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Abstract. We show that if sequences <d.> , <d.-k > are graphical

then there exists a graph G with degrees d. which has a factor with k

lines at each vertex.

To.eyery graph G whose vertices are labelled v., l<i<n, one can

associate the degree sequence ( d. > where d. = degree-of the vertex v..

G is called a representing graph for <d. > and the sequence itself is

called graphical. The degree sequence is an invariant of a graph. It is

a rather 'weak1 invariant and there are almost always more than one graph

with same degree sequence [2]. This 'incompleteness' of degree sequences

allows one to raise many existence problems about representing graphs.

In that regard, the following conjecture was made by A. R. Rao and S. B.

Rao [5] and also by B. Grunbaum.

If <d. >, <d.-k > are graphical sequences then there exists a graph

G with degrees <d. >which' has a factor with k lines at each vertex.

Also a similar conjecture for digraphs was made by A. R. Rao and

S. B. Rao [5]. We shall prove a generalized version for each of them,
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first for graphs and then for digraphs. The ideas involved in the two

cases are very similar.

1. UNDIRECTED GRAPHS.

We shall assume that graphs have no multiple lines and loops. All

graphs are drawn on a fixed set of vertices V = {v, ,v0,",v }. There-
l z n

fore it is convenient to identify a graph G with the subset of unordered

pairs {(v.,v.)}, where (v.,v.) are lines of G. A sequence (of n inte

gers) (d.: 1 .1 i .5. n ^ 1S called graphical if there exists a graph

G with degree of v. being equal to d for all i. We say that G is a

representing graph of <d >. For a given sequence <k : :0 <_ k. <^ d. >

a subgraph F C G is called a subfactor if F has at most k. lines at v..

Call v. a saturated vertex (with respect to F) if F has exactly k lines

at v.. We shall denote by S = S(F) the set of saturated vertices. F is

called a factor if S « V. If k « k, 1 <_ i <_ n, F is called a k-factor.

We often consider two graphs G, H simultaneously. To distinguish their

lines we shall put colors on (v.,v.) as follows: lines of G (resp. H)

not in. H (resp. G) are colored red (resp. blue), the lines common to G

and H are colored green and all other lines are colored white. We shall

write r = red, b = blue, g = green, w « white and c(v. ,v.) for the color

of line (v.,v.). A few other notations like r = g-b,. g = r+b, w = b-b

etc. will be useful. We shall let E (v.) denote the set of lines at.
c i

vertex v. with color c, c - r,b,g, and E = U E (v.), union over all v..
i ' ' °' c ex x

Admittedly |E (v )|+ |E (v )|, |E..(v.)| + |E (v )| are respectively the
rx gx dx gx

degrees of v. in G and H.. Finally, an alternating path P = (x0,x-),

(x.,x_), (x_,x.),... is a path whose lines are distinct and c(x ,x +- ) =
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r or b according as i even or odd .

THEOREM 1.1. Let <d. >, <d.-k > be two graphical sequences such that

for some k >^ 0, k <_ k. £ k+1 for 1 <_± <_ n. Then there is a graph G with

degree sequence <d. > and having a <k.)-factor.

Proof of Theorem 1.1.

Consider two graph Gf, H? with degree sequences <d.> , <d.-k.)

respectively and the associated coloring of the lines (v.,v ) in white,

red, blue and green. Clearly, |e (v.) | = |E,(v )| + k for all vertex
it

v.. Let F' Ce be a <k.> -subfaetor; F1 is possibly empty. Suppose

that the graphs G, H and a subfaetor F are so chosen that |f| + |e |.has
8

maximum value among all possible choices of G?, H', F'. If all vertices

v. are saturated in F we are done. We shall show that it is indeed so.

This is accomplished in several steps. Let S = S(F) and assume that S ^ V,

1 ]. If xQ,x-,x2,x3 are tour distinct vertices such that c(x0,x.) = b =

c(x2,x3), c(x19x2) = r and (x^x^ £ F then c(xQ,x,) = b.

