-i curves for R and R . Indeed, a v-i
A B
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curve with any number of branches could be synthesized with the help of a

4
"union n-port". For example, the union 4-port N. synthesized in Fig. 5(c)

can be used to generate a v-i curve with 3 distinct branches. To show that

even a "union 3-port" is not too exotic, we offer a simple realization in

Fig. 5(d) using only three common 2-ports; namely, two voltage-controlled

voltage sources N and N , and a current-controlled current source N, .
a c d

The preceding examples show that very exotic v-i curves could result

from interconnecting n-ports with "simple" characteristics. It is clear,

4
therefore, that in order to endow our theory with some "closure property" ,

it is necessary to allow our n-ports to be characterized by a union of points,

curves, hyper-surfaces, and even continuum of points. In order to obtain

concrete results, however, it would also be necessary for us to classify n-ports

into various more manageable subclasses. We will now proceed to formulate such

a theory with the help of some basic concepts from differential geometry [9].

Def. 1. Parametric chart and atlas

r- 2n 2n
Let S. <- R be a subset of R . A function

J

p,.: P. C R J - R^n, 0 £ m, £ 2n (2)

is said to be a parametric chart (p-chart) of S. if p».(P.) = S.. In this case,

P. is said to be the parametric space. AcollectionyAA = {jj,.., u.^, ...} of

p-charts is said to be a parametric atlas (p-atlas) of S = . S. in R if for

each xeS, 3 a^.eAAsucn that x = |Jb.(p.), p.eP..

A point [v, i] on the characteristic surface of an n-port will henceforth

2r»
be considered as a point in R . Hence an algebraic n-port is completely

characterized by a p-atlas since every point on the characteristic surface in

.2n .
R " is identified by at least one local coordinate system u.(.). For example, a

3 1 2 _
1-port characterized by v = i is parameterized by p.: R -* R , where |Jb(p) =

3 1 0 2[v(p) = p , i(p) = p], peR . A nullator is parametrized by U.: R -* R ,
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where |i(0) = [v(0) = 0, i(0) » 0], OeR . A norator is parametrized by

2 2 9|a: R - R , where p,(p) = [v(p) =p^ i(p) =p2], p=[p^ P2]eR . Observe

that all of these n-ports are characterized by one p-chart. If an n-port is

characterized by a single p-chart |i: Pc Rm - Rn of class Ck [9], it is said

to be a C -parametrizable n-port.

Def. 2. Immersed n-port and its dimension

A C -parametrizable n-port (k ^ 1) characterized by the single

p-chart

U-: Rm - R2n, 0 <. m£ 2n (3)
.k . , . .,.,.,, x . -k . . 6ris said to be a C -immersed n-port with dimension "m" if |i(.) is a C -immersion [9]

The class of immersed n-ports would cover almost all parametrizable n-ports

of interest. For example, in the case of 1-ports, it includes any unicursal

curve with self-intersections so long as there are no "cusps" on the curve.

In fact, the class of immersed n-ports is probably the most general hierachy

that will submit to a rigorous mathematical study. It is also the largest

class that makes practical sense, as shown by the following important theorem

due to Whitney (see p.58, Theorem 4.2 of [9]) which we now restate in circuit

theoretic terms:

N-port Approximation Theorem

Any C -parametrizable (k ^2) n-port N characterized by p.: R. -* R can

be approximated arbitrarily closely by a C -immersed n-port N1 with dimension

m provided m £ n. Moreover, N1 will remain an immersed n-port with dimension m

under arbitrary infinitesimal parameter variation.

Roughly speaking, this theorem says that if m £ n, then the n-port is not

sensitive to parameter variations. Therefore, an immersed n-port is generic in

the sense of Thorn [10]. This observation motivates our next definition.
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Def. 3. Regular generic n-ports

A C -immersed n-port is said to be generic if it has dimension

m ^ n, and dense if it has dimension m > n. A generic n-port is regular if

m = n and singular if m < n. A regular n-port is strongly regular if p,(R )

is a closed n-dimensional submanifold of R .

In view of Def. 2 and 3, we can now classify quite logically a nullator

(v = 0, i = 0) as a O-dimensional singular 1-port, a resistor characterized by

v = v(p) and i = i(p) as a 1-dimensional regular 1-port, and a norator

(v = p-, i = p„) as a 2-dimensional dense 1-port. In the same context, a time-

dependent voltage source (v = v (t)) or current source (i = i (t)) can be
s s

classified as a time-varying 1-dimensional regular 1-port. Similarly, a

current-controlled voltage source (v.. = kp_, v„ = 0, i. = p , i = p.) as well

as the remaining 3 types of controlled sources can be classified as 2-dimensional

regular 2-ports. Observe also that whereas the "unicursal 3-port" is a 3-

dimensional regular 3-port, the "union 3-port" is a 2-dimensional singular

2 6
3-port since it is characterized by the immersion p,: R -• R .

