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CHAPTER Q

INTRODUCTION

0. Introduction

In the past few years, there has been considerable interest in the

^ design of linear time-invariant multivariable systems via state or out

put feedback. This thesis presents solutions to several important de

sign problems for linear time-invariant multivariable systems and, in

each case, provides an algorithm which generates the appropriate state

or output feedback laws for the desired purpose. All these algorithms

consist of a finite number of steps and can be readily implemented on

digital computers. In the following, we give a short description of

the various problems considered in this thesis.

1. Statement of the problems

Consider a linear time-invariant multivariable system specified by

the following equations,

1.1a x(t) = Ax(t) + Bu(t)

1.1b y(t) = Cx(t)

where Ae RnXn, Be RnXm and Ce R**mt u(t) e Rm is the input,

«*_. x(t) € Rn is the state and y(t) e Rq is the output. We will use

(A,B,C) to denote the equations in (l.la,b), since they are completely

determined by the matrices A, B and C. The zero-state input-output

properties of this system are completely specified by its transfer func

tion matrix H(s) and



0.1 Introduction

1.2 H(s) = CCsI-A)"^.

It is easy to check that H(s) is a qxm matrix whose elements are strictly

proper rational functions in s.

In chapter I, we solve the problem of minimal realization of linear

time-invariant multivariable systems. This problem can be stated as

follows: Given any transfer function matrix H(s), whose elements are

strictly proper rational functions in s, find a triple (A,B,C) as in

(l.la,b) such that H(s) = C(sl-A) B and A is of least possible size.

In chapter II, we consider the problem of exact model matching via

state or output feedback. For a given system specified by (l.la,b) and

for any given qxm rational matrix H-Cs), the problem is to find a state

feedback law

1.3 u(t) = Gv(t) + Fx(t), Ge Rmxm, Fe RmXn

or an output feedback law

1.4 u(t) = Gv(t) + Ky(t), Ge RmXm, K e RmXC*

such that the over-all system transfer function matrix C(sI-A-BF) BG

for the state feedback case, and C(sI-A-BKC)"" BG for the output feed

back case, is exactly equal to the given rational matrix H2(s). This

is a basic question in the design of multivariable feedback system.

In the design of a state or output feedback law, we often want to

know the class of overall system transfer function matrices which can

be obtained by applying appropriate state or output feedback laws to

a given system. For transfer function matrix in the above class, we

l^



0.1 Introduction

want to know the class of state or output feedback laws which accomplish

the matching.

In chapter III, we first consider the problem of diagonal decoupling

via output feedback and pole assignability. This problem consists in

~' finding an appropriate output feedback law, if it exists, for a given

system in order to bring the over-all system transfer function matrix

in diagonal form and to assign some of the closed-loop poles of the de

coupled system. Then we consider the problem of triangular decoupling

via state feedback. This is a problem of finding a state feedback law

to bring the over-all system transfer function in an upper triangular

form. This problem has applications in process control.

In chapter IV, we are dealing with a more general formulation of

I decoupling problems. Instead of making the over-all system transfer

function matrix in diagonal (triangular) form, we only require it to

be in the quasi-diagonal (qjasi-triangular) form. We consider the output

feedback case with and without dynamic compensation.

2. Contributions of this thesis

At the end of each chapter, we give references to previous work and

we discuss the relation of our contributions with previous work.

In chapter I, II and III (except section 2 of chapter III), all the

derivations are based on a canonical form for transfer function matrix

fcv (see (1.3.42)). This unified approach not only provides solutions to

various design problems, but also gives deeper insight into the structure

of linear multivariable systems. The contributions in each chapter of

f^* this thesis can be summarized as follows.



0.2 Contributions

(i) In chapter I, we first derive a canonical form for transfer function

matrix (see (1.3.42)), which is similar to the "structure theorem" due to

Wolovich and Falb [Wo.l] but our derivation is more straight forward.

Based on this canonical form and some factorization results due to Popov

[Po.l], we derive a new algorithm for the minimal realization of linear

multivariable systems. We also give a new proof to the stability theorem

(1.4.1) due to Kalman, Hsu and Chen [Ka.2,Hs.l,Ch.l].

(ii). In chapter II, we give complete solutions to the exact model matching

both via state and output feedback. In both cases, we have algorithms which

consist of a finite number of steps and generate the whole class of state

or output feedback laws for matching purposes.

(iii). In chapter III, we give an alternate conditions for diagonal

decoupling via output feedback. The first necessary and sufficient

conditions for the solvability of this problem is due to Falb and Wolo

vich [Fa.l]. Our approach has the advantage of relating the output feed

back laws to the closed-loop poles. The triangular decoupling problem

via state, feedback is first formulated and solved by Morse and Wonham

[Mo.2] in a geometric approach. We solve the same problem using Silver

man's inversion algorithm [Si.l] and we show that the conditions for

triangular decoupling via state feedback is equivalent to the conditions

for invertibility of linear multivariable systems.

(iv) In chapter IV, we solve the diagonal and triangular decoupling

problems via output feedback with or without dynamic compensation. We

follow closely the geometric approach developed by Wonham and Morse
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[Wo.5,Mo.2,Mo.3], where they considered only the decoupling problems

via state feedback. In the present work, a constructive procedure for

finding these decoupling matrices (and new dynamic elements) is given.

The problem of minimizing the order of dynamic compensation (i.e., the

number of new integrators associated with the feedback law) is still

unsolved. In solving the above problems, we use the concept of control

lability subspace of Wonham and Morse but have to extend it to the out

put feedback case.

In the sequel, if k is a positive integer, k is the set of integers

{l,2,...,k}. (f(i,j)), (i e q), (j e m) denotes a qxm matrix, whose

(i,j) element is f(i,j).



CHAPTER I

REALIZATION OF LINEAR MULTIVARIABLE SYSTEMS

0 Introduction

This chapter considers the problem of minimal realization of '***

linear time-invariant finite-dimensional systems from their given

transfer function matrices. We use some basic results on poly

nomials and polynomial matrices as the tool to solve this problem.

Our method is essentially based on some factorization results due

to Popov [Po.l] and a canonical form of rational matrices, see

(3.42) below. This canonical form is similar to the "structure

theorem" due to Wolovich and Falb [Wo.l] but our derivation is more

straight forward. The literature is discussed at the end of this '

chapter.

We use R [s] to denote the commutative ring of polynomials in

a single variable s with coefficients in the field of real numbers *»

R. A matrix whose elements are in R [s] is called a polynomial

matrix. R(s) denotes the field of rational functions in s over

R; every element of R(s) can be expressed (in many ways) as the

quotient f(s)/g(s) of two polynomials in R[s], with g(s) ± 0.

An element of R (s) is said to be a strictly proper rational -•"•

function if the degree of its numerator is less than the degee of

its denominator. A matrix whose elements are in R(s) is called

a rational matrix. For a more detailed discussion on polynomials

and rational functions, see Mostow [Mo.l] or MacLane [Ma.l].



1.1 Polynomial Matrices

1 Polynomial matrices

In this section, we introduce some results on matrices with

elements in a ring of polynomials R[s]. Most of these results

can be found in MacDuffee [Ma.2].

& 1.1 Definition If three matrices with elements in R[s] satisfy

the identity A(s) = C(s)D(s), then D(s) is called a right divisor

of A(s), and A(s) is called a left multiple of D(s). A greatest

common right divisor (g.c.r.d.) D(s) of two matrices A(s) and B(s)

is a common right divisor which is a left multiple of every common

right divisor of A(s) and B(s). If D(s) is a unimodular matrix,

(i.e., det D(s) = constant ^ 0), then the pair of matrices A(s) and

B(s) are said to be right coprime.

1.2 Remark In contrast to the multiplication of polynomials, the

multiplication of polynomial matrices is not commutative, in general.

That is the reason that we have to specify right divisor, left multiple,

greatest common right divisor, and right coprime in Definition (1.1).

It is clear that we can also define left divisor, right multiple,

greatest common left divisor and left coprime in a natural way.

1.3 Theorem (MacDuffee [Ma.2])

*c. Every pair of matrices D(s), mxm, and N(s),qxm, with elements in R[s]

have a g.c.r.d. R(s), mxm, expressible in the form

\~- -

0^-

1.4 R(s) = P(s)D(s) + Q(s)N(s),

where P(s) and Q(s) are mxm, mxq polynomial matrices respectively.



1.1 Polynomial Matrices

Proof Consider the (m+q)xm polynomial matrix

(s) - p>(s)Tlm
Ln(s)J\q

}
m

Let f . be the (i,j) element of F(s), (i e m+q), (j € m). In the

following, we will use a sequence of elementary row operations to

bring F(s) to the upper triangular form as shown in (1.6) below.

Elementary row operations consist of three basic operations (i)

multiplication of any row of F(s) by a nonzero constant, (ii) inter

change of any two rows of F(s), (iii) addition to any row of F(s),

say the i-th row, of any other row of F(s), say the j-th row, multi

plied by any arbitrary polynomial p(s). The procedure is described 7

as follows,

1.5 Procedure

Step 1 M(s) = F(s)

Step 2 If all elements in the first column of M(s) [except the one

in the (1.1) position] are identically zero, go to step 6, otherwise

go to step 3.

Step 3 Among all elements in the first column of M(s), pick the

one which has the least degree and is not identically zero. By a

permutation of two appropriate rows, we bring this polynomial to

the (1.1) position. Call the resulting matrix M(s) with n±1 in the

(i,l) position.

.»«

-/^|\



jp^

v\

J^-

1.1 Polynomial Matrices

Step 4 Divide each polynomial & by fo^, (i=2,...,j),where j is

the number of rows in M(s),

ftii "•lAi + ril <i=2>-••»:»

where degree of r . (degree of to _. Now we subtract from the i-th

row of M(s) the first row of fi(s) multiplied by g.-(i=2,... ,j) . As

a result of these elementary row operations, we get a new matrix,

called M(s), whose first column is (m..,r2_,...,r.«).

Step 5 M(s) = M(s), go to step 2.

Comment Each sequence of operations of step 2 to step 5 reduces

the degree of the polynomial in the (1,1) position of M(s) by at

least 1. Therefore, after a finite number of iterations of step 2

to step 5, we will go to step 6.

Step 6 If M(s) has only one row or one column, go to step 9, other

wise go to step 7.

Step 7 Deleting the first row and the first column of M(s), where

M(s) is of size jxk, we get a (j-l)x(k-l) matrix M(s).

Step 8 M(s) = M(s), go to step 2.

Step 9 Stop.

The sequence of elementary row operations described in Procedure

(1.5) brings F(s) to the upper triangular form as shown below.
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1.1 Polynomial Matrices

•{ Uu(s) ,U12(s)

{• 21(s);u22(s)

m

D(s)

N(s)_

d-x .. x

d2 •
•

r i
R(s)"

•

X

* d
0 } 0

m

}•

where the first factor U(s) is unimodular. U(s) represents the

sequence of elementary row operations performed on F(s). Hence

—1there exists a polynomial matrix V(s) = u (sj such that

1.7

whence

D(s)"

LN(s).

•Vu(s) ,V12(s)l

V"(s)[v" "(8)
L*21 22

R(s)"

0

D(s) - Vu(s)R(s), N(s) «Vn(s)R(s),

i.e., R(s) is a common right divisor of D(s) and N(s). From (1.6)

Ul;L(8)D(s) + U12N(s) = R(s),

we see that every common right divisor of D(s) and N(s) is a right

divisor of R(s). Hence R(s) is a g.c.r.d. of D(s) and N(s).

Q.E.D.

1.8 Corollary In Theorem (1.3), if det D(s) $ 0. then for any two

g.c.r.d. of D(s) and N(s), say R^s) and R2(s), there exists a uni

modular matrix U(s), such that

U(s)R1(s) =» R2(s)

10

^
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1.1 Polynomial Matrices
11

Proof Since R^s) is a right divisor of D(s), i.e., D(s) = D (s)R (s)

for some polynomial matrix D^s), and det D(s) = Det D-(s)-det R (s) 2 0,

we have det R^s) $ 0. From the definition of g.c.r.d., we have

1.9 Rx(s) = U2(s)R2(s)

1.10 R2(s) = U1(s)R1(s)

for some polynomial matrices U-(s) and U2(s). By substituting (1.10)

into (1.9),

1.11 Rx(s) = U2(s)U]L(s)R1(s)

and multiplying both sides of (1.11) on the left by R- (s), we have

U2(s)U1(s) = I.

Hence, both U.(s) and U2(s) are unimodular matrices.

Q.E.D,

1.12 Corollary Let N(s) and D(s) be two matrices with elements in

R[s]. Then N(s) and D(s) are right coprime if, and only if, there

exists two matrices P(s) and Q(s) with elements in R [s], such that

P(s)N(s) + Q(s)D(s) = I

Proof This corollary follows directly from Theorem (1.3) and the

proof is omitted.

1.13 Definition (Wolovich[Wo.2]) Let D(s) be an mxm matrix with

elements in R[s], and det D(s) $ 0, then D(s) is said to be column
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1.1 Polynomial Matrices

m

degree (det D(s)) =^ ^p ,
j=l

where p,(jen) is the highest degree of the polynomials in the j-th

column of D(s).

1.14 Assertion If D(s) is an mxm matrix with elements in R[s],

det D(s) $ 0, and D(s) is not column proper, then there exists a

unimodular matrix U(s), such that D(s) = D(s)U(s) is column proper.

1.15 Remark As in Definition (1.13), we can define an mxm matrix

D(s) to be row proper. As in Assertion (1.14) we can show that if

D(s) is not row proper and det D(s) jf 0, then there exists a uni

modular matrix V(s), such that D(s) = V(s)D(s) is row proper.

Proof of Assertion (1.14) Let p (j e m) be the highest degree of

Pj+1
the polynomials in the j-th column of D(s), and let \ ^* d(i,j,k)s

be the (i,j) element of D(s). Let D be an mxm constant matrix with

dCijJ >P.j+1) in the (i,j) position. Since D(s) is not column proper,

or equivalently, det D = 0, there exist a set of real numbers a.,

(j e m), not all zero, such that

m

1.16 xjaidi a£
j»l

12

y^s^.



1.1 Polynomial Matrices

A Twhere d. = [d(l,j,p.+1),'*«, d(m,j,p )] is the j-th column of

DQ. Note that

det D(s) $ 0 and definition of the p fs

tc => dJ $ 0 for all j£m

^ J • {j |ot. # 0} contains at least two elements.

Let us pick the largest p. for all j e J, say p. , and multiply the

3 0 Pj -pj
jn-th column of D(s) with a. ,then add to it with as ° times
u J0 J

j-th column of D(s) for all j£ JWjn). The above elementary column

operation on D(s) leads to a new polynomial matrix f)(s) which has

the same elements as D(s) except in the j0~th column. Let p. (j £ m)

be the highest degree of the polynomials in the j-th column of D(s1.

Pj ~PJ
From (1.16) and the set of appropriately chosen multiples a.s ,

it is easy to see that p. < p. . Hence
J0 J0

m m

EpVEpr •

i.e., the above elementary column operations reduce the sum of

m

p. ,(j € m). Note that N "p. >^ n » degree(det D(s)) = degree(det D(s))
i=l

and P. ^ 0 for all j e m. After a finite number of elementary column

operations, we get a matrix f)(s) =» D(s)U(s) which is column proper,

where the unimodular matrix U(s) represents the sequence of elemen-

13



1.1 Polynomial Matrices

tary column operations performed on D(s). Q.E.D.

1.17 Remark In Assertion (1.14), it is easy to see that we can choose

U(s) appropriately such that D(s) = D(s)U(s) satisfies the following

two conditions,

(i) f)(s) is column proper

(ii) px >_ p2 >_ ••• >_ pr >_ 1and p = •••= pm » 0

for some r < m

where p (j e m) is the highest degree of the polynomials in the j-th

column of D(s).

2 Factorization of Rational Matrices

Using the above results on polynomial matrices, we show below

that we are able to factor any rational matrix as a product of two-

matrices, H(s) = N(s)fi (s), where N(s) and fi(s) are polynomial

matrices and right coprime. Similarly, we can factor H(s) as D(s)

N (s), where N(s) and D(s) are polynomial matrices and left coprime,

Let H(s) be a qxm matrix, with elements in R (s). H(s) can be

written as follows,

2.1 H(s)

nn(8) . • nlm(8)
d1(s) Vs>

nql(s)
qm

d1(s) . . d (s)
m

14
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1.2 Factorization of Rational Matrices

nll(s) • ' " nlm(s) v-» Q -I -1

n (s) . . . n (s)
ql qm

& N(s)D(s)_1,

o
m

where d.(s) (j € m) is the least common multiple of the denominators

of the elements in the j-th column of H(s). As in the proof of

Theorem (1.3), we can find polynomial matrices S(s), fi(s) and R(s),

which are of size qxm, mxm and mxm, respectively, such that

2.2 N(s) = N(s)R(s)

2.3 D(s) = fi(s)R(s),

where R(s) is a greatest common right divisor of N(s) and D(s). Note

that det D(s) 2 0 =* det R(s) t 0. From (2.1)-(2.3), we have

2.4 H(s) = N(s)fi"1(s).

2.5 Theorem. (Popov[1]).

Let H(s) be a qxm matrix with elements in R (s). As shown in

(2.4) H(s) can be written as a product of N(s) and 6 (s), where N(s)

and 6(s) are matrices with elements in R [s] and every greatest

common right divisor (g.c.r.d.) of ft(s) and D(s) is a unimodular

matrix, (i.e., the two polynomial matrices ft(s) and B(s) are right

coprime), then

15



1.2 Factorization of Rational Matrices
16

(a) for any other factorization of H(s) of the form

H(s) - N(s)D"1(s),

where N(s) and D(s) are matrices with elements in [R.[s] and det D(s) $ 0,

there exists an mxm polynomial matrix R(s), such that

N(s) » N(s)R(s) and D(s) - B(s)R(s),

(b) if the two polynomial matrices N(s) and D(s) are also right

coprime,then R(s) is a unimodular matrix.

Proof, (a). Let T(s)(f(s)) be a g.c.r.d. of N(s) and D(s)(N(s) and

D(s)), where T(s) is a unimodular matrix, but T(s) is not, in general.

Let adj D(s)(adj fi(s)) be the adjoint matrix of D(s)(B(s)). It is

easy to see that

T(s)*[adj B(s)]'det D(s) is a g.c.r.d. of N(s).[adj S(s)]*det D(s)

and fi(s)'[adj S(s)].dfct D(s),

and

T(s)*[adj D(s)]»det B(s) is a g.c.r.d. of N(s)*[adj D(s)]* detD^s)

and D(s)*[adj D(s)]»det S(s).