Proof. If c(xQ,x3) =r org then changing the colors c(xQ,x-), c(x2,x„)

from b to g = b+r, c(x-,x2) to w and c(xQ,xg) to c(x0,x_) - r we increase

|E Iby two or one according as c(xQ,x3) =ror g. In the worst case,

when (xQ,x3) € F we form the new subfaetor F - (xn,x-). In any case,

|f| + |e I has been increased, a contradiction.
O

If c(xQ,x3) = w then change each of (x0,x-), (x«,x ) to a white line

*

All subfactors will be a subset of red lines.
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while adding blue to c(x^,x2) and c(xQ,x3). The result is an increase

in |E |without changing F. Thus c(xQ,x3) «b. Note that the changes

in colors did not disturb the equations |E (v )|+ |E (v )| = d ,

1^(^)1 + |E Cv >J=d-k, l<_i<_n. This will always be the case

in all recolorings.

2 ]. Let (Xq^), (x1,x2),«->, (x2t»x2t+l^' t - lf x0 ** X2t+1 be an

alternating path P which is line disjoint with F and (x_,x2 -) £ P.

Then c(x0>x2t+1) = r.

Proof. Suppose c(xn,x« ,-) f r. We show as in 1 that by suitable

recoloring of the lines of P and the line (xn,x« ,-) we can increase

|E |, F remaining unchanged. For example, if c(xfi,x2 -) = b or g then

change the color of all red lines of P to green by adding blue to them,

change the color of all blue lines of P to white and c(xQ»x2t+i^ to

c(xQ,x2t+1) - b. If c(xQ,x2t+1) =w then change it to red, c(x2i'x2i+l^

to white for 0 <_ i <_ t and c(x2-i+i»x2i+2^ t0 8reen f°r 0 < i £t - 1.

Next, observe that for each virtex v € V-S, there are at least

1 + •IEL (v.) I red lines not in F which are incident with v. whereas for
1 b x ' . i

v e S, |E (v.)-F| = |EL (v.)|. This is straight forward from the defi

nition of S. Also note that a red line with both end points in V-S is

necessarily in F. (Otherwise we can add it to F!) Choose a vertex xQ

e in V-S and a red line (x0,x-) £ F; x- G s. There is a blue line, say

(x.,x2) and thus a red line (x2,xg) £ F (x3 is possibly same as xQ) and

a blue line (x3,x.) if x3 £ V-S. One can proceed in this way and get an

alternating path (line) disjoint with F and terminating at a vertex in
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V-S. Let P » (Xq^), (x1,x2),..., (x2t»x2t+l^» be an alternating path

with smallest number of lines among all the alternating paths from xn

terminating in V-S and being disjoint with F. It is shown in appendix 1

that t ° 1 or 2; moreover, if t = 2 we have x- = x, (see fig. 1). For

t= 2, there are two possibilities: xQ ^ x3 (fig. 2) and xQ « x3« The

case xQ « x3 will be taken up in 4 and 5 while 3 deals with the other

cases.

X4 =X,

Fig. 1. t - 2. The broken line is
in F.

X| 9 ^—•k?X2
r

x4

r

o 6x3

Fig. 2. t=1and xQ +x .

0,
3 J. Each of the following gives a contradiction. The alternating path

P has 1) 5 lines, 2) three lines and xQ f xq.

Proof. Let us write y=x5 or x3 according as we are in 1) or 2). By 2°,

c(xQ,y) =r and xQ, y being in V-S, (xQ,y) € F. Thus k(y) >_ 2 (where

k(y) = k± if y = v ) and therefore by the hypothesis of the theorem k(x-)
x

±_ 1. Let (x1,u) e F. Note that in the case 2) we can assume that
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u $ y= x3 because otherwise k(y) is in fact >_ 3 and thus k(x.) being

at least 2 we can find a vertex v^ x3, such that (v,x.) € F. In

case 1) obviously u $ y. Let us define F' =F - (u-x-) - (x-,xn);

|Ff | =» |f|. Consider the path Q from u to y obtained by replacing

^X0,XP in P^^ (u»xi)- Since u and y are unsaturated w.r.t. FT and

Q is disjoint from F', by 2 , (u,y) G F' and hence (u,y) € F. We can

now say that k(y) >_ 3 and obtain another vertex u1 4 u, such that u'

is not incident with any line of P arid (u',xj € F. Repeating the same

argument again and again we obtain k(y) is arbitrarily large which is

certainly impossible.