A generic n-port N need not be a submanifold in R since the hyper-surface

may intersect itself. However, if N is singular, then we can assert:

Theorem 1.

The characteristic surface of any singular n-port N can be approximated

arbitrarily closely by an immersed submanifold [9] in R .

Proof. N is singular means that N is characterized by an immersion p,: R —* R ,

where m < n. Now Theorem 4.3 on p.61 of [9] implies that p.(.) can be approx-

imated arbitrarily closely by an injective immersion |2(.) in R where

* nm _» «2n A^„mN . . . , ,«-,,. 2n ,
p.: R -» R . Since p,(R ) is an immersed submanifold in R , our conclusion

follows. Q.E.D.



-7-

III. EQUIVALENT REPRESENTATIONS OF REGULAR N-PORTS

We will henceforth restrict our discussion to the most common and

important type of nonlinear n-ports; namely, the class of regular n-ports

1 o

characterized by a C -immersion p.: R -* R . Hence, a regular n-port can

always be characterized by:

v = v(p), i = i(p) (4)

where peRn, veRn, and ieR . It is usually possible to recast (4) into various

equivalent modes of representations with the help of the two commutative

diagrams [9] shown in Fig. 6. In both diagrams, ttx(.) represents a projection

map from R to X = Rn> while tt (.) represents a projection map from R to

Y • Rn. Observe that diagram (a) commutes if, and only if, the composition

x = tt op, is bijective. Under this condition, (4) can be recast into the form

f: X = Rn - Y = Rn, or y = f(x), xeRn, yeRn. A dual statement applies to

diagram (b). In either case, the vector [x, y] can be considered as obtained

from a permutation of the vector [v, i]; namely;

[K3[H"J
where 2 is a 2n x 2n permutation matrix [11]. We will sometimes abbreviate (5)

by writing [x, y] = a [v, i], where a(.) is the associated bijective permutation

function.

Def. 4. Regular representation

A regular n-port is said to admit a regular representation if there

exists a permutation matrix S which makes either diagram (a) or diagram (b) in

Fig. 6 commute, i.e., either x s TTxop, or y s tt op. is bijective. In particular,

a regular representation is said to be a hybrid representation if A = D and B = C.

It is easy to show that the permutation matrix E defining a hybrid rep

resentation is orthogonal, unimodular, and elementary. Moreover, the n x n

submatrices A = D and B = C are diagonal and A + B = ln> AB = BA = 0 »
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AA = A, BB - B where 1 and 0 denote the identity and the zero matrix,
n n

respectively. Although there are 2n distinct hybrid representations, only

four are commonly encountered in practice; namely, the conductance representation,

the resistance representation, the hybrid I representation, and the hybrid II

representation. For future reference, these four representations are defined in

Table 1 (rows 1 to 4). Closely relateci to the hybrid representations I and II

are the four conjugate hybrid representations defined in Table 1 ,(rows 5 to 8).

These representations are extremely convenient for studying the potential

functions of reciprocal n-ports [l2].

Besides the four hybrid and the four conjugate hybrid representations, there

are two slightly modified forms of regular representations which are useful in

studying the transformation properties of nonlinear n-ports (n is a positive even

integer); namely, the transmission representation I and J^I defined in Table 1

(rows 9 and 10).

Generally speaking, a regular n-port which admits of one hybrid represent

ation may fail to admit another representation. It is desirable therefore to

derive conditions which prevent this from happening as done in [13, 14]. More

recently, Desoer and Oster [15] have obtained conditions which guarantee a

reciprocal n-port to admit all 2 hybrid representations. We now generalize

their results to arbitrary n-ports.

Lemma 1.

Let a regular n-port be characterized by a C -hybrid representation:

r*a' f"W V"i
y =

L'bj W V
s h(x) =[h^x), h2(x), ...,hn(x)] (6)

jn ... _n-m .. _m , „ „n-mwhere [x, y] =a [v, i], x ex - R ,x.eX, « R ,y eYa = R and ybeYb = R

Suppose the following conditions are satisfied:



-9-

(i) If n » 2, det [oh (x)/3x ]MV xeRn
a a

If n £ 2, det [dh (x)/dx ] > 0 (or < 0) V xeRn, except possibly
a a

for at most a set S of isolated points in Rn.
a

(li) ||x1(T-.l|h-(v vii •- vxbexb.
ci

Then N admits of the following equivalent hybrid representation:

r«a(v *bn

8b(v V
° *<V xb}

where g(., .) is a continuous function on Y x X, = R"".