Since

fi(s)*[adj S(s)]-det D(s) * N(s)»[adj D(s)].det B(s)

B(s)-[adj S(s)]«det D(s) = D(s)-[adj D(s)]*det B(s)>

and det{B(s)-[adj B(s)]*det D(s)} * [det B(s)-det D(s)]m 2 0* from

Corollory (1*8) we conclude that their g.c.r.d. can differ at most

by a unimodular matrix U(s), i.e.,
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UCs.)?(s)-Iadj B(s)]-det D(s) » T(s)-[adj D(s)]-det fi(s)

Hence

det B(s) det D(s)

consequently

B"1(s) - t"*1(s)-u"1(s)-T(s)-d"1(s),

or

2.6 D(s) « S(s)R(s).

where R(s) = T (s)U (s)T(s) is a polynomial matrix, this follows

from the assumption that ¥(s) and U(s) are unimodular matrices.

From (2.6) and N(s)D~1(s) =N(s)D(s), we have

N(s) = N(s)R(s).

This proves (a).

(b). Follows from the definition. Q.E.D.

3 Realization of linear multivariable systems

Consider a factorization of H(s) in the form (2.4) where ft(s)

and fi(s) are right coprime. From Assertion (1.14) we can find a

^ A
unimodular matrix U(s), such that the product' D(s) - B(s)U(s) is

column proper. Hence the qxm matrix H(s) in (2.4) can be written as

H(s) - N(s)U(s){B(s)U(s)r1



1.3 Realization.

3.1 = N(s)£"1(s).

where £(s) = fi(s)U(s) is column, proper and again N(s) = N(s)U(s) and

D(s) are right coprime.

3.2 Assertion In (3.1) if each element in H(s) is a strictly proper

rational function in s, then the qxm polynomial matrix N(s) has the

following property: Each element in the j-th column of N(s) has a

degree no greater than (p.-l) when p. > 1, and the j-th column of

N(s) is identically zero when p = 0, where p., (j € m), is the

highest degree of the polynomials in the j-th column of D(s).

Proof We write D~ (s) = {adj D(s)}/det D(s). Since D(s) is column

proper, adj fi(s) is an mxm polynomial matrix,which is row proper, and

the highest degree of the polynomials in its j-th row is n-p , where

m

n=p p = degree (det 6(s)). First consider the case p. > 1, assume
j=l

that there is an element n .(s) in the i-th row and j-th column of

N(s) having degree greater than P.,-1. Then in the i-th row of the

product N(s){adj D(s)}, there is at least one element with degree

greater than or equal to n. Since the degree of det D(s) is only n,

this contradicts the assumption that H(s) = N(s){adj D(s)}/det D(s) is

strictly proper. If there are more than one element in the same row

of fi(s) having degree >^ P.»~l> in view of the fact that adj f)(s) is

a row proper matrix, we get the same contradiction, because any set

of rows of coefficients of the power (n-p.) in adj 6(s) are linearly

independent. The case for some p. ° 0 is similar. Q.E.D.

18
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From the above reasonings, the polynomial matrices N(s) and

D(s) in (3.1) can be written as

PJ
3.3 N(s) ={Vfi(i,j,k)sH}, (i G q), (j e m).

k=l

and

Pj+i
3.4 D(s) ={^ a(i,j,k)sk"1}, (i em), (j em)

k=l

3.5 Realization algorithm of linear multivariable systems

Step 1 Given the qxm matrix H(s), whose elements are strictly proper

rational functions in R (s), put it in the form

3.1' H(s) « N(s)D"1(s)

where N(s) and 6(s) are qxm, mxm polynomial matrices respectively,

which are right coprime, and D(s) is column proper, (see (3.1)).

In detail, we write

PJ

N(s) ={^fiaj,^""1}, (i €q)' (J em).
k=l

Pj+1D(s) ={£ aaj^s1''"1}, (i €E m), (j em).
k=l

Furthermore we assume that the columns of N(s) - N(s)U(s) and
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D(s) =» fi(s)U(s) (see (3.1)) are permuted by choosing appropriate U(s),

such that P. > p« > ••• > p > 1 and p .. = ••• = p =0, where r < m.
± — z — — r — r+i m —

(see Remark (1.17)).

Step 2 Let n = p. + p« + ••• + p = degree{det D(s)}. Define a qxn

constant matrix C with n(i,j,k), (i e g), (j e 7), (k e p ) in the

j-l

i-th row and (J p )+k-th column. Define the real mxm matrix G with
v=l

3(l>J»Pj+l) in the i-th row and j-th column. Note that fi(s) is

column proper implies det 8^0. Define a mxn matrix S1 = - 6

{ct(i,j,k)}, where {3(i,j,k)} denotes an mxn matrix with ct(i,j,k) in

j-l

the i-th row and (\ p )+k-th column, (i € m), (j e r), (k £ p.).

Vs81

ft

[cx; si •••; cJJ

n(l,j,l) n(l,j,2) . . . n(l,j,Pj)

n(2,j,l) S(2,j,2) . . . n(2,j,Pj)
...

n(q,j,l) n(q,j,2) . . . n(q,j,Pj)_

>q

4(1,1^+1) d(l,2,p2+l) . . . d(l,m,pa+l)

3(2,1^+1) d(2,2,p2+l) . . . d(2,m,pm+l)

ddn.l.p^l) d(m,2,p2+l)

m

• •

. . d(m,m,p +1)
m . -

(jer)

m

20
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Di ; D2 ;
n

: d
JL.JP.

m

d(l,j,l) d(l,j,2) . . . d(l,j,p )"^

d(2,j,l) d(2,j,2) . . . d(2,j,p )

_d(m,j,l) d(m,j,2) . . . d(m,j,p )
V . L

'j

i

j

m (jer)

Step 3 From the p (j G m) and r defined in step 1, define two matrices

A and B of size nxn, nxm, respectively,

3.6

3.7

3.8

K = block diag[A.,...,& ]

8 = [Sjo], B~ = block diagtfL,
r i r ±

.,B ]
' r

0 10 0. . .00

0 0 10. . .00

0 0 1

0 0 0

• 6, =

21



1.3 Realization.

p.xp p. __

where A. eR ^ >\ G fc™*, h e \R J, (j e r).

**»

Step 4 Using G, f, A and B from step 2 and step 3, we calculate

A = X + B F

B = S G"1

END OF ALGORITHM

In Theorem (3.9) below, we will prove that the matrices A, B

and C given by the above algorithm is actually a minimal realization

of the given transfer function H(s).

We have seen that every qxm matrix H(s), whose elements are

strictly proper rational functions in IR (s), can be put in the form

3.1" H(s) = ^(s)D"1(s)

where N(s) and 6(s) are matrices with elements in R[s], N(s) and

6(s) are right coprime, and D(s) is column proper. (see step 1 in

Algorithm (3.5)). The following theorem is a modified version of

Proposition 2 due to Popov [Po.l],

3.9 Theorem Let H(s) be a qxm matrix, whose elements are strictly

proper rational functions in R(s). Then

(a) the matrices A, B and C given by Algorithm (3.5) is a

minimal realization of the given transfer function H(s), and

(b) det(sI-A) = k'det 6(s), where A is given by Algorithm (3.5),

6(s) is shown in (3.1"), and k is a nonzero real number such that

the polynomial k*det 6(s) has leading coefficient 1. (i.e., the

22



1.3 Realization.

characteristic polynomial of the minimal realization of H(s) can

differ with det D(s) by at most a nonzero constant factor.)

The order of the factors in the factorization of H(s), (see

(3.1"), is arbitrary: similar results hold for the opposite order.

More precisely, we have the

3.10 Corollary

(a). Every qxm matrix H(s), whose elements are strictly proper

rational functions in R-(s), can be put in the following form

H(s) » D"1(s)N(s)

where N(s) and D(s) are matrices with elements in R [s], N(s) and

|P\ D(s) are left coprime, and D(s) is row proper.

(b). The characteristic polynomial of the minimal realization of

H(s) is equal to k»det D(s), where k is a nonzero constant such that

the polynomial k*det D(s) has leading coefficient 1.

In order to prove Theorem (3.9), we need the following two

lemmas.

3.11 Lemma (Luenberger's second canonical form [Lu.l])

f Consider a linear time-invariant system specified by the

following equation

3.12 x(t) = Ax(t) + Bu(t)

where A £ R and B£ R, are constant matrices. We assume that

\ the pair (A,B) is completely controllable and rank (B) = r < m.

23



1.3 Realization.

Then there exists an nxn constant nonsingular matrix Q, such that

the substitution of z(t) « Qx(t) into (3.12) gives rise to the

following equation

3.13 z(t) - &z(t) + 8u(t),

where A « QAQ~ , B = QB and

3.14 A = -

"a '1. ' ltTil T.2 '" B *| lr

A21, 22 •" ' ,A2r

• ••' • • • * • • • •••

• • • ••• 1* • • I • • •

rl i r2 i rr

0 0 0

0 0 0

0 0

0 0

B\

24

3.15 LA -
ij

t • i * j, (ie r),(j € r)

3.16 A
jj

Dt(i,j,l) . . .

10 0

0 10

a(j,j,l) . . .

. <x(i,j,p )j

(j e r)

a(J.J.Pj)

A



A

3.17 *r

1.3 Realization.

0 0

e(j,D 6(j,m)

(j e r)

p.xp. Va^Pa P^3™
where LeR1 J, A,, e R J J and B. e R J . The set of

ij jj J

bottom rows in B , [3(j,1),•••,3(j,m)], (j e 7) are linearly in

dependent. The positive integers Pi i P« 1 ••• i P ^.1 together

with P^.-, = Py+o = ***- P - 0 are called controllability indices

r

of the controllable pair (A,B). Note that y p = n.

j-l

Proof It is assumed that the system specified by (3.12) is com

pletely controllable, i.e., the nx(n«m) controllability matrix

3.18 S= [B:AB;A2BJ...;Ar:":LB]

has rank n. With the following procedure, we can select a unique

set of n linearly independent vectors from the n*m columns of the

matrix S in (3.18).

3.19 Procedure

The vectors are examined in the order:

3.20 b1»b0,.•.,b ,Ab_,Ab0,•••»Ab ,...,...,A b
x l m j. £. m m

Step 1 Select b- if it is a nonzero vector, otherwise omit it from

25



1.3 Realization. «,
ZD

the selection.

Step 2 Consider the next vector. If the next vector is linearly

independent of all previously selected vectors, retain it, otherwise

omit it from the selection.

Step 3 Repeat step 2 until we have selected n linearly independent

vectors.

According to our procedure, this set of vectors is clearly unique,

and is called a Lexicographic basis of the controllable pair (A,B).

A set of Lexicographic basis can be arranged in the following order

Px-1 P2-l Pr"l
3.21 b ,Ab ,... ,A b ,b ,Ab. ,.. .,A b ,... ,A b

H 11 , 11 12 i2 i2 r

such that p. >^ p« >_ ••• >_ p ^.1, and the set of distinctive integers

i-,i2,...,i is a subset of {l,2,...,m}. The positive integers {p.}. ,

together with p - = P-j.0 = **' = p are caHed controllability

indices of the controllable pair of the controllable pair (A,B). For

detail, see [Wo.4,Br.1].

Define an nxn matrix P, whose columns are composed^of the Lexico

graphic basis of (A,B) , i.e.,
A

. P-.-1 . Po-1 • 1 P~-l
P = b, -Ab, !..mAx b4 'b^ iAb. •"••A b4 !-"!Ar b,

in ' in 1 1 in• i0» i„' 1 i0' ' i^
L 11 11 1 li 2i 21 1 2 • 1 rJ.

Write P in terms of its row vectors
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*11

'12

-1
lPi

'21

22

'2p.

rP,

For simplicity, the row vectors e. ,(i € r), are labeled
pi

e, = e. . (i e r)
i ip.

The vectors e.,en,...,e are used to construct the transformation
1* 2* ' r

matrix

3.22

"el

elA
•

•

•

elA1
e2

-1

e2A
•

•

erAPr"-1

27



1.3 Realization.

In order to use Q as a transformation matrix, we have to show that

Q is nonsingular. This can be done by the following reasoning:

Suppose there are constants a., such that
ij

r pi

ij i

i=l j=l

3.23 J \ a^e^A3'-1- = 0.

Taking inner product of both sides of (3.23) with b4 (k € r)

produces
\

3.24 sl =0. (k e r)
Rpk

28

since by definition of the e.'s each term in the inner product is

1 V1 ^
zero except the one involving e A b. which is unity. From (3.24),

(3.23) can be written as

r V1

3.25 S^V* a^e.A^1 «0
"ij-r

i=l j=l

Taking the inner product of both sides of (3.25) with Ab produces
ik

\,p„-i =°- <ke-)

Continuing this manner, it is proved that each a.. =0 (i 6 r)

(j e Pj)» i.e., Q is a nonsingular natrix.

With the transformation matrix Q defined in (3.22), it is a

simple matter to verify that the matrices A « QAQ~ and 6 = QB
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have the special form shown in (3.14)-(3.17). Note that since

rank B ™ r and Q is nonsingular, so the set of bottom rows in B.

(j £ r) are linearly independent.

3.26 Remark From the set of controllability indices P1,...,p of

(A,B), we define two constant matrices A £ R and B £ R as

shown in (3.6)-(3.8). From the coefficients of A (i G r) (j € 7)

and B. (j € r), we define a constant matrice F € R and a constant

nonsingular matrix CG R as follows

3.27 F = [fc. !F9!---| FJ
i i l i i r

29

ct(l,j,l) ot(l,j,2)

a(2,j,l) a(2,j,2)

<*(l,j,p.)

<*(2,j,Pj) r (j e r)

F.

3.28

3.29 G «

a(r,j,l) a(r,j,2)

0 0

<*(r,j,p )

0

"V"

3(1,1) 3(1,2) . . . 3(l,m)

3(2,1) 3(2,2) . . . 3(2,m)

3(r,l)

. . ...

3(r,2) . . .

* •

3(r,m)

J

m

(m-r)

r
I m-r
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Note that the first r rows of G consist of the set of bottom rows

in B (j € r). Since the set of row vectors [3(j,1),...,3(j,m)] are

linearly independent, we can find a (m-r)xm constant matrix J such
a.

that the matrix G defined in (3.29) is nonsingular. With A,6,F and

G defined above, we have the following equalities,

3.30 QAQ"1 = A» X+ Bf

3.31 QB = B = 56

This observation is useful in the proof of the following lemma.

3.32 Lemma Consider a linear dynamical system specified by the

completely controllable representation in (3.12) and (3.33) below

3.33 y(t) = Cx(t)

where Ce Rqxn and y(t) e (Rq is the output. Then the transfer

function H(s) = C(sl-A) B of the above system can be put in the

following form

3.34 H(s) = N(s)D"1(s)

where N(s) and D(s) are qxm, mxm matrices with elements in (R [s] and

degree (det D(s)) = n, where n is the dimension of the state space

of the system in (3.12) and (3.33).

Proof H(s) = C(sI-A)'1B

= CQ"1(sI-QAQ"1)"1QB

30
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1.3 Realization.

= C^I-A^B

= C(sI-A-BF)"1BG

where A « QAQ~" , B = QB as defined in (3.13), C = CQ~ , and the last

step follows from (3.30) and (3.31) with A,B,F and G defined in

Remark (3.26) and (3.27)-(3.29).

Now we write (3.35) as follows

3.36

3.37

H(s) = C(sI-A-SF)-'1BG

. . -1- . • -1. -1.
« C(sl-A) B{I-F(sI-A) B} G

- C(sI-A)"1B{G"1-G"1F(sI-A)"1B} .

In (3.36) we make use of the identity,

3.38 (sI-A-BF)"1^ = {I-(sI-A)"-1BF} (sI-A)"1^

» (sI-A)~1B{I-F(sI-A)"1B}
-1

which can be easily visualized from the following picture,

A

U
Ml

)<

A +

N

Figure 1.3.1

where M denotes the transfer function of the forward loop, and N

denotes the transfer function of the feedback loop. We have

31
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<i = Nx + v

x = m = MNx + Mv.

x = (I-MN)"1^

32

3,39 = Md-NM)"1^

i.e. the transfer function of the closed loop system is given by

(I-MN)~1M or M(I-NM)"1. If we let M= (sI-A)_1B and N= f, then

(3.38) follows immediately.

Let us go back to (3.37). The first term in (3.37) can be

written as

3.40

'k=l

'PJ
C(sI-A)"1B ^[^2 naj.kys^j/s j>, (i eq), (j em),

where n(i,j,k), (i £ q), (j G r), (k6 p.) denotes the element of

the qxn matrix C in the i-th row and j/P 1+ k-th column, and
\v=l /

n(i,j,k) « 0 for all i e q and j = r+l,...,m. Similarly, the second

term in (3.37) can be written as

3.41

>k«l

(i e m), (j e m),

je^-e-^si-ArHJ Jh£ da,j,i

where d(i,j,k), (i € m), (j e r), (k^p ) denotes the element of
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-G F in the i-th row and IN p j +k-th column, and d(i,j,p +1),
\v=l /

(i € m), (j € m) denotes the (i,j) element of G

From (3.37), (3.40) and (3.41), it follows that

3.42 H(s) = N(s)D-1(s)

Pj

N(s) =j(^n(ifj,k)8k"1U ,(iwhere N(s) =*{[ > n(i,j,k)s J^ , (i e q), (j € m) is a qxm poly-

'V1
nomial matrix, D(s) =i| > d(i,j,k)s~ •"")>, (i^i), (j G m) is an:, D(s) ={(]£ dil.UUs^jl, (i

/w-l
mxm polynomial matrix. Furthermore, since G is nonsingular, D(s)

r

is column proper and whose determinant is of degree n = N p.. Q.E.D.

3=1

3.43 Remark Realization algorithm (3.5) is based mainly on the

developments in the proof of Lemma (3.32). We have shown that for

any given system specified by the completely controllable represen

tation x = Ax + Bu and y = Cx in (3.12) and (3.33), its transfer

function H(s) = C(sl-A) B can be written as a product of two

matrices N(s) and D (s), where N(s) and D(s) are polynomial matrices

whose elements are determined by the given matrices A, B and C.

Furthermore, D(s) is column proper and the degree of det D(s) is

equal to n = dimension of the state-space of system (3.12), (3.33).

On the other hand, for any given matrix H(s) whose elements are in
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R(s), we can factor H(s) as a product of two matrices N(s) and

D (s), where N(s) and D(s) are polynomial matrices, and D(s) is

column proper, (see step 1 of Realization algorithm (3.5)). From

the derivations in the proof of Lemma (3.32), we can extract

A « A + SF, B » BF and C from N(s) and D(s) in order to get a

realization of H(s) = N(s)d"* (s). (see step 2 - step 4 of Real

ization algorithm (3.5)). The reason that we require N(s) and D(s)

to be right coprime (see step 1 of Realization algorithm (3.5)) is

to make the above realization to be of minimal dimension. (For

detail, see the proof of Theorem (3.9) below)

3.44 Remark If we assume that the system in (3.12) and (3.33) is

completely observable, then we can put its transfer function in the

form,

H(s) = C(sI-A)"1B

= D"1(s)N(s)

where N(s) and D(s) are qxm, mxm matrices with elements in R[s] and

degree (det D(s)) = n, where n is the dimension of the state space

of the system (3.12) and (3.33). A simple way to do it is the

following: Apply Lemma (3.32) to the system (A ,C ,B ), where A ,

T T
C and B are the transpose of A,C and B respectively, then

HT(s) = BT(sI-AT) CT

= N(s)fi"1(s).