4 ]. t= 1 and xQ =Xy Then there is a blue line at xQ.

Proof. Suppose not. Then k(xQ) = |e (xq)|>_ 2, and therefore k(x.) >_ 1.

Obtain a-vertex u such that (u,x-) € F. Define, F' « F - (u,x-) + (x ,x )

as before and consider the path (u,x_), (x-,x2), (x2,xn). But then we

are back in 3 which is just shown not possible.

5 ]. t = 1 and xQ-= x3» There cannot be a blue line at xn»

Proof. Suppose there is a blue line at x« = xft, say (x.,x,). Consider

all possible alternating paths Q from xQ to some point of V-S which

contains P properly and disjoint with F. This is possible because for

all points v. € S, at v. there are as many red lines not belonging to

F U p as there are blue lines not in F U p. No such path Q 'returns'

ft

to the vertex x. 'after' x«. Let P' = P U p have smallest number of

n
Because it will imply the existence of an even cycle C disjoint with F

and whose lines are alternately blue and red. But then one can increase
|Eg| (|f| remaining fixed) by making the red lines of C white and blue
lines of C green.
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lines among all Q. We show that PQ has two lines only.

By 1 and proper choices of three lines one can show that c(x.,x.)

» c(x2,x,) «• b. If PQ has three or more lines let (x3,x»), (x,,x_),

(x_,xft) be the first three lines. x_,x2,..,x- are all distinct.

c(x,,x_) « r implies, by 2 , c(x-,x ) = r, i <_ i <_ 3. Thus x, is

different from x., 1 < i < 5. But c(xA,x,) = b (by 1 ) and hence
X — — U O

(xrt,x,) ^PUP implies we can replace the subsequence (x0,x>), (x, ,xe),
u o u J i\ *\ D

(x_,xfi) in P_ by (x.,xfi) and we get a shorter alternating path contradic

ting minimality of PQ. Thus PQ = (x3,x,), (x,,x_). (see fig. 3.) Now

consider the path P" = (x^x.^, (x^x^), (x^,x5). P" is line disjoint

with F. However, existence of such an alternating path is shown to be

impossible in 3 .

Fig. 3. xQ, x_ are in V-S.

The contradictions in 3 together with 4 , 5 show that V-S ^ (f> is

impossible. Therefore V • S and we have proved the theorem.

Remark. If there exists a graph with degree sequence <d.) and containing

a <k±>-factor then, trivially, <d.-k ) is graphical.

The following examples show that the theorem is not true if two

k 's differ by two or more.
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Example 1. Let<d^ «< 5,5,4,3,3,2) and<k) »< 3,3,1,3,3,1). Each

of <d±> ,<k.) ,<d -k.) =<2,2,3,0,0,1 > is a graphical sequence. If

Theorem 1.1 was true for these <d.) , <k ) then it would be possible to

find a graph G with degree sequence <d.) that contains the unique graph

H (fig. 4) with degree sequence (d.-k ). Unfortunately, there is no such

G, as can be seen easily.

Vco

V 0V4

Fig. 4. The graph H with degree
sequence (d. - k.) .

Example 2. The sequences <d ) •<4,3,2,2,1 ),<k±) «• <3,1,2,2,0 >,

<d.-k.) = (1,2,0,0,1 > are graphical. But there is no graph G whose

degree sequence is <d > and which contains the graph F with degrees

<k> .

COROLLARY 1.2. If <d > is graphical then there is a graph G with degree

sequence <d.) and having a k-factor if and only if <d -k) is graphical.

A result of A. R. Rao and S. B. Rao [4,5] on connected factors

implies rather immediately

COROLLARY 1.3. There exists a graph with degree sequence <dj> and

containing a hamiltonian cycle if and only if <d^> ,<d±-2 > are graphical

P n

and for all p<j , //., <P(n-p-1) + 2_\ d± where <d± >is a
i=l n-p+1
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rearrangement of <d,) into a non increasing sequence.

COROLLARY 1.4. If <d.) , <k.) are arbitrary graphical sequences such
1 • i i

that k < d. - k. < k+1 for some k then there exists a graph G with
— i • i —

degree sequence <d.) and containing a <k.) factor.