Proof. It follows from the generalized global implicit function theorem

derived in [16] that there exists a continuous function g : Y x X, -» X such
cl cl D cl

that x^ = g (y„, x, ). Hence, y, = h. (x , x, ) = h (g (y , x ), x ) = g, (y , x ).

(7)

.n

Clearly, gK(«> •) is continuous since composition of continuous maps is con

tinuous. Q.E.D.

Theorem 2. Hybrid Representation Theorem.

If a regular n-port N admits of one hybrid representation y = h(x),

where [x, y] = a [v, i] and h: Rn - Rn, then the following two conditions are

sufficient to guarantee that N admits all 2 distinct hybrid representations:

(8)(i) dh(x)/dx is a P-matrix , V xgR

(ti) lim |h4(x)| = », j = 1, 2, ..., n. (9)

Proof. Let [x, y] = a[v, i] where a is any one of the 2n distinct permutations

of [v, i]. Since [x, y] = a [v, i], [x, y] = aoa [x, y] = a [x, y]. Let A

and B be the permutation submatrices associated with a. Then x = Ax + By =

[x , x, ] and y = Bx + Ay = [y ,y.], where x and y are partitioned arbitrarily
cl D 3. D

into m and n-m components. If B = 0 , then the theorem is trivially true since

A = 1 and [x, y] = [x, y]. If A = 0n, then B= ln and we have [x, y] = [y, x].

Hence, the theorem is again true since (8) and (9) imply h is homeomorphic onto [18J,
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It suffices therefore to consider the case A ^ 0 and B ^ 0 . Rearrange the n
n n

hybrid equations y. = h.(x-, x«, ..., x ), j = 1, 2, ..., n into the form:

s

hA(V XB>

VV V

hA(x')

hB(x') = h'(x')

where the variables y. and x. associated with the non-zero columns of B are

lumped together in y and x , respectively. Clearly, dh (x')/3x is a principal
B B D-D

submatrix of 3h(x)/dx and has therefore a positive determinant in view of (8).

Moreover, (9) implies that

l{f IIhB(XA' XB) II=°° V XA e*"

It follows from Lemma 1 that N admits of the equivalent representation

XB = 8B(V yB}

yA = 8A(XA' V = 8A(XA' SB(XA' yB)} S 8A(XA' V'

y -

B

8A(XA' yB}
8B(V yB}

= "K(x). Q.E.D.

IV, GLOBAL CHARACTERIZATION OF REGULAR N-PORTS

It is well known that the qualitative properties of nonlinear networks

depend to a great extent on the "global" characteristics of the elements' non-

linearity. For networks made up of interconnection of 1-ports, various suff

icient conditions have been obtained which ensure either the existence and

uniqueness of solutions for resistive networks [19, 20], or the global stability

of dynamic networks [21-23]. Some of these conditions require the resistors to

be characterized by strictly monotonically-increasing functions. Others require

the v-i curve to be either voltage-controlled or current-controlled. Still

others require the v-i curve to be surjective or bijective. A precise class

ification of n-ports in terms of their global characteristics is fundamental

not only to the analysis of nonlinear networks but to synthesis as well [24].
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In attempting to generalize the various global characterization of 1-ports to

n-ports, many subtleties and complications may arise. For example, whereas

any "injective" 1-port is strictly monotonic, there exist injective n-ports

which are not monotonic. Moreover, an n-port which is bijective with respect

to one hybrid representation may fail to be bijective with respect to another

representation. On the other hand, there are other characterizations which

are independent of coordinate systems, and are therefore invariants of the

n-ports. These possibilities make it necessary for us to define many seemingly

redundant but distinct global characterizations.