34
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1.3 Realization

Hence H(s) = C(sl-A)~ B=d"1(s)N(s), where D(s) =DT(s) and N(s)

NT(s).

Proof of Theorem (3.9)

(a) The matrices A, B and C given by Algorithm (3.5) can be shown

by direct calculation to have the property that C(sl-A)~ B = H(s),

i.e., (A,B,C) is a realization of the given transfer function H(s).

(For the motivations of this algorithm, see Remark (3.43)). It

remains to show that this realization (A,B,C), where A is an nxn

matrix and n = degree (det D(s)), is of minimal dimension. Suppose

that there is another realization (A1,B,,C')'of H(s) of smaller

dimension, (i.e., A1 is an n'xn1 matrix and n1 < n), then from

Lemma (3.32), H(s) can be written as

3.34* H(s) «* N(s)D"1(s)

where degree (det D(s)) = n'. (Note that in order to apply Lemma

(3.32), we assume that the pair (A1 ,Bf) is completely controllable.

If this is not the case, we first apply Theorem 4 in [De.l], pp.

172-173, to extract a completely controllable subsystem (A0,Bn,Cn)

from (A^B'jC), where A~ is of smaller size than A*, then we apply

Lemma (3.32)). From (3.1") and (3.341) we have

H(s) = N(s)6"1(s) = N(s)D"1(s)

where N(s) and fi(s) are right coprime. From Theorem (2.5), there

exists a polynomial matrix R(s), such that
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N(s) = N(s)R(s) and D(s) = 6(s)R(s)

where det R(s) t 0. Hence

n = degree (det D(s)) <_ degree (det D(s)) = n1,

this contradicts the assumption that n > n?. Hence the realization

(A,B,C) given by Algorithm (3.5), where A is of size nxn and n =

degree (det 6(s)), is a realization of H(s) with minimal state

space dimension.

(b) This part can be proven by direct calculations of det(sI-A)

and det D(s).

3.45 Remark Consider the following set of differential equations

3.46 M(p)y(t) = N(p)u(t)

where M(p) and N(p) are matrices with elements in R [p] of dimension

qxq and qxm respectively and p = d/dt is the differentiation operator

Assume that det M(p) t 0, then (3.46) can be written as

3.47 y(t) = M"1(p)N(p)u(t).

If each element in M (p)N(p) is a strictly proper rational function

in Ru>), then the set of differential equations (3.46) can be put

in state form

3.48 x(t) « Ax(t) + Bu(t)

3.49 y(t) » Cx(t)

36
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such that the system represented by (3.48), (3.49) is equivalent

to the system specified by (3.46). For a precise definition of

system equivalence, see [Za.l] pp. 90-91. Also we may be interested

to find a minimal state space representation of the transfer function

M (p)N(p) in (3.47). With several simple modifications, the results

in this chapter can be used to solve these two problems. In this

chapter, a given transfer function matrix H(s) is put in the form

N(s)D (s). It is clear that we can also put it as D (s)N(s), and

replace column proper, greatest common right divisor, etc. by row

proper, greatest common left divisor, etc. Then Realization algo

rithm (3.5) with some suitable modifications can be used for the

present purposes.

To illustrate Realization algorithm (3.5), we consider the

following example.

3.50 Example Consider the transfer function matrix

-3s -6s-2 s -3«-l

3.51 H(s)
(s+1) (s-2)(s+l) (s-2)(s+l)

(s+1) (s-2)(s+l) (s-2)(s+l)

3.52 Step la H(s) can be put in the form, (see (2.1)),

H(s) « N(s)D"*1(s)

-3s2-6s-2 s3-3s-l

3.53

(s+1)

0

0

0

(s-2)(s+l):

0

0

0

(s-2)(s+l):
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Step lb Using the procedures given in the proof of Theorem (1.3),

we calculate a g.c.r.d. of the two polynomial matrices N(s) and

D(s) in (3.53). (see 1.6).

3.54

1 0 0 ! o -s2-3s-3l "s3+3s2+3s+l 0

2 0 0 l
2

-2s -3s
4 1 9

0 s +s -3s -5

0 0 1 0 0 0 0

-2s+4
1

-1 -2s+l -s+2
o 3 2 ,
2s -s -6s

2 3
-3s -6s-2 s -3s-l

L- 0 s ! s -s3+3s+l -.8 S

3 2
•s -3s -3s

3 2
•sJ-3s -3s-l

3 « 2
-s -3s -3s

-2s3-3s2+l

s3-3s-2

On the left hand side of (3.54), the 5x5 unimodular matrix represents

the sequence of elementary row operations performed on the second

factor on the left hand side of (3.54). On the right hand side of

(3.54), the 3x3 upper triangular matrix is a g.c.r.d. of the two

polynomial matrices N(s) and D(s) in (3.53). Multiplying the in

verse of the 5x5 unimodular matrix on both sides of (3.54), we have

(see (1.7)),
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3.55

1.3 Realization

s3+3s2+3s+l 0 0

0
4 3 2

s +s -3s -5s-2 0

0 . 0 s3-3s-2

-3s2-6s-2 s -3s-l
1

u s s s

s3+3s2+3s+l 3 2
-s -3s -3s

3 2 !
-s -3s -3s| 0 s +3s+3

0 -s+2 -2s+l j -1 0

0 0 ii 0 0

1
n •

-3s2-6s-2 3s2+6s+l 3s +6s 0 -3s-6

s -s

i

8 1 0 1

1
3 2

-s -3s -3s
3 2

-s -3s -3s

0
3 2

-8-38-36-1
3 2

-2s -3s +1

0 0 s3-3s-2

0 0 0

0 0 0

Step lc The transfer function H(s) in (3.51) can be written as,

(see (2.4)),

H(s) - N(s)D"1(s)

3.56 -3s2-6s-2 3s2+6s+l 3s2+6s

L- 8 -S -s

s3+3s2+3s+l 3 2
-8-38-38

3 2
-s -3s -3s

0 -8+2 -2s+l

0 0 1
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1.3 Realization.

where N(s) and D(s) are right coprime.

Step Id Since the polynomial matrix D(s) in (3.56) is not column

proper, we must postmultiply both N(s) and fi(s) by a unimodular

matrix U(s) such that the product D(s) = D(s)U(s) is column proper.

Using the procedures given in the proof of Assertion (1.14), we can

find

U(s) =

i i -fl

0 1-2

Lo o u.

Hence H(s) in (3.56) can be written as, (see (3.1)),

-1H(s) = N(s)U(s) {D(s)U(s)}

N(s)D"1(s)
a , *.*

3.57 r3s2-6s-2 -1 6" r~s3+3s2+3s+l

0 0.

i -r

0 -s+2 -3

0 0 1

From the matrices N(s) and 6(s) in (3.57), it is easy to see that

3.58 p, B 3, p, • 1, p. • 0 and r = 2

This completes step 1 of the Realization algorithm (3.5).

Step 2 From (3.58), we calculate n• « p. + p_ » 4. From the co

efficients of the polynomials of N(s) in (3.57), we find the 2x4

constant matrix
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3.59

C -

1.3 Realization.

-2 -6 -3 -1

0 10 0

From the coefficients of the polynomials of D(s) in (3.57), we find

the 3x3 nonsingular matrix

3.60 G «

1 0-1

0 -1 -3

0 0 1J

-1 r-.
1 0 1

0 -1 -3

L0 0 1.

and the 3x4 constant matrix

3.61 F » -(T3*

"13 3 1

0 0 0 2

0 0 0 0

-1 -3 -3 -1

0 0 0 2

0,0 0 0.

Step 3 From the p (i « 1,2,3) and r in (3.58), we find A and B as

follows,

3.62

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0

0

0

0

0

0

, B = 1 0 0

0 0 1 0

Step 4 Using 6,t,A and S from step 2 and step 3, we calculate

41



3.63 A = A+BF

1.4 Stability Theorem

0 1 0

0 0 1

-1 -3 -3

0
—

0 0

! 0

i"I
4—

, B = BG

0

0 j 0
i

0| 0

-1 ! -3

The matrices A, B and C in (3.59) and (3.63) is a minimal realization

of the given transfer function in (3.51).

4. A new proof of a stability theorem

The results in previous sections can be used to prove a stability

theorem due to Kalman, Hsu and Chen [Ka.2, Hs.l, Ch.2], We state this

theorem as follows,

4.1 Theorem (Kalman, Hsu and Chen)

Consider the linear time-invariant multivariable feedback system

shown in Fig. (4.1). The system S. is assumed to be completely char

acterized by its pxp strictly proper rational matrix 6.(8). Let Gf(s)

be the transfer function matrix of the feedback system. Then the char

acteristic polynomial of any minimal realization of 6f(s), denoted by

A-(s), is given by

4.2 Af(s) o Ax(s) -det [I + G1(s)],

where A^s) is the characteristic polynomial of any minimal realiza

tion of G^s).

o-2-Z(\} u G^s) d » y *

Figure 1.4.1

42
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1.4 Stability Theorem 43

Proof From step 1 of Algorithm (3.5), G.(s) can be factored as

4.3 G]L(s) -N(s) 6""1(s)

/\ ^

where N(s) and D(s) are two pxp polynomial matrices, which are right

coprime, and D(s) is column proper. From part (b) of Theorem (3.9), we

have

4.4 A,(s) « k^ det D(s)

where k. is a nonzero constant.

/\

The transfer function matrix of the feedback system 6. is

Gf(s) - (^(s) [I +G1(s)]"1

4.5 - N(s)D (s) [I + N(s)D (s)]

*\j *\* 'U —1

= N(s) [D(s) + N(s)]

By construction, N(s) and D(s) are right coprlme, and from Corollary

(1.12), this is equivalent to the existence of P(s) and Q(s),such that

<\, *\,

P(s) N(s) + Q(s) D(s) - I

<=> [P(s) + Q(s) - Q(s)] N(s) + Q(s) D(s) » I

<==> [P(s) - Q(s)] N(s) + Q(s) [N(s) + D(s)]» I

<=> N(s) and N(s) + D(s) are right coprime.

*\* 'V/ 'V*

From the degree constraints on the elements of N(s) and D(s), and D(s)

is column proper, it is clear that N(s) + D(s) is also column proper.

Therefore, from Theorem (3.9), we have
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Af(s) - k2 • det [N(s) + D(s)]

4.6 "k2 'det D(s) *det [I +*^s) ^"1(s)1
- (kx.k2) • A1(s) • det [I + G1(s)]

where k. and k2 are some nonzero constants. Since G(s) is a strictly

proper rational matrix, we have lim G(s) • 0. Therefore,

Af(3)
4.7 lim-r~-T- (k.-kj • lim det [I + G.(s)] » k -k,, .

Since A_(s) and A.(s) are assumed to be monic polynomials and k.*k2 is

a nonzero constant, there follows k *k. « 1. Hence (4.6) gives the

desired result. Q.E.D.

4.8 Remark (a) It is easy to see that D(s) need not be reduced to the

column proper form; indeed if the factorization (4.2) is given with

N(s) and D(s) right coprime, the above reasoning goes through. (The

reduction to column proper form requires the multiplication of D(s) on

the right by an appropriate unimodular matrix.)

(b) If G1(s) were proper but not strictly proper, then the

reasoning above would hold provided one assumes that det [1 + G-C00)]^ 0.

()[f this condition does not hold, the closed loop transfer function is

not proper.)

5. Discus8ion of the literature

The realization of a rational transfer-function matrix into a

minimal state-space form has been discussed by many authors. Gilbert

[Gi.l] and Kalman [Ka.l] related controllability and observability to

minimality. If the denominators of the elements in the transfer function
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matrix have no common factors, a minimal realization can be obtained

by partial fractions [Gi.l, Ka.l, Za.l]. Kalman [Ka.l] had also ob

served that, in general, a minimal realization could be computed by

starting with an arbitrary realization and reducing to a minimal reali

zation. In [Ka.2] Kalman proposed a method for realization of a transfer

function matrix by using the Smith-McMillan canonical form. The re

lationship between the McMillan degree [Mc.l] and Hankel Matrices has

been pointed out by Youla and Tissi [Yo.l] and Ho and Kalman [Ho.l].

The module-theoretic viewpoint appears in [Ka.3]. In [Ka.4] there is a

systematic presentation of the algebraic structure of linear system

theory as well as the B. L. Ho algorithm for minimal realization of an

/^n impulse response matrix. Panda and Chen [Pa.l] and Kuo [Ku.l] have

proposed methods for realization transfer function matrix into Jordan

Form. Polak [Po.2] has an algorithm for obtaining state-space repre

sentations for systems whose dynamics are expressed by a matrix differ

ential equation. His method uses a Gauss elimination method to "triangu

lar!ze" the matrix differential operator. Popov has some results on

the factorization of rational function matrix [Po.l] and has a realiza

tion algorithm for a special class of linear systems, prop. 3 [Po.l].

,t Rosenbrock proposed some realization methods based on the system matrix.

His methods mainly consist of a sequence of elementary row and column

operations in order to make the system matrix have least order. Rosenbrock

has also developed several results on the factroizations of rational

matrices, his results are close to those in Section 2 of this chapter.

f [Ro.l]. Recently Wolovich [Wo.3] proposed a metnod for obtaining

state-space representation of linear time-invariant systems whose
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dynamics are expressed in a matrix differential equation. Wolovich's

method is simpler than Rosenbrock1s method. Wolovich used the idea of

column proper. This facilitates the computations required to get the

minimal realizations. Although the work in this chapter is independent

of [Wo. 3], they have many results in common. The main contributions

in this chapter are the following, (a) We derive a canonical form of

transfer function matrices, (see (3.42)), which is similar to the "struc

ture theorem" due to Wolovich and Falb [Wo.l], but our derivation is more

simple and straight forward, (b) Based on some factorization results

due to Popov [Po.l], we derive a systematic realization algorithm with

rigorous proofs.
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CHAPTER II

THE EXACT MODEL MATCHING OF LINEAR MULTIVARIABLE SYSTEMS

0. Introduction

In the design of linear time-invariant multivariable systems via

state or output feedback, several well known problems, as the pole assign

ment problem, the decoupling problem, etc., have been discussed by many

authors [Wo.5,6,FaJL,Gi.2,Da,l,2. ] . A general problem is that of find

ing a state or output feedback law for a given system, in order to make

the over-all system satisfy certain requirements. In this chapter, we

make a first step in solving this general problem, we give a complete

solution to the problem of "exact model matching" for finite dimensional

linear time-invariant systems. It is a question of finding a state or

output feedback law for a given system, in order to make the over-all

system transfer function exactly equal to a given transfer function.

This problem was proposed by Wolovich [Wo.2] in the state feedback case;

however, as he pointed out, he has not yet fully solved the problem of

finding, in general, the required state feedback law. Wolovich*s al

gorithm can only be applied to invertible systems. A discussion of the

literature is given at the end of this chapter.

In section 1, we solve the exact model matching problem via state

feedback. In section 2, we give a modified algorithm for the exact

model matching problem via state feedback, this modified algorithm re

quires less computations than that in section 1. In section 3, we solve

the exact model matching problem via output feedback.

1. Exact model matching via state feedback
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II.1 Matching via State feedback

We solve this problem basically in two steps, (1) Apply a state

feedback law (G-,F-) and a coordinate transformation Q to a given system

(A,B,C), in order to transform it into a new system (A,B,C), where A and

S are in a very simple canonical form, (2) Apply another state feedback

law (G2,F2) to the new system (A,B,C); the simple structure of A and B

yields a simple relationship between (G2,F ) and the transfer function

of the resulting system (A+BF2,BG2,C); and this relationship can be fur

ther expressed as a real matrix equation. Given any transfer function

matrix H(s), whose elements are strictly proper rational functions in

s, we put their coefficients into that real matrix equation, and its

solution is the state feedback law (G2,F2). When this state feedback

law (G2,F ) is applied to (A,B,C), the resulting system has a transfer

function exactly equal to H(s). This is Wolovichfs "exact model matching"

problem. The conditions for solvability of the aforesaid matrix equation

give precisely the conditions under which H(s) can be "matched". The

equation yields also the whole class of state feedback laws that match

H(s).

PRELIMINARY ANALYSIS

Consider a linear dynamical system specified by the following differ

ential equation,

1.1a x(t) » Ax(t) + Bu(t)

1.1b y(t) - Cx(t)

where x(t) € Rn, u(t) e Rm, y(t) e Rq and A, B and C are real constant
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II.1 Matching via State feedback

matrices of appropriate size. We assume that the pair (A,B) is completely

controllable and rank (B) = r <_ m. From Lemma (1.3.11) and Remark (1.3.26),

there exist a constant matrix Fe Rm n and two nonsingular matrices

6 £ R and Q G IR , such that the following equalities hold (see

(1.3.30) and (1.3.31)),

1.2 QAQ"1 =A+ BF

1.3 QB = BG

where the matrices t, 5 and Q are defined in (I.3.27)-(I.3.29) and

(1.3.22). The matrices A and B are in the canonical forms shown in

(I.3.6)-(I.3.8).

With F, G and Q so determined, we apply a state feedback law u(t) =

Fx(t) +Gxv(t) =(-6"1?Q)x(t) +(e"*1)v(t) to the system (l.la,b) and
with the substitution z(t) = Qx(t), the resulting system is governed by

1.4a z(t) = Az(t) + Bv(t)

1.4b y(t) = Cz(t)

where C = CQ , A £ (P? and B G IJ^ are in the canonical forms shown

in (I.3.6)-(I.3.8). Note that the matrices A and B are specified by the

set of controllability indices P1 >. P« >.•">. P > 1, Pr+1 = ••• = p = 0

of (A,B).

From now on, we shall work with the system (1.4a,b). We are going to

investigate the relationship between the state feedback law

1.5 v(t) - G2w(t) + F2z(t)

49



II.1 Matching via State feedback

where G2 G R m is anonsingular matrix and F„ € RmXn, which we apply to

system (1.4a,b) and the resulting system transfer function

1*6 H(s) =C(sI-A-BF2)"1BG2.

Note that

H(s) =C(sl-A)"1B{I-F2(sl-A)"1B}"1G2

-C(sI-A)"1B{G21-G21F2(sI-A)'1B}""1

The above identity has been justified in (I.3.36)-(I.3.39).