Proof. Interchange the role of <k > and <&±~K > in Theorem 1.1.

We have a graph G with degree sequence <d.) which contains a factor F

having d - k. lines at vertex v.. The lines G-F form the required

factor (compare examples 1 and 2).

COROLLARY 1.5. If there exists a graph with degree sequence <d > and

containing a k-factor then for 0<£<k,£=k (mod 2) if n is odd,

there is graph with degree sequence <d > and containing an £.-factor.

Proof. One simply notes that under the hypothesis of the corollary <d -A >

is graphical. This follows easily from a theorem of Fulkerson [1] on

the existence of (0,1) matrices with given row sums and column sums and

zero diagonal elements.

The case I = k (mod 2) for arbitrary n was obtained earlier in [4,5]*

The next theorem gives a n.s.c, for existence of graphs G with given

degree sequences and containing a given graph F. It happens that we

have to assume a lot more than before in order that G^F and at the same

time such extra assumptions allow more flexibility, though not as much

as one would wish, on the choice of F than those given by the degree

sequences <k >, k <_ k. <_ k+1. This time the proof is by induction.

THEOREM 1.6. Let F be a graph not containing an isomorphic copy of the
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one in fig. 5. There exists a graph G with degree sequence (d > and G

containing the graph F if and only if for every graph F' C f we have

*di~ki * is 8raphical where (k > is the degree sequence of F'.

Proof. The necessity is trivial. We prove 'if part by induction on

|f|. If |F| = 1 then (1.6) is same as (1.1). Let |f| = m >_ 2 and let

the theorem be true for all graphs F having m-1 or less lines. Let

(x,y) be a line in F and F. = F - (x,y). F0 does not contain a copy of

the subgraph in fig. 5. Thus there exists a graph G 3 Fn with degree

sequence <d ) , and let (x,y) not be in any such G. Also there exists a

graph H ^ Fn which has d. lines at all vertices v. ^ x,y where it has

only d -1 lines. Consider the pair of graphs G, H-F- and associated

coloring of the lines (v.,v.) in r,b,g,w. Suppose that G, H are so

chosen that |E | is maximum (E n FQ = <J>). It is easy to see that there

is an alternating path from x to y which is line disjoint with FQ and

has one more red lines than blue lines; let P be one such path with

minimum number of lines. If (x,y) $ P then as in 2 of (1.1) one can

perform recoloring on P U (x,y) so that (x,y) becomes green or red and

we have proved the theorem. Let us therefore assume that (x,y) =

(x±,xi+1) and P = (x = x0»s]L), (x^x^, ..., (x± = x»xi+1 = y)»

(xi+1,xi+2),..., <x2t»x2t+l =y); c(xi,Xi+l) =b* observe that P 'arrives'
at y only at x - and x2t+i« Consider the subpath P' of P: from (x^x^

to (xJ,x^J^-). If c(x1,x.,<]) is blue then we can form alternating path
i i+1 1 i+1

P' = (xQ,x]L) G^.*^). (xi+l'xi+2),*,• (x2t,X2t+l) not containinS <*.•)•
If c(x1,x±+1) »w,g, or. c(x1,x±+1) =rand (x^^»x±^_1> £ FQ then one can

increase |e |by a recoloring of P' U ^i^i*!)* Thus: (x£>xi+i) € Fo*
©

(x,y) cannot be (x.+1,x.).
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Considering the path (x ,x ^ (x^,^^'"- (x±>xq>> ^X0,xi+1^»

(xi+1,xi+2).. (x2t»x2t+l^ °ne Can sh0W that ^Xi-l'Xi+l^ e F0* Similarly

(x±,xi+2), (xi,x2t) e FQ. But x1 ^ xi=sl> xi+2 ^ x2t lmPlles we have F

contains the subgraph shown in fig. 5, a contradiction.

Fig. 5. The excluded subgraph
in F.

This proves the theorem.

Following example shows that Theorem 1.6 may not be true if F

does contain the graph in fig. 5.