Def. 5. Non-deereasing n-ports

A regular n-port N characterized by (4) is said to be non-decreasing

if a(pa, pb) 0(pa, pb) ^ 0 Vpa, PbeRn, where or(pa, Pb) 2<v(Pfl) - v(pb),
Pa - Pb> and P(pa, pb) h < i(pa) - i(Pb), Pa - Pb>. If Nadmits of a hybrid

representation y = h(x), then N is non-decreasing if <x - x, , h(x ) - h(x, ) > ^ 0
a d a o

« «nV x , x, eR .
a b

Def. 6. Increasing and uniformly increasing n-ports

Let N be a regular n-port characterized by a hybrid representation

y = h(x) and let a(x , x, ) = < x - x, , h(x ) - h(x, )>. Then N is said to be
J N a b a b a b

increasing if a(x , x, ) > 0 V x ^ x, eR . N is said to be x-uniformly increasing
** a b a t>

1 O

if there exists a constant c > 0 such that a(x , x.) ^ c I x - x, | . If, in
a b ' ' a b

addition, h(.)eC and the Jacobian matrix of h(.) is bounded on R , then N is

said to be strongly uniformly-increasing.

Def. 7. Proper n-port

A regular n-port N which can be characterized by a hybrid represent

ation y = h(x) is said to be x-proper. If, in addition, h(.) is surjective on

R , then N is said to be proper.
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Theorem 3. Invariant Characterization.

The definitions for an increasing, non-decreasing, strongly uniformly-

increasing, and proper n-port are independent of the mode of the hybrid rep

resentation and are therefore invariants of the n-port.

Proof. Let y = h(x), [x, y] = a[v, i] and y = ff(x), [x, y] = a[v, i] be any

two hybrid representations for N. Since the permutation functions a(.) and

a(.) are bijective, we can write [x, y"\ = aoa [x, y] and [x, y]e5i(joo' [x, y].

Hence, there exists a permutation matrix S * S such that

X

y

"a B'~

B A

>

X

y

=

"a b"

B A

X

y_

Now let [v , i ] and [v, , i, ] be any two points in R and let [x , y ] =

a[va, iaL.[xa, ya] - a[va, iQ], [xb, yfe] =a[vb, ife], and [xb, yb] =oT>b, tj.

Now using the properties AA ™ A, BB - B, AB = BA = 0 and A + B = 1 , we obtain:

<(ya - yb>. (5Ta - Scb» =<B(xfl - xb), A(xfl - xb» +<B(xfl - «b), B(ya - yb»

+<A(ya - yb), A(xfl - xb)> +<A(ya - yb), B(ya - yb»

"<B<xa " V' (ya " yb}> + <A(xa " xb>> (ya " yb)>
=< (xa - xb), (ya - yb)> .

Hence, the definitions for increasing and non-deereasing n-ports are invariants

of the hybrid representations. It has been shown in [13, 14] that if N admits

a hybrid representation y «• h(x) where the describing function h(.) is uniformly

increasing with bounded Jacobian matrix oh R , then N can be represented by any

one of the 2 possible hybrid representations and the describing function of

each hybrid representation is uniformly increasing with bounded Jacobian matrix

of R . Hence, strongly uniformly-increasing n-ports are independent of the mode

of the hybrid representation. It remains to prove that the definition of

proper n-ports is also invariant.

In view of Def. 4 and the commutative diagrams on Fig. 6, N admits the
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hybrid representations h(.) and ff(.) implies that y =h(x) =^ox"1(x) and

y =ti(x) =yox" (x), where x(.) and x(.) are bijective maps. Now suppose

h(.) is surjective, then y(.) is also surjective since x"1(.) is. It follows

from the bijection [Sc, y] - cjoa" [x, y] that y(.) is also surjective. Since

composition of surjective maps is surjective, we have fr(.) = yox" (.) is sur

jective. Hence N is proper with respect to h(.) if, and only if, N is proper

with respect to ti(.). Q E D

Def. 8. Homeomorphic and bijective n-ports

An n-port characterized by a hybrid representation y = h(x) is said

to be x-homeomorphic [x-bijective] if h(.) is an injection [bijection].

Remarks:

1. The basis for defining an "x-homeomorphic" n-port in terms of an

"injection" is given by Brouwer's theorem on the invariance of domain [25, 26]:
0 n n

"any injective C -function h: R -» R is homeomorphic".

2. It can be shown that any increasing n-port characterized by y = h(x)

is x-homeomorphic [12,16]. However, the converse is false for n 2: 2, as shown

by the following counter-example: Let N be characterized by i = g(v), where

*-i = vi + v2> i« = v^ - v„. N is clearly v-homeomorphic. However, N is no{:

increasing since or(a, b) = <g(a) - g(b), (a - b)> = -1 when a = (1, 1),

b = (1, 0) and a(a, b) = 1 when a = (1, 1), b = (0, 1).