1.7 Notation

Let 5(i,j,k), (i <= q) , (j G r), (k e p ) be the element of the q*n

j-l

matrix C in the i-th row and (V^p )+ k-th column; thus S(i,j,k) is in
_ v
v=l

the i-th row and is the k-th element of the j-th block. Similarly, let

f(i,j,k), (i em), (j e7), (k ep)be the element of -G^F in the i-th
j-l

row and (/Py) + k-th column; for later convenience, let f(i,j,p +1),
v=l

(ie m), (j e m) denote the element of G~ in the i-th row and j-th

column, and let 2(i,j,k) = 0, (i6q), (j = r+l,...,m).

1.8 Comment

50

j -

From any given set of f(i,j,k), (i e m) , (j € m) , (k e p.+l), such

that M = {f(i,j,p.+l)}, (i € m), (j e m) is an mxm nonsingular matrix, '



II.1 Matching via State feedback

then we can extract G2 = M , and F =-M {f(i,j,k)}, where {f(i,j,k)},

(i € m), (j e r), (k e p ) is the mxn matrix with f(i,j,k) in the i-th

j-l

row and (S p )+k-th column. In other words, such a set of f(i,j,k),

v=l

(i £ m), (j € m), (k6 p.+l) determines a unique feedback law (G2,F2).

With the above notations, the qxm matrix C(sl-A) B in (1.6) can

/

be written as

Pj
P*C(sI-A)_1B ={(y^c(i,j,k)sk"1)/s j}, (i eq), (j Gm),

k=l

and similarly for the second term in (1.6)

V1
{G*1 -G21F2(sI-A)"1B} ={(^fCi.j.^s^b/s j>, (i em),

k=1 (j € m) .

Now the transfer function in (1.6) can be written as

1.9 H(s) = C(s)F"1(s)

PJ
where C(s) = {T%(i,j .^s^1}, (i ^ q), (j € m) is a qxm polynomial

k=l

Pj+1
matrix and F(s) = {V* f(i,j,k)s }, (i €E m) , (j £ m) is an mxm poly-

k=l

nomial matrix whose determinant is not identically zero.
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It.l Matching via State feedback

EXACT MODEL MATCHING

The problem of exact model matching via state feedback can be stated

as follows: Given a qxm matrix H(s), each element of H(s) is a strictly

proper rational function in s, does there exist a state feedback law

(G2,F2) as in (1.5), such that the system (1.4a,b) can be transformed

by the state feedback law (G2,F2) into a new system whose transfer func

tion is equal to H(s)?

Let iKs) =sY +asY~ +a 1sY" +•••+ c^, (y<n), be the least
common multiple of the denominators of h. (s), (i€q), (jel), where

h^. (s) is in the i-th row and j-th column of H(s), and the numerator and

denominator of h j(s) are coprime. We put H(s) in the following form

1,10 H(s) =ifeN(s)

2k-l — —
a(i,j,k)s }, (i e q), (j 6 m) is a qxm polynomial

k=l

matrix. From (1.9) and (1.10), we equate H(s) with H(s) , and try to find

an appropriate state feedback law (G2,F2), or equivalently, F(s) such that

1.11 N(s)F(s) - C(s)iKs)

Equating the coefficients of the corresponding polynomials on both sides

of (1.11), we get the following matrix equation

- -« * * * *
1.12 N f » C $

where
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1

*

N =

II.1 Matching via State feedback

N

N,

N. = block diag [N,» •, N^], (i e q)

N

= [N(i,j,l) N(i,j,2) ••• N(i,j,m)] (i e q), (j E m)

h+1

N(i,j,k) « n(i,k,y)

n(i,k,y-l)

(i E q) , (j e m)

(k e m)

m

n(i,k,l)

0

f. =

.m

n(i,k,y)

n(i,k,Y-D

n(i,k,l)

(j e m)

n(i,k,Y)

n(i,k,Y-D
y (Y+Pj)

n(i,k,l)
J J
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*

C «

II.1 Matching via State feedback

f(i,j,Pj+l)

fUJ.Pj)

f(i,j,l)

(j e m), (16 m)

> (PJ+1)

J

(ie q)

,m

cdj.Pj) ! ° • • 0

c(i,j,Pj-l) c(i,j,Pj) I
• •

(ieq

• cU.j.Pj-l) i • 0

• • 1 » ] c(i,j,p.)

c(i,j,D • I

J

• i c(i,j,p.-l
^(Y+Pj)

0 c(i,j,D | - ' •

0 i I •

0 i o ! . 1 c(i,j,l)
J

j

(Y+1)
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II.1 Matching via State feedback

and

Y-l ), Y+1

Lau;

it A

In (1.12), C is uniquely determined by the system (1.4a,b); ty is

1 *
uniquely determined by the given transfer function H(s) = ., v N(s); N

is uniquely determined by the given transfer function H(s) = . v N(s)

and the integers p.(i £ m), and f is uniquely determined by the state

feedback law (G2,F2) and the integers p (i € m), where p (i e m) specify

the canonical structure of (1.4a,b).

1.15 Definition

Any solution f of (1.12), which is in the partitioned form shown

in (1.13) and (1.14) and which satisfies the condition that M = {f(i,j,p.

+1)}, (i G m) , (j € m) is a nonsingular matrix, is called a regular

solution.

1.16 Theorem

Consider the system (1.4a,b) and a given transfer function H(s) as

in (1.10). There exists a state feedback law (G2»Fo^ with G2 nonsin8ular

(see(1.5)), which when applied to system (1.4a,b), yields a new system
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II.1 Matching via State feedback

whose transfer function H(s) (given in (1.6)), is equal to H(s), if, and

only if, there exists a regular solution f of (1.12).

Proof

=* Assume there exists such a feedback law (G«,F«), then (1.11) is satis-

Pj+1
fied. In (1.11), F(s) = {V* f(i,j ^s^1}, (i €E m) , (j e m), is uniquely

k=l

determined by (G2,F ) with {f(i,j,p +1)}, (i G m), (j € m) nonsingular

(see Notation (1.7)). Since (1.11) and (1.12) are equivalent, i.e.,

jfc it
£(s) satisfies (1.11), if, and only if f satisfies (1.12), where f is

determined by f(i,j,k), (i G m), (j G m), (k G p.+l) via equations (1.13),

(1.14), this gives one regular solution f of (1.12).

** Assume there exists a regular solution f of (1.12), whose components

are f(i,j,k), (i G m), (j G m), (k€ p +1), as shown in (1.13), (1.14).

Pj+1Since f* satisfies (1.12), then F(s) ={JT f(±,5,k)sk"1}9 (i Gm),
k=l

(j G m),satisfies (1.11). (1.11) can be written as

V12 -1^ N(s) =C(s){]T fU.j.kJs^1} ,
k«l

and after some simple manipulations,

V1 -iJ P.H(s) -̂ yN(s) »C(sI-A)"1B{^ f(i,j ,k)sk-1)/s j}
k*l

56



II.1 Matching via State feedback

1-17 - c^i-ArW;;1 - g21f2(Si-A)"1b} ,

where G~ and G~ F2 are defined by

1-18 S1 *(f(i,j,Pj+l)}, (i Gm), (j Gm),

and G~ F2 - ~{f(i,j,k)}, (i G m), (j G r) ,(k G p)as the mxn matrix

j-l

with f(i,j,k) in the i-th row and (Vp )+ k-th column. Since f* is
v=l

regular, the matrix {f(i,j,Pj+l)}, (i G m), (j G m), is nonsingular, so

G£ is well defined by (1.18). With(G2,F2) so defined, (1.17) shows that

(G2»F2^ is a feedback law which matches the resulting transfer function

(given in (1.6)) with the given H(s). Q.E.D.

A PRELIMINARY CHECK

Assume that the condition in Theorem (1.16) is satisfied, i.e.,

1.6' H(s) =H(s) =C(sI-A)"1B{G21-G21F2(sI-A)"1B} .

Let hi(s) and h (s) be the i-th row of H(s) and H(s) =^(sI-A)"1?,

respectively. Consider H(s). Imagine all its elements expressed in a

Taylor series in 1/s. For each i G q, consider the list of the leading

terms of each element in the i-th row. If h (s) = 0, we set a. = -1

otherwise let a^ + 1 be the smallest degree which appears in that list,

i.e.,
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-1 if hi(s) = 0

i k+1
min{k|lim s h (s) -j 0, k is a finite positive

s-x»

integer}

a +1* ~*

Let B and B be qxm constant matrices with lim s h(s) and
s-*»

ai+1~ - *
lim s h(s) in the i-th row, (i G q), respectively. Note that B and
s-*»

~*

B are uniquely determined from the transfer functions H(s) and H(s),

respectively.

From (1.61)

=•

a +1 o+l^ -1
sx h1(s) =sX hi(s){G21-G2iF2(sI-A) lB}

a +1 a +1

lim s x h (s) - lim s h (s)G
S-X» S"H»

B =BG2,

Thus it is clear that range (B ) = range (B ) is a necessary condition

for the existence of feedback law (G2,F2) which will match H(s) to H(s).

Since B and B can be easily computed from H(s) and H(s), this is a

useful preliminary check.

1.19 ALGORITHM FOR FINDING REGULAR SOLUTIONS

Finding a feedback law (G2,F2) is equivalent to finding a regular

solution f of (1.12), since there is an explicit one-to-one correspond

ence between them. The following algorithm generates the whole class of

regular solutions of (1.12).

58

"5\
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Step 1 Find any solution f of (1.12), which may or may not be regular.

If there exists no solution of (1.12), then obviously there exists no

regular solution of (1.12).

Step 2 Find abasis G={g^g^•••,gt> of J^N ), where o\|(N )is the

null space of the matrix N defined in (1.12). The set G will be empty,

if, and only if, the columns of N are linearly independent.

Step 3 Let

* A * X"*"*
1.20 f = f + > 3 g

— it
where 3 (v G t) are some real numbers to be determined later. Let f ,

* * —

f and g , (v G t), be partitioned in the form shown in (1.13), (1.14)
\J V

Form an mxm matrix

M- {f(i,j,Pj+l)} ={fp(i,j,Pj+l) +̂ 3^(1,j.Pj+1)}
v=l

(i G m), (j G m),

where f(i,j,p +1), f (i,j,p +1) and g (i,j,p.+l) are the components of

f , f and g (v G t), respectively, at the appropriate positions as

shown in (1.14).

Step 4 Calculate the determinant of M defined in Step 3. The determinant

of M, det M(31»*'*»3.) , is a polynomial in 3-»•••»B^ with real coefficients,
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and its degree is less than or equal to m.

Step 5 If det M(31»",»3 ) is not identically zero, then the class of

{§,••••»!L} for which det M(3,»•••>3j 4 0, together with (1.20), gene-
1 t it

rates the whole class of regular solutions of (1.12). If det M(31»••*>3t)

= 0, there exists no regular solution of (1.12).

1.21 Example Consider a linear time-invariant system specified by (1.4a,b)

with

1.22

0 lj 0

0 o! 0

LJToi ~QJ
» B =

p. A! ?1
U o i oJ .

"0 i0

a:?.
0 I 1

We will find the whole class of state feedback laws (G2,F2) such that the

over-all system transfer function C(sI-A-BF2) BG2 is equal to

1.23 H(s)
3

s -s

r 2
s

s

JL JU ^

From (1.22) and (1.23), it is easy to see that the matrices N , f , C

it
and ^ in (1.12) are given by
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0 0 0 J 2 0 0

1 0 0 ! 0 2 0

0 1 0 ' 0 0 2

o o i! o o o

o o o ! o o o
i

o

0 0 0 j 0 0 0

0 0 0 j 2 0 0
1 0 0 i 0 2 0

0 10 10 0 2
I

0 0 110 0 0

1

0

-1

0

o

o

0 0

1 0

0 1

0 0

2 0

0 2

0 0

0 0

o

0 0 [ 0 0
0 0 » 2 0

I

1010 2
l

0 lj 0 0

*

c =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

o

0 0 0 0

10 0 0

0 10 0

0 0 10

0 0 0 1

o
L

f =

f(l,l,3)

f(l,l,2)

f(l,l,l)

f(2,l,3)

f(2,l,2)

f(2,l,l)

f(l,2,2)

f(l,2,l)

f(2,2,2)

f(2,2,l)

Using Algorithm (1.19), we will find the whole class of regular solutions

of (1.12). In step 1, we find a solution f of (1.12),

1.25 fp" ° ° °'2 ° "2' ° ° '° °J

* * *In step 2, we find abasis G^g^g^g^ of(J(N ),
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•[- 2 0 0! 0 1 0 j o o i o o]

1.26 0 -2 0100100 jo o]

To o o ! 0 0 0 1-2 0.0 l]

* A * V^ *
- f + > 3 gP &.J v°v

v=l

In step 3, we define f

1.27 =[-23,-23, 0|| 3, fc-i! -23„ oh 2!

and form a 2x2 matrix

-23, -23.

1.28 M

In step 4, we calculate the determinant of M,

1.29 det M » 33.

I°33]

In step 5, since det M » 3, is not identically zero, the class of

{|L,(L,3,} with jL 9s 0, together with (1.27), generates the whole class
*• "1

of regular solutions of (1.12). In particular, we choose 3, a 0, 32 = ~z
1 it

and B,"~Jt then f in (1.27) is given by

1.30
* T !l ! ! ll!.0-lO,i00|10!o-ij
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II.1 Matching via State feedback

From (1.30) and Notation (1.7), we calculate the desired state feedback

law (G2,F.) as follows

and

G2 =

* »

•i n
0 2

1 o

0 -1 0

F2 = --G2x

0 0

0

1

0
1

" 2

0 1 0 •

1.31 Remark In the above example, since the given system defined in

(1.4a,b) and (1.22) is not invertible, Wolovich*s matching algorithm

[Wo.2] is not applicable in this case.

1.32 Remark In solving the exact model matching problem, we first

apply the state feedback law u(t) « F. x(t) + G-v(t) and the coordinate

transformation z(t) • Qx(t) to the given system (A, B, C) in (l.la,b),

in order to transform it into a new system (A, B, C) in (1.4a,b) where

A and B are in a very simple canonical form. In fact, we can solve the

exact model matching problem without going through this step. This can

be shown as follows.

Consider the given system in (l.la,b), We want to find a state

feedback law u(t) - F x(t) + G v(t) with F C IR™*11, G e IR™"1 and G being

nonsingular, such that the over-all syatam transfer function

63



II.1 Matching via State feedback 6*

1.33 C(sl - A - BF)"1 BG

is exactly equal to a given rational matrix H(s) » N(s), see (1.10).

Note that the over-all system transfer function in (1.33) can be

written as

1.34 C(sl -A- BFr^G « C(sl - A)"1B{g"1 - G**1 F(sl - A)"1 B}

-1 -l -1
- CW(s) B {m(s) G - G x F W(s) B}

where m(s) is the minimal polynomial of A and W(s) - (si - A) m(s).

If we can find a pair (G, F) such that

1.35 N(s){m(s) G"1 - G_1F W(s) B> - CW(s) Bip(s>

then the exact model matching problem is solved. This can be done by ^\

equating the coefficients o f the corresponding polynomials on both sides

of (1.35), we get the following real matrix equation

1.36 Sx » oty

where S is a real rectangular matrix whose coefficients are determined

by N(s), m(s), W(s) and B, x is a column vector whose components corres

pond to the elements of G~ and G~ F, T is a real rectangular matrix

whose elements are determined by CW(s)B, and ^ is a real column vector

whose components are determined by the polynomial 4>(s). Using Algorithm

(1.19), we can find the whole class of regular solutions of (1.36), or
A.

equivalently, the whole class of state feedback laws (G,F) for the match

ing purpose.

It is easy to see that the matrices of (1.12) are of smaller size

than those of (1.36). Therefore the state feedback law (Gj,F.,) and the

coordinate transformation Q should be used to obtain (1.12), which is

of small size and hence is easy to solve.
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2. A modified algorithm for exact model matching via state feedback

We assume that the reader is familiar with the results in Chapter 1 and

the first section of this chapter, so that a modified algorithm for exact

model matching can be easily derived. Although we give a complete solu

tion to the problem of exact model matching in Section 1, the computations

involved in solving the real matrix equation in (1.12) are complicated.

The present modified algorithm requires less computations.

In Section 1, the exact model matching problem has been formulated

as follows (see (1.11)): Given any qxm matrix H(s), with each element

of H(s) being a strictly proper rational function in R(s), the problem

is to find an mxm matrix F(s) whose elements are in R[s], such that the

following three conditions are satisfied,

2.1 (i) the mxm polynomial matrix F(s) can be written as f(s) =

Pj+i

f(i,j,k)s }, (i G m), (j G m). i.e., the (i,j) element of F(s)

k=l

is a polynomial with degree less than or equal to p., where p. (j G m)

is a set of integers specified by the given system in (l.la,b)

2.2 (ii) the mxm constant matrix {f(i,j ,p,+l) }, (i G m) , (j G m) is

nonsingular, i.e., the polynomial matrix £(s) is column proper.

2.3 (iii) H(s) =C(s)r1(s), where C(s) ={Y^c(i,j ^s^"1}, (i Gq),
k=l

(j G m) is a qxm polynomial matrix whose elements are specified by the

given system in (l.la,b).
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II.2 Modified Matching Algorithm

The following algorithm generates the whole class of solutions F(s)

which satisfies (2.1)-(2.3).

2.4 A modified algorithm for exact model matching

Step 1 From step 1 of the Realization algorithm (1.3.5), H(s) can be

factored in the form

2.5 H(s) = ^(s)D"1(s)

where ft(s) and D(s) are right coprime, D(s) is column proper. In detail,

we write

j

2.6 N(s) =1^2 fl(i,3,k)sH >,(i Gq), (j G

2.7

k=l

V1
D(s) =(Y] 3(i,j ,k)s" ";,(i Gm),(j Gm)

k=l

where p- > p„ > ••• > p > 0.
1 - z - — m —

k-1

m).

Step 2 If p. > p. > 0 (j G m), go to step 3, otherwise go to step 7.

Step 3 Let f (f ), (i G q), be the greatest common divisor of the

polynomials in the i-th row of N(s)(C(s)). If $±\$± for all iG q, go

to step 4, otherwise go to step 7.

Step 4 Let ¥(s) = diag (r.) be a qxq diagonal matrix with r± in the

(i,i) position. Calculate
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2.8 NQCs) =¥^Cs^Cs) and CqCs) =¥_1(s)C(s).

Step 5 Find the whole class of polynomial matrices such that any member,

say R(s), has the following three properties

2.9 (i). R(s)=< V^ r(i,j,k)sk"1 >,(iGm), (j Gm)

2.10 (ii). (r(i,j ,p -p +1)}, (i G m), (j G m) is a real nonsingular matrix,

2.11 (iii). NQ(s)R(s) = CQ(s).