Example 3. Let <d±) =.<4,4,4,4,4,4 ) and F be K3 3. F has 9 edges and
9

thus 2 subgraphs. Since d 's are same it is enough to check that

(d -k ) is graphical for different isomorphic subgraphs F' C F. For

|F' | <_ 5 they are shown in table 1. There is no graph G?F with

degree sequence <d >. You may find it strange that there is a graph G

which contains all but one edge of K3 3 (fig. 6.).

Fig. 6. Graph G containing all but one
edge of F.

-11-



Table 1,

ft

isomorphic type (^^"^ * representing graph
i i

of FT C F

0 0 0 0 0 0 0 <4,4,4,4,4,4 ) G in fig. 6.

1 0—0 0 0 0 0 (3,3,4,4,4,4 ) .6 =G - (v^)

2 C—0 0—0 0 0 <3,3,3,3,4,4 ) G2 " G- {(vx,v2), (v3,vA)}

0^—0 0 0 0 (2,3,3,4,4,4) G3 -G-{(v^),(v^) }

3 0—0 C—0 0—0 <3,3,3,3,3,3 > G^, =G-"{(v^Vg),(v^) ,(v2,v5>}

<
°'N^~(>~0 ° ° (2,3,2,3,4,4) G6 =G3 -(v3,v4)

0 (1,3,3,4,3,4 ) G? = G3 - (v^)

0^—0 °^—° (2,3,3,2,3,3 > Gg = G5 - (v^.Vg)

Cv (Kl) 0 (2,3,2,3,3,3 >

0—0 0 (2,3,3,3,3,4 > G5 c G3 " (v4>v5>'

tG, ,G8t

q. o--0—0 0 (3,2,2,2,3,4 > G^ = Gg - (v4,v5)

<K^\^>° ° ° (2,2,2,2,4,4) Gu =G6 "(v2'v4}

0v 0 y0 (2,3,2,2,2,3 ) G13 « Gg - (v4,v5)

The vertices can be thought of as v, ,v2,.. ,v, in that order.

z stands for isomorphism.

-12-



table 1 cont.

(1,3,1,3,3,3 ) G14 = G12 - (v3,v6)

(1,2,2,3,3,3 > G15 - G12 - (v^)

0 (2,2,2,1,3,4 ) G16 = G1± - (v4,v5>

0^=^° C—0 (2,2,2,3,2,3) Gi7 a Gi3

For |F'| •> 6 the subgraphs are obtained by removing a subgraph of

9 - |F'| lines from F. There are 8 of them. The sequences (d -k. > are

listed beSLow. They are all graphical as can be checked easily.

|F' <W
(1,1,1,1,1,1)

(2,2,1,1,1,1 )

(2,2,2,2,1,1 >

(3,2,2,1,1,1 >

(2,2,2,2,2,2 >

(2,3,2,2,2,1 )

(2,3,3,2,1,1 >

(2,4,2,2,1,1 >
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COROLLARY 1.7. There exists a graph G with degree sequence (d.>

and disjoint from F if and only if (d.+k.) are graphical where (k.>

is degree sequence of an arbitrary graph F' C F.

Proof. Note that (d +k. ) is graphical if and only if ( (n-l-d.)-k >

is graphical. Rest is easy.

If F= {(v1,v2),(v3,v4),(v5,v6)> and <d± > =(2,2,1,1,3,3 > then

the sequence (d.-k. ) is graphical for all F' C F except when F' = {(v. ,v2)

(v~,v,)}. And there is no graph G containing F with degree secquence

<d.>.
x

COROLLARY 1.8. Let (d.) , (k. - d.) be two graphical sequences where

k < k < k+1, 1 < i < n and d. < k < n-1. Then there are disjoint graphs

with degree*sequences (d,) , (k. - d.) .

Proof. There exists a graph G with degree sequences ((n-1) - d.) and G

containing a ((n-1) - k.) - factor F. The graphs k -G and G-F satisfy
n

the corollary (k is the complete graph).
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Appendix. 1.

We said in the proof of Theorem 1.1 that the shortest alternating

path P « (XqjX-), (x-,x2)..., C^t'^t+l^' startin8 at xo and terminating

at a vertex in V-S, has at most 5 lines. P is line disjoint with F. A

proof is given below.