3. The reason for attaching the prefix "x" to Def. 8 for homeomorphic and

bijective n-ports is because this definition is not invariant of the mode of

hybrid representation. The following example is a case in point: Let N be

characterized by the two equivalent representations y = h(x), y = [i_, i«, i^],

x= [v1, v2, v3] and y=TT(x), y= [v^ v^ i.^, x= [i ,v2> v,.], where h(.) and

ff(.) are defined respectively by:



h(x) » Hx a
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V2
V3

10 0

-12 1
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and h(x) = Hx =
-13 0

-13 0

1-11

Ll
V2

LV3J

Since det H £ 0, but det ft = 0, it follows that N is x-homeomorphic and

x-bijective, but it is neither x-homeomorphic nor x-bijective.

4. The following collection of properties can be readily proved [12, 16]:

(a) N is v-homeomorphic [v-increasing] and i-proper if, and only if, N is

i-homeomorphic [i-increasing] and v-proper.

(b) Every x-uniformly increasing n-port is increasing, x-homeomorphic, x-bijective,

y-homeomorphic and y-bijective, where [x, y] = a[v, i].

(c) A regular n-port characterized by v = v(p) and i = i(p) is non-decreasing if

the Jacobian matrices dv(p)/3p and di(p)/dp are both positive semi-definite or

both negative semi-definite.

(d) An n-port characterized by i = g(v) is non-deereasing if, and only if,

dg(v)/dv is positive semi-definite; v-uniformly increasing if, and only if,

dg(v)/dv is uniformly positive definite [13], and increasing if dg(v)/dv is

almost positive definite [16]. The dual case is also true.

V. LOCAL CHARACTERIZATION OF REGULAR N-PORTS

A regular n-port can be characterized locally according to whether it is

reciprocal or not. The concept of reciprocity is extremely useful not only in

network theory, but also in other physical theories such as thermodynamics. Two

important works on reciprocal n-ports have appeared recently [1, 15]. In this

paper, we define reciprocity in a slightly different context from that used by

Brayton [l]. Our motivations in offering an equivalent though distinct definition

of reciprocity are: (1) our definition does not involve exterior derivatives and

is therefore more familiar to engineers; (2) our definition is identical in form

to the well-known "Lorentz reciprocity" definition for linear n-ports [6];
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(3) Ours is an "operational" definition and can be interpreted as taking

incremental port measurements when the n-port is biased at some operating point.

In the following, we let N be a regular n-port characterized by a C -immersion
_ o_

(k £ l)p,: R - R , where |i(p) s [v(p), i(p)]. Let T (R ) denote the n-dimensional
P n

tangent space [9] at the point peRn.

Def. 9. Reciprocal and anti-reciprocal n-ports

A regular n-port is said to be reciprocal at peRn if

<di(p), dfv(p)> = <d'i(p), dv(p)> (10)

where [di(p), dv(p)] and [d'i(p), d'v(p)] are any two distinct elements of the

tangent space T (R ). It is said to be anti-reciprocal at p if,

<di(p), d'v(p)> = - <d'i(p), dv(p)>. (11)

The n-port is said to be reciprocal [anti-reciprocal] if it is reciprocal

[anti-reciprocal] at all points peRn. The pair [di(p), dv(p)] and [d!i(p), d'v(p)]

can be interpreted as the Frechet differential [26] of v(.) and i(.) at the point

p corresponding to the differentials dp and d'p, respectively. Physically, they

can be approximated by two sets of incremental measurements [Av(p), Ai(p)] and

[A'v(p),A' i(p)] when the n-port is biased at the point [v(p), i(p)]. Observe

that we can write dv(p) = Jy(p) dp, di(p) = J.(p)dp, d*v(p) = J (p)d'p and

d'i(p) = J.(p)d'p, where J (p) and J.(p) are the Jacobian matrices of v(.) and

i(.), respectively.

Q

Theorem 4. Reciprocity Criterion.

A regular n-port is reciprocal [anti-reciprocal] if, and only if, its

associated reciprocity matrix

^(p) =[J^p)]* [Jy(p)] (12)
is symmetric [skew-symmetric].

Proof. <d'i(p), dv(p)> = <Ji(p)d'p, Jv(p)dp> = <d*p, £(p)dP> (13)

<di(p), d»v(p)> =<dp, 0(p)d'p> =*<d'p, [MP)]11 dp> (14)
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Substituting (13) and (14) into (10) and (11), we obtain the desired result.

Q.E.D.

Corollary.