If there is no solution in step 5, go to step 7.

Comment Equating the coefficients of the corresponding polynomials on

both sides of (2.11), we get the following real matrix equation

* * *

2.12 NQr = c

* * it
where the elements of L, r and c are uniquely determined by the co

efficients of N-(s), R(s) and C-(s) respectively. Using Algorithm (1.19)

for finding regular solutions, we get the whole class of solutions r of

(2.12) with the nonsingular!ty constraint in (2.10). From the class of

r , we get the whole class of solutions R(s) satisfying (2.9)-(2.11).

Step 6 For the class of solutions R(s) generated in step 5, calculate

2.13 F(s) = D(s)R(s).
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and go to step 8.

Step 7 Print (THERE IS NO SOLUTION F(s) SATISFYING (2.1)-(2.3)).

Step 8 Stop.

END OF THE ALGORITHM.

2.14 Theorem The class of t(s) generated in step 6 of Algorithm (2.4)

is the whole class of solutions satisfying (2.1)-(2.3).

Proof We first show that the class of matrices F(s) generated in step 6

are solutions to (2.1)-(2.3). From (2.9), (2.10), (2.13) and the fact

that 6(s) is column proper, it is easy to verify that F(s) in (2.13)

satisfies the conditions in (2.1) and (2.2). It remains to show that

F(s) satisfies (2.3). Consider the following,

C(s)r1(s) = C(s) (D(s)R(s))"1 from (2.13)

=(¥(s)C0(s))(D(s)R(s))"1 from (2.8)

=CF(s)N0(s)R(s))(D(s)R(s))"1 from (2.11)

(^(s)N0(s))D-1(s)

- N(s)D"1(s) from (2.8)

o H(s) from (2.5)

i.e., the class of matrices F(s) generated in step 6 satisfies (2.3).
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II.2 Modified Matching Algorithm

Next we show that any solution F-(s) of (2.1)-(2.3) is contained in the

class of F(s) generated in step 6. Suppose that F-(s) satisfies (2.1)-

(2.3), then from (2.3) and (2.5), we have

H(s) =C(s)F^1(s)
2.15

= N(s)D_1(s).

From Corollary (1.1.8) and (2.15), there exists a polynomial matrix R-i(s)

such that

2.16 C(s) = N(s)R1(s)

and

2.17 F1(s) = D(s)R1(s).

Note that since det D(s) f 0, such a polynomial matrix R, (s) is unique.

From the conditions on F-(s) and D(s), (see (2.1), (2.2), (2.6) and (2.7)),

and from (2.17), we can easily show that R.(s) satisfies (2.9) and (2.10).

From (2.8) and (2.16), we can see that R,(s) satisfies (2.11). Hence

R, (s) is contained in the class of solutions generated by step 5. There

fore, t.(s) = 6(s)R.(s) is contained in the class of f(s) generated in

step 6. It remains to show that the existence of F (s) implies that the

two necessary conditions in step 2 and step 3 are satisfied. Suppose

that the condition in step 2 is not satisfied, i.e., there is a j. G m,

such that p. < p , then from the degree constraints on R(s) (see (2.9)),
Jo •'o

R(s) has the following form,
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r r

x • x

m 1

x . .

x . .

v. *-

m-j0+l

"~^

x

m

i.e., the J0x(m-jQ+l) submatrix on the right upper corner of R(s) is zero,

this implies that {r(i,j .p.-^+l)} (i e m), (j G m) is singular. This

contradicts (2.10). From (2.16), it is easy to see that the necessary

condition in step 3 is satisfied. Q.E.D.

2.18 Remark In the above proof, we have shown that the class of solutions

F(s) of (2.1)-(2.3) is the same class of matrices F(s) generated in step 6

of Algorithm (2.4). Since the degrees of the polynomials in (2.11) is

less than the degrees of the polynomials in (2.3), this modified algo

rithm requires less computations than that in Section 1.

2.19 Remark In the modified matching algorithm (2.4), we make use of

the factorization results developed in Chapter I. This approach has also

been used by Wolovich [Wo. 2] in solving the exact model matching problem.
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3. Exact model matching via output feedback

In the previous two sections of this chapter, we have solved the problem

of exact model matching via state feedback. In this section, we solve

this problem using output feedback. The exact model matching of linear

time-invariant system via output feedback can be stated as follows.

Given any linear time-invariant system S. whose transfer function is a

qxm matrix H-(s), and each element of H-(s) is a strictly proper rational

function in R (s). The problem is to find an output feedback law (G,K)

with G nonsingular, in order to make the over-all system transfer function

exactly equal to a given transfer function H2(s). (see Figure II.3.1)

V1 Gl~*?r1Hi(s)l—r*
Figure II.3.1

The following algorithm generates the whole class of output feedback

laws (G,K) with G nonsingular for exact model matching.

3.1 Algorithm for exact model matching via output feedback.

Step 1 From step 1 of the Realization algorithm (1.3.5), H (s), (u=l,2),

can be factored in the form

G A."- H,(s) K
t i+

K

3.2 H (s) =N (s)D~1(s) (u=l,2).
u ' uu

the pair of polynomial matrices N (s) and D (s) are right coprime, Du(s)

is column proper, (u«l,2). In detail, we write

PjW

Nu(s) =<Y^ nu(i,j,k)sk"1>, (i Gq), (j Gm), (u-1,2)
k=l
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II.3 Matching via Output feedback 72

Pj(u)+l

Du(s) =<^ du(i,j,k)sk"1 V,(i Gm), (j Gm), (u-1,2)
Lk=1 J

where p. (u) >^ P2(u) >.**•>.? (u) >_ 0 for u=l,2.

Step 2 If p.(1) = p.(2) for all j G m, go to step 3, otherwise go to

step 5.

Step 3 Let p. = p.(1) = p.(2) for all j G m. Find the whole class of

matrices such that any member, say (R(s),6,£), consists of an mxm poly

nomial matrix R(s) and two constant real matrices G and K of size mxm

and mxq respectively, and has the following properties,

h~Pi+13.3 (i) R(s) =» < ^T rd.j^s^1 ^,(i Gm), (j Gm),
I k=l

i.e., the (i,j) element of R(s) has degree <_Pj-Pj*

3.4 (ii) 6 is a real nonsingular matrix, and

3,5 (ili) qfH M +q{P] h3 =q{M M
T •* m

mi_

m m q
m

If there is no solution which satisfies (3.3)-(3.5), go to step 5.

3.6 Comment Equating the coefficients of the corresponding polynomials

on both sides of (3.5), we have the following real matrix equation,
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3.7 Sx = t

where S is a real rectangular matrix whose elements are determined by

the coefficients of the polynomials in D-(s), D«(s), N-(s) and N«(s), x

is a real column vector whose components correspond to the coefficients

of G, K and R(s), and t is a real column vector whose components are

determined by the coefficients of the polynomials in N (s) . Using Algo

rithm (1.19) for finding regular solutions, we get the whole class of

solutions x of (3.7) with nonsingularity constraint (3.4). From the class

of x, we get the whole class of solutions (G,K,R(s)) satisfying (3.3)-

(3.5).

3.8 Comment From (3;5), there follows

3.9 GD-^s) + SN-^s) » D2(s)R(s).

Comparing the coefficients of the polynomials with degree p. in j-th

column on both sides of (3.9), we have

3.10 G-{d1(i,j,pj+l)} ={d2(i,j,pj+l)}-{ra,j,Pj-p1+l)}.

Since D-(s) and D2(s) are column proper, i.e., {d-(i,j,p.+l)} and

{d2(i,j,p +1)} are mxm real nonsingular matrices, and G is a real

nonsingular matrix, there follows that {r(i,j,p.-p +1)}, (i e m) ,

(j £i) is a real nonsingular matrix.

Step 4 From the whole class of matrices (G,K,R(s)) generated in step 3,

we calculate

.» , , >»—1 A—1 A
3.11 G - G and K » G xK,
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and go to step 6.

Step 5 Print (THERE IS NO OUTPUT FEEDBACK LAW (G,K) FOR EXACT MODEL

MATCHING).

Step 6 Stop.

END OF THE ALGORITHM

3.12 Theorem The class of matrices (G,K) generated in step 4 of Algo

rithm (3.1) is the whole class of output feedback laws for the exact

model matching.

Proof We first show that any pair of matrices (G,K) generated in step 4

of Algorithm (3.1), which when applied to system S., yields a new system

whose transfer function is equal to H2(s). Let Hn(s) denote the over

all system transfer function, then

HQ(s) =H1(8)II«H1]"16

.-l,_w,„ ,^-1. -1- N1(s)D1J'(8)[I«N1(8)0^(8)] G from (3.2)

«^(8)0^(8) [G"1 +G"1KN1(s)D~1(s)]

-1 -1 -1=NjteMG ^(s) +G"-KN^s)]

-1

=N^sMGD^s) +KN^s)]"1 from (3.11)
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=N2(s)D21(s)

= H2(s). from (3.2)

It remains to show that any output feedback law (G,K) with G nonsingular

for the exact model matching is contained in the class of matrices gene

rated in step 3 of Algorithm (3.1). Let (G^K ) be an output feedback

law for the exact model matching, i.e.,

3.13 H2(s) =H^sMl +KjH^s)]"^

.-l._ -1 ^=N (s)D^-(s)[I +^^(8)0^(8)] G1 from (3.2)

N1(s)[D1(s) +K1N1(s)]"1G1

-^(8)16^(8) +G~1K1N1(s)]
-1

3.14 =N1(s)[G1D1(s) +^(s)]"1,

-1where G± =G*1 and ^ =G^. In (3.2), H2(s) -N2(s)D~ (s), where N2(s)
and D«(s) are right coprime. Thus from (3.2), (3.14) and Theorem (1.2.5),

there exists a polynomial matrix R, (s) such that

3.15 Nx(s) - N2(s)R1(s)

3.16 GjD^s) + K-jN^s) = D2(s)R]L(s).
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Since N-(s) and D-(s) are right coprime, from Corollary (1.1.12) there

exists two polynomial matrices P(s) and Q(s) such that

3.17 P(s)N]L(s) + Q(s)D1(s) - I.

Thus

[P(s)-fQ(s)G^1K;L-Q(s)G^1K;L]N:L(s) +[(Ks)^1][^(s)]=I

[P(s)-Q(8)6^3^(8) +[Q(s)G^1][K1N1(s)+G1D(s)] =I

«* {[P(s)-Q(s)G^1k1]N2(s) +[Q(s)G^1]D2(s)}R1(s) =I
from (3.15), (3.16)

3.18 =*" R-.(s) is a unimodular matrix.

From the degree constraint on D.(s) and N-(s), and from the fact that

D-(s) is column proper, (see (3.2)), it is easy to see that the (i,j)-

element of D(s) = 6^(8) + KjN^s) in (3.16) has degree <. p. (1) and

D(s) is column proper. By direct computation we can easily verify that

in (3.16) the (i,j) element of the polynomial matrix

3.19 R1(s) =D21(s)[G1D1(s) +KN^s)]

has degree < p.(l)-p.(2). Since R-(s) is unimodular and D„(s)R-(s) =
~ j i 1 2 1

m
m

D-(s), we have N p (1) «)o (2). We are going to show that p (1)

j-l j=l
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p.(2) for all j G m. Suppose not, then there is at least one j G m

such that p. (1) < p. (.2). From the degree constraints on the elements
J0 J0

of R(s), it is easy to see that R-(s) has the following form

r n
x . x

Rx(s) =
m <

X

m-j0+l

m

"\

x

J

i.e., the j0x(m-j0+l) submatrix on the right upper corner of R-,(s) is

zero, this implies that det R,(s) = 0 and contradicts (3.18). In sum

mary, we have shown that the existence of output feedback law (G.,K )

for exact model matching implies that the conditions in step 2 and step

3 are satisfied. From (3.15) and (3.16), (G ,K ,R1(s)) is seen to be

asolution of (3.3)-(3.5). Therefore, G± =G*1 and K± =G*1^ is con
tained in the class of matrices generated in step 4 of Algorithm (3.1).

Q.E.D,

4. Discussion of the literature

The problem of exact model matching via state feedback was proposed

by Wolovich [Wo.2], but his algorithm for solving this problem can only

be applied to invertible systems. In the present chapter, we have a

complete solution to the problem of exactly model matching both via
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state and output feedback. Our matching algorithm can be applied to any

linear time-invariant multivariable systems and generates the whole class

of state or output feedback laws for the matching purpose.

In the first part of our work, we derive a canonical form of transfer

function matrix (see (1.9)), which is similar to the "structure theorem"

due to Wolovich and Falb [Wo.l]. The approach in this part of our work

is close to that used by Wolovich in solving the exact model matching

problem. Then we transform the problem of finding state or output feed

back laws into the problem of finding "regular solutions" of a real matrix

equation. An algorithm for finding the whole class of regular solutions of

any real matrix equation is also given (see (1.19)).

A possible extension of this result is the inclusion of dynamics

in the state or output feedback law when the static feedback law is in

sufficient for exact matching.

A more important design problem is that of finding some feedback

law (with or without dynamics) so that the- over all system transfer

function satisfy some prescribed requirements, rather than matching

exactly a given transfer function. This amounts to placing restric-

* it
tions on the coefficients of N and ^ in (1.12), rather than speci

fying all of them, the problem is then to find some regular solutions

f* of (1.12).
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CHAPTER III

DECOUPLING OF LINEAR MULTIVARIABLE SYSTEMS

0. Introduction

In the design of linear multivariable systems, we are often trying to

have inputs control outputs independently, i.e., a single input affects

only a single output. This is the diagonal decoupling problem. The

problem of diagonal decoupling a linear time-invariant system using state

or output feedback has been examined by several authors. Falb and Wolo

vich [Fa.l] gave necessary and sufficient conditions for the existence

of state or output feedback laws for the diagonal decoupling problem.

In section 1 of this chapter, we give an alternate condition for the

existence of output feedback law for the diagonal decoupling problem.

We give a complete characterization of the decoupled system transfer

function and relate the output feedback law to the poles of the decoupled

system.

Then we consider the problem of triangular decoupling. This is

a problem of finding a state feedback law to bring the over-all system

transfer function in a quasi-triangular form. This problem was first

formulated and solved by Morse and Wonham [Mo.2] by using a geometric

approach. In section 2 of this chapter, we are dealing with a more

restrictive case, we require the over-all system transfer function in

an upper triangular form. We solve this problem using Silverman's in

version algorithm [Si.l] and we show that the conditions for the exis

tence of state feedback laws for triangular decoupling is equivalent

to the conditions for invertibility of linear multivariable systems.
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III.l Diagonal Decoupling

1. Diagonal decoupling via output feedback and pole assignability

Consider a linear time-invariant multivariable systems specified by

the following equations.

1.1a £(t) = Ax(t) + Bu(t)

1.1b y(t) = Cx(t)

where x(t) G Rn is the state, u(t) G Rm iS the input, y(t) G Rm is

the output, A, B and C are real constant matrices of appropriate size.

The problem of diagonal decoupling via output feedback can be stated

as follows, find an output feedback law

1.2 v(t) = Gu(t) + Ky(t)

with K, G G R and G being nonsingular for the given system (l.la,b)

such that the over-all systeun transfer function C(sI-A-BKC) BG is di

agonal and all its diagonal elements are not identically zero.

We first state the following lemma due to Falb and Wolovich [Fa.l]

1.3 Lemma (Falb and Wolovich)

Consider the system in (l.la,b). Let d-,d0,...,d be defined as
L l m

1.4 [min{k: c±AkB t 0, k»0,1,...,n-1}
di =

n-l if c A1^ = 0 for all k

it
where c. denotes the i-th row of C. Let B be the mxm real constant

matrix given by
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c A XB

d2c2A ^B

c A
m

If there is an output feedback law (G,K) in (1.2) which decouples (l.la,b),

*x~l,then there is a diagonal matrix A such that G = (B ) A.

Proof Since the pair (G,K) decouples (l.la,b), the over-all system

transfer function can be written as

1 w. O
1.6 C(sI-A-BKC)""1BG =

2 w,

O m

m w
m

where A is some nonzero real number, v. and w. are monic polynomials in

s and they are coprime for all i G m. Let us consider the i-th row in (1.6),

cil 2^-^p^)BG"W.....o^ ^ ,o,...,o]i
d.+l

Multiplying both sides of (1.7) by s and taking the limit as s -»• «,
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III.l Diagonal Decoupling g2

we have

1.7 c±A B6 = fO,...,Xi,0,...,0]

it

From (1.7) and the definition of B in (1.5), we have

1.8 G = (B*)""1A,

where A is an mxm diagonal matrix with A. in the (i,i) position. Q.E.D.

Now we can state the following algorithm

1.9 Algorithm for decoupling of linear multivariable systems via output

feedback.

Step 1 Calculate d-,d2,...,d and the mxm real constant matrix B as
it

defined in (1.4) and (1.5). If det B ^ 0, go to step 2, otherwise go

to step 7.

Step 2 As in step 1 of Algorithm (1.3.5), the transfer function matrix

H(s) = C(sl-A) B of (l.la,b) can be factored as

1.10 H(s) = N(s)D*1(s),

where N(s) and D(s) are mxm matrices with elements in R[s]. N(s) and

D(s) are right coprime.

Step 3 Calculate iJj. ° g.c.d. of n.-, n.2,...,n ,where n.. is the (i,j)

element of N(s). Let Y(s) be an mxm diagonal matrix with i>,(s) in the

-1 -1
(i,i) position. Calculate Y (s)N(s). If V (s)N(s) is a unimodular

matrix, go to step 4, otherwise go to step 7.

/^£*
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Step 4 Let M(s) = BD(s)N"1(s)4'(s), where B*, D(s), N(s) and ¥(s) are

given by step 1, 2 and 3. Let m. be the (i,j) element of M(s). If

"ii - - -—rf- is a constant, denoted by -k.., for all i G m, j G m, go to step

5, otherwise go to step 7.

Step 5 Choose appropriate real constant k (i G m) such that the zeros

of the polynomials w. (s) = m.. + k. .iK (i G m) are suitable to be the
i ii nri '

poles of the decoupled system (see (1.6)).

A * -1
Step 6 Calculate K = (B ) x K, where K is an mxm real constant matrix

with k in the (i,j) position, (i G m), (j G m). Choose a set of appro

priate nonzero real numbers A.,A0,...,A as in (1.6). Then calculate
l L m

* —1
G = (B ) A, where A = diag{A } and go to step 8.

Step 7 PRINT (THERE EXISTS NO OUTPUT FEEDBACK LAW FOR DECOUPLING PROBLEM)

Step 8 Stop.