Proof. It is useful to regard the lines of P being oriented in the

direction from x. to x. -, 0 <_ i <_ 2t; we write them as arc (x4 >x4+i)""

Then at a vertex v., there is at most one line, of each color, directed

from and one line directed into v. that belong to P. For example, if

there are two blue lines directed from v. one of them preceeds the other

as one traverses P. But this implies that P 'enters' v. with a red line

after it had left v. by the first blue line. In other words there is

an even cycle whose lines are alternately blue and red. As we have seen

earlier this would imply that |f| + |E | is not maximum, contrary to

the assumption.

Suppose P has five or more lines.

If possible, let there be three consecutive lines of P as follows:

c(xjL,xi+1) « c(xi+2,xi+3^ = b» c^xi+l,xi+2^ = r and xi ^ xi+3* By 1 '
c(x.,x.+<3) - b; (x. ,x.,-) must be a line of P (otherwise we can replace

the sequence (x±»xi+1) »• •» ^xi+2»xi+3^ by ^xi,xi+3^* Further, the line

(x.+3,x.) is oriented into x. (fig. 7).

b xi+3

Fig. 7.
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Let frj-i^j) » (xj'xj+l sxi+3^~ be the two lines of PIn^ediately
preceeding (x^^)"; they are respectively blue and red and the blue

line exists if x. ^ xn. Observe that x. ^ x : i < p < i + 3. and
j 0 j p — —

*4-l f x±. By 1 ,c(xi,x 1) = b, and it cannot be in P. However, this

contradicts the minimality of P (as the seq. (x. -,x )"", (x. ,x..,).",
j—x j .j l+J

(xi+3,xi) can be replaced by (x. ,,x )~). Thus x^ * xQ. Similarly,

the red line following (X|+3,x.)" in P must be (x.i»x2t+l^' But then

(xQ,xi+3), (xi+3>x.) (xi>x2t+l^ is an alternating path disjoint with F,

a contradiction. Thus x = xi+3* Then the path P can be written as

P= (xq.x^, (x1,x2) (x2,x3) (x3,x1), (x1$x5), ... (x2t»x2t+l^

If t •> 3, then the 6th line (x.xO is blue and we can replace the first

six arcs by (xQ,x1)~, (x^x )"" to obtain an alternating path with less

lines than P. Thus t <: 2 and in case P has five lines it conforms to

the description that x- - x,.
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2. DIRECTED GRAPHS

We shall assume that digraphs have no multiple arcs and loops and

all diagraphs are drawn on vertices v.,...,v . A pair of arcs (v^v.),

(v.,v.) is possible. Note that an arc from v. to v, is written as
j i 1 J

(v.,v.). Given a sequence of ordered pairs of non negative integers,

( (d.,d.))., we say it is graphical is there exists a digraph G with out-

degree and indegree of vertex v. being equal to respectively d^ and
_ -* + - -*•

d.. We say G has degree sequence ((d.,d.) ). We shall identify G

with the set of arcs in G. A n.s.c. for a sequence ((d^*^) * to be

graphical is obtained by Fulkerson, D. R. [1]. Most of the terminol

ogy introduced for graphs in §1 has a natural extension to digraphs. A

subdigraph fC J is called a subfaetor with respect to ((K^lt.) * if F
+ - + + -*•

has at most k. arcs from v. and k. arcs into v.. We shall let S = S (F)

(S~ « S~(F)) denote the vertices v. having k. (resp k") arcs from (into)

-*• + —
v in F. A vertex in S (S ) is called outer (inner) saturated. A vertex

that is both outer and inner saturated is simply called saturated and

S = S n s" is the set of saturated vertices. Notations E (v.), E (v.)
c i c x

will be used with their obvious meanings. E = U E (v.) * U E (v.).
c c i c X

We shall prove the following Theorem.

THEOREM 2.1. Let the sequence d «((d^d.) > be graphical and let
+ — —

((k.,k.) ). be a sequence such that for some k >_ 0, k = k. (or for that

+ •*
matter k = k), l£i£ti. Then there exists a digraph G with degree

sequence ((d. ,d") > containing a ((k.,k.) >-factor if and only if the

+ + - -
sequence d-k = ( (d.-k , d -k ) > is graphical.