An n-port characterized by a C -hybrid representation y = h(x), where

I = * A i' is reciProcal [anti-reciprocal] if, and only if, its associated

hybrid reciprocity matrix

^(x) 2[B +AJh(x)]fc [A •+ BJh(x)] (15)
is symmetric [skew-symmetric], where JhM is the Jacobian matrix of h(.).

Proof. Since the permutation matrix E is orthogonal and symmetric, we can write

v(x) = Ax + Bh(x) and i(x) « Bx + Ah(x). Substituting ^00 = B+ AJh(x) and

Jv00 = A+ BJh(x) into (12), we obtain (15). Q.E.D.

The hybrid reciprocity matrix ^(x) defined in (15) is extremely convenient

to work with since it can be used to derive the reciprocity or anti-reciprocity

criteria associated with each of the hybrid or conjugate hybrid representation

tabulated in Table 1. Likewise, the matrix J}(p) can be used to derive the

analogous criteria for the two transmission representations in Table 1.

VI. CONCLUDING REMARKS

The p-atlas introduced in Section II should cover all conceivable algebraic

n-ports, thereby providing the "closure property" to our theory. Of course, such

a representation is too general to be useful. It appears that the class of immersed

n-ports should provide the proper setting for future research. Such n-ports are

not only more tractable mathematically, but also possess some generic properties of

physical significance. For many n-ports of practical interest, the associated

p-atlas may be endowed with an additional differential structure so that these %

n-ports can be interpreted as closed submanifolds imbedded in R [27, 28]. Such

a submanifold may be interpreted geometrically as the union of disjoint smooth

2n
non-self-intersecting hypersurfaces in R .
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It is hoped thai; the global and local characterizations in Sections IV and

V would provide the foundation for the synthesis of algebraic n-ports. The

basic philosophy would be to decompose a prescribed n-port into an inter

connection of component n-ports chosen from among the various subclasses defined

in this paper. Such an approach will be exploited in another paper.
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1. To economize on symbols, we will use the same index "n" for different

Mn"-ports. We will also assume that whenever necessary, our n-ports are

provided with internal isolation transformers so that arbitrary inter

connections will not introduce circulation currents [2].

2. Throughout this paper, we let R denote the Euclidean k-space and ||.||

the usual Euclidean norm. Vectors are denoted by lower case letters and

matrices by upper case letters. A column vector will usually be denoted by

x - [Xj, x«, ..., x,]. Since we will be dealing mostly with vector quant

ities, we will distingush the scalar component of vectors by arabic sub

scripts. A literal subscript will normally denote sub-vectors. For

example, we usually partition a vector x = [x., x0, ..., x, , x.^_-, ..., x ]eRn into
1 l k' fcfl nJ

x =[xa, xb], where xg - [x^ x,,, ..., xfc] and xfa =[x^, x^, ..., x^.

3. A memristor is a new circuit element characterized by a relationship between

cp and q [7]. More general algebraic n-ports involving couplings among the

4 basic port variables v., i., cp.» and q. may obviously be defined. However,

their significance remains to be established.

4. The term "closure property" is used loosely in this paper to mean that if

two objects, systems, theories, etc. possess certain common property P, or

are members of a certain class C, then their combination according to some

prescribed rules must retain the same property P, or belong to the same

class C.

5. Notice that we do not require our p-chart to be injective or differentiable.

Neither do we provide any differential structure on our p-atlas. However, if

5 is a differentiable manifold [9], then the associated local charts and

atlas automatically qualify as p-charts and p-atlas on S.



6. A Ck-function p,: Rm - R is said to be a C-immersion if p,(.) is of rank m;

i.e., if the Jacobian of p,(.)'has rank m for every point in R .

7. An n x n matrix A is said to be a P-matrix if all its principal submatrices

have positive determinants [17].

8. A non-decreasing n-port may not admit a hybrid representation. A v-i curve

containing both vertical and horizontal segments is a case in point.

9. This reciprocity criterion was first derived in this coordinate-free form

for linear n-ports in [29]. This criterion had also been derived for non

linear n-ports by Brayton [1].
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Table 1: Representation.of Nonlinear N-tMrta and Their Criteria for
Reciprocity and Ant 1-Reciprocity.

Defining
Mod* ol Equations Jacublan Necenaary and Sufficient Necessary and Sufficient

Representation 1 V Matrix Conditions for Reciprocity Conditions for

1

1-

.V
I V"

.vb.
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-

8 3v
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3f

31
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r\ V^W "sh1
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• ~•
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a
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2
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2
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a
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