1.11 Theorem If the system in (l.la,b) can be decoupled by an output

feedback law (G,K) in (1.2), i.e., the over-all system transfer function

has the form in (1.6), then

(a) v. = ty., (i G m), where ty. is the g.c.d. of n.., n.„ n. .
ii i ll iz im

(b) w = m + k ty , (i G m), where m.. is defined in step 4 and k

is a real number.

(c) step 6 of Algorithm (1.9) generates an output feedback law (G,K),

which decouples system (l.la,b).
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III.l Diagonal Decoupling

Proof Applying an output feedback law (G,K) in (1.2) to the system

(l.la,b), the over-all system transfer function H (s) = C(sI-A-BKC) BG

can be written as

1.12 H (s) = H(s)[I+KH(s)]"1G

84

where H(s) = C(sl-A)" B. From step 2 of Algorithm (1.9), we have H(s)« N(s)
-1

D (s). Hence H (s) can be written as
c

1.13 Hc(s) -N(s)[G"1D(s)+G""1KN(s)]""1.

Since N(s) and D(s) are right coprime, and from Corollary (1.1.12), we

can easily show that N(s) and G~T)(s)+G~ KN(s) are also right coprime.

Assume that the output feedback law (G,K) decouples (l.la,b), i.e.,

Hc(s) has the form in (1.6) which can be rewritten as

1.14 H (s) « AV(s)W_1(s)

where A= diag{A±}, V(s) = diag{v±} and W(s) = diag{w }. We first show

that AV(s) and W(s) are right coprime. Let R(s) be a right common divisor

of AV(s) and W(s), i.e., AV(s) = V(s)R(s) and W(s) = W(s)R(s) for some

polynomial matrix V(s) and W(s). Since v. and w. are coprime for all

i G m, we have

fv(sj] fAV(s)]
rank 1 1 xR(s) » rank I 1 • m Vs G c

Lw(s)J lW(s) J

•* rank R(s) • m Vs G C ^
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=*• det R(s) = nonzero constant

=*• R(s) is a unimodular matrix

1.15 => AV(s) and W(s) are right coprime.

In (1.13) and (1.14), we factor H (s) as products of polynomial matrices

which are right coprime, then from Theorem (1.2.5), there exists a uni

modular matrix U(s) such that

1.16 N(s) = AV(s)U(s)

1.17 G"1D(s) + G~1KN(s) = W(s)U(s)

From (1.16), V~1(s)N(s) = AU(s), this shows that v""1(s)N(s) is a poly

nomial matrix, therefore v divides ih the greatest common divisor of

n-i >n.,o> •••>n.f • We can rewrite V (s)N(s) as follows,
xl iz im

1.18 v"1(s)N(s) =diagdJ^/Vj,} x^~1(s)xN(s)

where ¥(s) = diag{>.}. It is easy to see that both diag{iK/v.} and

¥~" (s)N(s) are polynomial matrices. Since V (s)N(s) is unimodular,

we conclude that both diag{iK/v } and ¥~ (s)N(s) are unimodular matrices,

Therefore ij>./v. = constant ^ 0. We assume that both ip. and v. are monic

polynomials, so that v. = 1(1. (i e m). This proves part (a) .

From (1.16) and (1.17), we have

1.19 G_1D(s)N"1(s)V(s)A + G"1KN(s)N"1(s)V(s)A = W(s)

Substituting (1.8) into (1.19), there follows
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1.20 B*D(s)N_1(s)V(s) + B KV(s) = W(s).

From part (a) of this theorem, V(s) = ¥(s), therefore (1.20) can be

written as

1.21 B*D(s)N""1(s),i'(s) + B KH'(s) = W(s) .

Let M(s) = B*D(s)N""1(s)¥(s) and K=B*K, then we have

1.22 M(s) + K¥(s) = W(s).

From (1.22), it is easy to see that

1.23 m + k i^ =0 i i j

1.24 »±1 + t±±* =w

for all i, j G m. This proves part (b).

From the above arguments, it is clear that the existence of an out

put feedback law (G,K), which decouples system (l.la,b), implies the

conditions in step 1, 3 and 4 are satisfied. Substituting the pair of

matrices G = (B )~1A and K = (B*)"1^ into (1.13), and from (1.16), (1.17)

and (1.22), we can easily show that the over-all system transfer function

has the form in (1.6). This proves part (c). Q.E.D.

1.25 Remark We have shown that the numerators v !s of the diagonal

elements in the decoupled system transfer function, (see (1.6)), is

equal to ty. = g.c.d. of n._,n,«,...,n. , (see step 3 of Algorithm (1.9)).

This set of polynomials ip , (i € m), is completely determined by the
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given system (l.la,b) and is independent of the output feedback law (G,K).

The denominators w's in the decoupled system transfer function (1.6) are

of the form m^ + k^^* where m.. and ty. are completely determined by

the given system (l.la,b), see step 4 of Algorithm (1.9), and k.., (i e m) ,

can be any real numbers by choosing appropriate feedback matrix K. The

set of constant multiples A., (i € m), in (1.6) can be any set of nonzero

A * -1
constants by choosing appropriate G = (B ) x diag{A.}.
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2. Relationship between Triangular Decoupling and Invertibility of

Linear Multivariable Systems

For linear multivariable systems, which have square transfer function

matrices, the necessary and sufficient conditions for the existence of

state feedback laws for triangular decoupling are shown to be equivalent

to the conditions of invertibility. A procedure of finding a state

feedback law for this purpose is also given.

Consider the system described by

2.1a x(t) = Ax(t) + Bu(t)

2.1b y(t) = Cx(t) + Du(t)

where x(t) e ff?n, u(t) e Rm, y(t) 6 lRm and A,B,C,D are real constant

matrices of appropriate size. The triangular decoupling problem via

state feedback can be stated as follows: Find matrices FelR and G€"|R , so

that the system in (2.1a£) together with the state feedback law

2.2 u(t) « Fx(t) + Gv(t),

results in a closed-loop transfer function matrix (relating the new input

v and the output y) which has a nonslngular upper triangular form. This

problem was first formulated by Morse and Wonham [Mo.2] in a slightly

more general form, and was solved by using a geometric approach.

In the present, we modify the inversion algorithm by Silverman [Si.l]

and apply it to the triangular decoupling problem.

Two sequences of matrices [C, Id. ] and [C.ID. ] (k=l,2,»«») can be

obtained from (A,B,C,D) as follows: Let D = D and define D, in terms
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of D^ by

2.3 <^ =0if dj^ 6Span{dk_1,j <I <_m}, je" {l,...,m-l}

2.4 djj. =djj.^ if dj^ £Spa^d^j <£<_m}, je{l,...,m-l}

m -rm

k-1
2.5 d£ = d

(k-1,2,...)

where d^ and dp, (j G m) ,are the j-th row of D, and D, ,respectively.

It is clear that we can always find a nonslngular upper triangular

matrix S such that D, = S^i^.i' Set Cn = c and define ck in terms

of Ck_! by

2-6 tck;\] =sk-i[\-i!Vi]> <k=1'2.---)-

Note that in the above definition, C, is not uniquely determined in terms

of (A,B,C,D), because it also depends on the choice of S, ...

Next we define [C,JD,] in terms of [C,

{l,...,m}, and Jfc ={j |djj. O, j 6 J}, then
Next we define [cjDjJ in terms of [CjjDjJ, (k=l,2,*--), let J

'k
2.7 cJ = c£ VjGJj

2.8 "c^ = cj[A Vj e (j\Jk)

2.9 d£ =4 Vj e Jk
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III.2 Triangular Decoupling

2.10 djj. -cj[B Vj €(j\Jk)

—11 —
where cr and cr are the j-th row of C, and C, , respectively.

Then we define an mxm diagonal differentiation operation M. (P) =

diag(m^) (k=l,2,...) with

2.11 mjj. =1 Vj €Jk

2.12 mjj. =P=(d/dt) Vj e(j\Jk)

Consider the output equation in (2.1b)

2.lb* y(t) = Cx(t) + Du(t)

= CQx(t) + DQu(t) (from the definitions of C and D )

multiply both sides of (2.1bf) by S±_1 and M^P), (i e k), together with

the definitions of C, and D, , we can show that

2.13 Nk(P)y(t) *Q£ WP)Sk-A-l) y(t) "V(t) +V(t>
(k »l,2t«««)

In (2.13), if there exists an integer a > 0 such that D is non-
— a

singular, then (2.13) can be written as

u(t) =(Da)"'1[Na(P)y(t)-Cax(t)]

If we define the state feedback law in (2.2) with
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F =- (D )~1C ,G= (D r1
a a a

and from (2.13), set k=a,

2.15 Na(P)y(t) =Cax(t) +Da[-(Da)"1Cax(t) +(Da)"1v(t)] =v(t)

i.e. the closed-loop system transfer function matrix H(s) relating the new

input v and the output y is equal to (N (s)) . From the constructions

of N (P) =[ H M 0(P)S 0-J ,each S', (1=0,1, •••)• is nonsingular and

has an upper triangular form, and each M (P), (i»l,2,,,,)» is a diagonal

differentiation operator with diagonal elements being 1 or P, it is easy

to see that the product N (P) has a nonsingular upper triangular form,

there follows that H(s) = (N (s))~ is also in a nonsingular upper tri

angular form, this satisfies the requirements for triangular decoupling.

It remains to answer the question that under what conditions on (A,B,

C,D), there always exists an integeger a >_ 0 such that D is nonsingular.

2.16

Let WQ = D and

D 0 0 . . . 0

Wk = CB D 0 . . . 0

CAB CB D . . . 0

V-1 k-2
CAK XB CA* ^B

. . . 0

CAk-3B * • * D

(k € n)

2.17 Theorem (Sain and Massey [Sa.l]
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The system in (2.1a,b) is invertible (i.e. det[D+C(sI-A)~ B] ^ 0 a.e.)

if and only if, for some integer a, 0 <_ a <_ n,

rank W - rank W - = m.
a a-1

The following Lemma and its proof are from a paper by Singh [Si.3]

with a little modification.

2.18 Lemma Let W (k <E n) be defined in (2.16) and D (A e n+1) be

defined in (2.3)-(2.10). Then

k+1

rank W, = > rank D,"t=E
£=1

Proof of Lemma 2.18) Premultiplying W, by a (k+l)m x (k+l)m square

matrix U = diag[Sn,•••,Sn] and performing elementary row operations on

u-W,: shift the [(k-Jl)m+j ]-th row of UQWk to the position of the [(k-Jl-1)

m+j]-th row, for all j € (J\j ) and I e {0,...,k-l}, also shift the j-th

row of UJW, to the position of the (knri-j)-th row, for all j £ (J\J-).

After this process, (or equivalently, premultiplying U.W, by an elementary

matrix R.) we have

Dl 0 0

-

0 0

clB »1 0 0 0

2.19 Wk = C AB clB »1 0 0

•

•

• • •

c/"•2B C1Ak"•3B c^""4B . . . D. 0

X X D,
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where X denotes some mxm matrix, note that among the last m rows in the

above matrix, there are exactly #(J-) rows which are nonzero (where //(J.)

denotes the number of elements in the set J-.), moreover, these #(J-) rows

are linearly independent, this follows from the constructions of D . Con

tinuing in this manner, it can be shown that

(V VA-t} uo\ -VVVVVwk
- diag[Sk,I, •••,I].Rk-diag[Sk-1,Sk__1,I, ••.,!] -R^

diag[S1,...,S1,I]-R1-diag[S(),---,S0]-Wk

k+1

2.20
k-1

where R., (i£k), corresponds to the shifting of the [(k-£)m+jJ-th row

to the position of [(k-£-l)m+j]-th row, and the shifting of the j-th row

to the position of [(k+l-i)m+j]-th row, for all j e (j\j ) and I e {i-1,--

k-1}. In (2.20) we use X to denote some mxm matrix, note that there are

exactly //(J„) nonzero rows among these m rows containing D , (I £ k+1),

moreover, all these nonzero rows are linearly independent, there follows
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rank W, = rank
k £ VA-*)-W

k+1 k+1

//(J^) =V* rank D£ Q.E.D.
&=1 £=1

2.21 Theorem The system described by (2.1a,b) is invertible if and only

if there exists a control law u(t) = Fx(t) + Gv(t), such that the closed-

loop system transfer function matrix relating the new input v and the

output y has a nonsingular upper triangular form. (i.e. the system in

(2.1a,b) can be triangularly decoupled).

Proof ** From Theorem (2.17), there exists a, 0 < a < n, such that

m = rank W - rank W n
a a-1

rank D - (from Lemma (2.18))

» rank D (I'D ,. BSD , and S
a a+1 a a a

is a nonsingular matrix)

this guarantees the existence of (D ) for some positive integer a. <_ n,

then apply the feedback law specified in (2.14), the closed loop system

is triangularly decoupled.

*= Assume the system in (2.1a,b) is not invertible, (i.e. H(s) «

D + C(sl-A)" B is singular), and since the singularity of a transfer

function matrix is invariant under state feedback, so there exists no

state feedback law as in (2.2), such that the closed loop system transfer
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function matrix has a nonsingular upper triangular form. Q.E.D.

2.22 Remark Comparing the result in Theorem 2.21 with that in Theorem 1

by Morse and Wonham [Ms.2], it is clear that when D = 0, det[C(sI-A)~ B] 4

0 a.e. is equivalent to the following condition: Let^j\\. be the null

space of the i-th row of C, (i € m), then

where ^P , (i £ m-1), denotes the maximal controllability subspace of

(A,B) satisfying^ Cn U ,(i € m^l) ,with J± = {i+l,---,k}, and
jGJi

^P = {A|C^}. The reason is that both conditions are necessary and suf

ficient for the existence of a solution to the triangular decoupling

problem. It is worthwhile to find a direct way of proving this equiva

lence other than the above arguments.

2.23 Remark We are using a modified Silverman's inversion algorithm

to solve the triangular decoupling problem. As indicated by Silverman

[Si.l] his algorithm can be extended to time-varying case by imposing

some regular conditions on the system. A fruitful subject of research

might be the extension of these methods to the problem of the triangular

decoupling of time-varying systems.
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3. Discussion of the literature

The problem of diagonal decoupling a linear time-invariant system

using state feedback was introduced by Morgan [Mo.4]. Morgan and

Rekasius [Mo.4,Re.1] have given some sufficient conditions for the de

coupling of linear time-invariant system by state feedback. Falb and •-".

Wolovich [Fa.l] gave a necessary and sufficient condition for diagonal

decoupling via both state and output feedback. Gilbert [Gi.2] and sub

sequently Wolovich and Falb [Wo.l] examined the assignability of closed

loop poles while simultaneously decoupling a system via state feedback.

In section 1, we give an alternate condition for the existence of output

feedback law for the diagonal decoupling problem. We give a complete

characterization of the decoupled system transfer function and relate the

output feedback law to the poles of the decoupled system. Our approach 7

in solving this problem is similar to that used by Wolovich and Falb [Wo.l].

Howze and Pearson [Ho.2] and Silverman and Payne [Si.3] have ex

amined the problem of diagonal decoupling via output feedback with dynamic

compensation. Sato and Lopresti [Sa.2] examined the partial decoupling

problem. Wonham and Morse [Wo.5,Mo.3] have a general formulation of the

diagonal decoupling problem via state feedback and have solved this prob

lem by using a geometric approach. Their results have been extended to

the output feedback case in Chapter IV of this thesis. The triangular

decoupling problem via state feedback was also formulated and solved by

Morse and Wonham [Mo.2] using geometric approach. In section 2, we solve

this problem using Silverman's inversion algorithm [Si.l] and we show that

the conditions for the existence of state feedback law for triangular de

coupling is equivalent to the conditions of invertibility.



CHAPTER IV

GEOMETRIC THEORY FOR DECOUPLING VIA OUTPUT FEEDBACK

0. INTRODUCTION

In the last chapter, we consider the triangular and the diagonal

decoupling problems via state and output feedback, respectively. In

this chapter, we consider some more general formulations of the de

coupling problems via output feedback. Instead of bringing the overall

system transfer function matrix in the diagonal (triangular) form, we

only require it to be in the quasi-diagonal (quasi-triangular) form.

The present work was motivated by the results of Wonham and Morse [Wo.5,

Mo.2, Mo.3], where they have formulated two kinds of decoupling problems

(a) quasi-diagonal and (b) quasi-triangular decoupling problems, both

via state feedback and have solved these problems by a geometric approach.

They introduced the concept of controllability subspace and its relation

to the pole assignment problem.

In this chapter, we also use a geometric approach and extend the

results of [Wo.5, Mo.2, Mo.3] to the output feedback case, namely, we

solve the following problems:

(a) diagonal decoupling via output feedback

(b) triangular decoupling via output feedback

(c) diagonal decoupling via output feedback with

dynamic compensation, and

(d) triangular decoupling via output feedback with

dynamic compensation.

In the above four cases, the necessary and sufficient conditions

for the existence of decoupling matrices (and new dynamic elements) are
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IV.1 Controllability Subspace

found. A constructive procedure for finding these decoupling matrices

(and new dynamic elements)is given. In solving the above problems, we

also extend the concept of controllability subspace to output feedback

case, which is seen to be of importance in linear multivariable system

theory.

In this chapter, we follow closely the work of Wonham and Morse

[Wo.5, Mo.2, Mo.3], where they consider the decoupling problems via

state feedback.

!• Controllability subspace

In this section, we introduce the notions of invariant subspace,

controllability subspace, etc., via output feedback. These are useful

tools in solving decoupling problems in the following sections.

Consider a linear time-invariant multivariable systems specified

by the following equations

1.1a x(t) = Ax(t) + Bu(t)

1.1b y(t) » Cx(t)

where x(t) e |Rn, u(t) e [Rm, y(t) e [Rq and A, B and C are real

constant matrices of appropriate size.

If we apply a feedback control law u(t) • Ky(t) + v(t) to the above

system, where K e jp1113"* and v(0 is the external input, then the overall

system is governed by

1.2a x(t) - (A+BKC) x(t) + Bv(t)

1.2b y(t) « Cx(t)

1.3 Lemma

Given any (A,B,C) with Ae IR***, Be $?**> Ce l^™ and given

any subspace 1^C(R> there exists a real constant matrix K e IR™***
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IV.1 Controllability Subspace

such that

1.4 (A+BKC) \7c U

if and only if

1.5 AlJC # +ir

1.6 A[i^n7T(c)] el/

where S denotes the range of B, JC(C) denotes the null space of C,

A: fv.n -*• |Rn is the linear map determined by the matrix A relative to

the canonical basis of |R , (i.e., we use the same symbols for matrices

as for linear maps), and ,$ +if- {b+v|be$, v e V\.

Proof We show first that (1.4) "* (1.5) and (1.6). Pick a vector

v- el?. From (1.4) there exists a vector w. e \T such that

(A+BKC)v. - w

or

Av1« (-BKCv1 +wx) e # +I?