+ + — —
That the sequence ( (d-k.,d.-k.) > be graphical is clearly necessary.
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The theorem says that it is also sufficient. The special case k+ =
i

k = ki» *• 1 ± 5P- was conjectured by A. R. Rao and S. B. Rao along with

their conjecture on undirected graphs (see §1). The proof of (2.1) is

a modification of that of (1.1) to accomodate arcs instead of lines.

Proof of Theorem 2.1. Let G and H be representing digraphs for the

sequences d and d-k respectively. Consider the coloring of arcs (v.,v.)

xn r, b, g and w as before, namely, c(v.,v.) = r if (v^v.) € G \ H, b if
i J i J

(v^Vj) eH\ Getc. One has ^(v^l + \E+(v±)|=d*, |b£(v±)| +
I + i + +
|E (v.)| = d.-k. and similar equations for indegrees. We choose a sub-

->• ->-•-)>

factor FC E . Let us assume that G, H, F have been so chosen that

|E I+ |F|has maximum value. We show that F is a factor. For brevity

let k = k", 1 <_ i <_ n and let S t V. We observe that i) S+ ^ V^ S*";

ii) |E+(v±) -F| >lE^v^l, |e~(v±) -F| >|^(v±)| for all v± and the
equality holds precisely for v. € s and v. £ S respectively; iii) There

does not exist distinct arcs (yQ,y;L), (y2,y3), (y2,y3),..., (y2t,y2t+l)'

(yn,y« ^) whose colors are red and blue alternately in that order such

that all the red arcs are in E -F. Property iii) is almost trivial.

One can change cO^m^m+l^ t0 white and c^y2m+2,y2m+l^ t0 green for

0 <_ m <_ t and increase |E |, keeping |f| unchanged, contradicting
©

that |E I+ |f| was maximum. The sequence (yQ,y1), (y2»y1),..., (v2t>

y« ..) is said to constitute an alternating chain.

+ -*•Take a vertex xn £ V-S and let (x«,x-) be a red arc not in F. x..

is necessarily in S. and let (x?,x-) be a blue arc; there exists a red
-*•

arc (x„,x-) not in F. We can continue in this way to build an alter

nating chain P until it 'terminates' at a vertex in V-S .. Let P =

-18-



0,X1 ' ^X2'xi'* \x2>xq' y• ••9 ^x2t,X2t+l- X2t+1 V—S .

We show that c(xQ,x2t+1) =r if xQ f x2t+1 and thus (x0»x2t+1)

€ F. This is easy once we show that (x~,x2 ,-) £ P. The proof is

similar to the one in 2 ,Theorem 1.1. Suppose (x0»x2t+i) is in P.

If c(xQ'x2t+l^ = b then P would contain a closed alternating chain as

in iii) because in P blue arcs are traversed in opposite direction.

If c(x0,x2t+1) =r and (x0,x2t+1) = (xi»xi+1)> then (xi+2>xi+1)> <xi+2>

xi+3)» •••» (x2t,x2t+l^ is a closed alternating chain as in iii) except

all arcs have reverse orientation. Thus we conclude that (xn,x« .) £ P

Now we prove by contradiction that an alternating chain P does not

exist.

Case I. |p| =3, xQ =Xy Since k""(x]L) =k"(xQ) >1there exists

x4 ^ x05 xl» x2 Such that ^x4,xl) G F# Consider F' =F- (x, ,x-) +

(x0»xi); I'M " 1*1- The chain (x^), (x^), (x2,x3) implies
(x4,x3) ef' because x4 €V-S+(F'), x3 €V-s"(F'). Hence (x4,x3) €E ?
and k (xQ) >_ 2 which implies there exists x_9*x.,0<.i<.4, such that

(x5,x1) e F. We can prove, as before, that (x_,x )€ F and so on, final

ly obtaining k"(xQ) is arbitrarily large. This is impossible.

Case II. |p| = 3, xQ ^x3. Same as above as long as x.,x ,..

remain different from x3» If x± = x3, then with respect to F' =* F -

(x±,x1) + (x0,xx) and P= (x±,x;L), (x2,x1), (x2,x3) we are in Case I.

*

Compare the corresponding situation in Theorem 1.1,
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Case III. |p| = 2t+l, t >_ 2, xn * x_ -. As in Case I there exists

(x2 2,x-) e F and let F', P' be defined as F' = F - (x2t+2'xl^ +

(x0,x-), P' = P + (x2t+2,xl^ "" (xo»xi^* P' is an alternating chain and

(x2t+2,x2t+1) £ P\ It follows that (x2t+2,x2t+P € F' and thus is in

F and k (x« .-) >_ 2. A contradiction is ahead as in Case I.

Case IV. |P| = 2t+l, t >^ 2, xQ $ x2t+i • It can be reduced to Case

III or a contradiction otherwise.

COROLLARY 2.2.

Let ((d.,d.) ) be graphical. Suppose ((k.,k.)•> is graphical and

+ +-- /++\ / - - \ •
d. > k., d,, > k., 1 < i < n and either (d.-k. / or (d.-k. / is a sequence
l — l i — i — — ii ix

of constant terms. Then a graph G with degree sequence ((d.,d ) ) and

a ((k.,k7) )-factor exists.

Example 4. In the following we have the sequences d, k, d-k all graphical

and yet there is no graph with degree sequence d and having (ki,k_j, )-

factor. The sequence (k. )vary only by 1.

d=((4,4), (3,3), (2,2), (2,2), (1,1) >

k=((l,l), (1,2), (1,0), (0,0) (1,1))

d-rk-<(3,3), (2,1), (1,2), (2,2), (0,0) >

Fig. 8. Digraphs with degree sequences d, k, d-k respectively. There
is a unique digraph with degree sequence d-k.
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Note. In contrast with the undirected case the shortest alternating

path in directed case can be of arbitrary length and thus we don't use

them in the proof.

Corresponding to Theorem 1.6 we have,

_>. -»•

THEOREM 2.3. Let F be a given digraph. There exists a digraph G with

degree sequence ((dt",d~) ) and G containing F, if and only if for every

subdigraph F' CF the sequence (d^k^d'-k") > is graphical where
+ - "*t

( (k.,k.) > is degree sequence of F .

Proof. The necessity is trivial. We shall prove sufficiency by in-

-•

duction on the number of arcs in F.

1°. Let F = (x,y) and ((k.,k~) > be the degree sequence of F. Suppose

there is no digraph G 3 F. We shall obtain a contradiction. Consider

-> ->• + — + '+ — —•digraphs G, H with degree sequences ((d. ,d.) ),((d^-k^d^-k^ ),re

spectively, such that |E | is maximum in the corresponding coloring;
8

c(x,y) = b or w. It is easy to see that there is an alternating chain

P from x to y such that P C E U E,, (x,y) £ P (because that would imply

P traverses back to x by an even cycle whose arcs are alternately red

and blue and this in turn implies that |E | is not maximum). But then
8

C = PU (x,y) is an even cycle. Perform a suitable recoloring of c

-*> ->

such that c(x,y) = g or r. We obtain a digraph G ^ F.

2 . Suppose the theorem is true for all digraphs with m-1 or less arcs

and F has m arcs. Let (x,y) be an arc of F; write Fft = F - (x,y). Thus
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there are digraphs G, Hcontaining FQ with degree sequence ((d*,d7) >
-*•

except that in H x(y) has outdegree (indegree) one less than that in

->• -• -•

G. Consider a pair of G, H such that in the associated coloring of

G, H - F_, |E j is maximum. Without loss of generality we can assume

that c(x,y) f r, g. There exists an alternating chain P C (E -F.) U E^

frpm x to y since for every vertex v., |E (v.) - FQ| >^ |K (v.)|,

|E~(v.) - FQ| >_ |E~(v )| with strict inequality respectively for x and

y. As before (x,y) £ P. There exists a recoloring of the even cycle

C = P U (x,y) such that c(x,y) = r or g. Then we have a digraph G -£ F.

For digraphs one can state and prove theorems as in (1.7), (1.8). ,

For example the following is true.

COROLLARY 2.4 Suppose <(d^,d^)) ,<k^-d^k^)) are graphical sequences
where k!"(or kT) are same for all i and k^, k" <rn-1, Then there are

i i .

disjoint representing digraphs for them.
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