Since v.. is arbitrary, (1.5) is established. Then we pick a vector

v0 e L^n Jr(c). Again from (1.4) we know that Av2 « w2 for some

w„ e \JFt so (1.6) is established.

Now we are going to show that (1.5) (1.6) «• (1.4). Write "\/« \A ® IT,

where VT = 1/ H J\f(C). Let v, v be abasis of \£, and let
1 1 p l

v ,,, •-.., v. be a basis of lj~~. From (1.6)
p+1 k 2

1.7 Avi « w (i*l, ..., p)

where w. el^ From (1.5) we have

1.8 Av » Bu. + w± (i»p+l, ..., k)

where u. e (R , w. eu • If we can construct an mxq matrix K, such

that
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IV.1 Controllability Subspace 100

1.9 «W- iCvk] " " [Vxi - :\h
then from (1.7), (1.8) and (1.9, we have

1.10 (A+BKC)vi * w± (i«l, ..., k)

where w. e "(/"and v., ..., v. is a basis of V*. Therefore, (1.4) is

established.

In order to guarantee the existence of K in (1.9), it is sufficient

to show that the set of column vectors Cv -, ..., Cv. are linearly inde

pendent. Since then the row vectors in [Cv .-i.Cv ,«I ... ZCv, ] span

lf\ » and multiplying it by K serves as an appropriate linear

combination of the row vectors in [Cv ,-'.C .'. ... .'Cv. ] to make (1.9)
P+l. p+4. • K

valid.

It is easy to show that Cv ., ..., Cv. are linearly independent.

Since v -, ..., v. is a basis of It, where XT QjK(C) «= {0}, thus \ '

k v issP+1

ai Cvi s C / Vi ° -"* / Vi-* -*" ai s °» (issp+1 » •••' k)-
i»p+l i=p+l

v Q.E.D.

1.11 Definition

Uc ||^n is said to be (A, B,C)-invariant iff ITsatisfies (1.5)

and (1.6).

V*C |Rn is said to be (A,B,I)-invariant iff Vsatisfies (1.5).

Vc (|^n is said to be (A,I,C)-invariant iff ITsatisfies (1.6).

1.12 Theorem

Given any (A,B,C) with Ae |Rnxn, Be [Rnxm, Ce IP* and given ^

any subspace J C ||^n, there always exists a unique maximal (A,B,C)-
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invariant subspace 1/contained in -J . More precisely, any subspace XT

which satisfies (1.13), (1.14) and (1.15)

1.13 Vc3

.: i.i4 aVcV,+v

1.15 A[l/nJT(C)] c V

is contained in the maximal solution tK

Proof Using the following algorithm, we can compute the maximal

(A,B,C)-invariant subspace in j .

Step 1 k « 1

Step 2 V(0) . 3

Step 3 Q> - ~8
Jfps

-• Step 4 i * 0

steps Uk(i+1) -V^ na-x((? +Vk«>)

Step 6 If 1J^±+1^ «^ »8° to SteP 8» otherwise go to Step 7

Step 7 i • i+1, go to Step 5.

Step 8 If k is an odd number, go to Step 9, otherwise go to Step 15

Step 9 Vk -WkW

Step 10 O^ -t£ n^(C)

Step 11 Pick t£ such that t£ - t£ © l£

Step 12 (P « 1£

Step 13 k - k+1

Step 14 O^0) -1^ go to Step 4
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Step 16 If IX = ^t-i» 8° t0 SteP 19» otherwise go to Step 17

Step 17 k « k+1

Step 18 l^*0* »^k_i» 8° to SteP 3

Step 19 Vs ^i and stop.

From Step 1 to Step 7 of the above algorithm, we generate a sequence

of subspaces Xt , V\ , ..., in 3 . This sequence is obviously

monotone-decreasing, (i.e., Vj* 3 V* Vi>0). And since J
is of finite dimension, there exists an integer j £ dim % such that

iM1) a vW for all i > j. We write a"1 Ufor the subspace

{z;z e |Rn, Azel^lC Pn. Then vf** = V™ nA~1(«+ Vf*h =>
AW^ CB+ l^(:I), i.e., l^(j) is an (A,B,I)-invariant subspace in
J . Let Ifbe any (A,B,I)-invariant subspace in J , then lT» V ^ A

(»+ W. Thus if Ux(i) DUf then ^i+1> A l^(i> OA^C* +^(i))
3 IT, and since Xj(0) - 33 U, so 1^(1> 3 V" for all i. From the
above arguments, we know that Uj" is the maximal (A,B,I)-invariant

subspace in Cf , and we call it It. It is obvious that V^ contains any

(A,B,C)-invariant subspace in Cf .

Now we are going to find the maximal (A,I,C)-invariant subspace in

XT. In Step 10 to Step 15 of the above algorithm, we first compute
A A ***the maximal subspace T/'in Vjj s UJ n Jf(c) such that A^ Cl/+ 1^,

where l£* is given by Step 11. Using the iterate formula in Step 4 to

Step 6, we find that the maximal solution l/'is V\ • Then in SteP 15»

we define 1% • 2 + ^1/ Xt is ea8v to 8now that ^2 is the maximal
(A,I,C)-invariant subspace in Vl. Since any (A,I,C)-invariant subspace

ITC UJ can be written as V- T>® 01, where ft ft Vn ^(c) CV^ and
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IV.1 Controllability Subspace 103

^ C i/". And from the (A,I,C)-invariant property of 1/; we have

A\XC V+ X^C 1/+ Vj. The iterate formula in Step 4to Step 6

gives the maximal subspace ^(i) in V\ such that A ^(±) c ^(i) + ^,
i ^ ixj -^

so 1^(i) DW. Therefore ^ ft 1^(1) + t> 3 IT+1^ ^,i.e. ,1^
contains any (A,I,C)-invariant subspace in 7/1, so /l?T is the maximal

one. Note that IK contains any (A,B,C)-invariant subspace in 3 .

In the following,we find the maximal (A,B,I)-invariant subspace in

2A, call it t£. Then we find the maximal (A,I,C)-invariant subspace

in l?l9 call it lf,t and so on. Continuing this process, we construct

a monotone-decreasing sequence of subspace !£, i • 1,2,3, ..., where each

i contains any (A,B,C)-invariant subspace in J . And since J is of

finite dimension,there exists p<dim'3 such that 1>* «Vi for all i > p.
- p i -

This %K is (A,B,C)-invariant, moreover, it is the maximal (A,B,C)-

invariant subspace in Q %which is denoted by V.
Q.E.D.

If we apply a feedback control law u(t) • Ky(t) + Gv(t) to the system

specified by (l.Lab), where v(») is the external input, then the overall

system is governed by

1.16a x(t) » (A+BKC) x(t) + BGv(t)

1.16b y(t) - Cx(t)

where Ke ft"** and Ge IR™'.

The controllable subspace from the input v(*) is

(R » {A+BKCI {BG}}
n

where {BG} denotes the range of BG, and {A+BKC| {BG}} ft \ (A+BKC)^"1
J-l

{BG} . From Lemma 2.1 in [Wo.5],CR- {A+BKC| {BG}} - {A+BKCJ® H®}. Then
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we can define an (A,B,C) controllability subspace as follows:

1.17 Definition

Let A e fRnxn, B e ]Rnxm, Ce]Rqxn be real constant matrices and

letCK-be a subspace in]£n, then® is said to be an (A.B.C) controll

ability subspace or (A,B,C) c.s., if there exists K e [f?™1 such that

1.18 {A+BKC|lSn(R} o&

An (A,B,C) controllability subspace can be characterized as follows

1.19 Theorem

Let A e H?nxn, B e H?nxm, Ce H?qxn and & be a subspace in f]?n.

Then61 is an (A,B,C) controllability subspace if and only if

1.20 A<& C (B +(R

1.21 A[(Rn^(C)] cR

and

1.22 CR «CMP), where p • dim<fi and

1.24 <*(0) - {0}, <R (i) .« O(A^1"1^). (ien)

Write K(#) for the class of matrices K such that (A+BKC)(RC (R .

To prove the theorem we need two preliminary results.

1.25 Lemma

Let A e lRnxn, B e Rnxm, Ce jRqxn be real constant matrices and

let 6^ be an (A,B,C)-invariant subspace. If (R is a subspace contained

in (&, then

£)(K) ft(Rn<B+ (A+BKC) <R

«<Rn (a(R+$)

104
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IV.1 Controllability Subspace 105

Proof It is easy to see that «&(K) C<$ H (aGI+<8). To prove the

reverse inclusion, we show first that £>(K) is the same for all K e K (<R).

If K^Kj, e K(00 and x e§, then

B(K2-K1)Cx - (A+BK2C)x- (A+BKjC)x e <R ,

so that B(K2-K1)C(^C(Hn"S?. Therefore

£> (K2) -CR H1?+[a+ BKjC +BO^-K^C] (R
C(R n#+(A +BKjC)&+ B(K2-K1)C A
-<Rn 19+ (a +bk^oS
• ^ (Kx)

and similarly <& (K^ C(D (K2) . Now let x e<ftn (A&+S), i.e.,
x e CR and x • Ar + b for some r e Ol and b e 59. By Lemma (1.3),

A[«.n^(c)] C (R. So if r e&0^(C), then Ar e fi . Therefore

b e (RO $ and Ar • (A + BKC)r for any K e ^mxq i.e., x = (Ar+b) e/Rn #

+ (A+BKC) <R . Assume r fc^CR n ^K(c) , and write

<R= [<Rn^<c)]©fl.
r

with r e (Rr. From Lemma (1.3), A<R C <B +(R. Let r » r., r2, ...
be a basis of-<Rr; then Ar± =Bu± +t± (iep) for some u± e fRm and t. e$,
with Bu. • -b and t- • x. As in the proof of Lemma (1.3), K can be

chosen so that BKxCr± +Bu± » 0 (iep). Then (A+BK C)r± « t. (iep), there

follows that K e K(<ft), and x ft t. - (A+BK C)r. - (A+BK C)r e (A+BK C)jft +
x — 1 xl XX

(R n(En ^<KX). And since<0(K) is the same for all Ke K(CR), therefore
<* n (AR+^B) C «D(K) for all Ke K((R).

Q.E.D.

P
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1.26 Lemma Let Ae|RnXn, Bej^nxm, Cefl^™ be real constant matrices
and let$ be an (A,B,C)-invariant subspace. If KeK ((R), then

1.27 y (A+BKC)j""1 ((BO(5l) o(^(1) ien

where the sequence <K , (ien), is defined by (1.24).

Proof Equation (1.27) is true for i»l. If it is true for

i * k-1, then by Lemma (1.25)

*t* (a+bkc) J"1 <<£nGl) *<3 n(R+ (a+bkc) <^(k"1)
j^f -&n(A<R(k-1)+(B)

=^<k) .
Q.E.D.

Proof of Theorem (1.19)

=* Let & be an (A,B,C) controllability subspace. From the defini

tion of (A,B,C) controllability subspace, there exists K fs^q such that

1.28 <& = {A+BKC|CBn(R}

From (1.28), (Ris clearly an (A,B,C)-invariant subspace, i.e., (R satis

fies (1.20) and (1.21). By Lemma (1.26),

* ft "ST (A+BKC)^1 (/BnQ.) o<R(n) o<R(P>
j=l

where p • dim (R .

*• From (1.20), (1.21) and Lemma (1.3), there exists ^ e ^mxq
such that

(A+B^O^CCR,
^^•v
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i.e., Kx e K «R). From (1.22), (1.24) and Lemma (1.26),

<R« <R(P) =a(n) « y» (A+B^C)^1 (<BO<R)
j-l

ft {A+BK^I^nCR} ,

i.e.,($V.is an (A,B,C) controllability subspace.

Q.E.D.

Let l/"be the maximal subspace of 3 which is (A+BKC)-invariant for

some K, and let K( T7) be the class of K for which (A+BKC) l^C UJ

(^is also said to be the maximal (A,B,C)-invariant subspace in 3 ).

1.29 Theorem Let Ae 1Rnxn, B e [Rnxm, Ce I£qxn be real constant

matrices and let l/and K(I?) be defined as above. If K e K(1?0, then

the subspace

1.30 <R ft {a+bkc|(B ni>}

is the maximal (A,B,C) c.s. in C/.

Proof As in the proof of Lemma (1.25), we can show that the right

hand side of (1.30) is the same for any KeK(l/), so that &• is uniquely

defined.

Suppose that

01 - {A+BKC|(Bn&}

is an (A,B,C) controllability subspace in 3 . Since 61 is (A+BKC)-

invariant and 1/is maximal, there follows VOtfi . Write Xf'and (R as direct

sums

V-t^^c)]©^

CR= [CRn>V(c)]©CR

107



IV.1 Controllability Subspace
lUo

with 1^ 3 (ft^. Then we pick the following sets of vectors such that

is a basis of <R H tf(c)

is a basis of t^H ^(c), where p > pf

is a basis of (R. * "

v is a basis of If, where m > m*
m 1 —

Now we are going to find K e K(V) for which

KCx = KCx V x e ft .

Since AO^C (S +1^, there exists u± e pm, t e {/such that

1-31 Av± «- Bu± + t± (i « m'+l, ..., m)

By the same reasoning as we used in the proof of Lemma (1.3), the exist- ^\

ence of K in the following equation is guaranteed by the linear inde

pendence of Cv -, ..., Cv ,, Cv ,,., ..., Cv .
P+l m m +1 m

i.32 KCtvn+1: ••• :vm»:vm»+1: ••• •] » [kcv.* ... :kcv ,:-u , •p+l. . m . m +1. . "• p+l. . m . m +1.

... ',-u ]
m

For such K,

thus

v^ .. ., vp,

vx, ..' • * v , , . .
•'VP

Vr
..., V ,

m

Vr • • •» v„»»
m

.. •,

(A+BKC)x - (A+BKC)x for all x e 61 .

(A+BKC) ft- (A+BKC) <R C (R. C V

i.e.,

(A+BKC)v± e \r (i-p+1, ..., m')

From (1.31) and (1.32)

(A+BKC)v± - Av± - BUi

» t± e -\T (i»m'+l, ..., m)
^\
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so that for iek each new input v. (an r.-vector) can control y.

completely and does not affect any of the y.'s for j j> i.

More precisely, the diagonal decoupling problem via output feedback

can be formulated as follows,

Given AE (\ , B e [R ,Ce ^q real constant matrices as in

(l.la,b), where C is partitioned into k submatrices C., ..., C, , as

in (2.1), find a matrix K and controllability subspace (ft. , ..., (R,

of (A,B,C), such that

2.3 (R± - {a+bkc113 n (R±} (iek)

2.4 <*t+ A - Rn (iek)

2.5 <SL c ° Jf
j*i J

(iek)

where J{. = Jf(C.), and with the following assumptions

(i) Jf± ?* |Rn (iek)

(ii) The subspaces w— are mutually independent,

(i.e., Jf± O y* J^1 . {o}, iek),
j?i j

or equivalently, the row-space of the k matrices

C. are mutually independent.

(iii) {a|OB} - |Rn

In the following theorem,(R denotes the maximal (A,B,C) c.s. such

that

$, c n Jf (iek)
1 jfi J

The 0\ are constructed according to Theorem (1.29)
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Therefore (A+BKC) l/C 1/ and KCx - KCx for all x e(R, there follows

«. ft {A+BKC|<8n<R}

- {A+BKC|#n<R}

c {A+BKC| ® n#}
ft (R

i.e., & is the maximal (A,B,C) controllability subspace contained in 3"

Q.E.D.

2. Diagonal decoupling via output feedback

In this section, we solve the problem of diagonal decoupling via

output feedback. This problem can be stated as follows: Consider the

output equation in (1.1b) with C partitioned into k submatrices

r C,

2.1

ScJ

where C. is of dimension q. x n (i-1, ..., k; k ^ 2; <U + ••• +

Then equation (l.la,b) can be written as

2.2a

2.2b

x(t) » Ax(t) + Bu(t)

y±(t) » cix(t)

The problem is to find an output feedback law

u(t) Ky(t) + [gx: ... :ck]

k_
Ky(t) + ^7 Gi VjL(t)

(i e k)

vx(t)

Lv^Ttj

q)
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2.6 Theorem

If dimC©) = k, then the problem (2.3)-(2.5) has a solution if

and only if

2.7 \ +ytft - IR" (iek)
and

2.8 J8 - £[ £ n ft±

Furthermore, if K, £L, ..., CR, is any solution of (2.3)-(2.5), then

2.9 <R± - ^ (iek)

Proof •*• This part of proof is the same as the proof of Theorem

(5.1) in [Wo.5].

<= We will show that (2.7) and (2.8) are sufficient con

ditions for the existence of a solution to (2.3)-(2.5). Let Vl be the

maximal subspace such that

2.10 A V£ C19+ ^ (iek)

2.11 k[V^ njf(®} c l> (iek)

2.12 ^ Cj?i ^j <i£*>

If we can show that the 1? are compatible, in the sense that there

exists a K such that

(A+BKC) £j C t£ (iek)

then for this K together with <R± ft {A+BKC| 13 n 1£}, (iek) is a
solution of (2.3)-(2.5)
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For this we show first that U.
* A XT (iek) are compatible.

From (2.8)

•g - VBnft
i=l

k

Bn V* (•.• VI d ft±)

#n ^ +

c £ + l£
j*i

® n V
j

where ^ • 8 n ^, Then from (2.10)

2.13

From (2.11), we have

a if* c a± + ^* .

2.14 AtJ* ( 1* n^(c)] c V* (iek)

j?i

Now we will prove the following result,

2.15 ( V njK(c)) 3 [V±* n/(C)]
j?i

Note that the left hand side of (2.15) can be written as

2.16 (V n^(C)) - y* ( 1£ n\ njf2 ... nJ^k)

W

(V, nJS) from (2.12).
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Let x e [V. nJf(C)]9 then x can be written as follows

2.17 x- X"" *t e ° ^

with

2.18 x. e U C n Jf je {1,2, ..., k} \ {i}
j j P*T P

Consequently, w contains x. for j e {1,2, ..., k} \ {p,i}. And

from (2.17), Jf also contains x, there follows

2.19 x e J/ p e {1,2, ..., k} \ {i}
P P

Then from (2.18) and (2.19) it is clear that xe y ( 1/ HjK),

i.e., (2.15) is established. From (2.l4), (2.15),

2.20 A[0£* HJfic)] C V* (iek)

By Lemma (1.3) and (2.13), (2.20), there exist B± with {B^ =^,

and K. such that

2.21 (A+B^C) V~* C V-±* (iek)

Find V* and tA for vhich

V£ V+... +\ - |i^/({)] ©ft

^i* ° ZL V ^1 n^(c)1 ®^
•?- 'fi-* A _ >TX _ -«.* _ i/ . . ^ A*

j*i

with <* A j.

17 d V * (iek)

Then pick a basis {v., ..., v } of ]/, find a K such that

k .

2.22 BKCvv - <y B^C) vv - Buv (vey),
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in other words, find a solution K to the following equation

k[cv* ... :cv j - [u • ... :u ] .
x. . u x. • \1

Such a K always exists, since the set of vectors Cv, , .... Cv are
i 1* • jj

linearly independent, (also see the proof of Lemma (1.26)). From (2.22),

2.23 (A+BKC) Sj* =(A+Bj[KiC + V" B^C) &*

C(A+B.^C) L>* + ^7 g1

m% (iek)

This proves the compatability of the V 's. Now define

IT" n U* (iek)
1 j*i j

L*Since each 7f (j«l, ..., i-i, i+i k) contains If,
therefore If 3 l^(iek). From (2.23),

2.24 (A+BKC) If C V± (iek) .

From (2.12), we have

2.25 ^ ft
i ... j

* %*J*i

tf* ^ **t m>)<#j

^
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the last equality was set up by the modular distributive rule for sub-

spaces[Wo. 5].

By (2.24) and (2.25), If satisfies the conditions imposed on V^.
Since *\X are maximal, there follows V 3 V. Therefore l£ - V±

(iek).
Q.E.D.

3. Triangular decoupling via output feedback

The problem of triangular decoupling via state feedback was first

formulated and solved by Morse and Wonham [Mo.2], an alternate treatment

can be found in Section 1 of Chapter III. In this section, we are deal

ing with the triangular decoupling problem via output feedback. Let us

consider the system specified in (l.la,b) and the partitioned outputs in

(2.2b). We try to find an output feedback law

u(t) - Ky(t) + [gx:g2: ... :ck]
p1(t)l
k<t>J

k

=Ky(t) + JT G± w±M
i«l

so that each new input v. (a r.-vector) can control y. completely and

does not affect y. for j > i. Namely, the problem is to find matrices

K and G, such that the transfer function matrix relating to the new

input v and output y is upper triangular. More precisely, the

problem can be stated as follows,

Given A e (Rnxn, B e |Rnxm, C e J|?qxn as in (l.la,b), where C is

partitioned into k submatrices C., ..., C, as in (2.1), find a matrix

K e ||^mxq and (A,B,C) controllability subspaces <R.., (iek), such that
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3.1 ft, - {A+BKc|Sn <R }
i i

(iek)

3.2 «1 +^1- IRn (iek)

3.3 tfl c n ^ (iek^l)
j«i+l,...,k

where [/If ft Jf(C±) with C± defined in (2.1), (iek).

Let W. (iek-1) be the maximal (A,B,C) controllability subspace

satisfying (3.3). A constructive procedure for calculating ^ can be

found in the proof of Theorem (1.12) and Theorem (1.29). Let d?, »

{A|$} be the controllable subspace of system (l.la,b).

3.4 Theorem

There exist Ke J(^Inxq and (A,B,C) controllability subspace &±9
(iek), satisfying (3.1)-(3.3) if and only if

3.5 \ +JlT± - |Rn (iek)

Furthermore, if (3.5) holds, one may choose

ft± - <&v (iek)

Proof =* This part of proof follows directly from the maximal!ty

of the $±.

48 We will show that there exists a K such that (3.1)

is satisfied with 61 »<RA> (iek), i.e., we will show that &± (iek)
are compatible.

From (3.3) it is clear that

3.6 ^ Cfl2 C... C4?k
Write C? = {0}, and let &, (iek) be any subspace such that

**%
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3.7 &± - *±© \_x (^k)
Since &, (iek) are (A,B,C)-invariant, there exist K. e [R™"* such that

i x

(A+BK^X) &± C6l± (iek)

thus

3.8 (A+B^C) &£ C(5V (iek)

Let *i. (ieic) be any subspace such that

3.9 \ - S^C^ n vMc)) (iek)

Then pick abasis {fu, ..., f± }of $±, where p± =dim 3-±. Let

I ft {i|p > 1, and 1-1, .... k}. From (3.7), it is clear that the &±

(ieic) are mutually independent, thus the set of vectors {f±. |iel, j°l, ...,

p.} are linearly independent. Furthermore, the set of vectors

{C f |iel, j»l, ..., P.} are linearly independent, this follows from

the fact that f±. (j-1, ...» P±) are basis for 3^, where £± nJT(C) -
{0}. The existence of K in the following equation

3.10 KCf «KiCfij (ieI and ^i*

is guaranteed by the linear independence of the set of vectors {Cf^ |iel

and jep.}. (For a detailed argument, see the proof of Lemma (1.26)).

Now from (3.8) and (3.10), there follows

(A+BKC) &± C&t (iek)

Thus (A+BKC) (R_ C 6L and by induction

(A+BKC) 6l± =(A+BKC) (&t +(R±_1>
c k± +aw
- CR (iek)
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This K together with the (S (iek) is a solution of (3.1) — (3.3).

Q.E.D.

A. Diagonal decoupling via output feedback with dynamic compensation

In section 2, we solve the diagonal decoupling problem with static

output feedback. In case that no such output feedback law exists, one

may try to include some integrators in the feedback loop to solve the

diagonal decoupling problem. The system in (l.la,b) can be augmented by

adjoining to it some new dynamic elements. The augmented system is as

follows:

4.1a

4.1b LX-
.i

0

c

0

I —1

UB J[ Oj

lp i i
u

u

where x(t) e|Rn, x'(t) e|Rn', u(t) e|Rm, u'(t) efR*1', y(t) e|Rq,

I is an n'xn1 identity matrix, and A,B and C are real constant matrices

of appropriate size, as defined in (l.la,b). Denote

4-2 Ae£ ^-<-?4 . Be6 [.B_J..O.| . ^(A_Lo] § BeA [b_{_o] f
lo ! oJ Lo ! iJ

r i

C • 0

lo ; ij

as the (n+n1) x (n+nf) , (n+n') x (m+n1) and (q+n) x (n+n!) real constant

matrices, respectively, given in (4.1a,b). Let (R.? c (Rn+n be an

(Ae,Be,Ce) controllability subspace contained in n (Jlr(C.) © rf?n),
j^i J

where C , (jek), is a q.xn matrix defined in (2.1), i.e., there exists

an (m+n1) x (q+n') real constant matrix Ke such that

fll? - {Ae +BeKece|T3e Oft?} c n /(cj © f^' ,

118
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IV.4 Diagonal Decoupling with Compensation

where $ c range space of B . Similarly, let e> .C [pn be an

(A,B,I) controllability subspace contained in ^ <M(CA)9 i.e., there

exists an mxn real constant matrix,K, such that
j*i j

<£. = {a+bk |£n 5.} c n vA^(c,).
1 j*i 3

The problem of diagonal decoupling via output feedback with dynamic

compensation can be stated as follows:

Given A e fRnxn, B e |Rnxm, Ce |Pqxn real constant matrices and C

is partitioned C^ ..., Cfc as in (2.1), find a positive integer n\

an (mxn') x (q+nf) matrix Ke and (A ,Be,Ce) controllability subspaces

<5^1, ..., <Rfc, where A ,B and C are defined in (4.2), such that

4.3 fii J - {Ae+BeKece|(Be OG^} (iek)

4.4 (fcj + (J^(C±) ©|Rn') =lRn © Rn' (iek)

4-5 ^l C n (Jf(c.) © [Rn') (iek)
j/i 3

4.6 Theorem

Let flyi (iek) be the maximal (A,B,I)-controllability subspace con

tained in H v/K(C ). Then (4.3R4.5) is solvable if and only if
j^i J

4.7 $±+jy{C±) -j]?11 (iek)
Proof "* We show first that if 6C is an (Ae,Be,Ce) c.s.contained

in H (\y<C ) ® !Rn'), then^ftp<Ke is an (A,B,I) c.s. contained
j*i 3

in n ^V(C ), where P is the projection map [Rn © fRn' -• |Rn with
j^i J

the following matrix representation,
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i —i

I i 0
»

• i

i

lo ; oj

n n'

(Xe is an (Ae,Be,Ce) c.s. -» Aefie COf +®e

•* PAe&e C p(Re + p(Be

=• AP&e C pfte + pfce

°> aK6 +©,

i.e., £ft P<Re is (A,B, I)-invariant (see Definition(i.ll)).

By Theorem (1.19), (fte =lim ((£e)y (u-0,1,2,...), where (ffS)°

-'{o}f (61V1 «^e n [Ae«*V + Be]. Let o^y ft P(ftV. (11-0.1.2,

...)

<S y+1 AP«)\V+1

- P(Re n [PAe((Ke)y + p^e]

-£n [a5p +#]

Furthermore, lim £y+1 - lim P(&e)y
- P [lim (<fte)y]

= Pfte

ft^.

Again by Theorem (1.19), ^» P<Re is an (A,B,I) c.s.
@ 6 e e rt A ^>e

Thus (ft. is an (A ,B ,C ) c.s. implies <£. «* P0\. is an (A,B,I) c.s.

for iek.

From (4.4), (4.5)

4.9 » p[di; +(v^(cj)®|Rn,)i - s± +^(cj> - fl?n
4.10 p&? - £4 <= n v>/K(c,).

1 i j^i j
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IV.4 Diagonal Decoupling with Compensation

i.e., oS a is an (A,B,I) c.s. contained in ^ Jx (C ). From the maxi-
1 j^i j

mality of the §. and (4.9), there follows

Ji+^V » IRn .

k "A "?*= Define n1 * X d(<y.), where d(c?.) » dimension of <0 .

Let S. be an (n+n1) x d(Sr.) real constant matrix such that { S.} •

$., where we consider Oj as a subspace in ffj © [f? , and let M. be

an (n+n') x (n+n1) real constant matrix as follows

4.11

M «
i

v.

O

o
(s1)t

O

"\
(i-1, ..., k)

»•

_ n+rr

where I A ^TT d(«?,), and ( S )* is the transpose of S..
J-l,...,i-l

With M± so defined, it is clear that g HJ^(M±) - {0}, {M±} » MS±
and the ranges {M.}, (iek) are independent.

Define <$* ft (P +M±) J, then

4.12

and

4.13

A*®* - AeJ4 - A<?4 C tf + 3 C <Re +Be
i i i 1 i

Ae[«J n^d8)] c(RJ

where (4.13) follows from the fact that (ft* n y/^C6) « {0}.
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IV.4 Diagonal Decoupling with Compensation ^22

Since the $1* (iek) are clearly independent, then from (4.12),

(4.13) there exists an (m+n1) x (q+n1) real constant matrix K such

that

(Ae+BeKeCe) <ftj C<8* , (iek)

4 «. u +u «. «e A(P+M.) J. is an (Ae,Be,Ce)
Now we are going to show that Q\. • i i

c.s. . Dropping the subscript i, suppose $ is a c.s. of (A,B,I). From

Theorem (1.19), g« lim &P» <£ y+1 - ^n <*#P +# >, 0^0,1,2, ...,),

<§,° » {0} . Let {M} C|Rn' (see (4.11)), &e ft (P+M) g , and

(tfW+1 ft &e n ^((R6)11 +ffie] (u-1,2 )

with (&e)° ft {0}. Then (&e) 3 (P+M)£° ; and if (SW 3 (P+M) £ P,

^ejirt-1 D [(p+M)^] n [Ae(P+M)^U +t3e]

- [(p+m)^] n USP + Be]

3 (P+M)[£n (ASy +£>e)]

« (P+MHtS'n (A^y +0)]

- (P+M)^"1"1

By induction, (Re 3 ((ftV 3 (P+M) ^ t (P+M)£, i.e., (ftV t tfV*,

so t^e is an (Ae,Be,Ce) c.s. . Application of this argument to the £^

and <$^ yields the desired result.

The relation P$? •» o implies

(R*c £4® IRnf c< n^(cJ|))©IF?n, .n(^(c) +[Rn'>,

i.e., (R* satisfies (4.5). By (4.7)

4.14 (P+M±) J± +(P+M) J\f(C±) -(P+Mt) |Rn ,

and addition of ^ to both sides of (4.14) yields (4.4)

flJ +<iy(c1>©|RI|,> - !Rn©|Rn' • ^
Q.E.D.
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4.14 Remark It is interesting to note that the condition in (4.7)

is the same as the necessary and sufficient condition for the existence

of decoupling matrices via state feedback with dynamic compensation in

the diagonal decoupling problem, (see Theorem (1.1) in [Mo.3]. The new

dynamic elements adjoined to the system in (l.la,b) have two purposes,

(a) performing as a precompensator for decoupling problem [Gi.2, Si.2,

Wa.l], (b) performing as an observer [Lu.2, Wo.7].

It should be noted that the number of new integrators, n?, adjoined

to system (l.la,b) in the proof of Theorem (4.6) is seen to be too large.

Further research can be done on the problem of minimizing the number of

new integrators for the diagonal decoupling problem via output feedback.

5. Triangular decoupling via output feedback with dynamic compensation

In section 3, we solve the problem of triangular decoupling via

statis output feedback. In case that there exists no such output feed

back law, one may try to include some integrators in the feedback loop

to solve this problem. As we did in section 4, the system in (l.la,b)

is augmented by adjoining to it some new dynamic elements. More pre

cisely, the problem of triangular decoupling via output feedback with

dynamic compensation can be stated as follows:

Given Ae(Rnxn, Be[R>nxm, Ce|Rqxn real constant matrices,

where C is partitioned into k submatrices C., ..., C. as in (2.1),
X K

find a positive integer n1, an (m+n') x (q+n') real constant matrix

Ke and (Ae,Be,Ce) controllability subspace (R?, (ft® •••» (ft{!> where
e e e

A , B and C are defined in (4.2), such that

5.1 fcl -{Ae+BeKece|^e n$*} (iek)
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IV.5 Triangular Decoupling with Compensation 124

5.2 <RJ +( Jf&J ©|Rn') - (R>n©[|?n, (iek)

5.3 <R*c n (^(0,)©^') (iek)
j-i+l,...,k J

5.4 Theorem

Let £. (iek-1) be the maximal (A,B,I) controllability subspace

contained in H \Jf(c*)> and let ^v s tAl^ be tne controllable
j»i+l,...,k 3 *

space of system (l.la,b). Then (5.1)-(5.3) is solvable if and only if

5.5 S± +Jf(C±) - (R*1 (iek)

Proof ** By the same reasoning as in the proof of Theorem

(4.6), we can show that if (R. is an (A ,B ,C ) c.s. satisfying (5.3),

then S • Ptf?® is an (A,B,I) c.s. contained in H i#(C.),
j«i+l,...,k J

where P is a projection mapping defined in (4.8). From (5.2)

5.6 p[flj +(vVK^)© IRnt)] - £± +Jftc±) - |Rn .

From the maximal!ty of the S. and (5.6), there follows

f± +Jnct)- ir"1 (uk)

4s From the assumptions on §., it is clear that

1 c A C ,,, C d) .
12 k

Write Si" 3"x 0 ^, where ^ ft q^ n^(c), Similarly, write

5.7 ^ - ^e 5j_1©...© 3-x© gx®...® ^_±® %
where ^©...® ^ ft ^ nj^c), (jek) .

k A
Define n' - N ' d( &) where d( c?, ) - dimension of CU. Let G

i-1

i

1 .

^

^\
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be an (n+nf) x d( Cl.) real constant matrix such that {G.} « CL , we

consider here CL. as a subspace in |(\ ©|P , and let M be an (n+nf)

x (n+n') real constant matrix as follows

5.8

M =»

1 i
O

o

(G1)t

o
v. J

n+n'

}•
(iek)

where %, » T" d*%?' and ^i^ is the transPose of Gi*
j»l,...,i-l

Define &. ft (P+M£) (3^®^), (iek), where P is aprojection
mapping in (4.8). It is an easy matter to show that

(iek)5.9 \ n Jfice) - {0}

and that the &. (ieic) are mutually independent. Define (R « & ©
X xx

&2©... ©&±, (iek), then

5.10 A^-A^-A^C^+SctlJ+S8 (iek)
and from (5.9), (5.10),

e

5.11

5.12

fl&± n^T(ce)] - {o} cs±©(R^1
e&± c &± +(ft^ +&e

(iek)

(iek)

with (ft® » {0}. Since the £. (iek) are independent, there exists K

such that

<Ae +BeKCCe) « C«± ©<RJ_X (iek)
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IV.5 Triangular Decoupling with Compensation

Thus (Ae +BeKeCe) $1 C $* and by induction

(Ae+BeKeCe) «J - (aVkV)^©^)

C*i® <*S-1
(iek)

,e „e „e,i.e., we have shown that the <&± (iek) is a set of compatible (A ,B ,C )-

invariant subspaces.

e A i A J^rNow we are going to show that (R± «• V"* ^ - V^ (P+M^)( ^+ <^)
j=l j«l

is an (Ae,Be,Ce) c.s. . From (5*7), 1^^(̂ © fc) is an (A,B,I)
j«l

c.s., and from Theorem (1.19), $± - lim (J^, (j\)y+1 -^ " [A(<^i)P
+B1 (U-0,1,2, ...,), (^-{O}. We define (*j 0 ^)M - <lj ©$>

" {A(^i)y*1 +&}, (u«l,2, ...,) and (Jj® 0,)° - «», (jei). Then

(^i)P° H(5fj@fj)M' (y,a0,1* ••-,)'
j»l

Let (^)M+1 ft fcj H[Ae(^)y +(Be] (u-1,2, ...,)

with «R*)° - {0}. Then «Rj>° 5> {0} - ^T (P+Mj)(^j ®$,>°; and if
jol

(<R^)y3 V (WMjX^j©^. then
j»l

(^)U+1^. (P4Mj)(3j©^) v*1- ZI (P+Mj)(^j®

£/] +6<
j«l

126
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r (p+Mj) f^j ®^>n w^ +£ei}
'j

r <p+v (< i, ©̂>n <a< ^i>y +si}
jrf

v+i

j«l

i i .

By induction, ffij 3 ((R*)U 3 ^T (P+Mj)( 3j ©^)P t ^T (P+Mj)( ^ ®£) ,
j«l j-1

.e „e „e,i.e., (<R*)y t&l . So(R* (iek) is an (Ae,Be,Ce) c.s. .

The relation P&* - ^ implies

«Jc 3>(Rn' of n ^(c,A+ fRn' -n j>«V
1 i Lj-i+i k jJ j-i+i,...,kl, 3

© (RnJ
i.e., (R® satisfies (5.3). From (5.5) and the relation J± »P<R®,

P<K* +i/ft^) - |Rn

or equivalently, for some t£ c ||\ ,

5.13 (RJ +^CC^ - $n®V±

Addition of !Rn to both sides of (5.13) yields (5.2),

(RJ +c^V© |Rn') - IP"® IRn' .
Q.E.D.
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5.14 Remark The new dynamic elements adjoined to the system in

(l.la,b) in the proof of Theorem (5.4) are performing as an observer

[Lu.2,Wo.7],
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